mirror of https://github.com/vladmandic/human
8064 lines
1.6 MiB
8064 lines
1.6 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Fc=Object.defineProperty;var NE=Object.getOwnPropertyDescriptor;var CE=Object.getOwnPropertyNames;var EE=Object.prototype.hasOwnProperty;var RE=(e,t,r)=>t in e?Fc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r;var ep=(e,t)=>{for(var r in t)Fc(e,r,{get:t[r],enumerable:!0})},ME=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of CE(t))!EE.call(e,a)&&a!==r&&Fc(e,a,{get:()=>t[a],enumerable:!(n=NE(t,a))||n.enumerable});return e};var FE=e=>ME(Fc({},"__esModule",{value:!0}),e);var fe=(e,t,r)=>(RE(e,typeof t!="symbol"?t+"":t,r),r),d3=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var tp=(e,t,r)=>(d3(e,t,"read from private field"),r?r.call(e):t.get(e)),rp=(e,t,r)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,r)},np=(e,t,r,n)=>(d3(e,t,"write to private field"),n?n.call(e,r):t.set(e,r),r);var FAe={};ep(FAe,{Human:()=>$9,default:()=>$9,defaults:()=>gs,env:()=>ce});function ie(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}function p3(e,t){let r=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${a}`);return a}var oe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Ey(e,t,r="config",n=[]){for(let a of Object.keys(t))if(typeof t[a]=="object")Ey(e[a],t[a],a,n);else{let s=e&&typeof e[a]!="undefined";s||n.push({reason:"unknown property",where:`${r}.${a} = ${t[a]}`});let i=e&&typeof e[a]==typeof t[a];s&&!i&&n.push({reason:"property type mismatch",where:`${r}.${a} = ${t[a]}`,expected:typeof e[a]})}return t.debug&&r==="config"&&n.length>0&&ie("invalid configuration",n),n}function kr(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,n)=>(Object.keys(n||{}).forEach(a=>{let s=r[a],i=n[a];Array.isArray(s)&&Array.isArray(i)?r[a]=s.concat(...i):t(s)&&t(i)?r[a]=kr(s,i):r[a]=i}),r),{})}var gs={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};ep(Ue,{Abs:()=>Fo,Acos:()=>Nu,Acosh:()=>Cu,AdadeltaOptimizer:()=>Cm,AdagradOptimizer:()=>Em,AdamOptimizer:()=>Rm,AdamaxOptimizer:()=>Mm,Add:()=>Ha,AddN:()=>Us,All:()=>Eu,Any:()=>Ru,ArgMax:()=>Gs,ArgMin:()=>Mu,Asin:()=>Fu,Asinh:()=>$u,Atan:()=>Pu,Atan2:()=>zu,Atanh:()=>_u,AvgPool:()=>js,AvgPool3D:()=>Dp,AvgPool3DGrad:()=>zf,AvgPoolGrad:()=>_f,BackendWasm:()=>BT,BatchMatMul:()=>Hs,BatchToSpaceND:()=>$o,Bincount:()=>Of,BroadcastArgs:()=>Df,BroadcastTo:()=>dw,Callback:()=>D4,CallbackList:()=>D7,Cast:()=>qs,Ceil:()=>Ks,ClipByValue:()=>qa,Complex:()=>Lp,ComplexAbs:()=>Bp,Concat:()=>Po,Conv2D:()=>Xs,Conv2DBackpropFilter:()=>Lf,Conv2DBackpropInput:()=>Zs,Conv3D:()=>Wp,Conv3DBackpropFilterV2:()=>Bf,Conv3DBackpropInputV2:()=>Wf,Cos:()=>Ys,Cosh:()=>Js,CropAndResize:()=>zo,Cumprod:()=>Ou,Cumsum:()=>_o,CustomCallback:()=>B7,DataStorage:()=>Op,DenseBincount:()=>Vf,DepthToSpace:()=>Oo,DepthwiseConv2dNative:()=>Qs,DepthwiseConv2dNativeBackpropFilter:()=>Uf,DepthwiseConv2dNativeBackpropInput:()=>Gf,Diag:()=>jf,Dilation2D:()=>Vp,Dilation2DBackpropFilter:()=>sf,Dilation2DBackpropInput:()=>af,ENV:()=>ga,EarlyStopping:()=>L4,Einsum:()=>Up,Elu:()=>ti,EluGrad:()=>Hf,Environment:()=>lw,Equal:()=>Do,Erf:()=>Du,Exp:()=>ri,ExpandDims:()=>Lo,Expm1:()=>Bo,FFT:()=>qf,Fill:()=>Lu,FlipLeftRight:()=>Wo,Floor:()=>ni,FloorDiv:()=>ai,FromPixels:()=>Ip,FusedBatchNorm:()=>si,FusedConv2D:()=>Cs,FusedDepthwiseConv2D:()=>Es,GPGPUContext:()=>pu,GatherNd:()=>Uo,GatherV2:()=>Vo,GraphModel:()=>r0,Greater:()=>Go,GreaterEqual:()=>ii,History:()=>L7,IFFT:()=>Kf,Identity:()=>oi,Imag:()=>Gp,InputSpec:()=>qt,IsFinite:()=>Bu,IsInf:()=>Wu,IsNan:()=>Vu,KernelBackend:()=>Su,LRN:()=>Hp,LRNGrad:()=>Zf,LayerVariable:()=>P7,LayersModel:()=>Ga,LeakyRelu:()=>li,Less:()=>jo,LessEqual:()=>Ho,LinSpace:()=>Xf,Log:()=>ui,Log1p:()=>Uu,LogSoftmax:()=>pw,LogicalAnd:()=>qo,LogicalNot:()=>Gu,LogicalOr:()=>jp,MathBackendCPU:()=>Rx,MathBackendWebGL:()=>Ch,Max:()=>di,MaxPool:()=>hi,MaxPool3D:()=>qp,MaxPool3DGrad:()=>Jf,MaxPoolGrad:()=>Yf,MaxPoolWithArgmax:()=>Qf,Maximum:()=>pi,Mean:()=>ci,Min:()=>fi,Minimum:()=>mi,MirrorPad:()=>gi,Mod:()=>ju,MomentumOptimizer:()=>Fm,Multinomial:()=>em,Multiply:()=>yi,Neg:()=>Ko,NonMaxSuppressionV3:()=>Zo,NonMaxSuppressionV4:()=>Hu,NonMaxSuppressionV5:()=>Yo,NotEqual:()=>Xo,OP_SCOPE_SUFFIX:()=>Tw,OneHot:()=>Qo,OnesLike:()=>Jo,Optimizer:()=>Ya,OptimizerConstructors:()=>As,Pack:()=>el,PadV2:()=>Ai,Pool:()=>kR,Pow:()=>xi,Prelu:()=>bi,Prod:()=>tl,RMSPropOptimizer:()=>$m,RNN:()=>Ja,Range:()=>qu,Rank:()=>gw,Real:()=>Kp,RealDiv:()=>ei,Reciprocal:()=>Ku,Reduction:()=>f7,Relu:()=>vi,Relu6:()=>ki,Reshape:()=>rl,ResizeBilinear:()=>wi,ResizeBilinearGrad:()=>rm,ResizeNearestNeighbor:()=>Xu,ResizeNearestNeighborGrad:()=>tm,Reverse:()=>nl,RotateWithOffset:()=>yl,Round:()=>al,Rsqrt:()=>Ii,SGDOptimizer:()=>ch,ScatterNd:()=>sl,Select:()=>il,Selu:()=>Zu,Sequential:()=>qm,Sigmoid:()=>Ti,Sign:()=>Yu,Sin:()=>Si,Sinh:()=>ll,Slice:()=>ol,Softmax:()=>Ei,Softplus:()=>Ju,SpaceToBatchND:()=>ul,SparseFillEmptyRows:()=>Xp,SparseReshape:()=>Qu,SparseSegmentMean:()=>Zp,SparseSegmentSum:()=>Yp,SparseToDense:()=>Jp,SplitV:()=>dl,Sqrt:()=>Ni,Square:()=>ed,SquaredDifference:()=>Ri,Step:()=>Pi,StridedSlice:()=>pl,StringNGrams:()=>Qp,StringSplit:()=>nm,StringToHashBucketFast:()=>am,Sub:()=>Mi,Sum:()=>Ci,SymbolicTensor:()=>oa,Tan:()=>hl,Tanh:()=>Fi,Tensor:()=>rt,TensorBuffer:()=>rr,Tile:()=>Ka,TopK:()=>cl,Transform:()=>fl,Transpose:()=>$i,Unique:()=>sm,Unpack:()=>ml,UnsortedSegmentSum:()=>eh,Variable:()=>Np,ZerosLike:()=>gl,_FusedMatMul:()=>Ns,abs:()=>er,acos:()=>sk,acosh:()=>ik,add:()=>le,addN:()=>om,all:()=>g2,any:()=>hf,argMax:()=>Nn,argMin:()=>ok,asin:()=>lk,asinh:()=>uk,atan:()=>dk,atan2:()=>pk,atanh:()=>hk,avgPool:()=>lm,avgPool3d:()=>A2,backend:()=>Un,backend_util:()=>N,basicLSTMCell:()=>d$,batchNorm:()=>mu,batchNorm2d:()=>gk,batchNorm3d:()=>yk,batchNorm4d:()=>Ak,batchToSpaceND:()=>um,bincount:()=>x2,booleanMaskAsync:()=>kz,broadcastArgs:()=>xk,broadcastTo:()=>xp,broadcast_util:()=>Al,browser:()=>$n,buffer:()=>We,callbacks:()=>ZG,cast:()=>me,ceil:()=>bk,clipByValue:()=>hn,clone:()=>Lr,complex:()=>Rs,concat:()=>kt,concat1d:()=>vk,concat2d:()=>rd,concat3d:()=>wk,concat4d:()=>kk,constraints:()=>v7,conv1d:()=>b2,conv2d:()=>Fs,conv2dTranspose:()=>w2,conv3d:()=>k2,conv3dTranspose:()=>Sk,copyRegisteredKernels:()=>NR,cos:()=>dm,cosh:()=>I2,cosineWindow:()=>K2,cumprod:()=>Tk,cumsum:()=>S2,customGrad:()=>Ra,data:()=>d6,denseBincount:()=>Nk,deprecationWarn:()=>c2,depthToSpace:()=>Ck,depthwiseConv2d:()=>lh,deregisterOp:()=>QG,device_util:()=>ah,diag:()=>W$,dilation2d:()=>Ek,disableDeprecationWarnings:()=>TF,dispose:()=>re,disposeVariables:()=>NF,div:()=>pe,divNoNan:()=>Rk,dot:()=>K$,dropout:()=>s7,einsum:()=>Mk,elu:()=>uh,enableDebugMode:()=>SF,enableProdMode:()=>h2,enclosingPowerOfTwo:()=>i7,engine:()=>Ar,env:()=>Y,equal:()=>Cn,erf:()=>Fk,exp:()=>En,expandDims:()=>Ht,expm1:()=>$k,eye:()=>T2,fft:()=>vm,fill:()=>nd,findBackend:()=>m2,findBackendFactory:()=>MF,floor:()=>dh,floorDiv:()=>ih,forceHalfFloat:()=>FS,fused:()=>_s,gather:()=>gu,gatherND:()=>a7,gather_util:()=>s2,getBackend:()=>an,getGradient:()=>Hy,getKernel:()=>of,getKernelsForBackend:()=>Ca,getThreadsCount:()=>Y1e,gpgpu_util:()=>uS,grad:()=>xP,grads:()=>bP,greater:()=>cn,greaterEqual:()=>bl,ifft:()=>Mp,imag:()=>pm,image:()=>Ie,inTopKAsync:()=>Pz,initializers:()=>S7,input:()=>e4,io:()=>Sr,irfft:()=>U2,isFinite:()=>uP,isInf:()=>pP,isNaN:()=>Pk,keep:()=>hr,kernel_impls:()=>jn,layers:()=>F7,leakyRelu:()=>hm,less:()=>N2,lessEqual:()=>vl,linalg:()=>m7,linspace:()=>_k,loadGraphModel:()=>rH,loadLayersModel:()=>oU,localResponseNormalization:()=>zk,log:()=>Rn,log1p:()=>cm,logSigmoid:()=>TP,logSoftmax:()=>C2,logSumExp:()=>Wk,logicalAnd:()=>ha,logicalNot:()=>mm,logicalOr:()=>M2,logicalXor:()=>DP,losses:()=>AD,matMul:()=>Je,math:()=>Bw,max:()=>fr,maxPool:()=>gm,maxPool3d:()=>F2,maxPoolWithArgmax:()=>Vk,maximum:()=>Xa,mean:()=>Bt,memory:()=>pf,meshgrid:()=>GP,metrics:()=>_4,min:()=>$s,minimum:()=>ph,mirrorPad:()=>Uk,mod:()=>sd,model:()=>sU,models:()=>z4,moments:()=>ym,movingAverage:()=>Tz,mul:()=>L,multiRNNCell:()=>JP,multinomial:()=>Gk,neg:()=>zt,nextFrame:()=>Y2,norm:()=>H2,notEqual:()=>yu,oneHot:()=>Ep,ones:()=>pn,onesLike:()=>Mn,op:()=>W,outerProduct:()=>n_,pad:()=>Gn,pad1d:()=>i_,pad2d:()=>l_,pad3d:()=>d_,pad4d:()=>h_,pool:()=>y_,pow:()=>Ps,prelu:()=>xm,print:()=>zw,prod:()=>$2,profile:()=>CF,rand:()=>w_,randomGamma:()=>T_,randomNormal:()=>jk,randomUniform:()=>id,range:()=>Au,ready:()=>td,real:()=>Rp,reciprocal:()=>Hk,registerBackend:()=>xl,registerCallbackConstructor:()=>lU,registerGradient:()=>hw,registerKernel:()=>Vn,registerOp:()=>JG,regularizers:()=>O4,relu:()=>$a,relu6:()=>z2,removeBackend:()=>RF,reshape:()=>G,reverse:()=>Fn,reverse1d:()=>__,reverse2d:()=>O_,reverse3d:()=>L_,reverse4d:()=>W_,rfft:()=>wm,round:()=>O2,rsqrt:()=>D2,scalar:()=>Se,scatterND:()=>n7,scatter_util:()=>i2,selu:()=>L2,separableConv2d:()=>qk,sequential:()=>iU,serialization:()=>ue,setBackend:()=>f2,setPlatform:()=>FF,setThreadsCount:()=>Z1e,setWasmPath:()=>X1e,setWasmPaths:()=>hb,setWebGLContext:()=>s0,setdiff1dAsync:()=>Kk,shared:()=>n0,sigmoid:()=>Tr,sign:()=>Xk,signal:()=>yD,sin:()=>B2,sinh:()=>W2,slice:()=>Pe,slice1d:()=>bm,slice2d:()=>V2,slice3d:()=>wl,slice4d:()=>ko,slice_util:()=>_t,softmax:()=>od,softplus:()=>ad,spaceToBatchND:()=>Am,sparse:()=>dp,sparseToDense:()=>q2,spectral:()=>gD,split:()=>Kt,sqrt:()=>Cr,square:()=>At,squaredDifference:()=>G2,squeeze:()=>et,stack:()=>sr,step:()=>hh,stridedSlice:()=>Zk,string:()=>Hc,sub:()=>he,sum:()=>ke,sumOutType:()=>nh,tan:()=>Yk,tanh:()=>fu,tensor:()=>ct,tensor1d:()=>St,tensor2d:()=>ua,tensor3d:()=>Vw,tensor4d:()=>cz,tensor5d:()=>fz,tensor6d:()=>mz,tensor_util:()=>la,test_util:()=>rk,tidy:()=>K,tile:()=>Dn,time:()=>EF,topk:()=>Jk,train:()=>io,transpose:()=>nt,truncatedNormal:()=>km,unique:()=>s1,unregisterGradient:()=>TR,unregisterKernel:()=>SR,unsortedSegmentSum:()=>Qk,unstack:()=>en,upcastType:()=>Nr,util:()=>v,valueAndGrad:()=>vP,valueAndGrads:()=>wP,variable:()=>e7,variableGrads:()=>Ok,version:()=>Oh,version_converter:()=>nH,version_core:()=>p2,version_cpu:()=>Uq,version_layers:()=>bA,version_wasm:()=>J1e,version_webgl:()=>cte,webgl:()=>fte,webgl_util:()=>$I,webgpu:()=>_8,where:()=>Br,whereAsync:()=>j2,zeros:()=>Wt,zerosLike:()=>at});var $E=Object.create,Mf=Object.defineProperty,PE=Object.getOwnPropertyDescriptor,Zv=Object.getOwnPropertyNames,_E=Object.getPrototypeOf,zE=Object.prototype.hasOwnProperty,OE=e=>Mf(e,"__esModule",{value:!0}),ir=(e,t)=>function(){return t||(0,e[Zv(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{for(var r in t)Mf(e,r,{get:t[r],enumerable:!0})},DE=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of Zv(t))!zE.call(e,a)&&(r||a!=="default")&&Mf(e,a,{get:()=>t[a],enumerable:!(n=PE(t,a))||n.enumerable});return e},Ro=(e,t)=>DE(OE(Mf(e!=null?$E(_E(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),LE=ir({"src/node_modules/long/src/long.js"(e,t){t.exports=n;var r=null;try{r=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function n(I,O,z){this.low=I|0,this.high=O|0,this.unsigned=!!z}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function a(I){return(I&&I.__isLong__)===!0}n.isLong=a;var s={},i={};function o(I,O){var z,j,X;return O?(I>>>=0,(X=0<=I&&I<256)&&(j=i[I],j)?j:(z=u(I,(I|0)<0?-1:0,!0),X&&(i[I]=z),z)):(I|=0,(X=-128<=I&&I<128)&&(j=s[I],j)?j:(z=u(I,I<0?-1:0,!1),X&&(s[I]=z),z))}n.fromInt=o;function l(I,O){if(isNaN(I))return O?b:x;if(O){if(I<0)return b;if(I>=g)return R}else{if(I<=-y)return _;if(I+1>=y)return E}return I<0?l(-I,O).neg():u(I%m|0,I/m|0,O)}n.fromNumber=l;function u(I,O,z){return new n(I,O,z)}n.fromBits=u;var d=Math.pow;function h(I,O,z){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return x;if(typeof O=="number"?(z=O,O=!1):O=!!O,z=z||10,z<2||36<z)throw RangeError("radix");var j;if((j=I.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return h(I.substring(1),O,z).neg();for(var X=l(d(z,8)),D=x,Q=0;Q<I.length;Q+=8){var V=Math.min(8,I.length-Q),ee=parseInt(I.substring(Q,Q+V),z);if(V<8){var J=l(d(z,V));D=D.mul(J).add(l(ee))}else D=D.mul(X),D=D.add(l(ee))}return D.unsigned=O,D}n.fromString=h;function p(I,O){return typeof I=="number"?l(I,O):typeof I=="string"?h(I,O):u(I.low,I.high,typeof O=="boolean"?O:I.unsigned)}n.fromValue=p;var c=1<<16,f=1<<24,m=c*c,g=m*m,y=g/2,A=o(f),x=o(0);n.ZERO=x;var b=o(0,!0);n.UZERO=b;var w=o(1);n.ONE=w;var T=o(1,!0);n.UONE=T;var S=o(-1);n.NEG_ONE=S;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var R=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=R;var _=u(0,-2147483648,!1);n.MIN_VALUE=_;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},M.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(_)){var O=l(I),z=this.div(O),j=z.mul(O).sub(this);return z.toString(I)+j.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var X=l(d(I,6),this.unsigned),D=this,Q="";;){var V=D.div(X),ee=D.sub(V.mul(X)).toInt()>>>0,J=ee.toString(I);if(D=V,D.isZero())return J+Q;for(;J.length<6;)J="0"+J;Q=""+J+Q}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq(_)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,O=31;O>0&&(I&1<<O)==0;O--);return this.high!=0?O+33:O+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(I){return a(I)||(I=p(I)),this.unsigned!==I.unsigned&&this.high>>>31===1&&I.high>>>31===1?!1:this.high===I.high&&this.low===I.low},M.eq=M.equals,M.notEquals=function(I){return!this.eq(I)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(I){return this.comp(I)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(I){return this.comp(I)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(I){return this.comp(I)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(I){return this.comp(I)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(I){if(a(I)||(I=p(I)),this.eq(I))return 0;var O=this.isNegative(),z=I.isNegative();return O&&!z?-1:!O&&z?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq(_)?_:this.not().add(w)},M.neg=M.negate,M.add=function(I){a(I)||(I=p(I));var O=this.high>>>16,z=this.high&65535,j=this.low>>>16,X=this.low&65535,D=I.high>>>16,Q=I.high&65535,V=I.low>>>16,ee=I.low&65535,J=0,se=0,Z=0,ae=0;return ae+=X+ee,Z+=ae>>>16,ae&=65535,Z+=j+V,se+=Z>>>16,Z&=65535,se+=z+Q,J+=se>>>16,se&=65535,J+=O+D,J&=65535,u(Z<<16|ae,J<<16|se,this.unsigned)},M.subtract=function(I){return a(I)||(I=p(I)),this.add(I.neg())},M.sub=M.subtract,M.multiply=function(I){if(this.isZero())return x;if(a(I)||(I=p(I)),r){var O=r.mul(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}if(I.isZero())return x;if(this.eq(_))return I.isOdd()?_:x;if(I.eq(_))return this.isOdd()?_:x;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(A)&&I.lt(A))return l(this.toNumber()*I.toNumber(),this.unsigned);var z=this.high>>>16,j=this.high&65535,X=this.low>>>16,D=this.low&65535,Q=I.high>>>16,V=I.high&65535,ee=I.low>>>16,J=I.low&65535,se=0,Z=0,ae=0,de=0;return de+=D*J,ae+=de>>>16,de&=65535,ae+=X*J,Z+=ae>>>16,ae&=65535,ae+=D*ee,Z+=ae>>>16,ae&=65535,Z+=j*J,se+=Z>>>16,Z&=65535,Z+=X*ee,se+=Z>>>16,Z&=65535,Z+=D*V,se+=Z>>>16,Z&=65535,se+=z*J+j*ee+X*V+D*Q,se&=65535,u(ae<<16|de,se<<16|Z,this.unsigned)},M.mul=M.multiply,M.divide=function(I){if(a(I)||(I=p(I)),I.isZero())throw Error("division by zero");if(r){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var O=(this.unsigned?r.div_u:r.div_s)(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var z,j,X;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return b;if(I.gt(this.shru(1)))return T;X=b}else{if(this.eq(_)){if(I.eq(w)||I.eq(S))return _;if(I.eq(_))return w;var D=this.shr(1);return z=D.div(I).shl(1),z.eq(x)?I.isNegative()?w:S:(j=this.sub(I.mul(z)),X=z.add(j.div(I)),X)}else if(I.eq(_))return this.unsigned?b:x;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();X=x}for(j=this;j.gte(I);){z=Math.max(1,Math.floor(j.toNumber()/I.toNumber()));for(var Q=Math.ceil(Math.log(z)/Math.LN2),V=Q<=48?1:d(2,Q-48),ee=l(z),J=ee.mul(I);J.isNegative()||J.gt(j);)z-=V,ee=l(z,this.unsigned),J=ee.mul(I);ee.isZero()&&(ee=w),X=X.add(ee),j=j.sub(J)}return X},M.div=M.divide,M.modulo=function(I){if(a(I)||(I=p(I)),r){var O=(this.unsigned?r.rem_u:r.rem_s)(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(I){return a(I)||(I=p(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},M.or=function(I){return a(I)||(I=p(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},M.xor=function(I){return a(I)||(I=p(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},M.shiftLeft=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(I){if(a(I)&&(I=I.toInt()),I&=63,I===0)return this;var O=this.high;if(I<32){var z=this.low;return u(z>>>I|O<<32-I,O>>>I,this.unsigned)}else return I===32?u(O,0,this.unsigned):u(O>>>I-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var I=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},M.toBytesBE=function(){var I=this.high,O=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},n.fromBytes=function(I,O,z){return z?n.fromBytesLE(I,O):n.fromBytesBE(I,O)},n.fromBytesLE=function(I,O){return new n(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,O)},n.fromBytesBE=function(I,O){return new n(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],O)}}}),BE=ir({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),WE=ir({"(disabled):util"(){}}),VE=ir({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(r,n,a){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),UE=ir({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),GE=ir({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),jE=ir({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,f,m;return c=h[p],c^=c>>>7,f=c^c<<24,c=h[p+1&7],f^=c^c>>>10,c=h[p+3&7],f^=c^c>>>3,c=h[p+4&7],f^=c^c<<7,c=h[p+7&7],c=c^c<<13,f^=c^c<<9,h[p]=f,u.i=p+1&7,f};function d(h,p){var c,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,c=0;c<p.length;++c)m[c&7]=m[c&7]<<15^p.charCodeAt(c)+m[c+1&7]<<13;for(;m.length<8;)m.push(0);for(c=0;c<8&&m[c]===0;++c);for(c==8?f=m[7]=-1:f=m[c],h.x=m,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),HE=ir({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,f,m;return u.w=h=h+1640531527|0,m=p[c+34&127],f=p[c=c+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[c]=m^f,u.i=c,m+(h^h>>>16)|0};function d(h,p){var c,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=f+y,m=c==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],c=A[m=m+1&127],f^=f<<13,c^=c<<17,f^=f>>>15,c^=c>>>12,A[m]=f^c;h.w=y,h.X=A,h.i=m}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),qE=ir({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^c,c=c-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-f|0,u.d=f<<16^c>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),KE=ir({"(disabled):crypto"(){}}),XE=ir({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(r,n,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function f(w,T,S){var E=[];T=T==!0?{entropy:!0}:T||{};var R=A(y(T.entropy?[w,b(n)]:w==null?x():w,3),E),_=new m(E),M=function(){for(var I=_.g(i),O=u,z=0;I<d;)I=(I+z)*s,O*=s,z=_.g(1);for(;I>=h;)I/=2,O/=2,z>>>=1;return(I+z)/O};return M.int32=function(){return _.g(4)|0},M.quick=function(){return _.g(4)/4294967296},M.double=M,A(b(_.S),n),(T.pass||S||function(I,O,z,j){return j&&(j.S&&g(j,_),I.state=function(){return g(_,{})}),z?(a[l]=I,O):I})(M,R,"global"in T?T.global:this==a,T.state)}function m(w){var T,S=w.length,E=this,R=0,_=E.i=E.j=0,M=E.S=[];for(S||(w=[S++]);R<s;)M[R]=R++;for(R=0;R<s;R++)M[R]=M[_=p&_+w[R%S]+(T=M[R])],M[_]=T;(E.g=function(I){for(var O,z=0,j=E.i,X=E.j,D=E.S;I--;)O=D[j=p&j+1],z=z*s+D[p&(D[j]=D[X=p&X+O])+(D[X]=O)];return E.i=j,E.j=X,z})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var S=[],E=typeof w,R;if(T&&E=="object")for(R in w)try{S.push(y(w[R],T-1))}catch(_){}return S.length?S:E=="string"?w:w+"\0"}function A(w,T){for(var S=w+"",E,R=0;R<S.length;)T[p&R]=p&(E^=T[p&R]*19)+S.charCodeAt(R++);return b(T)}function x(){try{var w;return c&&(w=c.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var T=r.navigator,S=T&&T.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{c=KE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Ff=ir({"src/node_modules/seedrandom/index.js"(e,t){var r=VE(),n=UE(),a=GE(),s=jE(),i=HE(),o=qE(),l=XE();l.alea=r,l.xor128=n,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}}),Yv=ir({"(disabled):src/node_modules/string_decoder/index.js"(){}}),H1=ir({"(disabled):fs"(){}}),tf=ir({"(disabled):path"(){}}),ZE=ir({"(disabled):worker_threads"(){}}),YE=ir({"(disabled):perf_hooks"(){}}),JE=ir({"(disabled):os"(){}}),QE=ir({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};function s(){return $e.buffer!=$r&&Jn($e.buffer),Yh}function i(){return $e.buffer!=$r&&Jn($e.buffer),Jh}function o(){return $e.buffer!=$r&&Jn($e.buffer),Ud}function l(){return $e.buffer!=$r&&Jn($e.buffer),Qh}function u(){return $e.buffer!=$r&&Jn($e.buffer),ec}function d(){return $e.buffer!=$r&&Jn($e.buffer),tc}function h(){return $e.buffer!=$r&&Jn($e.buffer),rc}var p=typeof a!="undefined"?a:{},c,f;p.ready=new Promise(function(C,$){c=C,f=$});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},p),y=[],A="./this.program",x=(C,$)=>{throw $},b=typeof window=="object",w=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",S=p.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(C){return p.locateFile?p.locateFile(C,E):E+C}var _,M,I,O;function z(C){C instanceof Jd||J("exiting due to exception: "+C)}var j,X,D;if(T){w?E=tf().dirname(E)+"/":E=__dirname+"/",D=()=>{X||(j=H1(),X=tf())},_=function($,U){return D(),$=X.normalize($),j.readFileSync($,U?void 0:"utf8")},I=$=>{var U=_($,!0);return U.buffer||(U=new Uint8Array(U)),U},M=($,U,te)=>{D(),$=X.normalize($),j.readFile($,function(ge,xe){ge?te(ge):U(xe.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function($){if(!($ instanceof Jd))throw $}),process.on("unhandledRejection",function($){throw $}),x=($,U)=>{if(Ji())throw process.exitCode=$,U;z(U),process.exit($)},p.inspect=function(){return"[Emscripten Module object]"};let C;try{C=ZE()}catch($){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),$}global.Worker=C.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(_=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.send(null),$.responseText},w&&(I=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),M=(C,$,U)=>{var te=new XMLHttpRequest;te.open("GET",C,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){$(te.response);return}U()},te.onerror=U,te.send(null)}),O=C=>document.title=C);T&&typeof performance=="undefined"&&(global.performance=YE().performance);var Q=console.log.bind(console),V=console.warn.bind(console);T&&(D(),Q=C=>j.writeSync(1,C+`
|
|
`),V=C=>j.writeSync(2,C+`
|
|
`));var ee=p.print||Q,J=p.printErr||V;Object.assign(p,g),g=null,p.arguments&&(y=p.arguments),p.thisProgram&&(A=p.thisProgram),p.quit&&(x=p.quit);var se=4;function Z(C){Z.shown||(Z.shown={}),Z.shown[C]||(Z.shown[C]=1,J(C))}function ae(C,$){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:$[0]=="v"?[]:[U[$[0]]]},ge=1;ge<$.length;++ge)te.parameters.push(U[$[ge]]);return new WebAssembly.Function(te,C)}var xe=[1,0,1,96],Ne=$.slice(0,1),_e=$.slice(1),$t={i:127,j:126,f:125,d:124};xe.push(_e.length);for(var ge=0;ge<_e.length;++ge)xe.push($t[_e[ge]]);Ne=="v"?xe.push(0):xe=xe.concat([1,$t[Ne]]),xe[1]=xe.length-2;var ra=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),na=new WebAssembly.Module(ra),Mc=new WebAssembly.Instance(na,{e:{f:C}}),Qd=Mc.exports.f;return Qd}var de=[],Ae;function be(){if(de.length)return de.pop();try{wn.grow(1)}catch(C){throw C instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":C}return wn.length-1}function Ee(C,$){for(var U=C;U<C+$;U++){var te=Gl(U);te&&Ae.set(te,U)}}var Me=0,De=C=>{Me=C},Be=Atomics.load,Ze=Atomics.store,ot=Atomics.compareExchange,dt;p.wasmBinary&&(dt=p.wasmBinary);var pt=p.noExitRuntime||!0;typeof WebAssembly!="object"&&Wl("no native wasm support detected");var $e,vt,yt=!1,Fr;function ur(C,$){C||Wl($)}function Xr(C){var $=p["_"+C];return $}function Jt(C,$,U,te,ge){var xe={string:function(kn){var Yl=0;if(kn!=null&&kn!==0){var u3=(kn.length<<2)+1;Yl=Zl(u3),Zi(kn,Yl,u3)}return Yl},array:function(kn){var Yl=Zl(kn.length);return Da(kn,Yl),Yl}};function Ne(kn){return $==="string"?vn(kn):$==="boolean"?Boolean(kn):kn}var _e=Xr(C),$t=[],ra=0;if(te)for(var na=0;na<te.length;na++){var Mc=xe[U[na]];Mc?(ra===0&&(ra=Ny()),$t[na]=Mc(te[na])):$t[na]=te[na]}var Qd=_e.apply(null,$t);function TE(kn){return ra!==0&&Nc(ra),Ne(kn)}return Qd=TE(Qd),Qd}function dr(C,$,U,te){U=U||[];var ge=U.every(function(Ne){return Ne==="number"}),xe=$!=="string";return xe&&ge&&!te?Xr(C):function(){return Jt(C,$,U,arguments,te)}}var Yn=1;function Zr(C){var $=new TextDecoder(C);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),$.decode.call($,U))}var Qt=typeof TextDecoder!="undefined"?new Zr("utf8"):void 0;function bn(C,$,U){for(var te=$+U,ge=$;C[ge]&&!(ge>=te);)++ge;if(ge-$>16&&C.subarray&&Qt)return Qt.decode(C.subarray($,ge));for(var xe="";$<ge;){var Ne=C[$++];if(!(Ne&128)){xe+=String.fromCharCode(Ne);continue}var _e=C[$++]&63;if((Ne&224)==192){xe+=String.fromCharCode((Ne&31)<<6|_e);continue}var $t=C[$++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|_e<<6|$t:Ne=(Ne&7)<<18|_e<<12|$t<<6|C[$++]&63,Ne<65536)xe+=String.fromCharCode(Ne);else{var ra=Ne-65536;xe+=String.fromCharCode(55296|ra>>10,56320|ra&1023)}}return xe}function vn(C,$){return C?bn(i(),C,$):""}function ps(C,$,U,te){if(!(te>0))return 0;for(var ge=U,xe=U+te-1,Ne=0;Ne<C.length;++Ne){var _e=C.charCodeAt(Ne);if(_e>=55296&&_e<=57343){var $t=C.charCodeAt(++Ne);_e=65536+((_e&1023)<<10)|$t&1023}if(_e<=127){if(U>=xe)break;$[U++]=_e}else if(_e<=2047){if(U+1>=xe)break;$[U++]=192|_e>>6,$[U++]=128|_e&63}else if(_e<=65535){if(U+2>=xe)break;$[U++]=224|_e>>12,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}else{if(U+3>=xe)break;$[U++]=240|_e>>18,$[U++]=128|_e>>12&63,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}}return $[U]=0,U-ge}function Zi(C,$,U){return ps(C,i(),$,U)}function Zh(C){for(var $=0,U=0;U<C.length;++U){var te=C.charCodeAt(U);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|C.charCodeAt(++U)&1023),te<=127?++$:te<=2047?$+=2:te<=65535?$+=3:$+=4}return $}var hs=typeof TextDecoder!="undefined"?new Zr("utf-16le"):void 0;function Da(C,$){s().set(C,$)}function Vd(C,$,U){for(var te=0;te<C.length;++te)s()[$++>>0]=C.charCodeAt(te);U||(s()[$>>0]=0)}function Ll(C,$){return C%$>0&&(C+=$-C%$),C}var $r,Yh,Jh,Ud,Qh,ec,U5,tc,rc;S&&($r=p.buffer);function Jn(C){$r=C,p.HEAP8=Yh=new Int8Array(C),p.HEAP16=Ud=new Int16Array(C),p.HEAP32=ec=new Int32Array(C),p.HEAPU8=Jh=new Uint8Array(C),p.HEAPU16=Qh=new Uint16Array(C),p.HEAPU32=U5=new Uint32Array(C),p.HEAPF32=tc=new Float32Array(C),p.HEAPF64=rc=new Float64Array(C)}var nc=p.INITIAL_MEMORY||16777216;if(S)$e=p.wasmMemory,$r=p.buffer;else if(p.wasmMemory)$e=p.wasmMemory;else if($e=new WebAssembly.Memory({initial:nc/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&($r=$e.buffer),nc=$r.byteLength,Jn($r);var wn,Bl=[],cs=[],J0=[],ac=[],Yi=!1,Q0=!1,sc=0;function Ji(){return pt||sc>0}function Pr(){if(p.preRun)for(typeof p.preRun=="function"&&(p.preRun=[p.preRun]);p.preRun.length;)G5(p.preRun.shift());dc(Bl)}function Gd(){Yi=!0,!S&&dc(cs)}function eg(){S||(ze.terminateAllThreads(),Q0=!0)}function tg(){if(!S){if(p.postRun)for(typeof p.postRun=="function"&&(p.postRun=[p.postRun]);p.postRun.length;)jd(p.postRun.shift());dc(ac)}}function G5(C){Bl.unshift(C)}function j5(C){cs.unshift(C)}function jd(C){ac.unshift(C)}var fs=0,ic=null,Qn=null;function Hd(C){fs++,p.monitorRunDependencies&&p.monitorRunDependencies(fs)}function H5(C){if(fs--,p.monitorRunDependencies&&p.monitorRunDependencies(fs),fs==0&&(ic!==null&&(clearInterval(ic),ic=null),Qn)){var $=Qn;Qn=null,$()}}p.preloadedImages={},p.preloadedAudios={};function Wl(C){S?postMessage({cmd:"onAbort",arg:C}):p.onAbort&&p.onAbort(C),C="Aborted("+C+")",J(C),yt=!0,Fr=1,C+=". Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(C);throw f($),$}var rg="data:application/octet-stream;base64,";function oc(C){return C.startsWith(rg)}function lc(C){return C.startsWith("file://")}var _r;_r="tfjs-backend-wasm-threaded-simd.wasm",oc(_r)||(_r=R(_r));function uc(C){try{if(C==_r&&dt)return new Uint8Array(dt);if(I)return I(C);throw"both async and sync fetching of the wasm failed"}catch($){Wl($)}}function Vl(){if(!dt&&(b||w)){if(typeof fetch=="function"&&!lc(_r))return fetch(_r,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+_r+"'";return C.arrayBuffer()}).catch(function(){return uc(_r)});if(M)return new Promise(function(C,$){M(_r,function(U){C(new Uint8Array(U))},$)})}return Promise.resolve().then(function(){return uc(_r)})}function ng(){var C={env:wc,wasi_snapshot_preview1:wc};function $(Ne,_e){var $t=Ne.exports;if(p.asm=$t,dg(p.asm.emscripten_tls_init),wn=p.asm.__indirect_function_table,j5(p.asm.__wasm_call_ctors),vt=_e,!S){var ra=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(na){ze.loadWasmModuleToWorker(na,function(){--ra||H5("wasm-instantiate")})})}}S||Hd("wasm-instantiate");function U(Ne){$(Ne.instance,Ne.module)}function te(Ne){return Vl().then(function(_e){return WebAssembly.instantiate(_e,C)}).then(function(_e){return _e}).then(Ne,function(_e){J("failed to asynchronously prepare wasm: "+_e),Wl(_e)})}function ge(){return!dt&&typeof WebAssembly.instantiateStreaming=="function"&&!oc(_r)&&!lc(_r)&&typeof fetch=="function"?fetch(_r,{credentials:"same-origin"}).then(function(Ne){var _e=WebAssembly.instantiateStreaming(Ne,C);return _e.then(U,function($t){return J("wasm streaming compile failed: "+$t),J("falling back to ArrayBuffer instantiation"),te(U)})}):te(U)}if(p.instantiateWasm)try{var xe=p.instantiateWasm(C,$);return xe}catch(Ne){return J("Module.instantiateWasm callback failed with error: "+Ne),!1}return ge().catch(f),{}}var q5,K5,ag={};function dc(C){for(;C.length>0;){var $=C.shift();if(typeof $=="function"){$(p);continue}var U=$.func;typeof U=="number"?$.arg===void 0?Gl(U)():Gl(U)($.arg):U($.arg===void 0?null:$.arg)}}function Ul(C){var $=Ny(),U=C();return Nc($),U}function P9(C){return C}function X5(C){var $=/\b_Z[\w\d_]+/g;return C.replace($,function(U){var te=U;return U===te?U:te+" ["+U+"]"})}function sg(C){u()[C>>2]=0;var $=ze.pthreads[C];delete ze.pthreads[C],$.worker.terminate(),Ty(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function ig(C){var $=ze.pthreads[C];$.worker.postMessage({cmd:"cancel"})}function pc(C){var $=ze.pthreads[C];if($){u()[C>>2]=0;var U=$.worker;ze.returnWorkerToPool(U)}}function hc(C){kE(C)}function og(C){if(C instanceof Jd||C=="unwind")return Fr;x(1,C)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){S?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var C=8,$=0;$<C;++$)ze.allocateUnusedWorker()},initWorker:function(){pt=!1},pthreads:{},setExitStatus:function(C){Fr=C},terminateAllThreads:function(){for(var C in ze.pthreads){var $=ze.pthreads[C];$&&$.worker&&ze.returnWorkerToPool($.worker)}for(var U=0;U<ze.unusedWorkers.length;++U){var te=ze.unusedWorkers[U];te.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(C){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[C.pthread.threadInfoStruct],ze.unusedWorkers.push(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf(C),1),Ty(C.pthread.threadInfoStruct),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){u()[l3>>2]=0;try{C()}finally{u()[l3>>2]=1}},receiveObjectTransfer:function(C){},threadInit:function(){for(var C in ze.tlsInitFunctions)ze.tlsInitFunctions[C]()},loadWasmModuleToWorker:function(C,$){C.onmessage=U=>{var te=U.data,ge=te.cmd;if(C.pthread&&(ze.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Tc()){var xe=ze.pthreads[te.targetThread];xe?xe.worker.postMessage(te,te.transferList):J('Internal error! Worker sent a message "'+ge+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}ge==="processQueuedMainThreadWork"?n3():ge==="spawnThread"?fc(te):ge==="cleanupThread"?pc(te.thread):ge==="killThread"?sg(te.thread):ge==="cancelThread"?ig(te.thread):ge==="loaded"?(C.loaded=!0,$&&$(C),C.runPthread&&(C.runPthread(),delete C.runPthread)):ge==="print"?ee("Thread "+te.threadId+": "+te.text):ge==="printErr"?J("Thread "+te.threadId+": "+te.text):ge==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?C.postMessage(te):ge==="onAbort"?p.onAbort&&p.onAbort(te.arg):J("worker sent an unknown command "+ge),ze.currentProxiedOperationCallerThread=void 0},C.onerror=U=>{var te="worker sent an error!";throw J(te+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(C.on("message",function(U){C.onmessage({data:U})}),C.on("error",function(U){C.onerror(U)}),C.on("detachedExit",function(){})),C.postMessage({cmd:"load",urlOrBlob:p.mainScriptUrlOrBlob||n,wasmMemory:$e,wasmModule:vt})},allocateUnusedWorker:function(){var C=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function lg(){var C=Tc(),$=u()[C+44>>2],U=u()[C+48>>2],te=$-U;o3($,te),Nc($)}p.establishStackSpace=lg;function cc(C){if(S)return to(1,0,C);try{hc(C)}catch($){og($)}}var Qi=[];function Gl(C){var $=Qi[C];return $||(C>=Qi.length&&(Qi.length=C+1),Qi[C]=$=wn.get(C)),$}function ug(C,$){return Gl(C)($)}p.invokeEntryPoint=ug;function Z5(){var C=new Error;if(!C.stack){try{throw new Error}catch($){C=$}if(!C.stack)return"(no stack trace available)"}return C.stack.toString()}function dg(C,$,U){ze.tlsInitFunctions.push(C)}function Y5(C,$){wn.set(C,$),Qi[C]=$}var eo;T?eo=()=>{var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:S?eo=()=>performance.now()-p.__performance_now_clock_drift:eo=()=>performance.now();var pg=!0;function hg(C){return u()[r3()>>2]=C,C}function cg(C,$){var U;if(C===0)U=Date.now();else if((C===1||C===4)&&pg)U=eo();else return hg(28),-1;return u()[$>>2]=U/1e3|0,u()[$+4>>2]=U%1e3*1e3*1e3|0,0}function fg(C,$){return cg(C,$)}function mg(C){a3(C,!w,1,!b),ze.threadInit()}function gg(C){S?postMessage({cmd:"cleanupThread",thread:C}):pc(C)}function fc(C){var $=ze.getNewWorker();if(!$)return 6;ze.runningWorkers.push($);var U=ze.pthreads[C.pthread_ptr]={worker:$,threadInfoStruct:C.pthread_ptr};$.pthread=U;var te={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr};return $.runPthread=()=>{te.time=performance.now(),$.postMessage(te,C.transferList)},$.loaded&&($.runPthread(),delete $.runPthread),0}function yg(C,$,U,te){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ge=[],xe=0;if(S&&(ge.length===0||xe))return s3(687865856,C,$,U,te);if(xe)return xe;var Ne={startRoutine:U,pthread_ptr:C,arg:te,transferList:ge};return S?(Ne.cmd="spawnThread",postMessage(Ne,ge),0):fc(Ne)}function Ag(){return 2097152}function xg(C,$){if(C==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var U=ze.pthreads[C],te=U&&U.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function bg(){Wl("")}function vg(){T||w||Z("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function mc(){return 2147483648}function wg(C,$,U){i().copyWithin(C,$,$+U)}function kg(){return T?JE().cpus().length:navigator.hardwareConcurrency}function to(C,$){var U=arguments.length-2,te=arguments;return Ul(function(){for(var ge=U,xe=Zl(ge*8),Ne=xe>>3,_e=0;_e<U;_e++){var $t=te[2+_e];h()[Ne+_e]=$t}return i3(C,ge,xe,$)})}var qd=[];function Ig(C,$,U){qd.length=$;for(var te=U>>3,ge=0;ge<$;ge++)qd[ge]=h()[te+ge];var xe=C<0,Ne=xe?ag[-C-1]:Ug[C];return Ne.apply(null,qd)}function Sg(C){try{return $e.grow(C-$r.byteLength+65535>>>16),Jn($e.buffer),1}catch($){}}function Tg(C){var $=i().length;if(C=C>>>0,C<=$)return!1;var U=mc();if(C>U)return!1;for(var te=1;te<=4;te*=2){var ge=$*(1+.2/te);ge=Math.min(ge,C+100663296);var xe=Math.min(U,Ll(Math.max(C,ge),65536)),Ne=Sg(xe);if(Ne)return!0}return!1}var Ke={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ke.eventHandlers.length-1;C>=0;--C)Ke._removeHandler(C);Ke.eventHandlers=[],Ke.deferredCalls=[]},registerRemoveEventListeners:function(){Ke.removeEventListenersRegistered||(J0.push(Ke.removeAllEventListeners),Ke.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,$,U){function te(Ne,_e){if(Ne.length!=_e.length)return!1;for(var $t in Ne)if(Ne[$t]!=_e[$t])return!1;return!0}for(var ge in Ke.deferredCalls){var xe=Ke.deferredCalls[ge];if(xe.targetFunction==C&&te(xe.argsList,U))return}Ke.deferredCalls.push({targetFunction:C,precedence:$,argsList:U}),Ke.deferredCalls.sort(function(Ne,_e){return Ne.precedence<_e.precedence})},removeDeferredCalls:function(C){for(var $=0;$<Ke.deferredCalls.length;++$)Ke.deferredCalls[$].targetFunction==C&&(Ke.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ke.inEventHandler&&Ke.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ke.canPerformEventHandlerRequests())for(var C=0;C<Ke.deferredCalls.length;++C){var $=Ke.deferredCalls[C];Ke.deferredCalls.splice(C,1),--C,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,$){for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C&&(!$||$==Ke.eventHandlers[U].eventTypeString)&&Ke._removeHandler(U--)},_removeHandler:function(C){var $=Ke.eventHandlers[C];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ke.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var $=function(te){++Ke.inEventHandler,Ke.currentEventHandler=C,Ke.runDeferredCalls(),C.handlerFunc(te),Ke.runDeferredCalls(),--Ke.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=$,C.target.addEventListener(C.eventTypeString,$,C.useCapture),Ke.eventHandlers.push(C),Ke.registerRemoveEventListeners();else for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C.target&&Ke.eventHandlers[U].eventTypeString==C.eventTypeString&&Ke._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(C,$,U,te,ge){Ul(function(){var xe=Zl(12);u()[xe>>2]=U,u()[xe+4>>2]=te,u()[xe+8>>2]=ge,Sy(C,637534208,$,te,xe)})},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Ng(C){var $=Zh(C)+1,U=Iy($);return Zi(C,U,$),U}function Cg(C,$,U,te){Ul(function(){var ge=Zl(12),xe=0;$&&(xe=Ng($)),u()[ge>>2]=xe,u()[ge+4>>2]=U,u()[ge+8>>2]=te,Sy(C,657457152,0,xe,ge)})}function Eg(C,$,U,te){$=$?vn($):"",Cg(C,$,U,te)}function Rg(C){return C>2?vn(C):C}var Mg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Fg(C){C=Rg(C);var $=Mg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return $}function Kd(C){return Fg(C)}function gc(C,$,U){var te=Kd(C);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=$,u()[te.canvasSharedPtr+4>>2]=U),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var ge=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var xe=te.GLctxObject.GLctx.getParameter(2978);ge=xe[0]===0&&xe[1]===0&&xe[2]===te.width&&xe[3]===te.height}te.width=$,te.height=U,ge&&te.GLctxObject.GLctx.viewport(0,0,$,U)}else if(te.canvasSharedPtr){var Ne=u()[te.canvasSharedPtr+8>>2];return Eg(Ne,C,$,U),1}else return-4;return 0}function yc(C,$,U){return S?to(2,1,C,$,U):gc(C,$,U)}function $g(C,$,U){var te=Kd(C);return te?gc(C,$,U):yc(C,$,U)}function Pg(){throw"unwind"}function _g(C){var $=C.getExtension("ANGLE_instanced_arrays");if($)return C.vertexAttribDivisor=function(U,te){$.vertexAttribDivisorANGLE(U,te)},C.drawArraysInstanced=function(U,te,ge,xe){$.drawArraysInstancedANGLE(U,te,ge,xe)},C.drawElementsInstanced=function(U,te,ge,xe,Ne){$.drawElementsInstancedANGLE(U,te,ge,xe,Ne)},1}function zg(C){var $=C.getExtension("OES_vertex_array_object");if($)return C.createVertexArray=function(){return $.createVertexArrayOES()},C.deleteVertexArray=function(U){$.deleteVertexArrayOES(U)},C.bindVertexArray=function(U){$.bindVertexArrayOES(U)},C.isVertexArray=function(U){return $.isVertexArrayOES(U)},1}function Og(C){var $=C.getExtension("WEBGL_draw_buffers");if($)return C.drawBuffers=function(U,te){$.drawBuffersWEBGL(U,te)},1}function Dg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var Ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(C){Ft.lastError||(Ft.lastError=C)},getNewId:function(C){for(var $=Ft.counter++,U=C.length;U<$;U++)C[U]=null;return $},getSource:function(C,$,U,te){for(var ge="",xe=0;xe<$;++xe){var Ne=te?u()[te+xe*4>>2]:-1;ge+=vn(u()[U+xe*4>>2],Ne<0?void 0:Ne)}return ge},createContext:function(C,$){C.getContextSafariWebGL2Fixed||(C.getContextSafariWebGL2Fixed=C.getContext,C.getContext=function(ge,xe){var Ne=C.getContextSafariWebGL2Fixed(ge,xe);return ge=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=C.getContext("webgl",$);if(!U)return 0;var te=Ft.registerContext(U,$);return te},registerContext:function(C,$){var U=Iy(8);u()[U+4>>2]=Tc();var te={handle:U,attributes:$,version:$.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=te),Ft.contexts[U]=te,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&Ft.initExtensions(te),U},makeContextCurrent:function(C){return Ft.currentContext=Ft.contexts[C],p.ctx=vc=Ft.currentContext&&Ft.currentContext.GLctx,!(C&&!vc)},getContext:function(C){return Ft.contexts[C]},deleteContext:function(C){Ft.currentContext===Ft.contexts[C]&&(Ft.currentContext=null),typeof Ke=="object"&&Ke.removeAllHandlersOnTarget(Ft.contexts[C].GLctx.canvas),Ft.contexts[C]&&Ft.contexts[C].GLctx.canvas&&(Ft.contexts[C].GLctx.canvas.GLctxObject=void 0),t3(Ft.contexts[C].handle),Ft.contexts[C]=null},initExtensions:function(C){if(C||(C=Ft.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var $=C.GLctx;_g($),zg($),Og($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Dg($);var U=$.getSupportedExtensions()||[];U.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&$.getExtension(te)})}}},Lg=["default","low-power","high-performance"];function Bg(C,$){var U=$>>2,te=u()[U+6],ge={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:Lg[te],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},xe=Kd(C);if(!xe||ge.explicitSwapControl)return 0;var Ne=Ft.createContext(xe,ge);return Ne}function Wg(C,$){return Bg(C,$)}var jl={mappings:{},buffers:[null,[],[]],printChar:function(C,$){var U=jl.buffers[C];$===0||$===10?((C===1?ee:J)(bn(U,0)),U.length=0):U.push($)},varargs:void 0,get:function(){jl.varargs+=4;var C=u()[jl.varargs-4>>2];return C},getStr:function(C){var $=vn(C);return $},get64:function(C,$){return C}};function Ac(C){return S?to(3,1,C):0}function xc(C,$,U,te,ge){if(S)return to(4,1,C,$,U,te,ge)}function bc(C,$,U,te){if(S)return to(5,1,C,$,U,te);for(var ge=0,xe=0;xe<U;xe++){var Ne=u()[$>>2],_e=u()[$+4>>2];$+=8;for(var $t=0;$t<_e;$t++)jl.printChar(C,i()[Ne+$t]);ge+=_e}return u()[te>>2]=ge,0}function Vg(C){De(C)}ze.init();var vc,Ug=[null,cc,yc,Ac,xc,bc],J5=!1,wc={__clock_gettime:fg,__emscripten_init_main_thread_js:mg,__emscripten_thread_cleanup:gg,__pthread_create_js:yg,_emscripten_default_pthread_stack_size:Ag,_emscripten_notify_thread_queue:xg,abort:bg,emscripten_check_blocking_allowed:vg,emscripten_get_heap_max:mc,emscripten_get_now:eo,emscripten_memcpy_big:wg,emscripten_num_logical_cores:kg,emscripten_receive_on_main_thread_js:Ig,emscripten_resize_heap:Tg,emscripten_set_canvas_element_size:$g,emscripten_unwind_to_js_event_loop:Pg,emscripten_webgl_create_context:Wg,exit:hc,fd_close:Ac,fd_seek:xc,fd_write:bc,memory:$e||p.wasmMemory,setTempRet0:Vg},Q5=ng(),Gg=p.___wasm_call_ctors=function(){return(Gg=p.___wasm_call_ctors=p.asm.__wasm_call_ctors).apply(null,arguments)},jg=p._init=function(){return(jg=p._init=p.asm.init).apply(null,arguments)},Hg=p._init_with_threads_count=function(){return(Hg=p._init_with_threads_count=p.asm.init_with_threads_count).apply(null,arguments)},qg=p._get_threads_count=function(){return(qg=p._get_threads_count=p.asm.get_threads_count).apply(null,arguments)},Kg=p._register_tensor=function(){return(Kg=p._register_tensor=p.asm.register_tensor).apply(null,arguments)},Xg=p._dispose_data=function(){return(Xg=p._dispose_data=p.asm.dispose_data).apply(null,arguments)},Zg=p._dispose=function(){return(Zg=p._dispose=p.asm.dispose).apply(null,arguments)},Yg=p._Abs=function(){return(Yg=p._Abs=p.asm.Abs).apply(null,arguments)},Jg=p._Add=function(){return(Jg=p._Add=p.asm.Add).apply(null,arguments)},Qg=p._AddN=function(){return(Qg=p._AddN=p.asm.AddN).apply(null,arguments)},ey=p._All=function(){return(ey=p._All=p.asm.All).apply(null,arguments)},ty=p._Any=function(){return(ty=p._Any=p.asm.Any).apply(null,arguments)},ry=p._ArgMax=function(){return(ry=p._ArgMax=p.asm.ArgMax).apply(null,arguments)},ny=p._AvgPool=function(){return(ny=p._AvgPool=p.asm.AvgPool).apply(null,arguments)},ay=p._BatchMatMul=function(){return(ay=p._BatchMatMul=p.asm.BatchMatMul).apply(null,arguments)},sy=p._Ceil=function(){return(sy=p._Ceil=p.asm.Ceil).apply(null,arguments)},iy=p._ClipByValue=function(){return(iy=p._ClipByValue=p.asm.ClipByValue).apply(null,arguments)},oy=p._Conv2D=function(){return(oy=p._Conv2D=p.asm.Conv2D).apply(null,arguments)},ly=p._Conv2DBackpropInput=function(){return(ly=p._Conv2DBackpropInput=p.asm.Conv2DBackpropInput).apply(null,arguments)},uy=p._Cos=function(){return(uy=p._Cos=p.asm.Cos).apply(null,arguments)},dy=p._Cosh=function(){return(dy=p._Cosh=p.asm.Cosh).apply(null,arguments)},py=p._CropAndResize=function(){return(py=p._CropAndResize=p.asm.CropAndResize).apply(null,arguments)},hy=p._Cumprod=function(){return(hy=p._Cumprod=p.asm.Cumprod).apply(null,arguments)},cy=p._Cumsum=function(){return(cy=p._Cumsum=p.asm.Cumsum).apply(null,arguments)},fy=p._DepthToSpace=function(){return(fy=p._DepthToSpace=p.asm.DepthToSpace).apply(null,arguments)},my=p._DepthwiseConv2dNative=function(){return(my=p._DepthwiseConv2dNative=p.asm.DepthwiseConv2dNative).apply(null,arguments)},gy=p._Elu=function(){return(gy=p._Elu=p.asm.Elu).apply(null,arguments)},yy=p._Equal=function(){return(yy=p._Equal=p.asm.Equal).apply(null,arguments)},Ay=p._Exp=function(){return(Ay=p._Exp=p.asm.Exp).apply(null,arguments)},xy=p._FlipLeftRight=function(){return(xy=p._FlipLeftRight=p.asm.FlipLeftRight).apply(null,arguments)},kc=p._Floor=function(){return(kc=p._Floor=p.asm.Floor).apply(null,arguments)},Ic=p._FloorDiv=function(){return(Ic=p._FloorDiv=p.asm.FloorDiv).apply(null,arguments)},Xd=p._FusedBatchNorm=function(){return(Xd=p._FusedBatchNorm=p.asm.FusedBatchNorm).apply(null,arguments)},by=p._FusedConv2D=function(){return(by=p._FusedConv2D=p.asm.FusedConv2D).apply(null,arguments)},vy=p._FusedDepthwiseConv2D=function(){return(vy=p._FusedDepthwiseConv2D=p.asm.FusedDepthwiseConv2D).apply(null,arguments)},Hl=p._Gather=function(){return(Hl=p._Gather=p.asm.Gather).apply(null,arguments)},Zd=p._GatherNd=function(){return(Zd=p._GatherNd=p.asm.GatherNd).apply(null,arguments)},Yd=p._Greater=function(){return(Yd=p._Greater=p.asm.Greater).apply(null,arguments)},e3=p._GreaterEqual=function(){return(e3=p._GreaterEqual=p.asm.GreaterEqual).apply(null,arguments)},ql=p._LeakyRelu=function(){return(ql=p._LeakyRelu=p.asm.LeakyRelu).apply(null,arguments)},Kl=p._Less=function(){return(Kl=p._Less=p.asm.Less).apply(null,arguments)},wy=p._LessEqual=function(){return(wy=p._LessEqual=p.asm.LessEqual).apply(null,arguments)},H=p._Log=function(){return(H=p._Log=p.asm.Log).apply(null,arguments)},ne=p._LogicalAnd=function(){return(ne=p._LogicalAnd=p.asm.LogicalAnd).apply(null,arguments)},ye=p._Max=function(){return(ye=p._Max=p.asm.Max).apply(null,arguments)},Re=p._MaxPool=function(){return(Re=p._MaxPool=p.asm.MaxPool).apply(null,arguments)},lt=p._Maximum=function(){return(lt=p._Maximum=p.asm.Maximum).apply(null,arguments)},ht=p._Mean=function(){return(ht=p._Mean=p.asm.Mean).apply(null,arguments)},Ye=p._Min=function(){return(Ye=p._Min=p.asm.Min).apply(null,arguments)},He=p._Minimum=function(){return(He=p._Minimum=p.asm.Minimum).apply(null,arguments)},jt=p._MirrorPad=function(){return(jt=p._MirrorPad=p.asm.MirrorPad).apply(null,arguments)},ea=p._Multiply=function(){return(ea=p._Multiply=p.asm.Multiply).apply(null,arguments)},ta=p._Neg=function(){return(ta=p._Neg=p.asm.Neg).apply(null,arguments)},Xl=p._NonMaxSuppressionV3=function(){return(Xl=p._NonMaxSuppressionV3=p.asm.NonMaxSuppressionV3).apply(null,arguments)},ro=p._NonMaxSuppressionV4=function(){return(ro=p._NonMaxSuppressionV4=p.asm.NonMaxSuppressionV4).apply(null,arguments)},ky=p._NonMaxSuppressionV5=function(){return(ky=p._NonMaxSuppressionV5=p.asm.NonMaxSuppressionV5).apply(null,arguments)},Yr=p._NotEqual=function(){return(Yr=p._NotEqual=p.asm.NotEqual).apply(null,arguments)},ms=p._OneHot=function(){return(ms=p._OneHot=p.asm.OneHot).apply(null,arguments)},Sc=p._PadV2=function(){return(Sc=p._PadV2=p.asm.PadV2).apply(null,arguments)},_9=p._Pow=function(){return(_9=p._Pow=p.asm.Pow).apply(null,arguments)},z9=p._Prelu=function(){return(z9=p._Prelu=p.asm.Prelu).apply(null,arguments)},O9=p._Prod=function(){return(O9=p._Prod=p.asm.Prod).apply(null,arguments)},D9=p._RealDiv=function(){return(D9=p._RealDiv=p.asm.RealDiv).apply(null,arguments)},L9=p._Relu=function(){return(L9=p._Relu=p.asm.Relu).apply(null,arguments)},B9=p._Relu6=function(){return(B9=p._Relu6=p.asm.Relu6).apply(null,arguments)},W9=p._ResizeBilinear=function(){return(W9=p._ResizeBilinear=p.asm.ResizeBilinear).apply(null,arguments)},V9=p._Reverse=function(){return(V9=p._Reverse=p.asm.Reverse).apply(null,arguments)},U9=p._RotateWithOffset=function(){return(U9=p._RotateWithOffset=p.asm.RotateWithOffset).apply(null,arguments)},G9=p._Round=function(){return(G9=p._Round=p.asm.Round).apply(null,arguments)},j9=p._Rsqrt=function(){return(j9=p._Rsqrt=p.asm.Rsqrt).apply(null,arguments)},H9=p._ScatterNd=function(){return(H9=p._ScatterNd=p.asm.ScatterNd).apply(null,arguments)},q9=p._SelectV2=function(){return(q9=p._SelectV2=p.asm.SelectV2).apply(null,arguments)},K9=p._Sigmoid=function(){return(K9=p._Sigmoid=p.asm.Sigmoid).apply(null,arguments)},X9=p._Sin=function(){return(X9=p._Sin=p.asm.Sin).apply(null,arguments)},Z9=p._Softmax=function(){return(Z9=p._Softmax=p.asm.Softmax).apply(null,arguments)},Y9=p._SparseFillEmptyRows=function(){return(Y9=p._SparseFillEmptyRows=p.asm.SparseFillEmptyRows).apply(null,arguments)},J9=p._SparseReshape=function(){return(J9=p._SparseReshape=p.asm.SparseReshape).apply(null,arguments)},Q9=p._SparseSegmentReduction=function(){return(Q9=p._SparseSegmentReduction=p.asm.SparseSegmentReduction).apply(null,arguments)},eE=p._Sqrt=function(){return(eE=p._Sqrt=p.asm.Sqrt).apply(null,arguments)},tE=p._Square=function(){return(tE=p._Square=p.asm.Square).apply(null,arguments)},rE=p._SquaredDifference=function(){return(rE=p._SquaredDifference=p.asm.SquaredDifference).apply(null,arguments)},nE=p._Step=function(){return(nE=p._Step=p.asm.Step).apply(null,arguments)},aE=p._StridedSlice=function(){return(aE=p._StridedSlice=p.asm.StridedSlice).apply(null,arguments)},sE=p._Sub=function(){return(sE=p._Sub=p.asm.Sub).apply(null,arguments)},iE=p._Sum=function(){return(iE=p._Sum=p.asm.Sum).apply(null,arguments)},oE=p._Tan=function(){return(oE=p._Tan=p.asm.Tan).apply(null,arguments)},lE=p._Tanh=function(){return(lE=p._Tanh=p.asm.Tanh).apply(null,arguments)},uE=p._Tile=function(){return(uE=p._Tile=p.asm.Tile).apply(null,arguments)},dE=p._TopK=function(){return(dE=p._TopK=p.asm.TopK).apply(null,arguments)},pE=p._Transform=function(){return(pE=p._Transform=p.asm.Transform).apply(null,arguments)},hE=p._Transpose=function(){return(hE=p._Transpose=p.asm.Transpose).apply(null,arguments)},cE=p.__FusedMatMul=function(){return(cE=p.__FusedMatMul=p.asm._FusedMatMul).apply(null,arguments)},Iy=p._malloc=function(){return(Iy=p._malloc=p.asm.malloc).apply(null,arguments)},t3=p._free=function(){return(t3=p._free=p.asm.free).apply(null,arguments)},fE=p._emscripten_tls_init=function(){return(fE=p._emscripten_tls_init=p.asm.emscripten_tls_init).apply(null,arguments)},r3=p.___errno_location=function(){return(r3=p.___errno_location=p.asm.__errno_location).apply(null,arguments)},Tc=p._pthread_self=function(){return(Tc=p._pthread_self=p.asm.pthread_self).apply(null,arguments)},n3=p._emscripten_main_thread_process_queued_calls=function(){return(n3=p._emscripten_main_thread_process_queued_calls=p.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},mE=p.__emscripten_thread_crashed=function(){return(mE=p.__emscripten_thread_crashed=p.asm._emscripten_thread_crashed).apply(null,arguments)},a3=p.__emscripten_thread_init=function(){return(a3=p.__emscripten_thread_init=p.asm._emscripten_thread_init).apply(null,arguments)},gE=p._emscripten_current_thread_process_queued_calls=function(){return(gE=p._emscripten_current_thread_process_queued_calls=p.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},yE=p._emscripten_main_browser_thread_id=function(){return(yE=p._emscripten_main_browser_thread_id=p.asm.emscripten_main_browser_thread_id).apply(null,arguments)},AE=p._emscripten_sync_run_in_main_thread_2=function(){return(AE=p._emscripten_sync_run_in_main_thread_2=p.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},s3=p._emscripten_sync_run_in_main_thread_4=function(){return(s3=p._emscripten_sync_run_in_main_thread_4=p.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},i3=p._emscripten_run_in_main_runtime_thread_js=function(){return(i3=p._emscripten_run_in_main_runtime_thread_js=p.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Sy=p._emscripten_dispatch_to_thread_=function(){return(Sy=p._emscripten_dispatch_to_thread_=p.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Ty=p.__emscripten_thread_free_data=function(){return(Ty=p.__emscripten_thread_free_data=p.asm._emscripten_thread_free_data).apply(null,arguments)},xE=p.__emscripten_thread_exit=function(){return(xE=p.__emscripten_thread_exit=p.asm._emscripten_thread_exit).apply(null,arguments)},bE=p._memalign=function(){return(bE=p._memalign=p.asm.memalign).apply(null,arguments)},o3=p._emscripten_stack_set_limits=function(){return(o3=p._emscripten_stack_set_limits=p.asm.emscripten_stack_set_limits).apply(null,arguments)},Ny=p.stackSave=function(){return(Ny=p.stackSave=p.asm.stackSave).apply(null,arguments)},Nc=p.stackRestore=function(){return(Nc=p.stackRestore=p.asm.stackRestore).apply(null,arguments)},Zl=p.stackAlloc=function(){return(Zl=p.stackAlloc=p.asm.stackAlloc).apply(null,arguments)},vE=p.dynCall_iijjiiii=function(){return(vE=p.dynCall_iijjiiii=p.asm.dynCall_iijjiiii).apply(null,arguments)},wE=p.dynCall_jiji=function(){return(wE=p.dynCall_jiji=p.asm.dynCall_jiji).apply(null,arguments)},l3=p.__emscripten_allow_main_runtime_queued_calls=21456;p.cwrap=dr,p.keepRuntimeAlive=Ji,p.PThread=ze,p.PThread=ze,p.wasmMemory=$e,p.ExitStatus=Jd;var Cc;function Jd(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}Qn=function C(){Cc||Cy(),Cc||(Qn=C)};function Cy(C){if(C=C||y,fs>0)return;if(S){c(p),Gd(),postMessage({cmd:"loaded"});return}if(Pr(),fs>0)return;function $(){Cc||(Cc=!0,p.calledRun=!0,!yt&&(Gd(),c(p),p.onRuntimeInitialized&&p.onRuntimeInitialized(),tg()))}p.setStatus?(p.setStatus("Running..."),setTimeout(function(){setTimeout(function(){p.setStatus("")},1),$()},1)):$()}p.run=Cy;function kE(C,$){if(Fr=C,!$&&S)throw cc(C),"unwind";Ji()||eg(),IE(C)}function IE(C){Fr=C,Ji()||(ze.terminateAllThreads(),p.onExit&&p.onExit(C),yt=!0),x(C,new Jd(C))}if(p.preInit)for(typeof p.preInit=="function"&&(p.preInit=[p.preInit]);p.preInit.length>0;)p.preInit.pop()();Cy();var Ec;m&&(Ec={uncaughtException:process.listeners("uncaughtException").filter(function(C){return!m.uncaughtException.indexOf(C)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(C){return!m.unhandledRejection.indexOf(C)>-1})});var Rc;if(typeof WasmBackendModule!="undefined")Rc=WasmBackendModule;else if(typeof a!="undefined")Rc=a;else throw new Error("Could not find wasm module in post.js");if(Ec){var SE=Rc._dispose;Rc._dispose=function(){SE(),Ec.uncaughtException.forEach(function(C){process.removeListener("uncaughtException",C)}),Ec.unhandledRejection.forEach(function(C){process.removeListener("unhandledRejection",C)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=r)}}),eR=ir({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(H,ne){i=H,o=ne});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),d=[],h="./this.program",p=(H,ne)=>{throw ne},c=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(H){return s.locateFile?s.locateFile(H,g):g+H}var A,x,b,w;function T(H){H instanceof Zd||M("exiting due to exception: "+H)}var S,E,R;m?(f?g=tf().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(S=H1(),E=tf())},A=function(H,ne){return R(),H=E.normalize(H),S.readFileSync(H,ne?void 0:"utf8")},b=H=>{var ne=A(H,!0);return ne.buffer||(ne=new Uint8Array(ne)),ne},x=(H,ne,ye)=>{R(),H=E.normalize(H),S.readFile(H,function(Re,lt){Re?ye(Re):ne(lt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof Zd))throw H}),process.on("unhandledRejection",function(H){throw H}),p=(H,ne)=>{if(Ud())throw process.exitCode=H,ne;T(ne),process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):(c||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.send(null),ne.responseText},f&&(b=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),x=(H,ne,ye)=>{var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}ye()},Re.onerror=ye,Re.send(null)},w=H=>document.title=H);var _=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var I=4;function O(H){O.shown||(O.shown={}),O.shown[H]||(O.shown[H]=1,M(H))}function z(H,ne){if(typeof WebAssembly.Function=="function"){for(var ye={i:"i32",j:"i64",f:"f32",d:"f64"},Re={parameters:[],results:ne[0]=="v"?[]:[ye[ne[0]]]},lt=1;lt<ne.length;++lt)Re.parameters.push(ye[ne[lt]]);return new WebAssembly.Function(Re,H)}var ht=[1,0,1,96],Ye=ne.slice(0,1),He=ne.slice(1),jt={i:127,j:126,f:125,d:124};ht.push(He.length);for(var lt=0;lt<He.length;++lt)ht.push(jt[He[lt]]);Ye=="v"?ht.push(0):ht=ht.concat([1,jt[Ye]]),ht[1]=ht.length-2;var ea=new Uint8Array([0,97,115,109,1,0,0,0].concat(ht,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),ta=new WebAssembly.Module(ea),Xl=new WebAssembly.Instance(ta,{e:{f:H}}),ro=Xl.exports.f;return ro}var j=[],X;function D(){if(j.length)return j.pop();try{hs.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return hs.length-1}function Q(H,ne){for(var ye=H;ye<H+ne;ye++){var Re=Hd(ye);Re&&X.set(Re,ye)}}var V=0,ee=H=>{V=H},J;s.wasmBinary&&(J=s.wasmBinary);var se=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Yi("no native wasm support detected");var Z,ae=!1,de;function Ae(H,ne){H||Yi(ne)}function be(H){var ne=s["_"+H];return ne}function Ee(H,ne,ye,Re,lt){var ht={string:function(Yr){var ms=0;if(Yr!=null&&Yr!==0){var Sc=(Yr.length<<2)+1;ms=Xd(Sc),pt(Yr,ms,Sc)}return ms},array:function(Yr){var ms=Xd(Yr.length);return yt(Yr,ms),ms}};function Ye(Yr){return ne==="string"?ot(Yr):ne==="boolean"?Boolean(Yr):Yr}var He=be(H),jt=[],ea=0;if(Re)for(var ta=0;ta<Re.length;ta++){var Xl=ht[ye[ta]];Xl?(ea===0&&(ea=kc()),jt[ta]=Xl(Re[ta])):jt[ta]=Re[ta]}var ro=He.apply(null,jt);function ky(Yr){return ea!==0&&Ic(ea),Ye(Yr)}return ro=ky(ro),ro}function Me(H,ne,ye,Re){ye=ye||[];var lt=ye.every(function(Ye){return Ye==="number"}),ht=ne!=="string";return ht&<&&!Re?be(H):function(){return Ee(H,ne,ye,arguments,Re)}}var De=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ze(H,ne,ye){for(var Re=ne+ye,lt=ne;H[lt]&&!(lt>=Re);)++lt;if(lt-ne>16&&H.subarray&&Be)return Be.decode(H.subarray(ne,lt));for(var ht="";ne<lt;){var Ye=H[ne++];if(!(Ye&128)){ht+=String.fromCharCode(Ye);continue}var He=H[ne++]&63;if((Ye&224)==192){ht+=String.fromCharCode((Ye&31)<<6|He);continue}var jt=H[ne++]&63;if((Ye&240)==224?Ye=(Ye&15)<<12|He<<6|jt:Ye=(Ye&7)<<18|He<<12|jt<<6|H[ne++]&63,Ye<65536)ht+=String.fromCharCode(Ye);else{var ea=Ye-65536;ht+=String.fromCharCode(55296|ea>>10,56320|ea&1023)}}return ht}function ot(H,ne){return H?Ze(dr,H,ne):""}function dt(H,ne,ye,Re){if(!(Re>0))return 0;for(var lt=ye,ht=ye+Re-1,Ye=0;Ye<H.length;++Ye){var He=H.charCodeAt(Ye);if(He>=55296&&He<=57343){var jt=H.charCodeAt(++Ye);He=65536+((He&1023)<<10)|jt&1023}if(He<=127){if(ye>=ht)break;ne[ye++]=He}else if(He<=2047){if(ye+1>=ht)break;ne[ye++]=192|He>>6,ne[ye++]=128|He&63}else if(He<=65535){if(ye+2>=ht)break;ne[ye++]=224|He>>12,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}else{if(ye+3>=ht)break;ne[ye++]=240|He>>18,ne[ye++]=128|He>>12&63,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}}return ne[ye]=0,ye-lt}function pt(H,ne,ye){return dt(H,dr,ne,ye)}function $e(H){for(var ne=0,ye=0;ye<H.length;++ye){var Re=H.charCodeAt(ye);Re>=55296&&Re<=57343&&(Re=65536+((Re&1023)<<10)|H.charCodeAt(++ye)&1023),Re<=127?++ne:Re<=2047?ne+=2:Re<=65535?ne+=3:ne+=4}return ne}var vt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function yt(H,ne){Jt.set(H,ne)}function Fr(H,ne,ye){for(var Re=0;Re<H.length;++Re)Jt[ne++>>0]=H.charCodeAt(Re);ye||(Jt[ne>>0]=0)}function ur(H,ne){return H%ne>0&&(H+=ne-H%ne),H}var Xr,Jt,dr,Yn,Zr,Qt,bn,vn,ps;function Zi(H){Xr=H,s.HEAP8=Jt=new Int8Array(H),s.HEAP16=Yn=new Int16Array(H),s.HEAP32=Qt=new Int32Array(H),s.HEAPU8=dr=new Uint8Array(H),s.HEAPU16=Zr=new Uint16Array(H),s.HEAPU32=bn=new Uint32Array(H),s.HEAPF32=vn=new Float32Array(H),s.HEAPF64=ps=new Float64Array(H)}var Zh=s.INITIAL_MEMORY||16777216,hs,Da=[],Vd=[],Ll=[],$r=!1,Yh=!1,Jh=0;function Ud(){return se||Jh>0}function Qh(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)rc(s.preRun.shift());jd(Da)}function ec(){$r=!0,jd(Vd)}function U5(){Yh=!0}function tc(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)nc(s.postRun.shift());jd(Ll)}function rc(H){Da.unshift(H)}function Jn(H){Vd.unshift(H)}function nc(H){Ll.unshift(H)}var wn=0,Bl=null,cs=null;function J0(H){wn++,s.monitorRunDependencies&&s.monitorRunDependencies(wn)}function ac(H){if(wn--,s.monitorRunDependencies&&s.monitorRunDependencies(wn),wn==0&&(Bl!==null&&(clearInterval(Bl),Bl=null),cs)){var ne=cs;cs=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Yi(H){s.onAbort&&s.onAbort(H),H="Aborted("+H+")",M(H),ae=!0,de=1,H+=". Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(H);throw o(ne),ne}var Q0="data:application/octet-stream;base64,";function sc(H){return H.startsWith(Q0)}function Ji(H){return H.startsWith("file://")}var Pr;Pr="tfjs-backend-wasm.wasm",sc(Pr)||(Pr=y(Pr));function Gd(H){try{if(H==Pr&&J)return new Uint8Array(J);if(b)return b(H);throw"both async and sync fetching of the wasm failed"}catch(ne){Yi(ne)}}function eg(){if(!J&&(c||f)){if(typeof fetch=="function"&&!Ji(Pr))return fetch(Pr,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+Pr+"'";return H.arrayBuffer()}).catch(function(){return Gd(Pr)});if(x)return new Promise(function(H,ne){x(Pr,function(ye){H(new Uint8Array(ye))},ne)})}return Promise.resolve().then(function(){return Gd(Pr)})}function tg(){var H={env:Ul,wasi_snapshot_preview1:Ul};function ne(Ye,He){var jt=Ye.exports;s.asm=jt,Z=s.asm.memory,Zi(Z.buffer),hs=s.asm.__indirect_function_table,Jn(s.asm.__wasm_call_ctors),ac("wasm-instantiate")}J0("wasm-instantiate");function ye(Ye){ne(Ye.instance)}function Re(Ye){return eg().then(function(He){return WebAssembly.instantiate(He,H)}).then(function(He){return He}).then(Ye,function(He){M("failed to asynchronously prepare wasm: "+He),Yi(He)})}function lt(){return!J&&typeof WebAssembly.instantiateStreaming=="function"&&!sc(Pr)&&!Ji(Pr)&&typeof fetch=="function"?fetch(Pr,{credentials:"same-origin"}).then(function(Ye){var He=WebAssembly.instantiateStreaming(Ye,H);return He.then(ye,function(jt){return M("wasm streaming compile failed: "+jt),M("falling back to ArrayBuffer instantiation"),Re(ye)})}):Re(ye)}if(s.instantiateWasm)try{var ht=s.instantiateWasm(H,ne);return ht}catch(Ye){return M("Module.instantiateWasm callback failed with error: "+Ye),!1}return lt().catch(o),{}}var G5,j5;function jd(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(s);continue}var ye=ne.func;typeof ye=="number"?ne.arg===void 0?Hd(ye)():Hd(ye)(ne.arg):ye(ne.arg===void 0?null:ne.arg)}}function fs(H){return H}function ic(H){var ne=/\b_Z[\w\d_]+/g;return H.replace(ne,function(ye){var Re=ye;return ye===Re?ye:Re+" ["+ye+"]"})}var Qn=[];function Hd(H){var ne=Qn[H];return ne||(H>=Qn.length&&(Qn.length=H+1),Qn[H]=ne=hs.get(H)),ne}function H5(){var H=new Error;if(!H.stack){try{throw new Error}catch(ne){H=ne}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function Wl(H,ne){hs.set(H,ne),Qn[H]=ne}function rg(){Yi("")}function oc(H,ne,ye){dr.copyWithin(H,ne,ne+ye)}function lc(){return 2147483648}function _r(H){try{return Z.grow(H-Xr.byteLength+65535>>>16),Zi(Z.buffer),1}catch(ne){}}function uc(H){var ne=dr.length;H=H>>>0;var ye=lc();if(H>ye)return!1;for(var Re=1;Re<=4;Re*=2){var lt=ne*(1+.2/Re);lt=Math.min(lt,H+100663296);var ht=Math.min(ye,ur(Math.max(H,lt),65536)),Ye=_r(ht);if(Ye)return!0}return!1}var Vl={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var ye=Vl.buffers[H];ne===0||ne===10?((H===1?_:M)(Ze(ye,0)),ye.length=0):ye.push(ne)},varargs:void 0,get:function(){Vl.varargs+=4;var H=Qt[Vl.varargs-4>>2];return H},getStr:function(H){var ne=ot(H);return ne},get64:function(H,ne){return H}};function ng(H){return 0}function q5(H,ne,ye,Re,lt){}function K5(H,ne,ye,Re){for(var lt=0,ht=0;ht<ye;ht++){var Ye=Qt[ne>>2],He=Qt[ne+4>>2];ne+=8;for(var jt=0;jt<He;jt++)Vl.printChar(H,dr[Ye+jt]);lt+=He}return Qt[Re>>2]=lt,0}function ag(H){ee(H)}var dc=!1,Ul={abort:rg,emscripten_memcpy_big:oc,emscripten_resize_heap:uc,fd_close:ng,fd_seek:q5,fd_write:K5,setTempRet0:ag},P9=tg(),X5=s.___wasm_call_ctors=function(){return(X5=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},sg=s._init=function(){return(sg=s._init=s.asm.init).apply(null,arguments)},ig=s._init_with_threads_count=function(){return(ig=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},pc=s._get_threads_count=function(){return(pc=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},hc=s._register_tensor=function(){return(hc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},og=s._dispose_data=function(){return(og=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},ze=s._dispose=function(){return(ze=s._dispose=s.asm.dispose).apply(null,arguments)},lg=s._Abs=function(){return(lg=s._Abs=s.asm.Abs).apply(null,arguments)},cc=s._Add=function(){return(cc=s._Add=s.asm.Add).apply(null,arguments)},Qi=s._AddN=function(){return(Qi=s._AddN=s.asm.AddN).apply(null,arguments)},Gl=s._All=function(){return(Gl=s._All=s.asm.All).apply(null,arguments)},ug=s._Any=function(){return(ug=s._Any=s.asm.Any).apply(null,arguments)},Z5=s._ArgMax=function(){return(Z5=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},dg=s._AvgPool=function(){return(dg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Y5=s._BatchMatMul=function(){return(Y5=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},eo=s._Ceil=function(){return(eo=s._Ceil=s.asm.Ceil).apply(null,arguments)},pg=s._ClipByValue=function(){return(pg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},hg=s._Conv2D=function(){return(hg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},cg=s._Conv2DBackpropInput=function(){return(cg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},fg=s._Cos=function(){return(fg=s._Cos=s.asm.Cos).apply(null,arguments)},mg=s._Cosh=function(){return(mg=s._Cosh=s.asm.Cosh).apply(null,arguments)},gg=s._CropAndResize=function(){return(gg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},fc=s._Cumprod=function(){return(fc=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},yg=s._Cumsum=function(){return(yg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ag=s._DepthToSpace=function(){return(Ag=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},xg=s._DepthwiseConv2dNative=function(){return(xg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},bg=s._Elu=function(){return(bg=s._Elu=s.asm.Elu).apply(null,arguments)},vg=s._Equal=function(){return(vg=s._Equal=s.asm.Equal).apply(null,arguments)},mc=s._Exp=function(){return(mc=s._Exp=s.asm.Exp).apply(null,arguments)},wg=s._FlipLeftRight=function(){return(wg=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},kg=s._Floor=function(){return(kg=s._Floor=s.asm.Floor).apply(null,arguments)},to=s._FloorDiv=function(){return(to=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},qd=s._FusedBatchNorm=function(){return(qd=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Ig=s._FusedConv2D=function(){return(Ig=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Sg=s._FusedDepthwiseConv2D=function(){return(Sg=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Tg=s._Gather=function(){return(Tg=s._Gather=s.asm.Gather).apply(null,arguments)},Ke=s._GatherNd=function(){return(Ke=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Ng=s._Greater=function(){return(Ng=s._Greater=s.asm.Greater).apply(null,arguments)},Cg=s._GreaterEqual=function(){return(Cg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Eg=s._LeakyRelu=function(){return(Eg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Rg=s._Less=function(){return(Rg=s._Less=s.asm.Less).apply(null,arguments)},Mg=s._LessEqual=function(){return(Mg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Fg=s._Log=function(){return(Fg=s._Log=s.asm.Log).apply(null,arguments)},Kd=s._LogicalAnd=function(){return(Kd=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},gc=s._Max=function(){return(gc=s._Max=s.asm.Max).apply(null,arguments)},yc=s._MaxPool=function(){return(yc=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},$g=s._Maximum=function(){return($g=s._Maximum=s.asm.Maximum).apply(null,arguments)},Pg=s._Mean=function(){return(Pg=s._Mean=s.asm.Mean).apply(null,arguments)},_g=s._Min=function(){return(_g=s._Min=s.asm.Min).apply(null,arguments)},zg=s._Minimum=function(){return(zg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Og=s._MirrorPad=function(){return(Og=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Dg=s._Multiply=function(){return(Dg=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ft=s._Neg=function(){return(Ft=s._Neg=s.asm.Neg).apply(null,arguments)},Lg=s._NonMaxSuppressionV3=function(){return(Lg=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Bg=s._NonMaxSuppressionV4=function(){return(Bg=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Wg=s._NonMaxSuppressionV5=function(){return(Wg=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},jl=s._NotEqual=function(){return(jl=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ac=s._OneHot=function(){return(Ac=s._OneHot=s.asm.OneHot).apply(null,arguments)},xc=s._PadV2=function(){return(xc=s._PadV2=s.asm.PadV2).apply(null,arguments)},bc=s._Pow=function(){return(bc=s._Pow=s.asm.Pow).apply(null,arguments)},Vg=s._Prelu=function(){return(Vg=s._Prelu=s.asm.Prelu).apply(null,arguments)},vc=s._Prod=function(){return(vc=s._Prod=s.asm.Prod).apply(null,arguments)},Ug=s._RealDiv=function(){return(Ug=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},J5=s._Relu=function(){return(J5=s._Relu=s.asm.Relu).apply(null,arguments)},wc=s._Relu6=function(){return(wc=s._Relu6=s.asm.Relu6).apply(null,arguments)},Q5=s._ResizeBilinear=function(){return(Q5=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Gg=s._Reverse=function(){return(Gg=s._Reverse=s.asm.Reverse).apply(null,arguments)},jg=s._RotateWithOffset=function(){return(jg=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Hg=s._Round=function(){return(Hg=s._Round=s.asm.Round).apply(null,arguments)},qg=s._Rsqrt=function(){return(qg=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Kg=s._ScatterNd=function(){return(Kg=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Xg=s._SelectV2=function(){return(Xg=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Zg=s._Sigmoid=function(){return(Zg=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Yg=s._Sin=function(){return(Yg=s._Sin=s.asm.Sin).apply(null,arguments)},Jg=s._Softmax=function(){return(Jg=s._Softmax=s.asm.Softmax).apply(null,arguments)},Qg=s._SparseFillEmptyRows=function(){return(Qg=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},ey=s._SparseReshape=function(){return(ey=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},ty=s._SparseSegmentReduction=function(){return(ty=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},ry=s._Sqrt=function(){return(ry=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},ny=s._Square=function(){return(ny=s._Square=s.asm.Square).apply(null,arguments)},ay=s._SquaredDifference=function(){return(ay=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},sy=s._Step=function(){return(sy=s._Step=s.asm.Step).apply(null,arguments)},iy=s._StridedSlice=function(){return(iy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},oy=s._Sub=function(){return(oy=s._Sub=s.asm.Sub).apply(null,arguments)},ly=s._Sum=function(){return(ly=s._Sum=s.asm.Sum).apply(null,arguments)},uy=s._Tan=function(){return(uy=s._Tan=s.asm.Tan).apply(null,arguments)},dy=s._Tanh=function(){return(dy=s._Tanh=s.asm.Tanh).apply(null,arguments)},py=s._Tile=function(){return(py=s._Tile=s.asm.Tile).apply(null,arguments)},hy=s._TopK=function(){return(hy=s._TopK=s.asm.TopK).apply(null,arguments)},cy=s._Transform=function(){return(cy=s._Transform=s.asm.Transform).apply(null,arguments)},fy=s._Transpose=function(){return(fy=s._Transpose=s.asm.Transpose).apply(null,arguments)},my=s.__FusedMatMul=function(){return(my=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},gy=s._malloc=function(){return(gy=s._malloc=s.asm.malloc).apply(null,arguments)},yy=s._free=function(){return(yy=s._free=s.asm.free).apply(null,arguments)},Ay=s.___errno_location=function(){return(Ay=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},xy=s._emscripten_main_thread_process_queued_calls=function(){return(xy=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},kc=s.stackSave=function(){return(kc=s.stackSave=s.asm.stackSave).apply(null,arguments)},Ic=s.stackRestore=function(){return(Ic=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Xd=s.stackAlloc=function(){return(Xd=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},by=s.dynCall_iijjiiii=function(){return(by=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},vy=s.dynCall_jiji=function(){return(vy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Me;var Hl;function Zd(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}cs=function H(){Hl||Yd(),Hl||(cs=H)};function Yd(H){if(H=H||d,wn>0||(Qh(),wn>0))return;function ne(){Hl||(Hl=!0,s.calledRun=!0,!ae&&(ec(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),tc()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=Yd;function e3(H){de=H,Ud()||(s.onExit&&s.onExit(H),ae=!0),p(H,new Zd(H))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Yd();var ql;l&&(ql={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!l.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!l.unhandledRejection.indexOf(H)>-1})});var Kl;if(typeof a!="undefined")Kl=a;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Kl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(ql){var wy=Kl._dispose;Kl._dispose=function(){wy(),ql.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),ql.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModule=r)}}),tR=1e-7,rR=1e-4,Op=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Su=class{refCount(e){return In("refCount")}incRef(e){return In("incRef")}timerAvailable(){return!0}time(e){return In("time")}read(e){return In("read")}readSync(e){return In("readSync")}readToGPU(e,t){return In("readToGPU")}numDataIds(){return In("numDataIds")}disposeData(e,t){return In("disposeData")}write(e,t,r){return In("write")}move(e,t,r,n,a){return In("move")}memory(){return In("memory")}floatPrecision(){return In("floatPrecision")}epsilon(){return this.floatPrecision()===32?tR:rR}dispose(){return In("dispose")}};function In(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Jv(e){let t=e.length,r=0;for(;t>0;)r=Math.random()*t|0,t--,rf(e,t,r)}function nR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let r=e.length,n=0;for(;r>0;)n=Math.random()*r|0,r--,rf(e,r,n),rf(t,r,n)}function kp(e,t,r){return Math.max(e,Math.min(t,r))}function aR(e){return e%2===0?e:e+1}function rf(e,t,r){let n=e[t];e[t]=e[r],e[r]=n}function sR(e){let t=0;for(let r=0;r<e.length;r++)t+=e[r];return t}function iR(e,t){let r=Math.random();return t*r+(1-r)*e}function oR(e,t){let r=0;for(let n=0;n<e.length;n++){let a=Number(e[n])-Number(t[n]);r+=a*a}return r}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Wr(e,t,r=""){P(Vs(e,t),()=>r+` Shapes ${e} and ${t} must match`)}function Mo(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function xo(e,t=[],r=!1){if(t==null&&(t=[]),Array.isArray(e)||Ir(e)&&!r)for(let n=0;n<e.length;++n)xo(e[n],t,r);else t.push(e);return t}function Tt(e){if(e.length===0)return 1;let t=e[0];for(let r=1;r<e.length;r++)t*=e[r];return t}function lR(e){return e.length===0}function Vs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let r=0;r<e.length;r++)if(e[r]!==t[r])return!1;return!0}function hu(e){return e%1===0}function uR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function dR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function pR(e){let t=new Uint32Array(e);for(let r=0;r<e;++r)t[r]=r;return Jv(t),t}function Ap(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function hR(e,t=n=>0,r){return new Promise((n,a)=>{let s=0,i=()=>{if(e()){n();return}s++;let o=t(s);if(r!=null&&s>=r){a();return}setTimeout(i,o)};i()})}function cR(e,t){let r=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)r*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==r)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(r===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%r!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${r}`);let a=e.slice();return a[n]=t/r,a}function Wn(e,t){let r=t.length;return e=e==null?t.map((n,a)=>a):[].concat(e),P(e.every(n=>n>=-r&&n<r),()=>`All values in axis param must be in range [-${r}, ${r}) but got axis ${e}`),P(e.every(n=>hu(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?r+n:n)}function Qv(e,t){let r=[],n=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Wn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(r.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(r.push(e[o]),n.push(o))}return{newShape:r,keptDims:n}}function ew(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return r}function tw(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else if(e==="string")r=new Array(t);else throw new Error(`Unknown data type ${e}`);return r}function rw(e,t){for(let r=0;r<e.length;r++){let n=e[r];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function nw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function fR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Ir(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function jy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function aw(e){if(e==null)return 0;let t=0;return e.forEach(r=>t+=r.length),t}function vs(e){return typeof e=="string"||e instanceof String}function sw(e){return typeof e=="boolean"}function iw(e){return typeof e=="number"}function $f(e){return Array.isArray(e)?$f(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":iw(e)?"float32":vs(e)?"string":sw(e)?"bool":"float32"}function Ts(e){return!!(e&&e.constructor&&e.call&&e.apply)}function nf(e,t){for(let r=t;r<e;++r)if(e%r===0)return r;return e}function Tu(e){let t=e.length;if(t<2)return[];let r=new Array(t-1);r[t-2]=e[t-1];for(let n=t-3;n>=0;--n)r[n]=r[n+1]*e[n+1];return r}function ow(e,t,r,n=!1){let a=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)a[i]=r[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)a[l]=ow(e+l*o,i,r,n)}return a}function ou(e,t,r=!1){if(e.length===0)return t[0];let n=e.reduce((a,s)=>a*s)*(r?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${r?" for a complex tensor":""}.`);return ow(0,e,t,r)}function q1(e,t){let r=Pf(e,t);for(let n=0;n<r.length;n++)r[n]=1;return r}function Pf(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function mR(e,t){let r=e.reduce((n,a)=>n*a,1);if(t==null||t==="float32")return ou(e,new Float32Array(r));if(t==="int32")return ou(e,new Int32Array(r));if(t==="bool")return ou(e,new Uint8Array(r));throw new Error(`Unknown data type ${t}`)}function K1(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function gR(e,t,r){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=r[a]*e[a];return n}function yR(e,t,r){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let a=0;a<n.length-1;++a)n[a]=Math.floor(e/r[a]),e-=n[a]*r[a];return n[n.length-1]=e,n}function X1(e){return e&&e.then&&typeof e.then=="function"}var h3="tfjsflags",lw=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=AR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,r){if(this.flagRegistry[e]={evaluationFn:t,setHook:r},this.urlFlags[e]!=null){let n=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(X1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);h3 in e&&e[h3].split(",").forEach(t=>{let[r,n]=t.split(":");this.urlFlags[r]=bR(r,n)})}};function AR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(r,...n)=>(xR(t,n[0],n[1]),n.join("="))),t}function xR(e,t,r){e[decodeURIComponent(t)]=decodeURIComponent(r||"")}function bR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return ga}var ga=null;function vR(e){ga=e}var Ry;function uw(){if(Ry==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Ry=e}return Ry}function wR(){let e=uw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Z1(e,t){let r=wR();if(r.has(e))return r.get(e);{let n=t();return r.set(e,n),r.get(e)}}var Fo="Abs",Nu="Acos",Cu="Acosh",Ha="Add",Us="AddN",Eu="All",Ru="Any",Gs="ArgMax",Mu="ArgMin",Fu="Asin",$u="Asinh",Pu="Atan",_u="Atanh",zu="Atan2",js="AvgPool",_f="AvgPoolGrad",Dp="AvgPool3D",zf="AvgPool3DGrad",Hs="BatchMatMul",$o="BatchToSpaceND",Of="Bincount",dw="BroadcastTo",Df="BroadcastArgs",qs="Cast",Ks="Ceil",qa="ClipByValue",Lp="Complex",Bp="ComplexAbs",Po="Concat",Xs="Conv2D",Lf="Conv2DBackpropFilter",Zs="Conv2DBackpropInput",Wp="Conv3D",Bf="Conv3DBackpropFilterV2",Wf="Conv3DBackpropInputV2",Ys="Cos",Js="Cosh",Ou="Cumprod",_o="Cumsum",zo="CropAndResize",Vf="DenseBincount",Oo="DepthToSpace",Qs="DepthwiseConv2dNative",Uf="DepthwiseConv2dNativeBackpropFilter",Gf="DepthwiseConv2dNativeBackpropInput",jf="Diag",Vp="Dilation2D",af="Dilation2DBackpropInput",sf="Dilation2DBackpropFilter",ei="RealDiv",Up="Einsum",ti="Elu",Hf="EluGrad",Du="Erf",Do="Equal",ri="Exp",Lo="ExpandDims",Bo="Expm1",qf="FFT",Lu="Fill",Wo="FlipLeftRight",ni="Floor",ai="FloorDiv",si="FusedBatchNorm",Vo="GatherV2",Uo="GatherNd",Go="Greater",ii="GreaterEqual",oi="Identity",Kf="IFFT",Gp="Imag",Bu="IsFinite",Wu="IsInf",Vu="IsNan",li="LeakyRelu",jo="Less",Ho="LessEqual",Xf="LinSpace",ui="Log",Uu="Log1p",qo="LogicalAnd",Gu="LogicalNot",jp="LogicalOr",pw="LogSoftmax",Hp="LRN",Zf="LRNGrad",di="Max",pi="Maximum",hi="MaxPool",Yf="MaxPoolGrad",qp="MaxPool3D",Jf="MaxPool3DGrad",Qf="MaxPoolWithArgmax",ci="Mean",fi="Min",mi="Minimum",gi="MirrorPad",ju="Mod",em="Multinomial",yi="Multiply",Ko="Neg",Xo="NotEqual",Zo="NonMaxSuppressionV3",Hu="NonMaxSuppressionV4",Yo="NonMaxSuppressionV5",Jo="OnesLike",Qo="OneHot",el="Pack",Ai="PadV2",kR="Pool",xi="Pow",bi="Prelu",tl="Prod",qu="Range",Kp="Real",Ku="Reciprocal",vi="Relu",rl="Reshape",Xu="ResizeNearestNeighbor",tm="ResizeNearestNeighborGrad",wi="ResizeBilinear",rm="ResizeBilinearGrad",ki="Relu6",nl="Reverse",al="Round",Ii="Rsqrt",sl="ScatterNd",il="Select",Zu="Selu",ol="Slice",Si="Sin",ll="Sinh",Yu="Sign",Ti="Sigmoid",Ju="Softplus",Ni="Sqrt",Ci="Sum",ul="SpaceToBatchND",dl="SplitV",Ei="Softmax",Xp="SparseFillEmptyRows",Qu="SparseReshape",Zp="SparseSegmentMean",Yp="SparseSegmentSum",Jp="SparseToDense",Ri="SquaredDifference",ed="Square",pl="StridedSlice",Qp="StringNGrams",nm="StringSplit",am="StringToHashBucketFast",Mi="Sub",hl="Tan",Fi="Tanh",Ka="Tile",cl="TopK",fl="Transform",$i="Transpose",sm="Unique",ml="Unpack",eh="UnsortedSegmentSum",gl="ZerosLike",Pi="Step",Ip="FromPixels",yl="RotateWithOffset",Ns="_FusedMatMul",Cs="FusedConv2D",Es="FusedDepthwiseConv2D";function bs(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function IR(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var cu=Z1("kernelRegistry",()=>new Map),Sp=Z1("gradRegistry",()=>new Map);function of(e,t){let r=Y1(e,t);return cu.get(r)}function Hy(e){return Sp.get(e)}function Ca(e){let t=cu.entries(),r=[];for(;;){let{done:n,value:a}=t.next();if(n)break;let[s,i]=a,[o]=s.split("_");o===e&&r.push(i)}return r}function Vn(e){let{kernelName:t,backendName:r}=e,n=Y1(t,r);cu.has(n)&&bs(`The kernel '${t}' for backend '${r}' is already registered`),cu.set(n,e)}function hw(e){let{kernelName:t}=e;Sp.has(t)&&Y().getBool("DEBUG")&&bs(`Overriding the gradient for '${t}'`),Sp.set(t,e)}function SR(e,t){let r=Y1(e,t);if(!cu.has(r))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);cu.delete(r)}function TR(e){if(!Sp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Sp.delete(e)}function NR(e,t){Ca(e).forEach(r=>{let n=Object.assign({},r,{backendName:t});Vn(n)})}function Y1(e,t){return`${t}_${e}`}var v={};Le(v,{arraysEqual:()=>Vs,assert:()=>P,assertNonNegativeIntegerDimensions:()=>K1,assertNonNull:()=>Mo,assertShapesMatch:()=>Wr,bytesFromStringArray:()=>aw,bytesPerElement:()=>jy,checkConversionForErrors:()=>rw,clamp:()=>kp,computeStrides:()=>Tu,createScalarValue:()=>$R,createShuffledIndices:()=>pR,decodeString:()=>lf,distSquared:()=>oR,encodeString:()=>rh,fetch:()=>_R,fingerPrint64:()=>FR,flatten:()=>xo,getArrayFromDType:()=>tw,getTypedArrayFromDType:()=>ew,hasEncodingLoss:()=>fR,hexToLong:()=>th,indexToLoc:()=>yR,inferDtype:()=>$f,inferFromImplicitShape:()=>cR,isBoolean:()=>sw,isFunction:()=>Ts,isInt:()=>hu,isNumber:()=>iw,isPromise:()=>X1,isScalarShape:()=>lR,isString:()=>vs,isTypedArray:()=>Ir,isValidDtype:()=>nw,locToIndex:()=>gR,makeOnesTypedArray:()=>q1,makeZerosNestedTypedArray:()=>mR,makeZerosTypedArray:()=>Pf,nearestDivisor:()=>nf,nearestLargerEven:()=>aR,now:()=>Tp,parseAxisParam:()=>Wn,randUniform:()=>iR,repeatedTry:()=>hR,rightPad:()=>Ap,shuffle:()=>Jv,shuffleCombo:()=>nR,sizeFromShape:()=>Tt,sizeToSquarishShape:()=>dR,squeezeShape:()=>Qv,sum:()=>sR,swap:()=>rf,tanh:()=>uR,toNestedArray:()=>ou,toTypedArray:()=>im});var c3=Ro(LE()),oo=c3.default||c3;function th(e){return oo.fromString(e,!0,16)}var cw=th("c3a5c85c97cb3127"),so=th("b492b66fbe98f273"),zr=th("9ae16a3b2f90404f");function qy(e){return e.xor(e.shru(47))}function fw(e,t,r){let n=e.slice(t,t+r);return oo.fromBytes(Array.from(n),!0,!0)}function wt(e,t){return fw(e,t,8)}function f3(e,t){return fw(e,t,4)}function pr(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ks(e,t,r=th("9ddfea08eb382d69")){let n=e.xor(t).mul(r);n=n.xor(n.shru(47));let a=t.xor(n).mul(r);return a=a.xor(a.shru(47)),a=a.mul(r),a}function CR(e,t,r,n,a,s){a=a.add(e),s=pr(s.add(a).add(n),21);let i=a;return a=a.add(t),a=a.add(r),s=s.add(pr(a,44)),[a.add(n),s.add(i)]}function $c(e,t,r,n){return CR(wt(e,t),wt(e,t+8),wt(e,t+16),wt(e,t+24),r,n)}function ER(e,t=e.length){if(t>=8){let r=zr.add(t*2),n=wt(e,0).add(zr),a=wt(e,t-8),s=pr(a,37).mul(r).add(n),i=pr(n,25).add(a).mul(r);return ks(s,i,r)}if(t>=4){let r=zr.add(t*2),n=f3(e,0);return ks(n.shl(3).add(t),f3(e,t-4),r)}if(t>0){let r=e[0],n=e[t>>1],a=e[t-1],s=r+(n<<8),i=t+(a<<2);return qy(zr.mul(s).xor(cw.mul(i))).mul(zr)}return zr}function RR(e,t=e.length){let r=zr.add(t*2),n=wt(e,0).mul(so),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(zr);return ks(pr(n.add(a),43).add(pr(s,30)).add(i),n.add(pr(a.add(zr),18)).add(s),r)}function MR(e,t=e.length){let r=zr.add(t*2),n=wt(e,0).mul(zr),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(zr),o=pr(n.add(a),43).add(pr(s,30)).add(i),l=ks(o,n.add(pr(a.add(zr),18)).add(s),r),u=wt(e,16).mul(r),d=wt(e,24),h=o.add(wt(e,t-32)).mul(r),p=l.add(wt(e,t-24)).mul(r);return ks(pr(u.add(d),43).add(pr(h,30)).add(p),u.add(pr(d.add(n),18)).add(h),r)}function FR(e,t=e.length){let r=oo.fromNumber(81,!0);if(t<=32)return t<=16?ER(e,t):RR(e,t);if(t<=64)return MR(e,t);let n=r,a=r.mul(so).add(113),s=qy(a.mul(zr).add(113)).mul(zr),i=[oo.UZERO,oo.UZERO],o=[oo.UZERO,oo.UZERO];n=n.mul(zr).add(wt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do n=pr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(so),a=pr(a.add(i[1]).add(wt(e,l+48)),42).mul(so),n=n.xor(o[1]),a=a.add(i[0]).add(wt(e,l+40)),s=pr(s.add(o[0]),33).mul(so),i=$c(e,l,i[1].mul(so),n.add(o[0])),o=$c(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let h=so.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=pr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(h),a=pr(a.add(i[1]).add(wt(e,l+48)),42).mul(h),n=n.xor(o[1].mul(9)),a=a.add(i[0].mul(9).add(wt(e,l+40))),s=pr(s.add(o[0]),33).mul(h),i=$c(e,l,i[1].mul(h),n.add(o[0])),o=$c(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],ks(ks(i[0],o[0],h).add(qy(a).mul(cw)).add(s),ks(i[1],o[1],h).add(n),h)}function $R(e,t){return t==="string"?rh(e):im([e],t)}function PR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function im(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=xo(e)),Y().getBool("DEBUG")&&rw(e,t),PR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let r=new Uint8Array(e.length);for(let n=0;n<r.length;++n)Math.round(e[n])!==0&&(r[n]=1);return r}else throw new Error(`Unknown data type ${t}`)}function Tp(){return Y().platform.now()}function _R(e,t){return Y().platform.fetch(e,t)}function rh(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function lf(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var zR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new DR)}profileKernel(e,t,r){let n,a=()=>{n=r()},s,i=Tp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:Tp()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{OR(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:r,timeMs:n,inputs:a,extraInfo:s}=e;r.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function OR(e,t,r){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${r}'`),!0}return!1}var DR=class{logKernelProfile(e,t,r,n,a,s){let i=typeof n=="number"?Ap(`${n}ms`,9):n.error,o=Ap(e,25),l=t.rank,u=t.size,d=Ap(t.shape.toString(),14),h="";for(let p in a){let c=a[p];if(c!=null){let f=c.shape||t.shape,m=f.length;h+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function LR(e,t,r){let n={},a={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let f=0;f<t.length;f++)if(n[p.id]){u.outputs.forEach(m=>n[m.id]=!0),c=!0,a[u.id]=!0;break}if(c)break}}let s={};s[r.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];n[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function BR(e,t,r,n){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=r(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Vs(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=n(h,u),h.dispose()}}}}var m3=20,ap=3,My=7;function WR(e,t,r,n){let a=Tu(t),s=VR(e,t,r,a),i=t.length,o=Gc(e,t,r,a,s),l=["Tensor"];return n&&(l.push(` dtype: ${r}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function VR(e,t,r,n){let a=Tt(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=r==="complex64"?up(e):e;if(o>1)for(let u=0;u<a/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],lp(l[d+h],0,r).length)}return i}function lp(e,t,r){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(My))} + ${parseFloat(e[1].toFixed(My))}j`:vs(e)?n=`'${e}'`:r==="bool"?n=mw(e):n=parseFloat(e.toFixed(My)).toString(),Ap(n,t)}function mw(e){return e===0?"false":"true"}function Gc(e,t,r,n,a,s=!0){let i=r==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(r==="complex64"){let m=up(e);return[lp(m[0],0,r)]}return r==="bool"?[mw(e[0])]:[e[0].toString()]}if(l===1){if(o>m3){let g=ap*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-ap)*i,o*i));return r==="complex64"&&(y=up(y),A=up(A)),["["+y.map((x,b)=>lp(x,a[b],r)).join(", ")+", ..., "+A.map((x,b)=>lp(x,a[o-ap+b],r)).join(", ")+"]"]}let m=r==="complex64"?up(e):Array.from(e);return["["+m.map((g,y)=>lp(g,a[y],r)).join(", ")+"]"]}let u=t.slice(1),d=n.slice(1),h=n[0]*i,p=[];if(o>m3){for(let m=0;m<ap;m++){let g=m*h,y=g+h;p.push(...Gc(e.slice(g,y),u,r,d,a,!1))}p.push("...");for(let m=o-ap;m<o;m++){let g=m*h,y=g+h;p.push(...Gc(e.slice(g,y),u,r,d,a,m===o-1))}}else for(let m=0;m<o;m++){let g=m*h,y=g+h;p.push(...Gc(e.slice(g,y),u,r,d,a,m===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+c;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":f),p}function up(e){let t=[];for(let r=0;r<e.length;r+=2)t.push([e[r],e[r+1]]);return t}var rr=class{constructor(e,t,r){if(this.dtype=t,this.shape=e.slice(),this.size=Tt(e),r!=null){let n=r.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||tw(t,this.size),this.strides=Tu(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let r=this.locToIndex(t);this.values[r]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let r=e[e.length-1];for(let n=0;n<e.length-1;++n)r+=this.strides[n]*e[n];return this.values[r]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let r=0;r<e.length-1;++r)t+=this.strides[r]*e[r];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let r=0;r<t.length-1;++r)t[r]=Math.floor(e/this.strides[r]),e-=t[r]*this.strides[r];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return aa().makeTensor(this.values,this.shape,this.dtype)}},aa=null,nu=null,UR=null;function GR(e){aa=e}function jR(e){nu=e}function HR(e){UR=e}var rt=class{constructor(e,t,r,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Tt(e),this.strides=Tu(e),this.dataId=r,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return nu.buffer(this.shape,this.dtype,e)}bufferSync(){return nu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ou(this.shape,e,this.dtype==="complex64")}arraySync(){return ou(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=aa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(r=>lf(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),aa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=aa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>lf(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await aa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(aa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return nu.print(this,e)}clone(){return this.throwIfDisposed(),nu.clone(this)}toString(e=!1){let t=this.dataSync();return WR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),nu.cast(this,e)}variable(e=!0,t,r){return this.throwIfDisposed(),aa().makeVariable(this,e,t,r)}};Object.defineProperty(rt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function qR(){return Z1("Tensor",()=>rt)}qR();var Np=class extends rt{constructor(e,t,r,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=r}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Vs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);aa().disposeTensor(this),this.dataId=e.dataId,aa().incRef(this,null)}dispose(){aa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Np,Symbol.hasInstance,{value:e=>e instanceof rt&&e.assign!=null&&e.assign instanceof Function});var la={};Le(la,{assertTypesMatch:()=>vw,getTensorsInContainer:()=>J1,isTensorInList:()=>XR,makeTypesMatch:()=>Ot});var gw=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(gw||{}),yw=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(yw||{}),Aw=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(Aw||{}),xw=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(xw||{}),bw=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(bw||{}),KR={float32:xw,int32:yw,bool:Aw,complex64:bw};function Nr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return KR[e][t]}function nh(e){return Nr(e,"int32")}function Ot(e,t){if(e.dtype===t.dtype)return[e,t];let r=Nr(e.dtype,t.dtype);return[e.cast(r),t.cast(r)]}function vw(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function XR(e,t){return t.some(r=>r.id===e.id)}function J1(e){let t=[];return ww(e,t,new Set),t}function ww(e,t,r){if(e==null)return;if(e instanceof rt){t.push(e);return}if(!ZR(e))return;let n=e;for(let a in n){let s=n[a];r.has(s)||(r.add(s),ww(s,t,r))}}function ZR(e){return Array.isArray(e)||typeof e=="object"}function Fy(e){return e.kernelName!=null}var g3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ky=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new g3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t];if(await this.initializeBackend(r).success){await this.setBackend(r);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,r=1){return e in this.registryFactory?(bs(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:r},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:r}=this.initializeBackend(e);if(!(r?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new zR(this.backendInstance),!0}setupRegisteredKernels(){Ca(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ca(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let r=t.factory();if(r&&!(r instanceof Su)&&typeof r.then=="function"){let n=++this.pendingBackendInitId,a=r.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,bs(`Initialization of backend ${e} failed`),bs(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=r,{success:!0,asyncInit:!1}}catch(r){return bs(`Initialization of backend ${e} failed`),bs(r.stack||r.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t],{success:n,asyncInit:a}=this.initializeBackend(r);if(a||n)return{name:r,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let r=this.state.tensorInfo.get(t),n=r.backend,a=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),r.backend=e,e.move(t,a,r.shape,r.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let r=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");r=e}let n;return this.scopedRun(()=>this.startScope(r),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,r){e();try{let n=r();return t(),n}catch(n){throw t(),n}}nextTensorId(){return Ky.nextTensorId++}nextVariableId(){return Ky.nextVariableId++}clone(e){let t=B.runKernel(oi,{x:e}),r={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return B.runKernel(qs,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,r,[t],n,a,{}),t}runKernel(e,t,r){if(this.backendName==null&&this.backend,of(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:r})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,r){let n=this.backend.numDataIds(),a=0;r.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,r=[],n=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Fy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Fy(e)){let{kernelName:c,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=of(c,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:T,dtype:S}=b;return this.makeTensorFromDataId(w,T,S)});if(n){let b=this.getTensorsForGradient(c,f,x);r=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:c}=e,f=m=>{!n||(r=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:d}=e,h=Fy(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),n&&this.addTapeNode(l,u,t,h,r,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,r){let n=Hy(e);if(n!=null){let a=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=r.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,r,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",n=n||this.backend;let a=e;r==="string"&&vs(e[0])&&(a=e.map(o=>rh(o)));let s=n.write(a,t,r),i=new rt(t,r,s,this.nextTensorId());if(this.trackTensor(i,n),r==="string"){let o=this.state.tensorInfo.get(s),l=aw(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,r,n){r=r||"float32";let a=new rt(t,r,e,this.nextTensorId());return this.trackTensor(a,n),a}makeVariable(e,t=!0,r,n){r=r||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let a=new Np(e,t,r,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*jy(e.dtype)),this.state.numBytes+=r,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r})),e instanceof Np||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let r=e.size*jy(e.dtype);this.state.numBytes-=r}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,r,n,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:r,saved:a},o=Hy(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=r[d],p=Pf(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),n(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=J1(e),r=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!r.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===n.id&&this.track(a)})}gradients(e,t,r,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(a instanceof rt,()=>"The result y returned by f() must be a tensor.");let s=LR(this.state.activeTape,t,a);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=r==null?YR(a.shape):r,BR(i,s,l=>this.tidy(l),JR);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return P(Ts(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof rt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,n={};t.forEach((i,o)=>{n[o]=i});let a=(i,o)=>(r=e(...t,o),P(r.value instanceof rt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Ts(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),s=(i,o)=>{let l=r.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(h=>h instanceof rt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Tp(),r=await this.backend.time(e);return r.wallMs=Tp()-t,r}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new g3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Q1=Ky;Q1.nextTensorId=0;Q1.nextVariableId=0;function YR(e){let t=q1(Tt(e),"float32");return B.makeTensor(t,e,"float32")}function kw(){let e=uw();if(e._tfengine==null){let t=new lw(e);e._tfengine=new Q1(t)}return vR(e._tfengine.ENV),GR(()=>e._tfengine),e._tfengine}var B=kw();function JR(e,t){let r={a:e,b:t};return B.runKernel(Ha,r)}var ah={};Le(ah,{isBrowser:()=>Iw,isMobile:()=>tM,mockIsMobile:()=>eM});function QR(){return typeof navigator!="undefined"&&navigator!=null}var Xy;function eM(e){Xy=e}function tM(e){if(Xy!==void 0)return Xy;if(e||QR()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let r=e;return r.userAgentData&&r.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Iw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ln=Y();Ln.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ln.registerFlag("IS_BROWSER",()=>Iw());Ln.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ln.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ln.registerFlag("PROD",()=>!1);Ln.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ln.getBool("DEBUG"));Ln.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ln.registerFlag("IS_TEST",()=>!1);Ln.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ln.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Ln.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Ea(e,t){let r=e;if(Ir(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(r)||Ir(r)&&t!=="string";)n.push(r.length),r=r[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Sw(e,n,[]),n}function Sw(e,t,r){if(r=r||[],!Array.isArray(e)&&!Ir(e)){P(t.length===0,()=>`Element arr[${r.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${r.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${r.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let a=0;a<e.length;++a)Sw(e[a],n,r.concat(a))}function y3(e,t,r,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${r}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,r,n="numeric"){if(e instanceof rt)return y3(n,e.dtype,t,r),e;let a=$f(e);if(a!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(a=n),y3(n,a,t,r),e==null||!Ir(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${r}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ea(e,a);!Ir(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?im(e,a):xo(e,[],!0);return B.makeTensor(i,s,a)}function Cp(e,t,r,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${r} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>F(a,`${t}[${s}]`,r,n))}var Tw="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let r=t[0],n=e[r];r.endsWith("_")&&(r=r.substring(0,r.length-1)),r=r+Tw;let a=(...s)=>{B.startScope(r);try{let i=n(...s);return X1(i)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(i),i}catch(i){throw B.endScope(null),i}};return Object.defineProperty(a,"name",{value:r,configurable:!0}),a}function rM(e,t){let r=F(e,"real","complex"),n=F(t,"imag","complex");Wr(r.shape,n.shape,`real and imag shapes, ${r.shape} and ${n.shape}, must match in call to tf.complex().`);let a={real:r,imag:n};return B.runKernel(Lp,a)}var Rs=W({complex_:rM});function _i(e,t,r,n){if(n==null&&(n=$f(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Ir(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){K1(t);let a=Tt(t),s=Tt(r);P(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<r.length;++i){let o=r[i],l=i===r.length-1?o!==Tt(t.slice(i)):!0;P(r[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${r}) does not match the provided shape (${t}). `)}}return!Ir(e)&&!Array.isArray(e)&&(e=[e]),t=t||r,e=n!=="string"?im(e,n):xo(e,[],!0),B.makeTensor(e,t,n)}function ct(e,t,r){let n=Ea(e,r);return _i(e,t,n,r)}var Zy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},uf=4;async function nM(e,t){let r=[],n=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+uf*p.length,f=new Uint8Array(c),m=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(A,m),m+=uf,f.set(y,m),m+=y.length}h(f)});n.push(d)}else n.push(l.data());t!=null&&(u.group=t),r.push(u)}let s=await Promise.all(n);return{data:aM(s),specs:r}}function Nw(e,t){let r={},n,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Tt(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Zy[h.dtype],c=e.slice(a,a+u*p),f=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=g*h.scale+h.min}}else if(h.dtype==="float16")n===void 0&&(n=dM()),d=n(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*p}else if(o==="string"){let h=Tt(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(a,a+uf))[0];a+=uf;let f=new Uint8Array(e.slice(a,a+c));d.push(f),a+=c}}else{let h=Zy[o],p=e.slice(a,a+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),f=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],f[y]=d[y*2+1];let m=ct(c,l,"float32"),g=ct(f,l,"float32");r[i]=Rs(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(r[i]=ct(d,l,o))}return r}function aM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,r=[];e.forEach(s=>{if(t+=s.byteLength,r.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),a=0;return r.forEach(s=>{n.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),n.buffer}var e2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function A3(e){return e2?Buffer.byteLength(e):new Blob([e]).size}function sM(e){if(e2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),r="";for(let n=0,a=t.length;n<a;n++)r+=String.fromCharCode(t[n]);return btoa(r)}function iM(e){if(e2){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),r=new Uint8Array(t.length);for(let n=0;n<t.length;++n)r.set([t.charCodeAt(n)],n);return r.buffer}function t2(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let r=new Uint8Array(t),n=0;return e.forEach(a=>{r.set(new Uint8Array(a),n),n+=a.byteLength}),r.buffer}function x3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let r=e.split(t);return r[r.length-1]}function Cw(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),r}async function r2(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[n,a]=await t(e.weightsManifest);r.weightSpecs=n,r.weightData=a}return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),r}function sh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:A3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:A3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function oM(){let e=r=>{let n=r<<13,a=0;for(;(n&8388608)===0;)a-=8388608,n<<=1;return n&=-8388609,a+=947912704,n|a},t=new Uint32Array(2048);t[0]=0;for(let r=1;r<1024;r++)t[r]=e(r);for(let r=1024;r<2048;r++)t[r]=939524096+(r-1024<<13);return t}function lM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function uM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function dM(){let e=oM(),t=lM(),r=uM();return n=>{let a=new ArrayBuffer(4*n.length),s=new Uint32Array(a);for(let i=0;i<n.length;i++){let o=n[i],l=e[r[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Lt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Lt.instance==null&&(Lt.instance=new Lt),Lt.instance}static registerSaveRouter(e){Lt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Lt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Lt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Lt.getHandlers(e,"load",t)}static getHandlers(e,t,r){let n=[];return(t==="load"?Lt.getInstance().loadRouters:Lt.getInstance().saveRouters).forEach(a=>{let s=a(e,r);s!==null&&n.push(s)}),n}},pM=e=>Lt.registerSaveRouter(e),hM=e=>Lt.registerLoadRouter(e),cM=e=>Lt.getSaveHandlers(e),fM=(e,t)=>Lt.getLoadHandlers(e,t),Yy="tensorflowjs",Jy=1,ho="models_store",ws="model_info_store";function Ew(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Qy(e){let t=e.result;t.createObjectStore(ho,{keyPath:"modelPath"}),t.createObjectStore(ws,{keyPath:"modelPath"})}var bo=class{constructor(e){if(this.indexedDB=Ew(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((r,n)=>{let a=this.indexedDB.open(Yy,Jy);a.onupgradeneeded=()=>Qy(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ho,"readonly"),o=i.objectStore(ho).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=sh(t),o=s.transaction(ws,"readwrite"),l=o.objectStore(ws),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(ho,"readwrite");let h=d.objectStore(ho).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>r({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(ws);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),n(h.error)),c.onerror=f=>(s.close(),n(h.error))}},u.onerror=h=>(s.close(),n(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},a.onerror=s=>n(a.error)})}};bo.URL_SCHEME="indexeddb://";var Rw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bo.URL_SCHEME)?mM(e.slice(bo.URL_SCHEME.length)):null;Lt.registerSaveRouter(Rw);Lt.registerLoadRouter(Rw);function mM(e){return new bo(e)}function gM(e){return e.startsWith(bo.URL_SCHEME)?e.slice(bo.URL_SCHEME.length):e}var yM=class{constructor(){this.indexedDB=Ew()}async listModels(){return new Promise((e,t)=>{let r=this.indexedDB.open(Yy,Jy);r.onupgradeneeded=()=>Qy(r),r.onsuccess=()=>{let n=r.result,a=n.transaction(ws,"readonly"),s=a.objectStore(ws).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),a.oncomplete=()=>n.close()},r.onerror=n=>t(r.error)})}async removeModel(e){return e=gM(e),new Promise((t,r)=>{let n=this.indexedDB.open(Yy,Jy);n.onupgradeneeded=()=>Qy(n),n.onsuccess=()=>{let a=n.result,s=a.transaction(ws,"readwrite"),i=s.objectStore(ws),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),r(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=a.transaction(ho,"readwrite");let h=l.objectStore(ho).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>r(o.error)};u.onsuccess=d,u.onerror=h=>(d(),a.close(),r(o.error))}},o.onerror=u=>(a.close(),r(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},n.onerror=a=>r(n.error)})}},Va="/",au="tensorflowjs_models",Mw="info",AM="model_topology",xM="weight_specs",bM="weight_data",vM="model_metadata";function Fw(e){return{info:[au,e,Mw].join(Va),topology:[au,e,AM].join(Va),weightSpecs:[au,e,xM].join(Va),weightData:[au,e,bM].join(Va),modelMetadata:[au,e,vM].join(Va)}}function $w(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function wM(e){let t=e.split(Va);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Va)}function kM(e){return e.startsWith(vo.URL_SCHEME)?e.slice(vo.URL_SCHEME.length):e}var vo=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Fw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),r=JSON.stringify(e.weightSpecs),n=sh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,sM(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw $w(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=r;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=iM(s),t}};vo.URL_SCHEME="localstorage://";var Pw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vo.URL_SCHEME)?IM(e.slice(vo.URL_SCHEME.length)):null;Lt.registerSaveRouter(Pw);Lt.registerLoadRouter(Pw);function IM(e){return new vo(e)}var SM=class{constructor(){P(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=au+Va,r=Va+Mw;for(let n=0;n<this.LS.length;++n){let a=this.LS.key(n);if(a.startsWith(t)&&a.endsWith(r)){let s=wM(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=kM(e);let t=Fw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let r=JSON.parse(this.LS.getItem(t.info));return $w(t),r}},lu="://",Sn=class{constructor(){this.managers={}}static getInstance(){return Sn.instance==null&&(Sn.instance=new Sn),Sn.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(lu)&&(e=e.slice(0,e.indexOf(lu))),P(e.length>0,()=>"scheme must not be an empty string.");let r=Sn.getInstance();P(r.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),r.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function jc(e){if(e.indexOf(lu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Sn.getSchemes().join(",")}`);return{scheme:e.split(lu)[0],path:e.split(lu)[1]}}async function _w(e,t,r=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Lt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let a=n[0],s=Lt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=jc(e).scheme,l=jc(e).path,u=o===jc(e).scheme,d=await a.load();r&&u&&await Sn.getManager(o).removeModel(l);let h=await i.save(d);return r&&!u&&await Sn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function TM(){let e=Sn.getSchemes(),t={};for(let r of e){let n=await Sn.getManager(r).listModels();for(let a in n){let s=r+lu+a;t[s]=n[a]}}return t}async function NM(e){let t=jc(e);return Sn.getManager(t.scheme).removeModel(t.path)}async function CM(e,t){return _w(e,t,!1)}async function EM(e,t){return _w(e,t,!0)}var RM=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new RM);try{Sn.registerManager(vo.URL_SCHEME,new SM)}catch(e){}try{Sn.registerManager(bo.URL_SCHEME,new yM)}catch(e){}}var MM={importFetch:()=>BE()},$y,FM=class{constructor(){this.util=WE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):($y==null&&($y=MM.importFetch()),$y(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&!Y().get("IS_BROWSER")&&Y().setPlatform("node",new FM);function We(e,t="float32",r){return t=t||"float32",K1(e),new rr(e,t,r)}function $M(e,t){let r=F(e,"x","cast");if(!nw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&r.dtype!=="string"||t!=="string"&&r.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:r},a={dtype:t};return B.runKernel(qs,n,a)}var me=W({cast_:$M});function PM(e){let t={x:F(e,"x","clone","string_or_numeric")};return B.runKernel(oi,t)}var Lr=W({clone_:PM});function zw(e,t=!1){console.log(e.toString(t))}kw();var _M={buffer:We,cast:me,clone:Lr,print:zw};jR(_M);var Sr={};Le(Sr,{browserFiles:()=>VM,browserHTTPRequest:()=>qM,concatenateArrayBuffers:()=>t2,copyModel:()=>CM,decodeWeights:()=>Nw,encodeWeights:()=>nM,fromMemory:()=>XM,getLoadHandlers:()=>fM,getModelArtifactsForJSON:()=>r2,getModelArtifactsInfoForJSON:()=>sh,getSaveHandlers:()=>cM,http:()=>a2,isHTTPScheme:()=>t1,listModels:()=>TM,loadWeights:()=>UM,moveModel:()=>EM,registerLoadRouter:()=>hM,registerSaveRouter:()=>pM,removeModel:()=>NM,weightsLoaderFactory:()=>Dw,withSaveHandler:()=>ZM});var zM="model",OM=".json",DM=".weights.bin";function b3(e){return new Promise(t=>setTimeout(t)).then(e)}var e1=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(e1.URL_SCHEME)&&(e=e.slice(e1.URL_SCHEME.length)),(e==null||e.length===0)&&(e=zM),this.modelJsonFileName=e+OM,this.weightDataFileName=e+DM}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=Cw(e,r),a=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=a,await b3(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await b3(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:sh(e)}}}},df=e1;df.URL_SCHEME="downloads://";var LM=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let r=new FileReader;r.onload=n=>{let a=JSON.parse(n.target.result),s=a.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(a.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=r2(a,o=>this.loadWeights(o));e(i)},r.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(this.jsonFile)})}loadWeights(e){let t=[],r=[];for(let s of e)t.push(...s.weights),r.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),a=r.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(a).then(s=>[t,t2(s)])}loadWeightsFile(e,t){return new Promise((r,n)=>{let a=new FileReader;a.onload=s=>{let i=s.target.result;r(i)},a.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),a.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],r=this.weightsFiles.map(a=>x3(a.name)),n={};for(let a of e)a.paths.forEach(s=>{let i=x3(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[r.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},BM=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(df.URL_SCHEME)?WM(e.slice(df.URL_SCHEME.length)):null;Lt.registerSaveRouter(BM);function WM(e="model"){return new df(e)}function VM(e){return new LM(e)}function v3(e,t,r,n){i(e),r=r==null?0:r,n=n==null?1:n,o(r,n);let a=0,s=l=>(l.then(u=>{let d=r+ ++a/e.length*(n-r);return t(d),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Ow(e,t){t==null&&(t={});let r=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,n=e.map(u=>r(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await v3(n,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await v3(i,t.onProgress,o,l)}async function UM(e,t="",r,n){return Dw(a=>Ow(a,{requestInit:n}))(e,t,r)}function Dw(e){return async(t,r="",n)=>{let a=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((c,f)=>{let m=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=Zy[y]*Tt(g.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};n!=null?n.forEach((b,w)=>{b===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),m+=A})}),!i.every(c=>c)){let c=n.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((c,f,m)=>(f&&c.push(m),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(f=>{let m=r+(r.endsWith("/")?"":"/")+f;u.push(m)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let f=t[c].paths.length,m=0;for(let x=0;x<f;x++)m+=d[p+x].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),A=0;for(let x=0;x<f;x++){let b=new Uint8Array(d[p+x]);y.set(b,A),A+=b.byteLength}s[c].forEach(x=>{let b=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=Nw(b,[x.manifestEntry]);for(let T in w)h[T]=w[T]}),p+=f}),h}}var GM="application/octet-stream",jM="application/json",n2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=Cw(e,r);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:jM}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:GM}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:sh(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(a){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let r=t.modelTopology,n=t.weightsManifest;if(r==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return r2(t,a=>this.loadWeights(a))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[r,n]=HM(t),a=this.weightPathPrefix||r,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(a+d+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Ow(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,t2(l)]}};n2.URL_SCHEME_REGEX=/^https?:\/\//;function HM(e){let t=e.lastIndexOf("/"),r=e.lastIndexOf("?"),n=e.substring(0,t),a=r>t?e.substring(r):"";return[n+"/",a]}function t1(e){return e.match(n2.URL_SCHEME_REGEX)!=null}var Lw=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let r=!0;if(Array.isArray(e)?r=e.every(n=>t1(n)):r=t1(e),r)return a2(e,t)}return null};Lt.registerSaveRouter(Lw);Lt.registerLoadRouter(Lw);function a2(e,t){return new n2(e,t)}function qM(e,t){return a2(e,t)}var Py=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},KM=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function XM(e,t,r,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Py(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Py({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Py({modelTopology:e,weightSpecs:t,weightData:r,trainingConfig:n}))}function ZM(e){return new KM(e)}var Bw={};Le(Bw,{confusionMatrix:()=>tF});function YM(e,t,r=!1,n=!1){let a=F(e,"a","matMul"),s=F(t,"b","matMul");[a,s]=Ot(a,s);let i={a,b:s},o={transposeA:r,transposeB:n};return B.runKernel(Hs,i,o)}var Je=W({matMul_:YM});function JM(e,t,r=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:r,offValue:n};return B.runKernel(Qo,a,s)}var Ep=W({oneHot_:JM});function QM(e,t){let r=F(e,"x","transpose");if(t==null&&(t=r.shape.map((s,i)=>i).reverse()),P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of perm ${t}.`),t.forEach(s=>{P(s>=0&&s<r.rank,()=>`All entries in 'perm' must be between 0 and ${r.rank-1} but got ${t}`)}),r.rank<=1)return r.clone();let n={x:r},a={perm:t};return B.runKernel($i,n,a)}var nt=W({transpose_:QM});function eF(e,t,r){let n=F(e,"labels","confusionMatrix"),a=F(t,"predictions","confusionMatrix");P(r==null||r>0&&Number.isInteger(r),()=>`If provided, numClasses must be a positive integer, but got ${r}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),P(n.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),P(r>0&&Number.isInteger(r),()=>`numClasses is required to be a positive integer, but got ${r}`);let s=Ep(me(n,"int32"),r),i=Ep(me(a,"int32"),r),o=nt(s),l=Je(o,i);return me(l,"int32")}var tF=W({confusionMatrix_:eF}),Al={};Le(Al,{assertAndGetBroadcastShape:()=>bt,getBroadcastDims:()=>Ww,getReductionAxes:()=>Xt});function Ww(e,t){let r=e.length,n=[];for(let a=0;a<r;a++){let s=r-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&n.unshift(s)}return n}function Xt(e,t){let r=[];for(let n=0;n<t.length;n++){let a=e[e.length-n-1],s=t.length-n-1,i=t[s];(a==null||a===1&&i>1)&&r.unshift(s)}return r}function bt(e,t){let r=[],n=Math.max(e.length,t.length);for(let a=0;a<n;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)r.unshift(i);else if(i===1)r.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else r.unshift(s)}return r}var $n={};Le($n,{fromPixels:()=>lF,fromPixelsAsync:()=>iF,toPixels:()=>oF});function Vw(e,t,r){if(Mo(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Ea(e,r);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return _i(e,t,n,r)}var no;function Uw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let r=!1,n=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)r=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a&&a&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(of(Ip,B.backendName)!=null){let p={pixels:e},c={numChannels:t};return B.runKernel(Ip,p,c)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(i)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||r)d=e.data;else if(s||a||o){if(no==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")no=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else no=document.createElement("canvas").getContext("2d");no.canvas.width=l,no.canvas.height=u,no.drawImage(e,0,0,l,u),d=no.getImageData(0,0,l,u).data}let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let f=0;f<t;++f)h[c*t+f]=d[c*4+f]}return Vw(h,[u,l,t],"int32")}function rF(e){return e!=null&&e.data instanceof Uint8Array}function nF(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function aF(e){return e!=null&&e.width!==0&&e.height!==0}function sF(e){return nF()&&!(e instanceof ImageBitmap)&&aF(e)&&!rF(e)}async function iF(e,t=3){let r=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&sF(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){n=null}n!=null&&n.width===e.width&&n.height===e.height?r=n:r=e}else r=e;return Uw(r,t)}async function oF(e,t){let r=F(e,"img","toPixels");if(!(e instanceof rt)){let u=r;r=me(u,"int32"),u.dispose()}if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let[n,a]=r.shape.slice(0,2),s=r.rank===2?1:r.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`);let i=await r.data(),o=r.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*n*4);for(let u=0;u<n*a;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(r.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(r.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=a,t.height=n;let u=t.getContext("2d"),d=new ImageData(l,a,n);u.putImageData(d,0,0)}return r!==e&&r.dispose(),l}var lF=W({fromPixels_:Uw}),s2={};Le(s2,{prepareAndValidate:()=>Gw});function Gw(e,t){let r=e.shape.length,n=t.shape.length;if(r<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${r}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>r)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${r}`);if(Tt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<r;++h)u*=o[h],l.push(o[h]);let d=[...Tu(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var i2={};Le(i2,{calculateShapes:()=>jw,validateInput:()=>l2,validateUpdateShape:()=>o2});function o2(e,t,r){let n=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${a}.`;if(r.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<n+(r.rank-a))throw new Error(s+` Output shape length < ${n+(r.rank-a)}`);if(r.rank!==a+e.length-n)throw new Error(s+` update.rank != ${a+e.length-n}`);for(let i=0;i<a;++i)if(r.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${r.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<r.rank-a;++i)if(r.shape[i+a]!==e[i+n])throw new Error(s+` updates.shape[${i+a}] (${r.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function l2(e,t,r){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(r.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);if(r.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}o2(r,t,e)}function jw(e,t,r){let n=t.shape.length,a=n>1?t.shape[n-1]:1,s=r.length,i=1;for(let h=a;h<s;++h)i*=r[h];let o=a<1?1:a,l=Tt(t.shape)/o,u=[...Tu(r.slice(0,a)),1],d=Tt(r);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var _t={};Le(_t,{assertParamsValid:()=>dF,computeFlatOffset:()=>mF,computeOutShape:()=>hF,getNormalizedAxes:()=>cF,isSliceContinous:()=>fF,maskToAxes:()=>pF,parseSliceParams:()=>ek,sliceInfo:()=>gF,startForAxis:()=>Jw,startIndicesWithElidedDims:()=>Xw,stopForAxis:()=>Qw,stopIndicesWithElidedDims:()=>Zw,stridesForAxis:()=>Yw,stridesWithElidedDims:()=>Hw});var r1=-2,uF=-1;function dF(e,t,r){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===r.length,()=>`Error in slice${n}D: Length of size ${r} must match the rank of the array (${n}).`);for(let a=0;a<n;++a)P(t[a]+r[a]<=e.shape[a],()=>`Error in slice${n}D: begin[${a}] + size[${a}] (${t[a]+r[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function pF(e){let t=[],r=0;for(;e>0;)e&1&&t.push(r),e/=2,r++;return t}function hF(e,t,r){let n=[];for(let a=0;a<e.length;a++)n[a]=Math.ceil((t[a]-e[a])/r[a]);return n}function Hw(e,t,r,n){let a=[...e];for(let s=a.length;s<n.length;s++)a.push(1);for(let s=0;s<r;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function qw(e,t,r){return r<=e?r:r-(t-1)}function Kw(e,t){let r=[];for(let n=0;n<e;n++)r.push(t+n);return r}function cF(e,t,r,n,a,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&r>0){let c=t[0],f=r+1;d=Xw(i,c,f,n,e),h=Zw(o,c,f,a,e),p=Hw(s,c,f,e)}else for(let c=0;c<u;c++)d[c]=Jw(i,n,s,e,c,l),h[c]=Qw(o,a,s,e,c,l),p[c]=Yw(s,c,l);return{begin:d,end:h,strides:p}}function Xw(e,t,r,n,a){let s=[...a],i=Kw(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=qw(t,r,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function Zw(e,t,r,n,a){let s=[...a],i=Kw(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=qw(t,r,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=kp(0,s[o],a[o])}return s}function Yw(e,t,r){let n=e[t];return(r&1<<t||n==null)&&(n=1),n}function Jw(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),i=kp(0,i,l-1),i}function Qw(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),o>0?i=kp(0,i,l):i=kp(-1,i,l-1),i}function fF(e,t,r){let n=r.length;for(let a=0;a<r.length;a++)if(r[a]>1){n=a;break}for(let a=n+1;a<r.length;a++)if(t[a]>0||r[a]!==e[a])return!1;return!0}function mF(e,t){let r=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)r+=e[n]*t[n];return r}function ek(e,t,r){let n,a=e.shape.length;typeof t=="number"?n=[t,...new Array(a-1).fill(0)]:t.length<a?n=t.concat(new Array(a-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return r==null?s=new Array(a).fill(-1):typeof r=="number"?s=[r,...new Array(a-1).fill(-1)]:r.length<a?s=r.concat(new Array(a-r.length).fill(-1)):s=r,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function gF(e,t,r,n,a,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let d=!1,h={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:r.slice(),strides:u.slice(),beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<h.dims;A++)d&&(1<<A&o)!==0&&h.numAddAxisAfterEllipsis++,1<<A&i&&(d=!0);d||(h.ellipsisMask|=1<<h.dims,h.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};yF(h,p);let c=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(p.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(x?1:-1);continue}let w=[p.beginMask&1<<A,p.endMask&1<<A],T=[p.strides[A]>0?0:-1,p.strides[A]>0?b:b-1];if(x&&p.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[A]===1;let S=!!(p.beginMask&1<<A&&p.endMask&1<<A);if(p.beginValid&&p.endValid){if(x){let M=p.begin[A]<0?b+p.begin[A]:p.begin[A];if(p.begin[A]=M,p.end[A]=p.begin[A]+1,M<0||M>=b)throw Error(`slice index ${p.begin[A]} of dimension ${A} out of bounds.`)}else p.begin[A]=w3(p.begin[A],0,p.strides[A],b,w,T),p.end[A]=w3(p.end[A],1,p.strides[A],b,w,T);let _=p.strides[A]===1&&p.begin[A]===0&&p.end[A]===b;c=c&&_,f=f&&(A===0&&p.strides[A]===1||_)}else c=c&&p.strides[A]===1&&S,f=f&&(A===0&&p.strides[A]===1||S);let E,R=!1;if(p.beginValid&&p.endValid?(E=p.end[A]-p.begin[A],R=!0):x?(E=1,R=!0):S&&b>=0&&(p.strides[A]<0?E=-b:E=b,R=!0),R){let _;E===0||E<0!=p.strides[A]<0?_=0:_=Math.trunc(E/p.strides[A])+(E%p.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<p.finalShapeGatherIndices.length;++A){let x=p.finalShapeGatherIndices[A];x>=0?y.push(g[x]):x===r1&&y.push(1)}return{finalShapeSparse:y.filter((A,x)=>p.finalShapeGatherIndices[x]!==r1),finalShape:y,isIdentity:c,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function yF(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let r=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let a=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;r<a;r++)t.begin[r]=0,t.end[r]=0,t.strides[r]=1,t.beginMask|=1<<r,t.endMask|=1<<r,t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[r]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(r1),t.finalShapeGatherIndicesSparse.push(-1);else{if(r===t.begin.length)throw Error(`Index out of range using input dim ${r}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[r]=e.begin[n]),e.end!=null&&(t.end[r]=e.end[n]),t.strides[r]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<r),e.endMask&1<<n&&(t.endMask|=1<<r),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(uF),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<r):(t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[r]=n,r++}}function w3(e,t,r,n,a,s){if(a[t])return r>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ue={};Le(ue,{Serializable:()=>tk,SerializationMap:()=>lo,registerClass:()=>zi});var tk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},lo=class{constructor(){this.classNameMap={}}static getMap(){return lo.instance==null&&(lo.instance=new lo),lo.instance}static register(e){lo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function zi(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),lo.register(e)}var rk={};Le(rk,{TEST_EPSILON_FLOAT16:()=>nk,encodeStrings:()=>ak,expectArrayBuffersEqual:()=>IF,expectArraysClose:()=>xF,expectArraysEqual:()=>vF,expectNumbersClose:()=>wF,expectPromiseToFail:()=>bF,expectValuesInRange:()=>kF,testEpsilon:()=>u2});var AF=.001,nk=.1;function xF(e,t,r){return r==null&&(r=u2()),n1(e,t,(n,a)=>d2(n,a,r))}function u2(){return B.backend.floatPrecision()===32?AF:nk}function n1(e,t,r){let n=!0;if((Ir(e)||Ir(t))&&(n=!1),Ir(e)&&Ir(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ea(e),o=Ea(t);if(!Vs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Ir(e)?e:xo(e),s=Ir(t)?t:xo(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!r(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function bF(e,t){e().then(()=>t.fail(),()=>t())}function vF(e,t){let r=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return vs(e)||vs(e[0])||vs(t)||vs(t[0])?n1(e,r,(n,a)=>n==a):n1(e,t,(n,a)=>d2(n,a,0))}function wF(e,t,r){if(r==null&&(r=u2()),!d2(e,t,r))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function d2(e,t,r){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>r)}function kF(e,t,r){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>r)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${r}`)}function IF(e,t){let r=new Float32Array(e),n=new Float32Array(t);if(r.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${r.length}`);for(let a=0;a<n.length;a++)if(r[a]!==n[a])throw new Error(`Expected ArrayBuffer value at ${a} to be ${n[a]} but got ${r[a]} instead`)}function ak(e){for(let t=0;t<e.length;t++){let r=e[t];Array.isArray(r)?ak(r):e[t]=rh(r)}return e}var p2="0.0.0";function h2(){Y().set("PROD",!0)}function SF(){Y().set("DEBUG",!0)}function TF(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function c2(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}HR(c2);function NF(){B.disposeVariables()}function Ar(){return B}function pf(){return B.memory()}function CF(e){return B.profile(e)}function K(e,t){return B.tidy(e,t)}function re(e){J1(e).forEach(t=>t.dispose())}function hr(e){return B.keep(e)}function EF(e){return B.time(e)}function f2(e){return B.setBackend(e)}function td(){return B.ready()}function an(){return B.backendName}function RF(e){B.removeBackend(e)}function m2(e){return B.findBackend(e)}function MF(e){return B.findBackendFactory(e)}function xl(e,t,r=1){return B.registerBackend(e,t,r)}function Un(){return B.backend}function FF(e,t){Y().setPlatform(e,t)}function $F(e,t){let r=F(e,"a","add"),n=F(t,"b","add");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Ha,a)}var le=W({add_:$F});function PF(e,t){let r=F(e,"a","floorDiv"),n=F(t,"b","floorDiv");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(ai,a)}var ih=W({floorDiv_:PF});function _F(e,t){let r=F(e,"a","div"),n=F(t,"b","div");if([r,n]=Ot(r,n),r.dtype==="int32"&&n.dtype==="int32")return ih(r,n);let a={a:r,b:n},s={};return B.runKernel(ei,a,s)}var pe=W({div_:_F});function zF(e,t){let r=F(e,"a","mul"),n=F(t,"b","mul");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(yi,a)}var L=W({mul_:zF});function OF(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let r={x:t};return B.runKernel(Bp,r)}else{let r={x:t};return B.runKernel(Fo,r)}}var er=W({abs_:OF});function DF(e){let t={x:F(e,"x","acos")};return B.runKernel(Nu,t)}var sk=W({acos_:DF});function LF(e){let t={x:F(e,"x","acosh")};return B.runKernel(Cu,t)}var ik=W({acosh_:LF});function BF(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>F(a,`tensors${s}`,"addN")),r=t[0];t.forEach(a=>{if(a.dtype!==r.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Vs(a.shape,r.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return B.runKernel(Us,n)}var om=W({addN_:BF});function WF(e,t=null,r=!1){let n={x:F(e,"x","all","bool")},a={axis:t,keepDims:r};return B.runKernel(Eu,n,a)}var g2=W({all_:WF});function VF(e,t=null,r=!1){let n={x:F(e,"x","any","bool")},a={axis:t,keepDims:r};return B.runKernel(Ru,n,a)}var hf=W({any_:VF});function UF(e,t=0){let r={x:F(e,"x","argMax")},n={axis:t};return B.runKernel(Gs,r,n)}var Nn=W({argMax_:UF});function GF(e,t=0){let r={x:F(e,"x","argMin")},n={axis:t};return B.runKernel(Mu,r,n)}var ok=W({argMin_:GF});function jF(e){let t={x:F(e,"x","asin")};return B.runKernel(Fu,t)}var lk=W({asin_:jF});function HF(e){let t={x:F(e,"x","asinh")};return B.runKernel($u,t)}var uk=W({asinh_:HF});function qF(e){let t={x:F(e,"x","atan")};return B.runKernel(Pu,t)}var dk=W({atan_:qF});function KF(e,t){let r=F(e,"a","atan2"),n=F(t,"b","atan2");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(zu,a)}var pk=W({atan2_:KF});function XF(e){let t={x:F(e,"x","atanh")};return B.runKernel(_u,t)}var hk=W({atanh_:XF});function ZF(e,t,r,n,a="NHWC",s){let i=e[3],o=[...t,i],l=mk(a);return oh(e,o,r,s,n,null,null,l)}function ck(e,t,r,n,a,s,i="channelsLast"){let[o,l]=cf(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return oh(e,u,r,n,a,s,!1,i)}function YF(e,t,r,n,a,s,i="NDHWC"){let[o,l,u]=a1(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return fk(e,d,r,n,a,!1,h,s)}function oh(e,t,r,n,a,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,f]=t,[m,g]=cf(r),[y,A]=cf(n),x=uu(p,y),b=uu(c,A),{padInfo:w,outHeight:T,outWidth:S}=e$(a,u,d,m,g,x,b,s,o),E=i?f*h:f,R;return o==="channelsFirst"?R=[l,E,T,S]:o==="channelsLast"&&(R=[l,T,S,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:T,outWidth:S,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:R,filterShape:t}}function fk(e,t,r,n,a,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,f,m,,g]=t,[y,A,x]=a1(r),[b,w,T]=a1(n),S=uu(c,b),E=uu(f,w),R=uu(m,T),{padInfo:_,outDepth:M,outHeight:I,outWidth:O}=t$(a,u,d,h,y,A,x,S,E,R,o),z=s?g*p:g,j;return i==="channelsFirst"?j=[l,z,M,I,O]:i==="channelsLast"&&(j=[l,M,I,O,z]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:M,outHeight:I,outWidth:O,outChannels:z,padInfo:_,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function JF(e,t,r,n,a){n==null&&(n=y2(e,t,r));let s=e[0],i=e[1],o=mo((s-t+2*n)/r+1,a),l=mo((i-t+2*n)/r+1,a);return[o,l]}function QF(e,t,r,n,a,s){a==null&&(a=y2(e,t,n));let i=e[0],o=e[1],l=e[2],u=mo((i-t+2*a)/n+1,s),d=mo((o-t+2*a)/n+1,s),h=mo((l-t+2*a)/n+1,s);return[u,d,h,r]}function y2(e,t,r,n=1){let a=uu(t,n);return Math.floor((e[0]*(r-1)-r+a)/2)}function cf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function a1(e){return typeof e=="number"?[e,e,e]:e}function uu(e,t){return t<=1?e:e+(e-1)*(t-1)}function e$(e,t,r,n,a,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=JF([t,r],s,n,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/n),h=Math.ceil(r/a);let p=Math.max(0,(d-1)*n+s-t),c=Math.max(0,(h-1)*a+i-r),f=Math.floor(p/2),m=p-f,g=Math.floor(c/2),y=c-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/n),h=Math.ceil((r-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:f,right:m,type:p===0&&c===0&&f===0&&m===0?"VALID":"EXPLICIT"},d=mo((t-s+p+c)/n+1,o),h=mo((r-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function t$(e,t,r,n,a,s,i,o,l,u,d){let h,p,c,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=QF([t,r,n,1],o,1,a,e,d);p=m[0],c=m[1],f=m[2]}else if(e==="same"){p=Math.ceil(t/a),c=Math.ceil(r/s),f=Math.ceil(n/i);let m=(p-1)*a+o-t,g=(c-1)*s+l-r,y=(f-1)*i+u-n,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),w=g-b,T=Math.floor(y/2),S=y-T;h={top:b,bottom:w,left:T,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),c=Math.ceil((r-l+1)/s),f=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:f}}function mo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ms(e){let[t,r,n]=cf(e);return t===1&&r===1&&n===1}function Fa(e,t){return Ms(e)||Ms(t)}function mk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Vr(e,t,r){if(r!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);if(typeof t=="number")P(hu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(a=>{P(hu(a),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${a}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function r$(e,t){let r={x:F(e,"x","reshape","string_or_numeric")},n={shape:t};return B.runKernel(rl,r,n)}var G=W({reshape_:r$});function n$(e,t,r,n,a){let s=F(e,"x","avgPool","float32"),i=1;P(Fa(r,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Vr("avgPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(js,u,d);return h=me(h,s.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lm=W({avgPool_:n$});function a$(e,t,r,n,a,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Vr("avgPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(Dp,u,d);return h=me(h,o.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var A2=W({avgPool3d_:a$});function s$(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let r=Cp(e,"tensors","concat","string_or_numeric");if(r[0].dtype==="complex64"&&r.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),r.length===1)return Lr(r[0]);let n=r,a={axis:t};return B.runKernel(Po,n,a)}var kt=W({concat_:s$});function i$(e){let t={x:F(e,"x","sigmoid","float32")};return B.runKernel(Ti,t)}var Tr=W({sigmoid_:i$});function o$(e,t,r){let n=F(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let a={x:n},s={begin:t,size:r};return B.runKernel(ol,a,s)}var Pe=W({slice_:o$});function l$(e){let t={x:F(e,"x","tanh","float32")};return B.runKernel(Fi,t)}var fu=W({tanh_:l$});function u$(e,t,r,n,a,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(r,"lstmBias","basicLSTMCell"),u=F(n,"data","basicLSTMCell"),d=F(a,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),p=kt([u,h],1),c=Je(p,o),f=le(c,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=Pe(f,[0,0],y),x=Pe(f,[0,g],y),b=Pe(f,[0,g*2],y),w=Pe(f,[0,g*3],y),T=le(L(Tr(A),fu(x)),L(d,Tr(le(i,b)))),S=L(fu(T),Tr(w));return[T,S]}var d$=W({basicLSTMCell_:u$});function p$(e,t,r){let n=F(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(r.length===t.length,()=>`crops.length is ${r.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%a===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:n},i={blockShape:t,crops:r};return B.runKernel($o,s,i)}var um=W({batchToSpaceND_:p$});function h$(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function c$(e,t,r,n,a,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;n!=null&&(d=F(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:h$(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=B.runKernel(si,h,p);return G(c,i.shape)}var mu=W({batchNorm_:c$});function f$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),mu(i,o,l,d,u,s)}var gk=W({batchNorm2d_:f$});function m$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),mu(i,o,l,d,u,s)}var yk=W({batchNorm3d_:m$});function g$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),mu(i,o,l,d,u,s)}var Ak=W({batchNorm4d_:g$});function y$(e,t,r){let n=F(e,"x","bincount"),a=F(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(a.size===n.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${a.shape}.`);let s={x:n,weights:a},i={size:r};return B.runKernel(Of,s,i)}var x2=W({bincount_:y$});function A$(e,t){let r=F(e,"s0","broadcastArgs","int32"),n=F(t,"s1","broadcastArgs","int32");if(r.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${r.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let a={s0:r,s1:n};return B.runKernel(Df,a)}var xk=W({broadcastArgs_:A$});function x$(e,t){let r=F(e,"broadcastTo","x"),n=r.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<r.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${r.rank}.`);if(t.length>r.rank){let l=r.shape.slice();for(;l.length<t.length;)l.unshift(1);r=G(r,l)}let a=r.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(r.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Lr(r);let i={x:r},o={reps:s};return B.runKernel(Ka,i,o)}var xp=W({broadcastTo_:x$});function b$(e){let t={x:F(e,"x","ceil","float32")};return B.runKernel(Ks,t)}var bk=W({ceil_:b$});function v$(e,t,r){let n=F(e,"x","clipByValue");P(t<=r,()=>`Error in clip: min (${t}) must be less than or equal to max (${r}).`);let a={x:n},s={clipValueMin:t,clipValueMax:r};return B.runKernel(qa,a,s)}var hn=W({clipByValue_:v$});function w$(e){return kt(e,0)}var vk=W({concat1d_:w$});function k$(e,t){return kt(e,t)}var rd=W({concat2d_:k$});function I$(e,t){return kt(e,t)}var wk=W({concat3d_:I$});function S$(e,t){return kt(e,t)}var kk=W({concat4d_:S$});function T$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Vr("conv2d",n,i);let h=a==="NHWC"?u.shape[3]:u.shape[1];P(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),P(Fa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let p={x:u,filter:l},c={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},f=B.runKernel(Xs,p,c);return d?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Fs=W({conv2d_:T$});function N$(e,t,r,n,a="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Vr("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Fa(r,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${r} and dilation '${s}'`),P(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=Fs(p,h,[1,r],n,"NHWC",[1,s],i);return d?G(c,[c.shape[2],c.shape[3]]):G(c,[c.shape[0],c.shape[2],c.shape[3]])}var b2=W({conv1d_:N$});function C$(e,t,r,n,a,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(r.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${r.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];P(d===r.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${r.shape[2]}.`),P(h===r.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${r.shape[3]}.`),Vr("conv2dDerInput",a,i);let p={dy:l,filter:r},c={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=B.runKernel(Zs,p,c);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var v2=W({conv2DBackpropInput_:C$});function E$(e,t,r,n,a,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return v2(r,i,o,n,a,"NHWC",s)}var w2=W({conv2dTranspose_:E$});function R$(e,t,r,n,a="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(Fa(r,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:r,pad:n,dataFormat:a,dilations:s},p=B.runKernel(Wp,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var k2=W({conv3d_:R$});function M$(e,t,r,n,a){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(r.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${r.rank}`),P(l===r.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${r.shape[3]}.`),P(u===r.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${r.shape[4]}.`);let d={dy:i,filter:r},h={pad:a,strides:n,inputShape:s},p=B.runKernel(Wf,d,h);return o?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ik=W({conv3DBackpropInput_:M$});function F$(e,t,r,n,a){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return Ik(r,s,i,n,a)}var Sk=W({conv3dTranspose_:F$});function $$(e){let t={x:F(e,"x","cos","float32")};return B.runKernel(Ys,t)}var dm=W({cos_:$$});function P$(e){let t={x:F(e,"x","cosh","float32")};return B.runKernel(Js,t)}var I2=W({cosh_:P$});function _$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumprod")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Ou,a,s)}var Tk=W({cumprod_:_$});function z$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumsum")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(_o,a,s)}var S2=W({cumsum_:z$});function O$(e,t,r,n=!1){let a=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");P(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),P(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:r,binaryOutput:n};return B.runKernel(Vf,i,o)}var Nk=W({denseBincount_:O$});function D$(e,t,r="NHWC"){let n=F(e,"x","depthToSpace","float32"),a=r==="NHWC"?n.shape[1]:n.shape[2],s=r==="NHWC"?n.shape[2]:n.shape[3],i=r==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:r};return B.runKernel(Oo,o,l)}var Ck=W({depthToSpace_:D$});function L$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Vr("depthwiseConv2d",n,i);let h={x:u,filter:l},p={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},c=B.runKernel(Qs,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var lh=W({depthwiseConv2d_:L$});function B$(e){let t={x:F(e,"x","diag")};return B.runKernel(jf,t)}var W$=W({diag_:B$});function V$(e,t,r,n,a=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:r,pad:n,dilations:a},p=B.runKernel(Vp,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ek=W({dilation2d_:V$});function U$(e,t){let r=F(e,"a","equal","string_or_numeric"),n=F(t,"b","equal","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Do,a)}var Cn=W({equal_:U$});function G$(e,t,r){let n=F(t,"a","where"),a=F(r,"b","where"),s=F(e,"condition","where","bool"),i=bt(bt(s.shape,n.shape),a.shape),o=xp(s,i),l=xp(n,i),u=xp(a,i),d={condition:o,t:l,e:u};return B.runKernel(il,d)}var Br=W({where_:G$});function j$(e){let t={x:F(e,"x","zerosLike")};return B.runKernel(gl,t)}var at=W({zerosLike_:j$});function H$(e,t){let r=F(e,"a","div"),n=F(t,"b","div");[r,n]=Ot(r,n);let a=pe(r,n),s=at(a),i=Cn(n,s);return Br(i,s,a)}var Rk=W({divNoNan_:H$});function q$(e,t){let r=F(e,"t1","dot"),n=F(t,"t2","dot");P((r.rank===1||r.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${r.rank} and ${n.rank}.`);let a=r.rank===1?r.size:r.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),r.rank===1&&n.rank===1){let i=G(r,[1,-1]),o=G(n,[-1,1]),l=Je(i,o);return G(l,[])}else if(r.rank===1&&n.rank===2){let i=G(r,[1,-1]),o=G(n,[n.shape[0],n.shape[1]]),l=Je(i,o);return G(l,[l.size])}else if(r.rank===2&&n.rank===1){let i=G(n,[-1,1]),o=Je(r,i);return G(o,[o.size])}else{let i=G(n,[n.shape[0],n.shape[1]]);return Je(r,i)}}var K$=W({dot_:q$});function X$(e,...t){let r=t.map((a,s)=>F(a,`tensors${s}`,"einsum")),n={equation:e};return B.runKernel(Up,r,n)}var Mk=W({einsum_:X$});function Z$(e){let t={x:F(e,"x","elu","float32")};return B.runKernel(ti,t)}var uh=W({elu_:Z$});function Y$(e){let t=F(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let r={x:t};return B.runKernel(Du,r)}var Fk=W({erf_:Y$});function J$(e){let t={x:F(e,"x","exp")};return B.runKernel(ri,t)}var En=W({exp_:J$});function Q$(e,t=0){let r=F(e,"x","expandDims","string_or_numeric");P(t<=r.rank,()=>"Axis must be <= rank of the tensor");let n={input:r},a={dim:t};return B.runKernel(Lo,n,a)}var Ht=W({expandDims_:Q$});function eP(e){let t={x:F(e,"x","expm1")};return B.runKernel(Bo,t)}var $k=W({expm1_:eP});function tP(e,t){let r=F(e,"x","tile","string_or_numeric");P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let n={x:r},a={reps:t};return B.runKernel(Ka,n,a)}var Dn=W({tile_:tP});function rP(e,t,r,n="float32"){t==null&&(t=e);let a=We([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=G(a.toTensor(),[e,t]);if(r==null)return i;if(r.length===1)return Dn(Ht(i,0),[r[0],1,1]);if(r.length===2)return Dn(Ht(Ht(i,0),0),[r[0],r[1],1,1]);if(r.length===3)return Dn(Ht(Ht(Ht(i,0),0),0),[r[0],r[1],r[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${r.length}D.`)}var T2=W({eye_:rP});function nd(e,t,r){let n={shape:e,value:t,dtype:r};return B.runKernel(Lu,{},n)}function nP(e){let t={x:F(e,"x","floor","float32")};return B.runKernel(ni,t)}var dh=W({floor_:nP});function aP(e,t,r=0,n=0){let a=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:r,batchDims:n};return B.runKernel(Vo,i,o)}var gu=W({gather_:aP});function sP(e,t){let r=F(e,"a","greater","string_or_numeric"),n=F(t,"b","greater","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Go,a)}var cn=W({greater_:sP});function iP(e,t){let r=F(e,"a","greaterEqual","string_or_numeric"),n=F(t,"b","greaterEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ii,a)}var bl=W({greaterEqual_:iP});function oP(e){let t={input:F(e,"input","imag")};return B.runKernel(Gp,t)}var pm=W({imag_:oP});function lP(e){let t={x:F(e,"x","isFinite")};return B.runKernel(Bu,t)}var uP=W({isFinite_:lP});function dP(e){let t={x:F(e,"x","isInf")};return B.runKernel(Wu,t)}var pP=W({isInf_:dP});function hP(e){let t={x:F(e,"x","isNaN")};return B.runKernel(Vu,t)}var Pk=W({isNaN_:hP});function cP(e,t=.2){let r={x:F(e,"x","leakyRelu")},n={alpha:t};return B.runKernel(li,r,n)}var hm=W({leakyRelu_:cP});function fP(e,t){let r=F(e,"a","less","string_or_numeric"),n=F(t,"b","less","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(jo,a)}var N2=W({less_:fP});function mP(e,t){let r=F(e,"a","lessEqual","string_or_numeric"),n=F(t,"b","lessEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Ho,a)}var vl=W({lessEqual_:mP});function _k(e,t,r){if(r<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:r};return B.runKernel(Xf,{},n)}function gP(e,t=5,r=1,n=1,a=.5){let s=F(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),P(hu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=G(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:r,alpha:n,beta:a},d=B.runKernel(Hp,l,u);return o?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var zk=W({localResponseNormalization_:gP});function yP(e){let t={x:F(e,"x","log","float32")};return B.runKernel(ui,t)}var Rn=W({log_:yP});function AP(e){let t={x:F(e,"x","log1p")};return B.runKernel(Uu,t)}var cm=W({log1p_:AP});function xP(e){return P(Ts(e),()=>"The f passed in grad(f) must be a function"),(t,r)=>{let n=F(t,"x","tf.grad","string_or_numeric"),a=r!=null?F(r,"dy","tf.grad"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(n),[n],a);return a!=null&&Wr(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),fm(i),i[0]})}}function bP(e){return P(Ts(e),()=>"The f passed in grads(f) must be a function"),(t,r)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Cp(t,"args","tf.grads","string_or_numeric"),a=r!=null?F(r,"dy","tf.grads"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(...n),n,a);return a!=null&&Wr(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),fm(i),i})}}function vP(e){return P(Ts(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,r)=>{P(t instanceof rt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:a}=B.gradients(()=>e(t),[t],r);return fm(n),{grad:n[0],value:a}}}function wP(e){return P(Ts(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,r)=>{P(Array.isArray(t)&&t.every(a=>a instanceof rt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=B.gradients(()=>e(...t),t,r);return r!=null&&Wr(n.value.shape,r.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),fm(n.grads),n}}function Ok(e,t){P(Ts(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof Np),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let r=t!=null;if(!r){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let n=r?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=B.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Ra(e){return B.customGrad(e)}function fm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function kP(e){let t={x:F(e,"x","neg")};return B.runKernel(Ko,t)}var zt=W({neg_:kP});function IP(e){let t={x:F(e,"x","softplus")};return B.runKernel(Ju,t)}var ad=W({softplus_:IP});function SP(e){let t=F(e,"x","logSigmoid");return Ra(r=>({value:zt(ad(zt(r))),gradFunc:n=>L(n,Tr(zt(r)))}))(t)}var TP=W({logSigmoid_:SP});function NP(e,t=null,r=!1){let n={x:F(e,"x","max")},a={reductionIndices:t,keepDims:r};return B.runKernel(di,n,a)}var fr=W({max_:NP});function CP(e,t){let r=F(e,"a","sub"),n=F(t,"b","sub");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Mi,a)}var he=W({sub_:CP});function EP(e,t=null,r=!1){let n=F(e,"x","sum");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Ci,a,s)}var ke=W({sum_:EP});function RP(e,t=-1){let r=F(e,"logits","logSoftmax");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and axis was ${t}`);return Ra((n,a)=>{let s=fr(n,t,!0),i=he(n,s),o=he(me(i,"float32"),Rn(ke(En(i),t,!0)));return a([o]),{value:o,gradFunc:(l,u)=>{let[d]=u,h=!0,p=En(d);return he(l,L(ke(l,t,h),p))}}})(r)}var C2=W({logSoftmax_:RP});function E2(e,t){for(let r=0;r<e.length;++r)if(e[e.length-r-1]!==t-1-r)return!1;return!0}function Dk(e,t,r){let n=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<n;o++)r.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function Lk(e,t){let r=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&r.push(e[s]);let a=t.map(s=>e[s]);return[r,a]}function wo(e,t){let r=t.map(n=>1);return Dk(e,r,t)}function MP(e,t,r){P(E2(t,r),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${r} input.`)}function Bk(e,t){if(E2(e,t))return null;let r=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&r.push(n);return e.forEach(n=>r.push(n)),r}function R2(e){return e.map((t,r)=>[r,t]).sort((t,r)=>t[1]-r[1]).map(t=>t[0])}function FP(e,t){let r=[];for(let n=t-e;n<t;++n)r.push(n);return r}function $P(e,t=null,r=!1){let n=F(e,"x","logSumExp"),a=Wn(t,n.shape),s=fr(n,a,!0),i=he(n,s),o=En(i),l=ke(o,a),u=Rn(l),d=le(G(s,u.shape),u);if(r){let h=wo(d.shape,a);return G(d,h)}return d}var Wk=W({logSumExp_:$P});function PP(e,t){let r=F(e,"a","logicalAnd","bool"),n=F(t,"b","logicalAnd","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(qo,a)}var ha=W({logicalAnd_:PP});function _P(e){let t={x:F(e,"x","logicalNot","bool")};return B.runKernel(Gu,t)}var mm=W({logicalNot_:_P});function zP(e,t){let r=F(e,"a","logicalOr","bool"),n=F(t,"b","logicalOr","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(jp,a)}var M2=W({logicalOr_:zP});function OP(e,t){let r=F(e,"a","logicalXor","bool"),n=F(t,"b","logicalXor","bool");return bt(r.shape,n.shape),ha(M2(e,t),mm(ha(e,t)))}var DP=W({logicalXor_:OP});function LP(e,t,r,n,a){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(Fa(r,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`),Vr("maxPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(hi,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var gm=W({maxPool_:LP});function BP(e,t=[1,1,1],r,n,a,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Vr("maxPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(qp,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var F2=W({maxPool3d_:BP});function WP(e,t,r,n,a=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:r,pad:n,includeBatchInIndex:a},o=B.runKernel(Qf,s,i);return{result:o[0],indexes:o[1]}}var Vk=W({maxPoolWithArgmax_:WP});function VP(e,t){let r=F(e,"a","maximum"),n=F(t,"b","maximum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(pi,a)}var Xa=W({maximum_:VP});function UP(e,t=null,r=!1){let n={x:F(e,"x","mean")},a={axis:t,keepDims:r};return B.runKernel(ci,n,a)}var Bt=W({mean_:UP});function Wt(e,t="float32"){if(t==="complex64"){let n=Wt(e,"float32"),a=Wt(e,"float32");return Rs(n,a)}let r=Pf(Tt(e),t);return B.makeTensor(r,e,t)}function pn(e,t="float32"){if(t==="complex64"){let n=pn(e,"float32"),a=Wt(e,"float32");return Rs(n,a)}let r=q1(Tt(e),t);return B.makeTensor(r,e,t)}function GP(e,t,{indexing:r="xy"}={}){if(r!=="xy"&&r!=="ij")throw new TypeError(`${r} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=F(e,"x","meshgrid",e instanceof rt?e.dtype:"float32");if(t===void 0)return[n];let a=F(t,"y","meshgrid",t instanceof rt?t.dtype:"float32"),s=Tt(n.shape),i=Tt(a.shape);return r==="xy"?(n=G(n,[1,-1]),a=G(a,[-1,1]),[Je(pn([i,1],n.dtype),n),Je(a,pn([1,s],a.dtype))]):(n=G(n,[-1,1]),a=G(a,[1,-1]),[Je(n,pn([1,i],n.dtype)),Je(pn([s,1],a.dtype),a)])}function jP(e,t=null,r=!1){let n={x:F(e,"x","min")},a={axis:t,keepDims:r};return B.runKernel(fi,n,a)}var $s=W({min_:jP});function HP(e,t){let r=F(e,"a","minimum"),n=F(t,"b","minimum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(mi,a)}var ph=W({minimum_:HP});function qP(e,t,r){P(r==="reflect"||r==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${r}.`);let n=F(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let a=r==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-a&&t[o][1]>=0&&t[o][1]<=n.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-a} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:r},i={x:n};return B.runKernel(gi,i,s)}var Uk=W({mirrorPad_:qP});function KP(e,t){let r=F(e,"a","mod"),n=F(t,"b","mod");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(ju,a)}var sd=W({mod_:KP});function XP(e){let t=F(e,"x","square"),r={};return B.runKernel("Square",{x:t},r)}var At=W({square_:XP});function ZP(e,t=null,r=!1){e=F(e,"x","moments");let n=Wn(t,e.shape),a=Bt(e,n,r),s=a.shape;r||(s=wo(a.shape,n));let i=At(he(me(e,"float32"),G(a,s))),o=Bt(i,n,r);return{mean:a,variance:o}}var ym=W({moments_:ZP});function YP(e,t,r,n){let a=F(t,"data","multiRNNCell"),s=Cp(r,"c","multiRNNCell"),i=Cp(n,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var JP=W({multiRNNCell_:YP});function QP(e,t,r,n=!1){let a=F(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);r=r||Math.random();let o={logits:i===1?G(a,[1,-1]):a},l={numSamples:t,seed:r,normalized:n},u=B.runKernel(em,o,l);return i===1?G(u,[u.size]):u}var Gk=W({multinomial_:QP});function e_(e,t){let r=F(e,"a","notEqual","string_or_numeric"),n=F(t,"b","notEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Xo,a)}var yu=W({notEqual_:e_});function t_(e){let t={x:F(e,"x","onesLike")};return B.runKernel(Jo,t)}var Mn=W({onesLike_:t_});function r_(e,t){let r=F(e,"v1","outerProduct"),n=F(t,"v2","outerProduct");P(r.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${r.rank} and ${n.rank}.`);let a=G(r,[-1,1]),s=G(n,[1,-1]);return Je(a,s)}var n_=W({outerProduct_:r_});function a_(e,t,r=0){let n=F(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:r},s={x:n};return B.runKernel(Ai,s,a)}var Gn=W({pad_:a_});function s_(e,t,r=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Gn(e,[t],r)}var i_=W({pad1d_:s_});function o_(e,t,r=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var l_=W({pad2d_:o_});function u_(e,t,r=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var d_=W({pad3d_:u_});function p_(e,t,r=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var h_=W({pad4d_:p_});function c_(e,t,r){let n=F(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(r.length===t.length,()=>`paddings.shape[0] ${r.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+r[l-1][0]+r[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${r.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:n},s={blockShape:t,paddings:r};return B.runKernel(ul,a,s)}var Am=W({spaceToBatchND_:c_});function f_(e,t,r,n,a,s,i){a==null&&(a=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=F(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(Fa(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let d=ck(l.shape,t,s,a,n),h=[d.dilationHeight,d.dilationWidth],p;n==="same"?p=g_([d.filterHeight,d.filterWidth],h):p=[[0,0],[0,0]];let c=h[0]===1&&h[1]===1,[f,m]=m_([d.inHeight,d.inWidth],h,p),g=c?n:"valid",y=c?l:Am(l,h,f),A=(r==="avg"?()=>lm(y,t,s,g,i):()=>gm(y,t,s,g,i))(),x=c?A:um(A,h,m);return u?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function m_(e,t,r){let n=r.map(d=>d[0]),a=r.map(d=>d[1]),s=e.concat(n,a),i=t.map((d,h)=>(d-s[h]%d)%d),o=a.map((d,h)=>d+i[h]),l=t.map((d,h)=>[n[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function g_(e,t){let r=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=r.map(s=>Math.floor(s/2)),a=r.map((s,i)=>s-n[i]);return r.map((s,i)=>[n[i],a[i]])}var y_=W({pool_:f_});function A_(e,t){let r=F(e,"base","pow"),n=F(t,"exp","pow");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(xi,a)}var Ps=W({pow_:A_});function x_(e,t){let r=F(e,"x","prelu"),n=F(t,"alpha","prelu"),a={x:r,alpha:n};return B.runKernel(bi,a)}var xm=W({prelu_:x_});function b_(e,t=null,r=!1){let n=F(e,"x","prod");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(tl,a,s)}var $2=W({prod_:b_});function v_(e,t,r){let n=Tt(e),a=null;if(r==null||r==="float32")a=new Float32Array(n);else if(r==="int32")a=new Int32Array(n);else if(r==="bool")a=new Uint8Array(n);else throw new Error(`Unknown data type ${r}`);for(let s=0;s<n;s++)a[s]=t();return B.makeTensor(a,e,r)}var w_=W({rand_:v_}),P2=Ro(Ff()),_2=class{constructor(e,t,r,n,a){this.mean=e,this.stdDev=t,this.dtype=r,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=P2.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,r=!1;for(;!r;){let n,a,s;do n=2*this.random()-1,a=2*this.random()-1,s=n*n+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(r=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},k_=class{constructor(e,t,r,n){this.alpha=e,this.beta=1/t,this.dtype=r;let a=n||Math.random();this.randu=P2.alea(a.toString()),this.randn=new _2(0,1,r,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,r,n,a,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,r=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<r)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},I_=class{constructor(e=0,t=1,r,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=r,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=P2.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function S_(e,t,r=1,n="float32",a){if(r==null&&(r=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new k_(t,r,n,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var T_=W({randomGamma_:S_});function N_(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new _2(t,r,n,!1,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var jk=W({randomNormal_:N_});function C_(e,t=0,r=1,n="float32",a){let s=We(e,n),i=new I_(t,r,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var id=W({randomUniform_:C_});function Au(e,t,r=1,n="float32"){if(r===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:r,dtype:n};return B.runKernel(qu,{},a)}function E_(e){let t={input:F(e,"input","real")};return B.runKernel(Kp,t)}var Rp=W({real_:E_});function R_(e){let t={x:F(e,"x","reciprocal")};return B.runKernel(Ku,t)}var Hk=W({reciprocal_:R_});function M_(e){let t={x:F(e,"x","relu")};return B.runKernel(vi,t)}var $a=W({relu_:M_});function F_(e){let t={x:F(e,"x","relu6")};return B.runKernel(ki,t)}var z2=W({relu6_:F_});function $_(e,t){let r={x:F(e,"x","reverse")},n={dims:t};return B.runKernel(nl,r,n)}var Fn=W({reverse_:$_});function P_(e){let t=F(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Fn(t,0)}var __=W({reverse1d_:P_});function z_(e,t){let r=F(e,"x","reverse");return P(r.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${r.rank}.`),Fn(r,t)}var O_=W({reverse2d_:z_});function D_(e,t){let r=F(e,"x","reverse");return P(r.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${r.rank}.`),Fn(r,t)}var L_=W({reverse3d_:D_});function B_(e,t){let r=F(e,"x","reverse");return P(r.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${r.rank}.`),Fn(r,t)}var W_=W({reverse4d_:B_});function V_(e){let t={x:F(e,"x","round")};return B.runKernel(al,t)}var O2=W({round_:V_});function U_(e){let t={x:F(e,"x","rsqrt","float32")};return B.runKernel(Ii,t)}var D2=W({rsqrt_:U_});function Se(e,t){if((Ir(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Ir(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return _i(e,[],[],t)}function G_(e){let t={x:F(e,"x","selu")};return B.runKernel(Zu,t)}var L2=W({selu_:G_});function j_(e,t,r,n,a,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(r,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];P(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let f=lh(d,l,n,a,i,s),m=Fs(f,u,1,"valid",i);return h?G(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var qk=W({separableConv2d_:j_});async function H_(e,t){let r=F(e,"x","setdiff1d"),n=F(t,"y","setdiff1d");P(r.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${r.dtype}) and y (${n.dtype}).`),P(r.rank===1,()=>`x should be 1D tensor, but got x (${r.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let a=await r.data(),s=await n.data(),i=new Set(s),o=0;for(let d=0;d<a.length;d++)i.has(a[d])||o++;let l=new rr([o],r.dtype),u=new rr([o],"int32");for(let d=0,h=0;d<a.length;d++)i.has(a[d])||(l.values[h]=a[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var Kk=H_;function q_(e){let t={x:F(e,"x","sign")};return B.runKernel(Yu,t)}var Xk=W({sign_:q_});function K_(e){let t={x:F(e,"x","sin","float32")};return B.runKernel(Si,t)}var B2=W({sin_:K_});function X_(e){let t={x:F(e,"x","sinh")};return B.runKernel(ll,t)}var W2=W({sinh_:X_});function Z_(e,t,r){let n=F(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Pe(n,[t],[r])}var bm=W({slice1d_:Z_});function Y_(e,t,r){let n=F(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var V2=W({slice2d_:Y_});function J_(e,t,r){let n=F(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var wl=W({slice3d_:J_});function Q_(e,t,r){let n=F(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var ko=W({slice4d_:Q_});function ez(e,t=-1){let r=F(e,"logits","softmax","float32");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and dim was ${t}`);let n={logits:r},a={dim:t};return B.runKernel(Ei,n,a)}var od=W({softmax_:ez});function tz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(qf,t)}var vm=W({fft_:tz});function rz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Kf,t)}var Mp=W({ifft_:rz});function nz(e){let t=e.shape[e.shape.length-1],r=e.size/t,n;if(t<=2){let a=G(e,[r,t]);n=Mp(a)}else{let a=[r,2*(t-1)],s=G(Rp(e),[r,t]),i=G(pm(e),[r,t]),o=Fn(Pe(s,[0,1],[r,t-2]),1),l=L(Fn(Pe(i,[0,1],[r,t-2]),1),Se(-1)),u=kt([s,o],1),d=kt([i,l],1),h=G(Rs(u,d),[a[0],a[1]]);n=Mp(h)}if(n=Rp(n),e.rank===3&&e.shape[0]!==0){let a=n,s=e.shape[0];n=G(n,[s,n.shape[0]/s,n.shape[1]]),a.dispose()}return n}var U2=W({irfft_:nz});function az(e,t,r=0){let n={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:r};return B.runKernel(dl,n,a)}var Kt=W({split_:az});function sz(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let r=e.shape[e.shape.length-1],n=e.size/r,a;if(t!=null&&t<r){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,a=Pe(e,f,m),r=t}else if(t!=null&&t>r){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-r,a=kt([e,Wt(f)],e.shape.length-1),r=t}else a=e;let s=at(a),i=G(Rs(a,s),[n,r]),o=vm(i),l=Math.floor(r/2)+1,u=Rp(o),d=pm(o),h=Kt(u,[l,r-l],u.shape.length-1),p=Kt(d,[l,r-l],d.shape.length-1),c=a.shape.slice();return c[a.shape.length-1]=l,G(Rs(h[0],p[0]),c)}var wm=W({rfft_:sz});function iz(e){let t={x:F(e,"x","sqrt","float32")};return B.runKernel(Ni,t)}var Cr=W({sqrt_:iz});function oz(e,t){let r=F(e,"a","squaredDifference"),n=F(t,"b","squaredDifference");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n},s={};return B.runKernel(Ri,a,s)}var G2=W({squaredDifference_:oz});function lz(e,t){let r=F(e,"x","squeeze");return G(r,Qv(r.shape,t).newShape)}var et=W({squeeze_:lz});function uz(e,t=0){let r=Cp(e,"tensors","stack","string_or_numeric");P(r.length>=1,()=>"Pass at least one tensor to tf.stack"),r.length>0&&P(t<=r[0].rank,()=>"Axis must be <= rank of the tensor");let n=r,a={axis:t};return B.runKernel(el,n,a)}var sr=W({stack_:uz});function dz(e,t=0){let r={x:F(e,"x","step")},n={alpha:t};return B.runKernel(Pi,r,n)}var hh=W({step_:dz});function pz(e,t,r,n,a=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:r,strides:n,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return B.runKernel(pl,u,d)}var Zk=W({stridedSlice_:pz});function hz(e){let t={x:F(e,"x","tan","float32")};return B.runKernel(hl,t)}var Yk=W({tan_:hz});function St(e,t){Mo(e);let r=Ea(e,t);if(r.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return _i(e,null,r,t)}function ua(e,t,r){if(Mo(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Ea(e,r);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return _i(e,t,n,r)}function cz(e,t,r){if(Mo(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Ea(e,r);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return _i(e,t,n,r)}function fz(e,t,r){if(Mo(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Ea(e,r);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return _i(e,t,n,r)}function mz(e,t,r){if(Mo(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Ea(e,r);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,_i(e,t,n,r)}function gz(e,t=1,r=!0){let n=F(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:n},i={k:t,sorted:r},[o,l]=B.runKernel(cl,s,i);return{values:o,indices:l}}var Jk=W({topk_:gz});function yz(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new _2(t,r,n,!0,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var km=W({truncatedNormal_:yz});function Az(e,t=0){let r=F(e,"x","unique","string_or_numeric");P(r.rank>0,()=>"The input tensor must be at least 1D");let n={x:r},a={axis:t},[s,i]=B.runKernel(sm,n,a);return{values:s,indices:i}}var s1=W({unique_:Az});function xz(e,t,r){let n=F(e,"x","unsortedSegmentSum"),a=F(t,"segmentIds","unsortedSegmentSum","int32");P(hu(r),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:a},i={numSegments:r};return B.runKernel(eh,s,i)}var Qk=W({unsortedSegmentSum_:xz});function bz(e,t=0){let r=F(e,"x","unstack","string_or_numeric");P(t>=-r.shape.length&&t<r.shape.length,()=>`Axis = ${t} is not in [-${r.shape.length}, ${r.shape.length})`);let n={value:r},a={axis:t};return B.runKernel(ml,n,a)}var en=W({unstack_:bz});function e7(e,t=!0,r,n){return B.makeVariable(e,t,r,n)}function t7(e,t){let r=[];for(let s=0;s<t.length;s++)t[s]&&r.push(s);let n=We(e,"int32"),a=We([r.length,e.length],"int32");for(let s=0;s<r.length;s++){let i=n.indexToLoc(r[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function vz(e){let t=F(e,"condition","whereAsync","bool"),r=await t.data(),n=t7(t.shape,r);return e!==t&&t.dispose(),n}var j2=vz;async function wz(e,t,r){let n=F(e,"tensor","boolMask"),a=F(t,"mask","boolMask","bool"),s=r==null?0:r,i=a.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Wr(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=G(n,u),h=G(a,[-1]),p=await j2(h),c=et(p,[1]),f=gu(d,c,s);return e!==n&&n.dispose(),t!==a&&a.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),f}var kz=wz;function Iz(e,t="euclidean",r=null,n=!1){e=F(e,"x","norm");let a=r7(e,t,r),s=a.shape;if(n){let i=Wn(r,e.shape);s=wo(a.shape,i)}return G(a,s)}function r7(e,t,r=null){if(e.rank===0)return er(e);if(e.rank!==1&&r===null)return r7(G(e,[-1]),t,r);if(e.rank===1||typeof r=="number"||Array.isArray(r)&&r.length===1){if(t===1)return ke(er(e),r);if(t===1/0)return fr(er(e),r);if(t===-1/0)return $s(er(e),r);if(t==="euclidean"||t===2)return Cr(ke(Ps(er(e),Se(2,"int32")),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(r)&&r.length===2){if(t===1)return fr(ke(er(e),r[0]),r[1]-1);if(t===1/0)return fr(ke(er(e),r[1]),r[0]);if(t===-1/0)return $s(ke(er(e),r[1]),r[0]);if(t==="fro"||t==="euclidean")return Cr(ke(At(e),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${r}`)}var H2=W({norm_:Iz});function Sz(e,t,r,n,a=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(r,"decay","movingAverage");vw(s,i),P(Vs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=he(l,o),d=L(he(i,s),u);if(a){P(n!=null,()=>"When using zeroDebias: true, step is required.");let h=F(n,"step","movingAverage");d=pe(d,he(l,Ps(o,h)))}return le(s,d)}var Tz=W({movingAverage_:Sz});function Nz(e,t,r){let n=F(e,"indices","scatterND","int32"),a=F(t,"updates","scatterND");l2(a,n,r);let s={indices:n,updates:a},i={shape:r};return B.runKernel(sl,s,i)}var n7=W({scatterND_:Nz});function Cz(e,t,r,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(r.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${r.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Ez(e,t,r,n=0){let a=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(n,"defaultValue","sparseToDense",s.dtype);Cz(a,s,r,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:r};return B.runKernel(Jp,o,l)}var q2=W({sparseToDense_:Ez});function Rz(e,t){let r=F(t,"indices","gatherND","int32"),n={params:F(e,"x","gatherND","string_or_numeric"),indices:r};return B.runKernel(Uo,n)}var a7=W({gatherND_:Rz});function Mz(e,t){if(t==null)return e.shape.slice();if(Vs(e.shape,t))return t;if(e.shape.length===t.length){let r=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?r.push(e.shape[n]):r.push(t[n]);return r}return t}function Fz(e,t,r,n){let a=F(e,"x","dropout");if(P(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof rt?a.clone():a;let s=Mz(a,r),i=1-t,o=pe(dh(le(id(s,0,1,"float32",n),i)),i);return L(a,o)}var s7=W({dropout_:Fz});function i7(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function K2(e,t,r){let n=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);a[s]=t-r*Math.cos(i)}return St(a,"float32")}async function $z(e,t,r=1){let n=F(e,"predictions","inTopK"),a=F(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${a.rank}`),Wr(n.shape.slice(0,n.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(r>0&&r<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${r}`);let i=await n.data(),o=await a.data(),[l,u]=[i.length/s,s],d=ew("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),f=[];for(let m=0;m<c.length;m++)f.push({value:c[m],index:m});f.sort((m,g)=>g.value-m.value),d[h]=0;for(let m=0;m<r;m++)if(f[m].index===o[h]){d[h]=1;break}}return e!==n&&n.dispose(),t!==a&&a.dispose(),ct(d,a.shape,"bool")}var Pz=$z,_s={};Le(_s,{conv2d:()=>Oz,depthwiseConv2d:()=>Wz,matMul:()=>Uz});function _z(e,t,r,n,a,s="NHWC",i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(r.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${r}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];P(u===r[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${r[2]}.`),P(d===r[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${r[3]}).`),Vr("conv2dDerFilter",a,i);let h={x:o,dy:l},p={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:r};return B.runKernel(Lf,h,p)}var X2=W({conv2DBackpropFilter_:_z});function Im(e,t,r){if(r==null||r==="linear")return e;if(r==="relu")return L(e,hh(t));throw new Error(`Cannot compute gradient for fused activation ${r}.`)}function Sm(e,t){let r=t,n=Xt(e.shape,t.shape);return n.length>0&&(r=ke(r,n)),G(r,e.shape)}function Tm(e,t,r,n){if(t==="linear")return e;if(t==="relu")return $a(e);if(t==="elu")return uh(e);if(t==="relu6")return z2(e);if(t==="prelu")return xm(e,r);if(t==="leakyrelu")return hm(e,n);if(t==="sigmoid")return Tr(e);throw new Error(`Unknown fused activation ${t}.`)}var Nm=(e,t)=>!(e>0)||t==="linear";function zz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Nm(B.state.gradientDepth,l)===!1){let w=Fs(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),Tm(w,l,u,d)}let h=F(e,"x","conv2d","float32"),p=F(t,"filter","conv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),Vr("fused conv2d",n,i),P(c.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${c.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(Fa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=oh(c.shape,p.shape,r,s,n,i),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused conv2d"));let A=(w,T)=>{let[S,E,R,_]=T,M=Im(w,R,l);P(Ms(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let I=v2(E.shape,M,S,r,n),O=X2(E,M,S.shape,r,n),z=[I,O];if(_!=null){let j=Sm(_,M);z.push(j)}return z},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Ra((w,T,S)=>{let E=B.runKernel(Cs,x,b);return S([T,w,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Ra((w,T,S,E)=>{let R=B.runKernel(Cs,x,b);return E([T,w,R,S]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var Oz=W({fusedConv2d_:zz});function Dz(e,t,r,n,a,s=[1,1],i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,filterShape:r};return B.runKernel(Uf,u,d)}var o7=W({depthwiseConv2dNativeBackpropFilter_:Dz});function Lz(e,t,r,n,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:r},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=B.runKernel(Gf,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var l7=W({depthwiseConv2dNativeBackpropInput_:Lz});function Bz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Nm(B.state.gradientDepth,l)===!1){let w=lh(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),Tm(w,l,u,d)}let h=F(e,"x","depthwiseConv2d","float32"),p=F(t,"filter","depthwiseConv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),P(Fa(r,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),Vr("fused depthwiseConv2d",n,i);let m=oh(c.shape,p.shape,r,s,n,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let A=(w,T)=>{P(Ms(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,E,R,_]=T,M=Im(w,R,l),I=l7(E.shape,M,S,r,n,s,i),O=o7(E,M,S.shape,r,n,s,i);if(_!=null){let z=Sm(g,M);return[I,O,z]}return[I,O]},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Ra((w,T,S)=>{let E=B.runKernel(Es,x,b);return S([T,w,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Ra((w,T,S,E)=>{let R=B.runKernel(Es,x,b);return E([T,w,R,S]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var Wz=W({fusedDepthwiseConv2d_:Bz});function Vz({a:e,b:t,transposeA:r=!1,transposeB:n=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Nm(B.state.gradientDepth,s)===!1){let _=Je(e,t,r,n);return a!=null&&(_=le(_,a)),Tm(_,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ot(l,u);let d=r?l.shape[l.rank-2]:l.shape[l.rank-1],h=n?u.shape[u.rank-1]:u.shape[u.rank-2],p=r?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Tt(f),y=Tt(m);P(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${r} and transposeB=${n} must match.`);let A=bt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([p,c]),x=r?G(l,[g,d,p]):G(l,[g,p,d]),b=n?G(u,[y,c,h]):G(u,[y,h,c]),w;a!=null&&(w=F(a,"bias","fused matMul"),[w]=Ot(w,l),bt(A,w.shape));let T;i!=null&&(T=F(i,"prelu weights","fused matMul"));let S=(_,M)=>{let[I,O,z,j]=M,X=Im(G(_,z.shape),z,s),D,Q;if(!r&&!n?(D=Je(X,O,!1,!0),Q=Je(I,X,!0,!1)):!r&&n?(D=Je(X,O,!1,!1),Q=Je(X,I,!0,!1)):r&&!n?(D=Je(O,X,!1,!0),Q=Je(I,X,!1,!1)):(D=Je(O,X,!0,!0),Q=Je(X,I,!0,!0)),a!=null){let V=Sm(j,X);return[D,Q,V]}else return[D,Q]},E={a:x,b,bias:w,preluActivationWeights:T},R={transposeA:r,transposeB:n,activation:s,leakyreluAlpha:o};return a==null?Ra((_,M,I)=>{let O=B.runKernel(Ns,E,R);return I([_,M,O]),{value:G(O,A),gradFunc:S}})(x,b):Ra((_,M,I,O)=>{let z=B.runKernel(Ns,E,R);return O([_,M,z,I]),{value:G(z,A),gradFunc:S}})(x,b,w)}var Uz=W({fusedMatMul_:Vz});function Gz(e){return K2(e,.54,.46)}var jz=W({hammingWindow_:Gz});function Hz(e){return K2(e,.5,.5)}var u7=W({hannWindow_:Hz});function qz(e,t,r,n=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Pe(e,s,t)),s+=r;if(n)for(;s<e.size;){let o=s+t-e.size,l=kt([Pe(e,s,t-o),nd([o],a)]);i.push(l),s+=r}return i.length===0?ua([],[0,t]):G(kt(i),[i.length,t])}var d7=W({frame_:qz});function Kz(e,t,r,n,a=u7){n==null&&(n=i7(t));let s=d7(e,t,r),i=L(s,a(t));return wm(i,n)}var Xz=W({stft_:Kz});function Zz(e,t,r,n,a="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(r,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let d={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:n};return B.runKernel(zo,d,h)}var Yz=W({cropAndResize_:Zz});function Jz(e){let t=F(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let r={image:t};return B.runKernel(Wo,r,{})}var Qz=W({flipLeftRight_:Jz});function eO(e){let t=F(e,"image","grayscaleToRGB"),r=t.rank-1,n=t.shape[r];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let a=new Array(t.rank);return a.fill(1,0,r),a[r]=3,Dn(t,a)}var tO=W({grayscaleToRGB_:eO});function rO(e,t,r=0,n=.5){let a=F(e,"image","rotateWithOffset","float32");P(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:r,center:n};return B.runKernel(yl,s,i)}var nO=W({rotateWithOffset_:rO});function ld(e,t,r,n,a,s){n==null&&(n=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return r=Math.min(r,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s}}function aO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression","float32"),i=F(t,"scores","nonMaxSuppression","float32"),o=ld(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:r,iouThreshold:n,scoreThreshold:a};return B.runKernel(Zo,{boxes:s,scores:i},l)}var sO=W({nonMaxSuppression_:aO});function iO(e,t,r){let n=oO(e,t,r),a=n<0?-(n+1):n;e.splice(a,0,t)}function oO(e,t,r){return uO(e,t,r||lO)}function lO(e,t){return e>t?1:e<t?-1:0}function uO(e,t,r){let n=0,a=e.length,s=0,i=!1;for(;n<a;){s=n+(a-n>>>1);let o=r(t,e[s]);o>0?n=s+1:(a=s,i=!o)}return i?n:-n-1}function p7(e,t,r,n,a){return Z2(e,t,r,n,a,0)}function h7(e,t,r,n,a,s){return Z2(e,t,r,n,a,0,!1,s,!0)}function c7(e,t,r,n,a,s){return Z2(e,t,r,n,a,s,!0)}function Z2(e,t,r,n,a,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>a&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(k3);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<r&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<a)break;let b=!1;for(let w=h.length-1;w>=x;--w){let T=dO(e,A,h[w]);if(T>=n){b=!0;break}if(g.score=g.score*pO(n,d,T),g.score<=a)break}g.suppressBeginIndex=h.length,b||(g.score===y?(h.push(A),p.push(g.score)):g.score>a&&iO(u,g,k3))}let c=h.length,f=r-c;o&&f>0&&(h.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=p),l&&(m.validOutputs=c),m}function dO(e,t,r){let n=e.subarray(t*4,t*4+4),a=e.subarray(r*4,r*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(a[0],a[2]),d=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),c=(o-s)*(l-i),f=(h-u)*(p-d);if(c<=0||f<=0)return 0;let m=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(c+f-x)}function pO(e,t,r){let n=Math.exp(t*r*r);return r<=e?n:0}function k3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function hO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=ld(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=p7(u,d,r,n,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),St(h,"int32")}var cO=hO;function fO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=ld(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s},h=B.runKernel(Yo,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var mO=W({nonMaxSuppressionWithScore_:fO});async function gO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=ld(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=c7(d,h,r,n,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(p,"int32"),selectedScores:St(c)}}var yO=gO;function AO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=ld(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},f=B.runKernel(Hu,p,c);return{selectedIndices:f[0],validOutputs:f[1]}}var xO=W({nonMaxSuppressionPadded_:AO});async function bO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=ld(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=h7(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(f,"int32"),validOutputs:Se(m,"int32")}}var vO=bO;function wO(e,t,r=!1,n=!1){let a=F(e,"images","resizeBilinear");P(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||r===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(wi,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var kO=W({resizeBilinear_:wO});function IO(e,t,r=!1,n=!1){let a=F(e,"images","resizeNearestNeighbor");P(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||r===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(Xu,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var SO=W({resizeNearestNeighbor_:IO});function TO(e,t="binary",r=!1,n=.5){let a=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=a.shape[0]*a.shape[1],u=L(St([n]),255),d,h,p,c;if(P(a.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${a.rank}.`),P(a.shape[2]===3||a.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${a.shape[2]}.`),P(a.dtype==="int32"||a.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${a.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),a.shape[2]===3){[d,h,p]=Kt(a,[1,1,1],-1);let m=L(d,s),g=L(h,i),y=L(p,o);c=le(le(m,g),y)}else c=e;if(t==="otsu"){let m=x2(me(O2(c),"int32"),ct([]),256);u=NO(m,l)}let f=r?vl(c,u):cn(c,u);return me(L(f,255),"int32")}function NO(e,t){let r=St([-1]),n=St([0]),a=St([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=Pe(e,0,h+1),i=Pe(e,h+1),u=pe(ke(s),t),d=pe(ke(i),t);let p=ke(L(s,Au(0,s.size)));o=pe(p,ke(s));let c=nd(i.shape,s.size),f=le(Au(0,i.size),c),m=L(i,f);l=pe(ke(m),ke(i));let g=he(o,l),y=he(o,l),A=L(u,d);a=L(L(A,g),y);let x=cn(a,n);n=Br(x,a,n),r=Br(x,St([h]),r)}return r}var CO=W({threshold_:TO});function EO(e,t,r="nearest",n="constant",a=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:r,fillMode:n,fillValue:a,outputShape:s};return B.runKernel(fl,l,u)}var RO=W({transform_:EO});function MO(e,t,r){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(r%1===0,()=>`bandPart(): numUpper must be an integer, got ${r}.`);let n=F(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let a=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(r<=i))throw new Error(`bandPart(): numUpper (${r}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),r<0&&(r=i);let o=G(Au(0,s,1,"int32"),[-1,1]),l=Au(0,i,1,"int32"),u=he(o,l),d=ha(vl(u,Se(+t,"int32")),bl(u,Se(-r,"int32"))),h=Wt([s,i],n.dtype);return G(sr(en(G(n,[-1,s,i])).map(p=>Br(d,p,h))),a)}var FO=W({bandPart_:MO});function $O(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Kt(e,e.shape[0],0).map(a=>et(a,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let r=[],n=e;for(let a=0;a<e.length;++a)r.push(B.tidy(()=>{let s=n[a];if(a>0)for(let i=0;i<a;++i){let o=L(ke(L(r[i],s)),r[i]);s=he(s,o)}return pe(s,H2(s,"euclidean"))}));return t?sr(r,0):r}var PO=W({gramSchmidt_:$O});function _O(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return I3(e,t);{let r=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=en(G(e,[r,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];n.forEach(l=>{let[u,d]=I3(l,t);a.push(u),s.push(d)});let i=G(sr(a,0),e.shape),o=G(sr(s,0),e.shape);return[i,o]}}function I3(e,t=!1){return B.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let r=e.shape[0],n=e.shape[1],a=T2(r),s=Lr(e),i=ua([[1]],[1,1]),o=Lr(i),l=r>=n?n:r;for(let u=0;u<l;++u){let d=s,h=o,p=a;[o,s,a]=B.tidy(()=>{let c=Pe(s,[u,u],[r-u,1]),f=H2(c),m=Pe(s,[u,u],[1,1]),g=Br(cn(m,0),ua([[-1]]),ua([[1]])),y=he(m,L(g,f)),A=pe(c,y);A.shape[0]===1?o=Lr(i):o=kt([i,Pe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=zt(pe(Je(g,y),f)),b=Pe(s,[u,0],[r-u,n]),w=L(x,o),T=nt(o);if(u===0)s=he(b,Je(w,Je(T,b)));else{let R=he(b,Je(w,Je(T,b)));s=kt([Pe(s,[0,0],[u,n]),R],0)}let S=nt(w),E=Pe(a,[0,u],[r,a.shape[1]-u]);if(u===0)a=he(E,Je(Je(E,o),S));else{let R=he(E,Je(Je(E,o),S));a=kt([Pe(a,[0,0],[r,u]),R],1)}return[o,s,a]}),re([d,h,p])}return!t&&r>n&&(a=Pe(a,[0,0],[r,n]),s=Pe(s,[0,0],[n,n])),[a,s]})}var zO=W({qr_:_O}),f7=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(f7||{});function OO(e,t,r=3){let n=F(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=F(t,"weights","computeWeightedLoss"));let s=a==null?n:L(n,a);if(r===0)return s;if(r===2)return ke(s);if(r===1){if(a==null)return Bt(s);{let i=n.size/a.size,o=pe(ke(s),ke(a));return i>1?pe(o,Se(i)):o}}if(r===3){if(a==null)return pe(ke(s),Se(n.size));{let i=L(a,pn(n.shape)),o=me(ke(yu(i,Se(0))),"float32");return pe(ke(s),o)}}throw Error(`Unknown reduction: ${r}`)}var Za=W({computeWeightedLoss_:OO});function DO(e,t,r,n=3){let a=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;r!=null&&(i=F(r,"weights","absoluteDifference")),Wr(a.shape,s.shape,"Error in absoluteDifference: ");let o=er(he(a,s));return Za(o,i,n)}var LO=W({absoluteDifference_:DO});function BO(e,t,r,n,a=3){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;n!=null&&(o=F(n,"weights","cosineDistance")),Wr(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=he(l,ke(L(s,i),r,!0));return Za(u,o,a)}var WO=W({cosineDistance_:BO});function VO(e,t,r,n=3){let a=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;r!=null&&(i=F(r,"weights","hingeLoss")),Wr(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=he(L(Se(2),a),o);let l=$a(he(o,L(a,s)));return Za(l,i,n)}var UO=W({hingeLoss_:VO});function GO(e,t,r,n=1,a=3){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;r!=null&&(o=F(r,"weights","huberLoss")),Wr(s.shape,i.shape,"Error in huberLoss: ");let l=Se(n),u=er(he(i,s)),d=ph(u,l),h=he(u,d),p=le(L(Se(.5),At(d)),L(l,h));return Za(p,o,a)}var jO=W({huberLoss_:GO});function HO(e,t,r,n=1e-7,a=3){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;r!=null&&(o=F(r,"weights","logLoss")),Wr(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(n),d=zt(L(s,Rn(le(i,u)))),h=L(he(l,s),Rn(le(he(l,i),u))),p=he(d,h);return Za(p,o,a)}var qO=W({logLoss_:HO});function KO(e,t,r,n=3){let a=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;r!=null&&(i=F(r,"weights","meanSquaredError")),Wr(a.shape,s.shape,"Error in meanSquaredError: ");let o=G2(a,s);return Za(o,i,n)}var XO=W({meanSquaredError_:KO});function ZO(e,t){let r=F(e,"labels","sigmoidCrossEntropyWithLogits"),n=F(t,"logits","sigmoidCrossEntropyWithLogits");Wr(r.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=$a(n),s=L(n,r),i=cm(En(zt(er(n))));return le(he(a,s),i)}function YO(e,t,r,n=0,a=3){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","sigmoidCrossEntropy")),Wr(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(.5);s=le(L(s,he(d,u)),L(h,u))}let l=ZO(s,i);return Za(l,o,a)}var JO=W({sigmoidCrossEntropy_:YO});function QO(e,t,r=-1){if(r===-1&&(r=t.rank-1),r!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${r}`);return Ra((n,a,s)=>{let i=Wk(a,[r],!0),o=he(me(a,"float32"),i);s([n,o]);let l=zt(L(o,n));return{value:ke(l,[r]),gradFunc:(u,d)=>{let[h,p]=d,c=wo(u.shape,[r]);return[L(G(u,c),he(me(h,"float32"),En(p))),L(G(u,c),he(En(p),me(h,"float32")))]}}})(e,t)}function eD(e,t,r,n=0,a=3){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","softmaxCrossEntropy")),Wr(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(s.shape[1]);s=le(L(s,he(d,u)),pe(u,h))}let l=QO(s,i);return Za(l,o,a)}var tD=W({softmaxCrossEntropy_:eD});function rD(e,t,r,n){let a=F(e,"indices","sparseFillEmptyRows","int32"),s=F(t,"values","sparseFillEmptyRows"),i=F(r,"denseShape","sparseFillEmptyRows","int32"),o=F(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(a.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:a,values:s,denseShape:i,defaultValue:o},u=B.runKernel(Xp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var nD=W({sparseFillEmptyRows_:rD});function aD(e,t,r){let n=F(e,"inputIndices","sparseReshape","int32"),a=F(t,"inputShape","sparseReshape","int32"),s=F(r,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:a,newShape:s},o=B.runKernel(Qu,i);return{outputIndices:o[0],outputShape:o[1]}}var sD=W({sparseReshape_:aD});function iD(e,t,r){let n=F(e,"data","sparseSegmentMean"),a=F(t,"indices","sparseSegmentMean","int32"),s=F(r,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(Zp,i)}var oD=W({sparseSegmentMean_:iD});function lD(e,t,r){let n=F(e,"data","sparseSegmentSum"),a=F(t,"indices","sparseSegmentSum","int32"),s=F(r,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(Yp,i)}var uD=W({sparseSegmentSum_:lD});function dD(e,t,r,n,a,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:r,nGramWidths:n,leftPad:a,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=B.runKernel(Qp,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var pD=W({stringNGrams_:dD});function hD(e,t,r=!0){let n=F(e,"input","stringSplit","string"),a=F(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(a.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${a.shape}`);let s={skipEmpty:r},i={input:n,delimiter:a},o=B.runKernel(nm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var cD=W({stringSplit_:hD});function fD(e,t){let r=F(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let a={input:r};return B.runKernel(am,a,n)}var mD=W({stringToHashBucketFast_:fD}),gD={fft:vm,ifft:Mp,rfft:wm,irfft:U2},yD={hammingWindow:jz,hannWindow:u7,frame:d7,stft:Xz},Ie={flipLeftRight:Qz,grayscaleToRGB:tO,resizeNearestNeighbor:SO,resizeBilinear:kO,rotateWithOffset:nO,cropAndResize:Yz,nonMaxSuppression:sO,nonMaxSuppressionAsync:cO,nonMaxSuppressionWithScore:mO,nonMaxSuppressionWithScoreAsync:yO,nonMaxSuppressionPadded:xO,nonMaxSuppressionPaddedAsync:vO,threshold:CO,transform:RO},m7={bandPart:FO,gramSchmidt:PO,qr:zO},AD={absoluteDifference:LO,computeWeightedLoss:Za,cosineDistance:WO,hingeLoss:UO,huberLoss:jO,logLoss:qO,meanSquaredError:XO,sigmoidCrossEntropy:JO,softmaxCrossEntropy:tD},dp={sparseFillEmptyRows:nD,sparseReshape:sD,sparseSegmentMean:oD,sparseSegmentSum:uD},Hc={stringNGrams:pD,stringSplit:cD,stringToHashBucketFast:mD},Ya=class extends tk{minimize(e,t=!1,r){let{value:n,grads:a}=this.computeGradients(e,r);if(r!=null){let s=r.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return re(a),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ok(e,t)}dispose(){this.iterations_!=null&&re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ya,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Cm=class extends Ya{constructor(e,t,r=null){super();this.learningRate=e,this.rho=t,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accum_grad`,variable:K(()=>at(n).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${t}/accum_var`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[r].variable,o=this.accumulatedUpdates[r].variable;K(()=>{let l=le(L(i,this.rho),L(At(s),1-this.rho)),u=L(pe(Cr(le(o,this.epsilon)),Cr(le(i,this.epsilon))),s),d=le(L(o,this.rho),L(At(u),1-this.rho));i.assign(l),o.assign(d);let h=le(L(u,-this.learningRate),n);n.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(re(this.accumulatedGrads.map(e=>e.variable)),re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,r=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Cm.className="Adadelta";zi(Cm);var Em=class extends Ya{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accumulator`,variable:K(()=>nd(n.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[r].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[r].variable;K(()=>{let i=le(s,At(a));s.assign(i);let o=le(L(pe(a,Cr(le(i,B.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Em.className="Adagrad";zi(Em);var Rm=class extends Ya{constructor(e,t,r,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],K(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(r).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=he(1,this.accBeta1),n=he(1,this.accBeta2);t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:K(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:K(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=le(L(d,this.beta2),L(At(l),1-this.beta2)),c=pe(h,r),f=pe(p,n);u.assign(h),d.assign(p);let m=le(L(pe(c,le(Cr(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),K(()=>{this.accBeta1.assign(Ps(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ps(this.beta2,this.iterations_+1))});let t=e.length/2,r=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Rm.className="Adam";zi(Rm);var Mm=class extends Ya{constructor(e,t,r,n=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],K(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=he(1,this.accBeta1),n=pe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=L(d,this.beta2),c=er(l),f=Xa(p,c);u.assign(h),d.assign(f);let m=le(L(pe(n,r),pe(h,le(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Mm.className="Adamax";zi(Mm);var ch=class extends Ya{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=Array.isArray(e)?e[r].tensor:e[t];if(n==null)return;let a=B.registeredVariables[t];K(()=>{let s=le(L(this.c,n),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=hr(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ch.className="SGD";zi(ch);var Fm=class extends ch{constructor(e,t,r=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=r,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulations[r]==null&&(this.accumulations[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(!1))});let a=this.accumulations[r].variable,s=Array.isArray(e)?e[r].tensor:e[t];s!=null&&K(()=>{let i,o=le(L(this.m,a),s);this.useNesterov?i=le(L(this.c,le(s,L(o,this.m))),n):i=le(L(this.c,o),n),a.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Fm.className="Momentum";zi(Fm);var $m=class extends Ya{constructor(e,t=.9,r=0,n=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=r,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,n==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${t}/rms`,variable:K(()=>at(n).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${t}/mg`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[r].variable,o=this.accumulatedMoments[r].variable;K(()=>{let l=le(L(i,this.decay),L(At(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=le(L(u,this.decay),L(s,1-this.decay)),h=pe(L(s,this.learningRate),Cr(he(l,le(At(d),this.epsilon)))),p=le(L(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=he(n,p);n.assign(c)}else{let u=le(L(i,this.decay),L(At(s),1-this.decay)),d=le(L(o,this.momentum),pe(L(s,this.learningRate),Cr(le(u,this.epsilon))));i.assign(u),o.assign(d);let h=he(n,d);n.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,r=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};$m.className="RMSProp";zi($m);var As=class{static sgd(e){return new ch(e)}static momentum(e,t,r=!1){return new Fm(e,t,r)}static rmsprop(e,t=.9,r=0,n=null,a=!1){return new $m(e,t,r,n,a)}static adam(e=.001,t=.9,r=.999,n=null){return new Rm(e,t,r,n)}static adadelta(e=.001,t=.95,r=null){return new Cm(e,t,r)}static adamax(e=.002,t=.9,r=.999,n=null,a=0){return new Mm(e,t,r,n,a)}static adagrad(e,t=.1){return new Em(e,t)}},io={sgd:As.sgd,momentum:As.momentum,adadelta:As.adadelta,adagrad:As.adagrad,rmsprop:As.rmsprop,adamax:As.adamax,adam:As.adam},xD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Y2(){return new Promise(e=>xD(()=>e()))}var N={};Le(N,{ERF_A1:()=>RD,ERF_A2:()=>MD,ERF_A3:()=>FD,ERF_A4:()=>$D,ERF_A5:()=>PD,ERF_P:()=>ED,PARALLELIZE_THRESHOLD:()=>J2,SELU_SCALE:()=>y7,SELU_SCALEALPHA:()=>g7,applyActivation:()=>Tm,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>MP,assertParamsConsistent:()=>bD,assignToTypedArray:()=>BD,axesAreInnerMostDims:()=>E2,calculateShapes:()=>jw,checkEinsumDimSizes:()=>HD,checkPadOnDimRoundingMode:()=>Vr,combineLocations:()=>Dk,complexWithEvenIndex:()=>OD,complexWithOddIndex:()=>DD,computeConv2DInfo:()=>oh,computeConv3DInfo:()=>fk,computeDefaultPad:()=>y2,computeDilation2DInfo:()=>ZF,computeOptimalWindowSize:()=>wD,computeOutAndReduceShapes:()=>Lk,computeOutShape:()=>vD,computePool2DInfo:()=>ck,computePool3DInfo:()=>YF,convertConv2DDataFormat:()=>mk,decodeEinsumEquation:()=>GD,eitherStridesOrDilationsAreOne:()=>Fa,expandShapeToKeepDim:()=>wo,exponent:()=>VD,exponents:()=>WD,fromStringArrayToUint8:()=>cL,fromUint8ToStringArray:()=>hL,getAxesPermutation:()=>Bk,getBroadcastDims:()=>Ww,getComplexWithIndex:()=>LD,getEinsumComputePath:()=>qD,getEinsumPermutation:()=>jD,getFusedBiasGradient:()=>Sm,getFusedDyActivation:()=>Im,getImageCenter:()=>kD,getInnerMostAxes:()=>FP,getPermuted:()=>SD,getReductionAxes:()=>Xt,getReshaped:()=>ID,getReshapedPermuted:()=>TD,getSliceBeginCoords:()=>ND,getSliceSize:()=>CD,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>YD,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>JD,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>QD,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>rL,getSparseReshapeInputOutputMismatchErrorMessage:()=>aL,getSparseReshapeInputOutputMultipleErrorMessage:()=>nL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>eL,getSparseReshapeNegativeOutputDimErrorMessage:()=>tL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>lL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>sL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>iL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>oL,getUndoAxesPermutation:()=>R2,isIdentityPermutation:()=>KD,log:()=>IR,mergeRealAndImagArrays:()=>_D,prepareAndValidate:()=>Gw,prepareSplitSize:()=>ZD,segment_util:()=>A7,shouldFuse:()=>Nm,slice_util:()=>_t,splitRealAndImagArrays:()=>zD,tupleValuesAreOne:()=>Ms,upcastType:()=>Nr,validateInput:()=>l2,validateUpdateShape:()=>o2,warn:()=>bs});function bD(e,t){let r=e[0].length;e.forEach((a,s)=>{P(a.length===r,()=>`Error in concat${r}D: rank of tensors[${s}] must be the same as the rank of the rest (${r})`)}),P(t>=0&&t<r,()=>`Error in concat${r}D: axis must be between 0 and ${r-1}.`);let n=e[0];e.forEach((a,s)=>{for(let i=0;i<r;i++)P(i===t||a[i]===n[i],()=>`Error in concat${r}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function vD(e,t){let r=e[0].slice();for(let n=1;n<e.length;n++)r[t]+=e[n][t];return r}var J2=30;function wD(e){return e<=J2?e:nf(e,Math.floor(Math.sqrt(e)))}function kD(e,t,r){let n=r*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[n,a]}function ID(e,t,r,n=!0){let a=[];if(n)a=a.concat(t.slice(0)),a.push(e[0]/r),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function SD(e,t,r=!0){let n=[];if(r){n.push(t);for(let a=t+1;a<e;++a)a<=2*t?(n.push(a),n.push(a-(t+1))):n.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):a.push(i);n.push(...a),n.push(0),n.push(...s)}return n}function TD(e,t,r,n=!0){let a=[];n?a.push(e[0]/r):a.push(e[0]*r);for(let s=1;s<e.length;++s)s<=t.length?n?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function ND(e,t){let r=[0];for(let n=0;n<t;++n)r.push(e[n][0]);return r}function CD(e,t,r){let n=e.slice(0,1);for(let a=0;a<r;++a)n.push(e[a+1]-t[a][0]-t[a][1]);return n}var g7=1.7580993408473768,y7=1.0507009873554805,ED=.3275911,RD=.254829592,MD=-.284496736,FD=1.421413741,$D=-1.453152027,PD=1.061405429;function _D(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let r=new Float32Array(e.length*2);for(let n=0;n<r.length;n+=2)r[n]=e[n/2],r[n+1]=t[n/2];return r}function zD(e){let t=new Float32Array(e.length/2),r=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],r[n/2]=e[n+1];return{real:t,imag:r}}function OD(e){let t=Math.ceil(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=0;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function DD(e){let t=Math.floor(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=2;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function LD(e,t){let r=e[t*2],n=e[t*2+1];return{real:r,imag:n}}function BD(e,t,r,n){e[n*2]=t,e[n*2+1]=r}function WD(e,t){let r=new Float32Array(e/2),n=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);r[a]=Math.cos(s),n[a]=Math.sin(s)}return{real:r,imag:n}}function VD(e,t,r){let n=(r?2:-2)*Math.PI*(e/t),a=Math.cos(n),s=Math.sin(n);return{real:a,imag:s}}var _y="->",UD=/->/g,S3=",",T3="...";function GD(e,t){e=e.replace(/\s/g,"");let r=(e.length-e.replace(UD,"").length)/_y.length;if(r<1)throw new Error("Equations without an arrow are not supported.");if(r>1)throw new Error(`Equation must contain exactly one arrow ("${_y}").`);let[n,a]=e.split(_y);P(n.indexOf(T3)===-1,()=>`The ellipsis notation ("${T3}") is not supported yet.`);let s=n.split(S3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<a.length;++p){let c=a[p];if(!s.some(f=>f.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<n.length;++p){let c=n[p];o.indexOf(c)===-1&&c!==S3&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=a.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function jD(e,t){let r=new Array(e);r.fill(-1);for(let a=0;a<t.length;++a)r[t[a]]=a;let n=[];for(let a=0;a<e;++a)r[a]===-1&&n.push(a);return r=r.filter(a=>a!==-1),{permutationIndices:r,expandDims:n}}function HD(e,t,r){let n=new Array(e);for(let a=0;a<r.length;++a){let s=r[a].shape;for(let i=0;i<t[a].length;++i)n[t[a][i]]===void 0?n[t[a][i]]=s[i]:P(n[t[a][i]]===s[i],()=>`Expected dimension ${n[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function qD(e,t){let r=e,n=[],a=0;e.length===0&&r.push(-1),a=e.length+1;for(let i=0;i<a;++i)n.push([]);let s=[];for(let i=0;i<r.length;++i){let o=r[i],l=XD(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:r,steps:n}}function KD(e){return e.every((t,r)=>t===r)}function XD(e,t){let r=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&r.push(n);return r}function ZD(e,t,r=0){let n=[];if(typeof t=="number")P(e.shape[r]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[r]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[r]-i}P(e.shape[r]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function YD(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function JD(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function QD(e,t,r){return`indices(${e}, 0) is invalid: ${t} >= ${r}`}function eL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function tL(e,t){return`size ${e} must be non-negative, not ${t}`}function rL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function nL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a SparseTensor with ${r}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function aL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a tensor with ${r} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function sL(){return"segment ids must be >= 0"}function iL(){return"segment ids are not increasing"}function oL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function lL(e,t,r){return`Bad: indices[${e}] == ${t} out of range [0, ${r})`}var A7={};Le(A7,{collectGatherOpShapeInfo:()=>pL,computeOutShape:()=>dL,segOpComputeOptimalWindowSize:()=>uL});function uL(e,t){let r=!1,n;for(e<=J2?(n=e,r=!0):n=nf(e,Math.floor(Math.sqrt(e)));!r;)n>t||n===e?r=!0:n=nf(e,n+1);return n}function dL(e,t,r){let n=[],a=e.length;for(let s=0;s<a;s++)s!==t?n.push(e[s]):n.push(r);return n}function pL(e,t,r,n){let a=t.shape.length,s=e.shape.length;if(n!==0&&(n<-a||n>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${n}`);if(n<0&&(n+=a),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(r<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${r}).`);for(let h=0;h<n;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[r],o=[],l=1,u=1,d=1;for(let h=0;h<n;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=n;h<r;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=n;h<a;h++)o.push(t.shape[h]);for(let h=r+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function hL(e){try{return e.map(t=>lf(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function cL(e){return e.map(t=>rh(t))}var jn={};Le(jn,{nonMaxSuppressionV3Impl:()=>p7,nonMaxSuppressionV4Impl:()=>h7,nonMaxSuppressionV5Impl:()=>c7,whereImpl:()=>t7});var x7={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,hh(me(r,"float32"),-1))}}},fL={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=At(me(r,"float32")),a=Cr(he(Se(1),n));return zt(pe(e,a))}}}},mL={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Cr(he(At(me(r,"float32")),1));return pe(e,n)}}}},gL={kernelName:Ha,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Xt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Xt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},yL={kernelName:Us,saveAllInputs:!0,gradFunc:(e,t)=>{let r={};return t.forEach((n,a)=>{r[a]=()=>e.clone()}),r}},AL={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},xL={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},bL={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Cr(he(Se(1),At(me(r,"float32")))))}}},vL={kernelName:$u,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Cr(le(Se(1),At(me(r,"float32"))));return pe(e,n)}}}},wL={kernelName:zu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=le(At(r),At(n)),i=L(e,pe(n,s)),o=Xt(r.shape,a);return o.length>0&&(i=ke(i,o)),G(i,r.shape)},b:()=>{let s=le(At(r),At(n)),i=zt(L(e,pe(r,s))),o=Xt(n.shape,a);return o.length>0&&(i=ke(i,o)),G(i,n.shape)}}}},kL={kernelName:Pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(At(me(r,"float32")),1))}}},IL={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,he(Se(1),At(me(r,"float32"))))}}};function SL(e,t,r,n,a,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Vr("avgPool3dGrad",a,s);let h={dy:l,input:u},p={filterSize:r,strides:n,pad:a,dimRoundingMode:s},c=B.runKernel(zf,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var TL=W({avgPool3dGrad_:SL}),NL={kernelName:Dp,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=r;return{x:()=>TL(e,n,a,s,i,o)}}};function CL(e,t,r,n,a){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");P(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:r,strides:n,pad:a},p=B.runKernel(_f,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var EL=W({avgPoolGrad_:CL}),RL={kernelName:js,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i}=r;return{x:()=>EL(e,n,a,s,i)}}},ML={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t,r)=>{let[n,a]=t,{transposeA:s,transposeB:i}=r;return!s&&!i?{a:()=>Je(e,a,!1,!0),b:()=>Je(n,e,!0,!1)}:!s&&i?{a:()=>Je(e,a,!1,!1),b:()=>Je(e,n,!0,!1)}:s&&!i?{a:()=>Je(a,e,!1,!0),b:()=>Je(n,e,!1,!1)}:{a:()=>Je(a,e,!0,!0),b:()=>Je(e,n,!0,!0)}}},FL={kernelName:$o,gradFunc:(e,t,r)=>{let{blockShape:n,crops:a}=r;return{x:()=>Am(e,n,a)}}},$L={kernelName:dw,gradFunc:(e,t,r)=>{let n=r,a=n.inputShape,s=n.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},PL={kernelName:qs,gradFunc:e=>({x:()=>e.clone()})},_L={kernelName:Ks,gradFunc:e=>({x:()=>at(e)})},zL={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{clipValueMin:a,clipValueMax:s}=r;return{x:()=>Br(ha(bl(n,a),vl(n,s)),e,at(e))}}},OL={kernelName:Bp,inputsToSave:["x"],gradFunc:x7.gradFunc},DL={kernelName:Po,saveAllInputs:!0,gradFunc:(e,t,r)=>{let n=t.map(o=>o.shape),{axis:a}=r,s=Wn(a,t[0].shape)[0],i=n.map(o=>o[s]);return Kt(e,i,s).map(o=>()=>o)}},LL={kernelName:Xs,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=r;return P(Ms(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>v2(n.shape,e,a,i,o,l),filter:()=>X2(n,e,a.shape,i,o,l)}}},BL={kernelName:Zs,inputsToSave:["dy","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=r;return{dy:()=>Fs(e,a,s,i,o,1,l),filter:()=>X2(e,n,a.shape,s,i,o,l)}}};function WL(e,t,r,n,a){let s=e;e.rank===4&&(s=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),P(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),P(r.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${r}.`),P(s.shape[4]===r[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${r[3]}.`),P(i.shape[4]===r[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${r[4]}).`);let o={x:s,dy:i},l={strides:n,pad:a,filterShape:r};return B.runKernel(Bf,o,l)}var VL=W({conv3DBackpropFilter_:WL}),UL={kernelName:Wp,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s}=r;P(Ms(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,o]=t;return{x:()=>Ik(i.shape,e,o,a,s),filter:()=>VL(i,e,o.shape,a,s)}}},GL={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(zt(B2(me(r,"float32"))),e)}}},jL={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(W2(me(r,"float32")),e)}}},HL={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a,exclusive:s,reverse:i}=r;return{x:()=>{let o=Bk([a],n.rank),l=S2(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},qL={kernelName:Qs,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s,dimRoundingMode:i}=r,o=n==null?[1,1]:n;P(Ms(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(Fa(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),Vr("depthwiseConv2d",s,i),{x:()=>l7(l.shape,e,u,a,s,o,i),filter:()=>o7(l,e,u.shape,a,s,o,i)}}},KL={kernelName:Vp,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,s={x:n,filter:a,dy:e},i={x:n,filter:a,dy:e};return{x:()=>B.runKernel(af,s,r),filter:()=>B.runKernel(sf,i,r)}}},XL={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t,n={dy:e,y:r};return{x:()=>B.runKernel(Hf,n)}}},ZL={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(En(zt(At(r))),2/Math.sqrt(Math.PI));return{x:()=>L(e,n)}}},YL={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,r)}}},JL={kernelName:Lo,inputsToSave:["input"],gradFunc:(e,t)=>{let[r]=t;return{input:()=>G(e,r.shape)}}},QL={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,En(r))}}},eB={kernelName:ni,gradFunc:e=>({x:()=>at(e)})},tB={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},rB={kernelName:si,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,r)=>{let{varianceEpsilon:n}=r,[a,s,i,o]=t,l=o==null?Se(1):o,u=Xt(s.shape,a.shape),d=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)d.push(a.shape[m]);d.push(1)}let h=he(a,s),p=L(e,l),c=D2(le(i,Se(n))),f=L(L(L(c,c),c),Se(-.5));return{x:()=>s.rank===1?G(L(L(e,Dn(G(c,[1,1,1,s.shape[0]]),d)),l),a.shape):G(L(L(e,c),l),a.shape),mean:()=>{let m=L(L(c,Se(-1)),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},variance:()=>{let m=L(L(f,h),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},scale:()=>{let m=L(h,c),g=L(e,m);return s.rank===1&&(g=ke(g,u)),G(g,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=ke(m,u)),G(m,s.shape)}}}},nB={kernelName:Vo,inputsToSave:["x","indices"],gradFunc:(e,t,r)=>{let[n,a]=t,{axis:s}=r,i=Wn(s,n.shape)[0];return{x:()=>{let o=n.shape,l=a.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=N3(0,d),f=N3(d+1,d+1+p),m=C3([u,[l],h]),g=G(e,m),y=G(a,[l]),A=C3([[d],c,f]),x=nt(g,A),b=Qk(x,y,n.shape[i]),w=R2(A);return b=nt(b,w),b},indices:()=>a}}};function N3(e,t){let r=[];for(let n=e;n<t;++n)r.push(n);return r}function C3(e){let t=[];for(let r=0;r<e.length;++r)for(let n=0;n<e[r].length;++n)t.push(e[r][n]);return t}var aB={kernelName:ii,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>at(r),b:()=>at(n)}}},sB={kernelName:oi,gradFunc:e=>({x:()=>me(e,"float32")})},iB={kernelName:Bu,gradFunc:e=>({x:()=>at(e)})},oB={kernelName:Wu,gradFunc:e=>({x:()=>at(e)})},lB={kernelName:Vu,gradFunc:e=>({x:()=>at(e)})},uB={kernelName:li,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{alpha:a}=r,s=cn(n,0);return{x:()=>Br(s,e,L(e,a))}}},dB={kernelName:Uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(r,1))}}},pB={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,me(r,"float32"))}}},hB={kernelName:pw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r;return{logits:()=>{let s=En(n);return he(e,L(ke(e,a,!0),s))}}}};function cB(e,t,r,n=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:r},l={depthRadius:n,bias:a,alpha:s,beta:i};return B.runKernel(Zf,o,l)}var fB=W({localResponseNormalizationBackprop_:cB}),mB={kernelName:Hp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;return{x:()=>fB(n,a,e,s,i,o,l)}}};function b7(e,t,r,n){return t.rank<r.rank&&(t=G(t,wo(t.shape,n))),e.rank<r.rank&&(e=G(e,wo(e.shape,n))),{x:()=>L(e,me(Cn(r,t),e.dtype))}}var E3={kernelName:di,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{reductionIndices:a}=n,s=t[0],i=t[1],o=Wn(a,s.shape),l=b7(e,i,s,o);return{x:()=>l.x()}}},gB={kernelName:pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(bl(r,n),"float32")),b:()=>L(e,me(N2(r,n),"float32"))}}};function yB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(r,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),Vr("maxPool3dGrad",s,i);let f={dy:d,input:h,output:p},m={filterSize:n,strides:a,pad:s,dimRoundingMode:i},g=B.runKernel(Jf,f,m);return c?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var AB=W({maxPool3dGrad_:yB}),xB={kernelName:qp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r;return{x:()=>AB(e,n,a,s,i,o,l)}}};function bB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(r,"output","maxPoolGrad");P(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),P(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Vr("maxPoolGrad",s,i);let d={dy:o,input:l,output:u},h={filterSize:n,strides:a,pad:s,dimRoundingMode:i};return B.runKernel(Yf,d,h)}var vB=W({maxPoolGrad_:bB}),wB={kernelName:hi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o}=r;return{x:()=>vB(e,n,a,s,i,o)}}},kB={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=Wn(a,n.shape),i=Lk(n.shape,s)[1],o=Tt(i);return{x:()=>{let l=n.shape.slice();s.forEach(d=>{l[d]=1});let u=G(e,l);return pe(L(u,pn(n.shape,"float32")),o)}}}},IB={kernelName:fi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{axis:a}=n,[s,i]=t,o=Wn(a,s.shape),l=b7(e,i,s,o);return{x:()=>l.x()}}},SB={kernelName:mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(vl(r,n),"float32")),b:()=>L(e,me(cn(r,n),"float32"))}}},TB={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},NB={kernelName:ju,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=Xt(r.shape,a);return s.length>0?G(ke(e,s),r.shape):e},b:()=>{let s=L(e,zt(dh(pe(r,n)))),i=Xt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},CB={kernelName:yi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=L(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},EB={kernelName:Ko,gradFunc:e=>({x:()=>zt(e)})},RB={kernelName:Qo,inputsToSave:["indices"],gradFunc:(e,t)=>{let r=t[0];return{indices:()=>Wt(r.shape,"float32")}}},MB={kernelName:Jo,gradFunc:e=>({x:()=>at(e)})},FB={kernelName:el,saveAllInputs:!0,gradFunc:(e,t,r)=>{let{axis:n}=r;return en(e,n).map(a=>()=>a)}},R3={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},$B={kernelName:xi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[r,n,a]=t,s=r,i=n,o=bt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,Ps(s,he(l,Se(1))))),d=Xt(s.shape,o);return d.length>0&&(u=ke(u,d)),G(u,s.shape)},b:()=>{let l=cn(s,0),u=Br(l,Rn(s),at(s)),d=L(e,L(a,u)),h=Xt(i.shape,o);return h.length>0&&(d=ke(d,h)),G(d,i.shape)}}}},PB={kernelName:bi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[r,n]=t,a=cn(r,0);return{x:()=>Br(a,e,L(e,n)),alpha:()=>{let s=Br(a,at(e),L(e,r)),i=Xt(n.shape,e.shape);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},_B={kernelName:ei,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},zB={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,zt(At(r)))}}},OB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(vl(r,6),hh(r));return{x:()=>L(e,me(n,"float32"))}}},DB={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,me(hh(r),"float32"))}}},LB={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>G(e,r.shape)}}},BB={kernelName:wi,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(rm,a,r)}}},WB={kernelName:Xu,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(tm,a,r)}}},VB={kernelName:nl,gradFunc:(e,t,r)=>{let{dims:n}=r,a=Wn(n,e.shape);return{x:()=>Fn(e,a)}}},UB={kernelName:al,gradFunc:e=>({x:()=>at(e)})},GB={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>zt(pe(e,L(Ps(r,1.5),2)))}}},jB={kernelName:il,inputsToSave:["condition"],gradFunc:(e,t)=>{let[r]=t;return{condition:()=>me(at(r),"float32"),t:()=>L(e,me(r,e.dtype)),e:()=>L(e,me(mm(r),e.dtype))}}},HB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=cn(r,Se(0)),a=Se(g7),s=Se(y7),i=L(e,s),o=L(L(e,a),En(me(r,"float32")));return Br(n,i,o)}}}},qB={kernelName:Ti,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(r,he(Se(1),r)))}}},KB={kernelName:Yu,gradFunc:e=>({x:()=>at(e)})},XB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(dm(me(r,"float32")),e)}}},ZB={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(I2(me(r,"float32")),e)}}},YB={kernelName:ol,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{begin:a,size:s}=r,i=n.shape,[o,l]=ek(n,a,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Gn(e,u)}}},JB={kernelName:Ei,outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{dim:a}=r,s=!0,i=L(e,n);return{logits:()=>he(i,L(ke(i,[a],s),n))}}},QB={kernelName:Ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Tr(r))}}},M3={kernelName:ul,gradFunc:(e,t,r)=>{let{blockShape:n,paddings:a}=r;return{x:()=>um(e,n,a)}}},F3={kernelName:dl,gradFunc:(e,t,r)=>{let{axis:n}=r;return{x:()=>kt(e,n)}}},eW={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,L(Cr(me(r,"float32")),2))}}},tW={kernelName:ed,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(me(r,"float32"),2))}}},rW={kernelName:Ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=Se(2);return{a:()=>L(e,L(a,he(r,n))),b:()=>L(e,L(a,he(n,r)))}}},nW={kernelName:Pi,gradFunc:e=>({x:()=>at(e)})},aW={kernelName:Mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Xt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Xt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(zt(s),n.shape)}}}},sW={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,a=n.shape.slice(),{axis:s}=r;Wn(s,n.shape).forEach(l=>{a[l]=1});let i=G(e,a),o=L(i,pn(n.shape,"float32"));return{x:()=>o}}},iW={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,At(dm(r)))}}},oW={kernelName:Fi,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(he(Se(1),At(r)),e)}}},lW={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{reps:a}=r;return{x:()=>{let s=at(n);if(n.rank===1)for(let i=0;i<a[0];++i)s=le(s,Pe(e,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2],u*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return s}}}},uW={kernelName:$i,gradFunc:(e,t,r)=>{let n=r,{perm:a}=n,s=R2(a);return{x:()=>nt(e,s)}}},dW={kernelName:ml,gradFunc:(e,t,r)=>{let n=r,{axis:a}=n;return{value:()=>sr(e,a)}}},pW={kernelName:eh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>hW(e,r)}}};function hW(e,t){let r=Xa(t,at(t)),n=gu(e,r),a=bl(t,Se(0,"int32")),s=n.rank-a.rank;for(let o=0;o<s;++o)a=Ht(a,o+1);a=ha(a,pn(n.shape,"bool"));let i=at(n);return Br(a,n,i)}var cW={kernelName:gl,gradFunc:e=>({x:()=>at(e)})},fW=[x7,fL,mL,gL,yL,AL,xL,bL,vL,wL,kL,IL,NL,RL,ML,FL,$L,PL,_L,zL,OL,DL,BL,LL,UL,GL,jL,HL,qL,KL,_B,XL,ZL,YL,JL,QL,tB,eB,rB,nB,aB,sB,iB,oB,lB,uB,dB,pB,hB,mB,E3,E3,gB,xB,wB,kB,IB,SB,TB,NB,CB,EB,RB,MB,FB,R3,R3,$B,PB,zB,OB,DB,LB,BB,WB,VB,UB,GB,jB,HB,qB,KB,XB,ZB,YB,JB,QB,M3,M3,F3,F3,eW,rW,tW,nW,aW,sW,iW,oW,lW,uW,dW,pW,cW];for(let e of fW)hw(e);var v7={};Le(v7,{maxNorm:()=>AW,minMaxNorm:()=>vW,nonNeg:()=>bW,unitNorm:()=>xW});var zy;function tr(){return zy==null&&(zy=Un().epsilon()),zy}function ca(){return"channelsLast"}var La=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,La.prototype)}},ia=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ia.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ve.prototype)}},w7=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,w7.prototype)}};function Io(e,t){if(Array.isArray(e)){let r=[];for(let n=0;n<t;n++)r=r.concat(e);return r}else{let r=new Array(t);return r.fill(e),r}}function Ia(e,t){if(!e)throw new w7(t)}function $3(e,t){let r=0;for(let n of e)n===t&&r++;return r}function Jr(e){return e.length===1?e[0]:e}function It(e){return Array.isArray(e)?e:[e]}function Ba(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function uo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,r)=>r.toUpperCase())}var zn={};function Q2(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function i1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>i1(t));else{let t=Object.keys(e);for(let r of t){let n=e[r];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[r]=n.value:i1(n))}}}function fh(e,t={},r={},n="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in r)i=r[s];else if(s in zn)i=zn[s];else if(i=t[s],i==null)throw new q(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new q(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in r?[o,l]=r[i]:i in zn?[o,l]=zn.className:i in t&&([o,l]=t[i]),o==null)throw new q(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(zn))u[c]=zn[c];for(let c of Object.keys(r))u[c]=r[c];let d=s.config;d.customObjects=u;let h={...zn};for(let c of Object.keys(r))zn[c]=r[c];i1(s.config);let p=l(o,s.config,r,a);return zn={...h},p}else{let u={...zn};for(let h of Object.keys(r))zn[h]=r[h];let d=new o(s.config);return zn={...u},d}}}function mW(e,t){return e<t?-1:e>t?1:0}function Pc(e,t){return-1*mW(e,t)}function Is(e){if(e==null)return e;let t=[];for(let r of e)t.indexOf(r)===-1&&t.push(r);return t}function gW(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function kl(e,t,r){if(r!=null&&e.indexOf(r)<0)throw new q(`${r} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function eA(e,t,r=0,n=1/0){return Ia(r>=0),Ia(n>=r),Array.isArray(e)&&e.length>=r&&e.length<=n&&e.every(a=>typeof a===t)}function cr(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((r,n)=>cr(r,`element ${n+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${k7(e)}.`)}function k7(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>k7(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function yW(e,t,r){let n=r!=null?r():v.now(),a;return(...s)=>{let i=r!=null?r():v.now();return i-n<t||(n=i,a=e(...s)),a}}function I7(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function tA(e,t){return K(()=>Cr(ke(L(e,e),t,!0)))}var mh=class extends ue.Serializable{getConfig(){return{}}},rA=class extends mh{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=tA(e,this.axis),r=hn(t,0,this.maxValue);return L(e,pe(r,le(tr(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};rA.className="MaxNorm";ue.registerClass(rA);var nA=class extends mh{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>pe(e,le(tr(),tA(e,this.axis))))}getConfig(){return{axis:this.axis}}};nA.className="UnitNorm";ue.registerClass(nA);var aA=class extends mh{apply(e){return $a(e)}};aA.className="NonNeg";ue.registerClass(aA);var sA=class extends mh{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=tA(e,this.axis),r=le(L(this.rate,hn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(r,le(tr(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};sA.className="MinMaxNorm";ue.registerClass(sA);var P3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function nr(e){return Q2(e)}function _3(e,t={}){return fh(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function ar(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in P3?P3[e]:e,config:{}};return _3(t)}else return e instanceof mh?e:_3(e)}function AW(e){return new rA(e)}function xW(e){return new nA(e)}function bW(){return new aA}function vW(e){return new sA(e)}var S7={};Le(S7,{constant:()=>GW,glorotNormal:()=>YW,glorotUniform:()=>ZW,heNormal:()=>JW,heUniform:()=>QW,identity:()=>KW,leCunNormal:()=>eV,leCunUniform:()=>tV,ones:()=>UW,orthogonal:()=>rV,randomNormal:()=>HW,randomUniform:()=>jW,truncatedNormal:()=>qW,varianceScaling:()=>XW,zeros:()=>VW});var wW=["channelsFirst","channelsLast"],kW=["nearest","bilinear"],IW=["valid","same","causal"],SW=["max","avg"],TW=["sum","mul","concat","ave"],Jl=new Map;function Ut(e){kl(wW,"DataFormat",e)}function NW(e){kl(kW,"InterpolationFormat",e)}function Pn(e){kl(IW,"PaddingMode",e)}function T7(e){kl(SW,"PoolMode",e)}var bp=[],z3="/";function go(e,t){bp.push(e);try{let r=t();return bp.pop(),r}catch(r){throw bp.pop(),r}}function CW(){return bp.length===0?"":bp.join(z3)+z3}function N7(e){if(!E7(e))throw new Error("Not a valid tensor name: '"+e+"'");return CW()+e}function C7(e){if(!E7(e))throw new Error("Not a valid tensor name: '"+e+"'");Jl.has(e)||Jl.set(e,0);let t=Jl.get(e);if(Jl.set(e,Jl.get(e)+1),t>0){let r=`${e}_${t}`;return Jl.set(r,1),r}else return e}var EW=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function E7(e){return!!e.match(EW)}function RW(e){return e===parseInt(e.toString(),10)}function Ss(e,t,r){t==null&&(t=0),r==null&&(r=e.length);let n=1;for(let a=t;a<r;++a)n*=e[a];return n}function xu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n<t&&(t=n)}return t}function zs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n>t&&(t=n)}return t}function fa(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let r=[];for(let n=e;n<t;++n)r.push(n);return r}function Pm(e,t){return me(e,t)}function gh(e,t=-1){let r=e.shape.slice();return t<0&&(t=r.length+t+1),r.splice(t,0,1),G(e,r)}function MW(e,t){return K(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let r=gh(e,1);return o1(r,[1,t,1])})}function FW(e){let t=[Ss(e.shape)];return G(e,t)}function $W(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ss(e.shape,1)];return G(e,t)}function yo(e,t,r){return K(()=>{switch(e.rank){case 1:return bm(e,t,r);case 2:return V2(e,[t,0],[r,e.shape[1]]);case 3:return wl(e,[t,0,0],[r,e.shape[1],e.shape[2]]);case 4:return ko(e,[t,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Pe(e,[t,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Pe(e,[t,0,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Oy(e,t,r){return K(()=>{switch(e.rank){case 1:return bm(e,t,r);case 2:return V2(e,[0,t],[e.shape[0],r]);case 3:return wl(e,[0,0,t],[e.shape[0],e.shape[1],r]);case 4:return ko(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],r]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function _c(e,t,r,n){return K(()=>{switch(e.rank){case 1:return bm(e,t,r);case 2:switch(n){case 1:return yo(e,t,r);case 2:return Oy(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return yo(e,t,r);case 2:return wl(e,[0,t,0],[e.shape[0],r,e.shape[2]]);case 3:return Oy(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return yo(e,t,r);case 2:return ko(e,[0,t,0,0],[e.shape[0],r,e.shape[2],e.shape[3]]);case 3:return ko(e,[0,0,t,0],[e.shape[0],e.shape[1],r,e.shape[3]]);case 4:return Oy(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function iA(e,t=-1){let r;return t<0&&(r=e[0].rank,r!==0?t=r:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function O3(e,t){switch(e.rank){case 1:return vk([e,t]);case 2:return rd([e,t],0);case 3:return wk([e,t],0);case 4:return kk([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function o1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Dn(e,t)}function _m(e,t=0,r=1,n,a){return jk(e,t,r,n,a)}function Na(e,t,r,n){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return _s.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:n?l1(e.rank,n,ca()):null,activation:r});{let a=e.shape.slice(),s=a.pop();e=G(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(nt(t,d),[l,-1]);let h=[...a,...u],p=!1,c=!1;return G(_s.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:n?l1(e.rank,n,ca()):null,activation:r}),h)}}function R7(e,t,r){return K(()=>(Array.isArray(t)?t=St(t,"int32"):t=me(t,"int32"),gu(e,t,r)))}function yh(e){return L(e,e)}function l1(e,t,r){let n=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1,1]):G(t,[1,n[3],n[0],n[1],n[2]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===4){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1]):G(t,[1,n[2],n[0],n[1]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===3){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1]):G(t,[1,n[1],n[0]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,n[0]]):G(t,[1].concat(n))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function ya(e,t,r){return K(()=>(r==null&&(r=ca()),Ut(r),le(e,l1(e.rank,t,r))))}function PW(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return uh(e)}function _W(e){return K(()=>pe(e,le(er(e),1)))}function M7(e,t,r,n){return K(()=>s7(e,t,r,n))}function zW(e){return K(()=>{let t=le(.5,L(.2,e));return hn(t,0,1)})}function Ah(e,t,r=!1){return r?e():t()}var OW=["fanIn","fanOut","fanAvg"],DW=["normal","uniform","truncatedNormal"];function LW(e){kl(OW,"FanMode",e)}function BW(e){kl(DW,"Distribution",e)}var Hn=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},oA=class extends Hn{apply(e,t){return Wt(e,t)}};oA.className="Zeros";ue.registerClass(oA);var zm=class extends Hn{apply(e,t){return pn(e,t)}};zm.className="Ones";ue.registerClass(zm);var lA=class extends Hn{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return K(()=>L(Se(this.value),pn(e,t)))}getConfig(){return{value:this.value}}};lA.className="Constant";ue.registerClass(lA);var uA=class extends Hn{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return id(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};uA.className="RandomUniform";ue.registerClass(uA);var dA=class extends Hn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return _m(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};dA.className="RandomNormal";ue.registerClass(dA);var pA=class extends Hn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return km(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};pA.className="TruncatedNormal";ue.registerClass(pA);var hA=class extends Hn{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return K(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,T2(e[0]))})}getConfig(){return{gain:this.gain}}};hA.className="Identity";ue.registerClass(hA);function WW(e,t="channelsLast"){let r,n;if(Ut(t),e.length===2)r=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ss(e,2);r=e[1]*a,n=e[0]*a}else if(t==="channelsLast"){let a=Ss(e,0,e.length-2);r=e[e.length-2]*a,n=e[e.length-1]*a}}else{let a=Ss(e);r=Math.sqrt(a),n=Math.sqrt(a)}return[r,n]}var tn=class extends Hn{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,LW(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,BW(this.distribution),this.seed=e.seed}apply(e,t){let r=WW(e),n=r[0],a=r[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,n):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(n+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return km(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return id(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};tn.className="VarianceScaling";ue.registerClass(tn);var Om=class extends tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Om.className="GlorotUniform";ue.registerClass(Om);var Dm=class extends tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Dm.className="GlorotNormal";ue.registerClass(Dm);var Lm=class extends tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Lm.className="HeNormal";ue.registerClass(Lm);var Bm=class extends tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Bm.className="HeUniform";ue.registerClass(Bm);var Wm=class extends tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Wm.className="LeCunNormal";ue.registerClass(Wm);var Vm=class extends tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Vm.className="LeCunNormal";ue.registerClass(Vm);var cA=class extends Hn{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return K(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let r=e[0]>e[1]?[e[1],e[0]]:e,n=_m(r,0,1,"float32"),a=m7.gramSchmidt(n);return e[0]>e[1]&&(a=nt(a)),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};cA.className="Orthogonal";ue.registerClass(cA);var D3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function L3(e,t={}){return fh(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Pt(e){return Q2(e)}function Et(e){if(typeof e=="string"){let t=e in D3?D3[e]:e;if(t==="GlorotNormal")return new Dm;if(t==="GlorotUniform")return new Om;if(t==="HeNormal")return new Lm;if(t==="HeUniform")return new Bm;if(t==="LeCunNormal")return new Wm;if(t==="LeCunUniform")return new Vm;{let r={};return r.className=t,r.config={},L3(r)}}else return e instanceof Hn?e:L3(e)}function VW(){return new oA}function UW(){return new zm}function GW(e){return new lA(e)}function jW(e){return new uA(e)}function HW(e){return new dA(e)}function qW(e){return new pA(e)}function KW(e){return new hA(e)}function XW(e){return new tn(e)}function ZW(e){return new Om(e)}function YW(e){return new Dm(e)}function JW(e){return new Lm(e)}function QW(e){return new Bm(e)}function eV(e){return new Wm(e)}function tV(e){return new Vm(e)}function rV(e){return new cA(e)}var F7={};Le(F7,{Layer:()=>st,RNN:()=>Ja,RNNCell:()=>vh,activation:()=>OU,add:()=>HU,alphaDropout:()=>EG,average:()=>qU,averagePooling1d:()=>kx,averagePooling2d:()=>Ix,averagePooling3d:()=>Sx,avgPool1d:()=>rG,avgPool2d:()=>aG,avgPool3d:()=>iG,avgPooling1d:()=>nG,avgPooling2d:()=>sG,avgPooling3d:()=>oG,batchNormalization:()=>QU,bidirectional:()=>vG,concatenate:()=>KU,conv1d:()=>CU,conv2d:()=>EU,conv2dTranspose:()=>RU,conv3d:()=>MU,conv3dTranspose:()=>FU,convLstm2d:()=>yG,convLstm2dCell:()=>AG,cropping2D:()=>PU,dense:()=>DU,depthwiseConv2d:()=>zU,dot:()=>JU,dropout:()=>LU,elu:()=>wU,embedding:()=>jU,flatten:()=>WU,gaussianDropout:()=>CG,gaussianNoise:()=>NG,globalAveragePooling1d:()=>lG,globalAveragePooling2d:()=>uG,globalMaxPool1d:()=>kG,globalMaxPool2d:()=>IG,globalMaxPooling1d:()=>M4,globalMaxPooling2d:()=>F4,gru:()=>pG,gruCell:()=>hG,input:()=>e4,inputLayer:()=>vU,layerNormalization:()=>eG,leakyReLU:()=>IU,lstm:()=>cG,lstmCell:()=>fG,masking:()=>RG,maxPool1d:()=>SG,maxPool2d:()=>TG,maxPooling1d:()=>$4,maxPooling2d:()=>P4,maxPooling3d:()=>dG,maximum:()=>XU,minimum:()=>ZU,multiply:()=>YU,permute:()=>GU,prelu:()=>SU,reLU:()=>kU,repeatVector:()=>VU,reshape:()=>UU,rnn:()=>xG,separableConv2d:()=>$U,simpleRNN:()=>mG,simpleRNNCell:()=>gG,softmax:()=>TU,spatialDropout1d:()=>BU,stackedRNNCells:()=>bG,thresholdedReLU:()=>NU,timeDistributed:()=>wG,upSampling2d:()=>_U,zeroPadding2d:()=>tG});var nV=0;function $7(){return nV++}var zc={};function Um(e=""){return e in zc||(zc[e]=0),zc[e]+=1,e+zc[e].toString()}function u1(e){return Array.isArray(e)&&Array.isArray(e[0])}function ff(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ge(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function mf(e){let t=0;for(let r of e)r.shape.length===0?t+=1:t+=r.shape.reduce((n,a)=>n*a);return t}var B3="Variable",P7=class{constructor(e,t="float32",r=B3,n=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=$7(),r=r==null?B3:r,this.originalName=N7(r),this.name=C7(this.originalName),this.trainable_=n,this.constraint=a,this.val=e7(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),aV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function aV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function d1(e){return e.map(t=>t.read())}function fA(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},oa=class{constructor(e,t,r,n,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=r,this.inputs=n,this.callArgs=a,this.outputTensorIndex=i,this.id=$7(),s!=null&&(this.originalName=N7(s),this.name=C7(this.originalName)),this.rank=t.length}},sV=0,Gm=class{constructor(e,t){this.callArgs=t,this.id=sV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let r of e.inboundLayers)r!=null&&r.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},iV=0,st=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=iV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let r=this.getClassName();t=Ba(r)+"_"+Um(r)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let r;if(e.batchInputShape!=null)r=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),r=[a].concat(e.inputShape)}this.batchInputShape=r;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ia(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new La(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new La(`Layer ${this.name} is not connected, no input to return.`);return Jr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new La(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new La(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=It(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=It(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let r=0;r<e.length;r++){let n=e[r],a=t[r];if(a==null)continue;let s=n.rank;if(a.ndim!=null&&s!==a.ndim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&n.dtype!==a.dtype)throw new q(`Input ${r} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${n.dtype}.`);if(a.axes){let i=n.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=n.shape[i];if(o!=null&&l!=null&&o!==l)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let r=It(e),n=!0;for(let s of r)if(!(s instanceof oa)){n=!1;break}let a=!0;for(let s of r)if(s instanceof oa){a=!1;break}if(n===a)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return go(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of It(e))s.push(i.shape);this.build(Jr(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=It(s),o=[];for(let l of i)r.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Jr(o),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=oV(e),i=this.computeOutputShape(s),o,l=lV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new oa(l,u,this,It(e),t,this.name,d)):o=new oa(l,i,this,It(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((r,n)=>{r!=null&&e[n]!=null&&e[n]!==r&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new La(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let r=JSON.stringify(t.outputShapes);e.indexOf(r)===-1&&e.push(r)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new La(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ia(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return mf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return d1(e?this.trainableWeights:this.weights)}setWeights(e){K(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let r=[],n=d1(t);for(let a=0;a<n.length;++a){let s=n[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new q(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);r.push([i,o])}fA(r)})}addWeight(e,t,r,n,a,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),r==null&&(r="float32"),this.fastWeightInitDuringBuild&&(n=o!=null?o():Et("zeros"));let l=n.apply(t,r),u=new P7(l,r,e,s,i);return l.dispose(),a!=null&&this.addLoss(()=>a.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=It(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,r,n,a,s,i=null){let o=It(e);t=It(t),r=It(r),n=It(n),a=ff(a),s=ff(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new Gm({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:r,outputMasks:n,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function oV(e){e=It(e);let t=[];for(let r of e)t.push(r.shape);return Jr(t)}function lV(e){return"float32"}function _7(e,t,r){if((t==null||r!=null&&r>0)&&(t=e.sourceLayer,r=e.nodeIndex),t.inboundNodes.length===0)return[e];{let n=t.inboundNodes[r];if(n.inboundLayers.length===0)return n.inputTensors;{let a=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],o=n.inboundLayers[s],l=n.nodeIndices[s],u=_7(i,o,l);for(let d of u)a.indexOf(d)===-1&&a.push(d)}return a}}}var ud=class extends st{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Um("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let r=e.dtype||"float32";this.batchInputShape=t,this.dtype=r,this.inputSpec=[{shape:t}];let n=new oa(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new Gm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ud.className="InputLayer";ue.registerClass(ud);function z7(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let r=e.dtype;return r==null&&(r="float32"),new ud({batchInputShape:t,name:e.name,dtype:r,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function xs(e){if(e==null)return;let t=[],r=[],n=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),r.push(a),n.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[r[s]]=a[s][0];re(n)}}function O7(e){if(e!=null)for(let t in e){let r=e[t];typeof r!="number"&&r.dispose()}}var uV=125,bu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},D7=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},dV=class extends bu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let r=t.size==null?0:t.size;this.seen+=r;for(let n in t){let a=t[n];if(typeof a=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+a*r;else{let s;n in this.totals?s=this.totals[n]:this.totals[n]=0;let i=K(()=>le(this.totals[n],L(a,r)));this.totals[n]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let r of this.params.metrics)this.totals[r]!=null&&(typeof this.totals[r]=="number"?t[r]=this.totals[r]/this.seen:K(()=>{let n=L(pe(1,this.seen),this.totals[r]);t[r]=n,this.totals[r].dispose(),hr(t[r])}))}},L7=class extends bu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let r in t)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(t[r])}async syncData(){let e=[],t=[],r=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),r.push(i)}}let n=await Promise.all(e);for(let a=0;a<n.length;++a)this.history[t[a]][r[a]].dispose(),this.history[t[a]][r[a]]=n[a][0]}},B7=class extends bu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Y2,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=uV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=yW(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,r){let n=[];this.yield!=null&&(await xs(r),n.push(this.yield(e,t,r))),n.push(this.nextFrameFunc()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await xs(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let r=[];this.epochEnd!=null&&(await xs(t),r.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&r.push(this.nextFrameFunc()),await Promise.all(r)}async onBatchBegin(e,t){this.batchBegin!=null&&(await xs(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let r=[];this.batchEnd!=null&&(await xs(t),r.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?r.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&r.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(r)}async onTrainBegin(e){this.trainBegin!=null&&(await xs(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await xs(e),await this.trainEnd(e))}};function W7(e,t){return e==null&&(e={}),e instanceof bu?[e]:Array.isArray(e)&&e[0]instanceof bu?e:It(e).map(r=>new B7(r,t))}var wa=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),wa.checkForDuplicate(t),wa.constructors[e]==null&&(wa.constructors[e]=[]),wa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in wa.constructors)wa.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){wa.constructors={}}static createCallbacks(e){let t=[];for(let r in wa.constructors){let n=+r;e>=n&&t.push(...wa.constructors[n])}return t.map(r=>new r)}},mA=wa;mA.constructors={};function V7(e,t,r,n,a,s,i,o,l){let u=new L7,d=[new dV,...mA.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new D7(d);return h.setParams({epochs:r,initialEpoch:n,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function da(e,t={},r=!1){return fh(e,ue.SerializationMap.getMap().classNameMap,t,"layer",r)}function gf(e,t){return K(()=>{e.dtype!=="float32"&&(e=me(e,"float32"));let r=ke(yh(e),t,!0),n=nd(r.shape,tr()),a=Cr(Xa(r,n));return pe(e,a)})}function Il(e,t){return K(()=>Bt(yh(he(t,e)),-1))}function jm(e,t){return K(()=>Bt(er(he(t,e)),-1))}function dd(e,t){return K(()=>{let r=he(e,t),n=hn(er(e),tr(),Number.MAX_VALUE),a=er(pe(r,n));return L(100,Bt(a,-1))})}function pV(e,t){return K(()=>{let r=hn(t,tr(),Number.MAX_VALUE),n=Rn(le(1,r)),a=hn(e,tr(),Number.MAX_VALUE),s=Rn(le(1,a));return Bt(yh(he(n,s)),-1)})}function hV(e,t){return K(()=>{let r=Xa(0,he(1,L(e,t)));return Bt(yh(r),-1)})}function cV(e,t){return K(()=>{let r=Xa(0,he(1,L(e,t)));return Bt(r,-1)})}function fV(e,t){return K(()=>{let r=ke(L(e,t),-1),n=fr(L(he(1,e),t),-1);return Xa(0,le(1,he(n,r)))})}function mV(e,t){return K(()=>{let r=Math.log(2),n=he(t,e),a=he(le(n,ad(L(-2,n))),r);return Bt(a,-1)})}function Fp(e,t,r=!1){return K(()=>{if(r)t=od(t);else{let n=ke(t,t.shape.length-1,!0);t=pe(t,n)}return t=hn(t,tr(),1-tr()),zt(ke(L(me(e,"float32"),Rn(t)),t.shape.length-1))})}function yf(e,t,r=!1){return K(()=>{let n=me(dh(FW(e)),"int32");t=hn(t,tr(),1-tr());let a=t.shape,s=G(Ep(n,a[a.length-1]),a);return Fp(s,t,r)})}function gV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return K(()=>{let r=$a(t),n=zt(er(t));return le(he(r,L(t,e)),cm(En(n)))})}function Hm(e,t){return K(()=>{let r;return r=hn(t,tr(),1-tr()),r=Rn(pe(r,he(1,r))),Bt(gV(e,r),-1)})}function yV(e,t){return K(()=>{let r=hn(e,tr(),1),n=hn(t,tr(),1);return ke(L(e,Rn(pe(r,n))),-1)})}function AV(e,t){return K(()=>{let r=Rn(le(tr(),t));return Bt(he(t,L(e,r)),-1)})}function gA(e,t){return K(()=>{let r=gf(e,-1),n=gf(t,-1),a=L(r,n);return zt(ke(a,-1))})}var Af={meanSquaredError:Il,meanAbsoluteError:jm,meanAbsolutePercentageError:dd,meanSquaredLogarithmicError:pV,squaredHinge:hV,hinge:cV,categoricalHinge:fV,logcosh:mV,categoricalCrossentropy:Fp,sparseCategoricalCrossentropy:yf,binaryCrossentropy:Hm,kullbackLeiblerDivergence:yV,poisson:AV,cosineProximity:gA};function Dy(e){if(typeof e=="string"){if(e in Af)return Af[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function yA(e,t){return K(()=>{let r=L(.5,Mn(t)),n=Pm(cn(t,r),e.dtype);return Bt(Cn(e,n),-1)})}function AA(e,t){return K(()=>Pm(Cn(Nn(e,-1),Nn(t,-1)),"float32"))}function U7(e,t){return K(()=>me(ke(ha(Cn(e,1),Cn(t,1))),"float32"))}function xV(e,t){return K(()=>me(ke(ha(Cn(e,1),Cn(t,0))),"float32"))}function bV(e,t){return K(()=>me(ke(ha(Cn(e,0),Cn(t,1))),"float32"))}function G7(e,t){return K(()=>{let r=U7(e,t),n=bV(e,t),a=le(r,n);return me(Br(cn(a,0),pe(r,a),0),"float32")})}function vV(e,t){return K(()=>{let r=U7(e,t),n=xV(e,t),a=le(r,n);return me(Br(cn(a,0),pe(r,a),0),"float32")})}function j7(e,t){return Hm(e,t)}function H7(e,t){return e.rank===t.rank&&(e=et(e,[e.rank-1])),t=Nn(t,-1),t.dtype!==e.dtype&&(t=me(t,e.dtype)),me(Cn(e,t),"float32")}var wV=Il,kV=Il,IV=jm,SV=jm,TV=dd,NV=dd,xA=Fp,CV=gA,q7=yf,xf={binaryAccuracy:yA,categoricalAccuracy:AA,precision:G7,categoricalCrossentropy:xA,sparseCategoricalCrossentropy:q7,mse:wV,MSE:kV,mae:IV,MAE:SV,mape:TV,MAPE:NV,cosine:CV};function EV(e){if(typeof e=="string"&&e in xf)return xf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Oc(e){if(Ia(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let r of Object.keys(Af))if(Af[r]===e){t=r;break}if(t!==void 0)return t;for(let r of Object.keys(xf))if(xf[r]===e){t=r;break}return t!==void 0?t:e.name}}function RV(e){let t={Adagrad:()=>io.adagrad(.01),Adadelta:()=>io.adadelta(1,.95,tr()),Adam:()=>io.adam(.001,.9,.999,tr()),Adamax:()=>io.adamax(.002,.9,.999,tr(),0),RMSProp:()=>io.rmsprop(.001,.9,0,tr()),SGD:()=>io.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var W3=1*1024*1024;function V3(e,t,r=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!p1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(r){let n=JSON.stringify(e);n.length>W3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${W3}.`)}}function p1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let r of t)if(typeof r!="string"||!p1(e[r]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!p1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function MV(e,t,r,n=console.log){let a=$V(e),s=["Layer (type)","Input Shape","Output shape","Param #"];a?(t=t||90,r=r||[.32,.61,.89,1]):(t=t||115,r=r||[.24,.48,.7,.8,1]),r[r.length-1]<=1&&(r=r.map(d=>Math.floor(t*d)));let i;if(!a){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}n("_".repeat(t)),bf(s,r,n),n("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)a?PV(o[d],r,n):_V(o[d],r,i,n),n((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=FV(e),u=mf(e.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(t))}function FV(e){let t;return e.collectedTrainableWeights!=null?t=mf(e.collectedTrainableWeights):t=mf(e.trainableWeights),t}function $V(e){let t=!0,r=[],n=[];for(let a in e.nodesByDepth)r.push(e.nodesByDepth[a]);for(let a of r){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}n.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function bf(e,t,r=console.log){let n="";for(let a=0;a<e.length;++a)a>0&&(n=n.slice(0,n.length-1)+" "),n+=e[a],n=n.slice(0,t[a]),n+=" ".repeat(t[a]-n.length);r(n)}function PV(e,t,r){let n,a;try{a=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){a="multiple"}try{n=JSON.stringify(e.outputShape)}catch(l){n="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,a,n,e.countParams().toString()];bf(o,t,r)}function _V(e,t,r,n){let a,s;try{s=e.inboundNodes.map(h=>JSON.stringify(h.inputShapes)).join(",")}catch(h){s="multiple"}try{a=JSON.stringify(e.outputShape)}catch(h){a="multiple"}let i=[];for(let h of e.inboundNodes)if(!(r!=null&&r.length>0&&r.indexOf(h)===-1))for(let p=0;p<h.inboundLayers.length;++p){let c=h.inboundLayers[p].name,f=h.nodeIndices[p],m=h.tensorIndices[p];i.push(`${c}[${f}][${m}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],d=[`${o} (${l})`,s,a,e.countParams().toString(),u];bf(d,t,n);for(let h=1;h<i.length;++h)bf(["","","","",i[h]],t,n)}function K7(e,t,r){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof r=="string"}function $p(e,t){if(e===null)return null;if(typeof e=="string")return uo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];K7(t,a,s)?r.push(s):r.push($p(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n];if(n==="name"&&typeof a=="string")r[n]=a;else{let s=uo(n);r[s]=$p(a,s)}}return r}}function h1(e,t){if(e==null)return null;if(typeof e=="string")return Ba(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];K7(t,a,s)?r.push(s):r.push(h1(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n],s=Ba(n);(n==="name"||n==="className")&&typeof a=="string"?r[s]=a:r[s]=h1(a,n)}return r}}var bA="0.0.0";function zV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(r){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var co=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof co)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,r){if(this.id2Value[e.id]==null)this.id2Value[e.id]=zV(e,t),this.name2Id[e.name]=e.id,r!=null&&(this.id2Mask[e.id]=r);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof oa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof oa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&re(this.id2Mask)}},Ly={},U3={};function pp(e,t,r,n){let a=r==null?!1:r.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().join(","),h,p;if(Ly[d]==null){let f=OV(i,t);h=f.sorted,p=f.recipientCounts,Ly[d]=h,U3[d]=p}h=Ly[d],p={},a||Object.assign(p,U3[d]);let c=new co(t);for(let f=0;f<h.length;++f){if(n!=null){let R=pf().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let m=h[f],g=m.sourceLayer;if(g instanceof ud)continue;let y=[],A=[],x=[],b=!1;for(let R of m.inputs){let _=c.getValue(R),M=c.getMask(R);y.push(_),A.push(M),M!=null&&(b=!0),a||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!_.isDisposed&&R.sourceLayer.stateful!==!0&&x.push(_))}b&&(r=r||{},r.mask=A[0]);let w=It(g.apply(y,r)),T=null;g.supportsMasking&&(T=g.computeMask(y,A));let S=LV(m),E=Array.isArray(S)?S:[S];for(let R=0;R<E.length;++R){c.hasKey(E[R])||c.add(E[R],w[R],Array.isArray(T)?T[0]:T);let _=o.indexOf(E[R].name);_!==-1&&(l[_]=w[R])}a||re(x)}return c.disposeMasks(),s?l:l[0]}function OV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let r=[],n={};if(e.length===1){let a=G3(e[0],t);r=a.sorted,n=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=G3(s,t);for(let l of i)a.has(l.name)||(r.push(l),a.add(l.name));for(let l in o)n[l]==null&&(n[l]=new Set),o[l].forEach(u=>n[l].add(u))}}return{sorted:r,recipientCounts:DV(n)}}function DV(e){let t={};for(let r in e)t[r]=e[r].size;return t}function G3(e,t){let r=new Set,n=[],a={};for(let o of t.names())r.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(r.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),n.push(o),r.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!r.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:a}}function LV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let r=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(let a of e.sourceLayer.inboundNodes[n].outputTensors)if(a.id===e.id){r=n;break}t=e.sourceLayer.getOutputAt(r)}return t}var ka=class extends st{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Um(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Is(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Is(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Ia(x===0,"input layer has >1 nodes"),Ia(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof ud))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},r={},n={},a={},s={},i=[],o=(y,A,x,b,w,T)=>{(b==null||w==null||T==null)&&(b=y.sourceLayer,w=y.nodeIndex,T=y.tensorIndex);let S=b.inboundNodes[w];if(x.indexOf(S)!==-1)throw new ia(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(S)!==-1)return;this.containerNodes.add(ka.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let E=S.inboundLayers.length;for(let R=0;R<E;R++){let _=S.inputTensors[R],M=S.inboundLayers[R],I=S.nodeIndices[R],O=S.tensorIndices[R];o(_,A,x,M,I,O)}for(A.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){r[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];A=Math.max(A,x),n[y.outboundLayer.id]=A,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],T=y.nodeIndices[b],S=w.inboundNodes[T],E=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(A+1,E),r[S.id]=S}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(r[y])}let p={};for(let y in n){let A=n[y];A in p||(p[A]=[]),p[A].push(a[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(Pc);this.layers=[];for(let y of c){let A=p[y];A.sort((x,b)=>{let w=s[x.id],T=s[b.id];return w<T?-1:w>T?1:0});for(let x of A)x instanceof ka&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(Pc);let f=this.inputs.slice(),m=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new ia(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new ia(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Gm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(r=>r.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.layers)t.push(...r.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let r={},n=0;for(let s of this.layers)for(let i of s.weights){if(r[i.originalName]!=null)throw new q(`Duplicate weight name: ${i.originalName}`);r[i.originalName]=i,n++}let a=[];for(let s in e){let i=s;if(r[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(r[i]!=null)a.push([r[i],e[s]]);else if(t)throw new q(`Provided weight data has no target variable: ${s}`);delete r[i]}if(t){let s=[];for(let i in r)s.push(i);if(s.length>0)throw new q(`${s.length} of ${n} weights are not set: ${s}`)}fA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${bA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let r=h1(this.updatedConfig());return t?JSON.stringify(r):r}call(e,t){return K(()=>{e=It(e);let r=new co;for(let n=0;n<this.inputs.length;++n)r.add(this.inputs[n],e[n]);return pp(this.outputs,r,t)})}computeMask(e,t){return K(()=>{e=It(e);let r;return t==null?r=Io(null,e.length):r=It(t),this.runInternalGraph(e,r)[1]})}computeOutputShape(e){let t=ff(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";r[u]=l}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Pc);if(n.length>1)for(let i of n){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let d=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],A=`${m.name}_${g}_${y}`,x=r[A];d.push(x)}let h=u.computeOutputShape(Jr(d)),p=ff(h),c=u.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${u.name}_${c}_${f}`;r[m]=p[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ia(o in r),a.push(r[o])}return Jr(a)}runInternalGraph(e,t){t==null&&(t=Io(null,e.length));let r={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];r[l.id]=[u,d]}let n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Pc);for(let o of n){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let f of h)f.id in r&&c.push(r[f.id]);if(c.length===h.length){let f={},m,g,y,A;if(u.callArgs!=null&&(f=u.callArgs),c.length===1){let[x,b]=c[0];f.mask==null&&(f.mask=b),y=It(d.call(x,f)),A=It(d.computeMask(x,b)),m=[x],g=[b]}else m=c.map(x=>x[0]),g=c.map(x=>x[1]),f.mask==null&&(f.mask=g),y=It(d.call(m,f)),A=It(d.computeMask(m,g));if(d.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=y[x],T=A[x];r[b.id]=[w,T]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Ia(o.id in r,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=r[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},r;for(let n of this.layers){r=n instanceof ka?1:0;for(let a=0;a<n.inboundNodes.length;a++){let s=ka.nodeKey(n,a);this.containerNodes.has(s)&&(t[s]=r,r+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let r of this.layers)if(r.name===e)return r;throw new q(`No such layer: ${e}`)}calculateLosses(){return K(()=>{let e=[];for(let t of this.layers)for(let r=0;r<t.inboundNodes.length;++r){let n=ka.nodeKey(t,r);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),r=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=ka.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let g=h.inboundLayers[m],y=h.nodeIndices[m],A=h.tensorIndices[m],x=ka.nodeKey(g,y),b=t[x];b==null&&(b=0),f.push([g.name,b,A,c])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,r.push(u)}e.layers=r;let n=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=ka.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];n.push([i.name,u,d])}e.inputLayers=n;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=ka.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];a.push([i.name,u,d])}return e.outputLayers=a,e}static fromConfig(e,t,r={},n=!1){let a={},s={};function i(m,g){m.name in s?s[m.name].push(g):s[m.name]=[g]}function o(m,g){let y=[],A;for(let x of g){let b=x[0],w=x[1],T=x[2];if(A=x[3]==null?{}:x[3],!(b in a)){i(m,g);return}let S=a[b];if(S.inboundNodes.length<=w){i(m,g);return}let E=S.inboundNodes[w];y.push(E.outputTensors[T])}y.length>0&&m.apply(Jr(y),A)}function l(m){let g=m.name,y=da(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),a[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let m of d)l(m);for(;!gW(s);)for(let m of d){let g=a[m.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let m of c){let g=m[0],y=m[1],A=m[2];Ia(g in a);let x=a[g].inboundNodes[y].outputTensors;h.push(x[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];Ia(g in a);let x=a[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){K(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function BV(e,t,r){let n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${r} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${n}) outputs, so ${r} must be either an array with ${n} elements or an object with ${t} keys. Provided ${r} not understood: ${JSON.stringify(e)}`)}function X7(e,t){return BV(e,t,"classWeight")}async function Z7(e,t,r,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(r!=null){let a=K(()=>{if(e.shape.length===1)return Lr(e);if(e.shape.length===2){if(e.shape[1]>1)return Nn(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());re(a);let i=[];return s.forEach(o=>{if(r[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(r[o])}),St(i,"float32")}else return null}function WV(e,t){return L(e,t)}var VV=32;function Y7(e,t){let r,n,a=t;r=a.xs,n=a.ys,v.assert(r!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=j3("input",e.inputNames,r),i=j3("output",e.outputNames,n),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function j3(e,t,r){if(r instanceof rt)return[r];if(Array.isArray(r))return v.assert(r.length===t.length,()=>`Received an array of ${r.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),r;{let n=[];for(let a of t){if(r[a]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);n.push(r[a])}return n}}function UV(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function GV(e,t,r){let n=r.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(r!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(r.epochs!=null&&r.epochs>0&&Number.isInteger(r.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${r.epochs}`),v.assert(!n||r.batchesPerEpoch>0&&Number.isInteger(r.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${r.batchesPerEpoch}`),v.assert(r.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=r.validationData!=null,s,i;if(a)if(H3(r.validationData))v.assert(r.validationBatches==null||r.validationBatches>0&&Number.isInteger(r.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${r.validationBatches}`);else{let g=UV(r.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=W7(r.callbacks,r.yieldEvery),h=r.verbose==null?1:r.verbose,{callbackList:p,history:c}=V7(d,h,r.epochs,null,null,jV(t,r),null,a,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let f=r.initialEpoch==null?0:r.initialEpoch,m=await t.iterator();for(;f<r.epochs;){let g={};await p.onEpochBegin(f);let y=0,A=0;for(n||(m=await t.iterator());!n||y<r.batchesPerEpoch;){let x=await m.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${r.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${r.batchesPerEpoch*r.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=Y7(e,x.value),T={};T.batch=A,T.size=b[0].shape[0],await p.onBatchBegin(A,T);let S=[];if(r.classWeight!=null){let _=X7(r.classWeight,e.outputNames);for(let M=0;M<_.length;++M)S.push(await Z7(w[M],null,_[M]))}let E=b.concat(w).concat(S),R=o(E);re(E);for(let _=0;_<l.length;++_){let M=l[_],I=R[_];T[M]=I,hr(I)}await p.onBatchEnd(A,T),O7(T),A++,y++}if(n?y>=r.batchesPerEpoch:x.done){if(a){let b;H3(r.validationData)?b=It(await e.evaluateDataset(r.validationData,{batches:r.validationBatches})):b=It(e.evaluate(s,i,{batchSize:r.validationBatchSize==null?VV:r.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function jV(e,t){let r=null;return t.batchesPerEpoch!=null?r=t.batchesPerEpoch:Number.isFinite(e.size)&&(r=e.size),r}function H3(e){return typeof e.iterator=="function"}function HV(e){return typeof e.next=="function"}async function qV(e,t,r){r=r||{};let n=r.batches!=null,a=e.testFunction,s=[];if(r.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!n||r.batches>0&&Number.isInteger(r.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(r.batches)}`);let i=HV(t)?t:await t.iterator(),o=0,l=0;for(;!n||l<r.batches;){let u=await i.next();if(s=K(()=>{if(u.value){let{xs:d,ys:h}=Y7(e,u.value),p=d.concat(h),c=K(()=>a(p));if(re(p),l===0)for(let m=0;m<c.length;++m)s.push(Se(0));let f=p[0].shape[0];for(let m=0;m<c.length;++m){let g=c[m],y=s[m];s[m]=K(()=>le(s[m],L(f,g))),l>0&&re(y)}re(c),o+=f,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${r.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=pe(s[u],o),re(d)}return Jr(s)}function c1(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hp(e,t,r){return e==null?[null]:Array.isArray(e)?e.map(n=>yo(n,t,r-t)):yo(e,t,r-t)}function vA(e,t){return K(()=>e==null?null:Array.isArray(e)?e.map(r=>vA(r,t)):R7(e,t.dtype==="int32"?t:me(t,"int32")))}function f1(e,t){let r=[],n=0,a=null;for(;n<e;)a=n+t,a>=e&&(a=e),r.push([n,a]),n=a;return r}async function KV(e,t,r,n,a,s,i,o,l,u,d,h,p,c,f){a==null&&(a=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,c==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(r,a,c,"steps_per_epoch"),y;g!=null&&(y=fa(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=V7(o,i,s,p,g,c,a,m,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<s;++b){await A.onEpochBegin(b);let w={};if(c!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Ve("batch shuffling is not implemneted yet");d&&v.shuffle(y);let T=St(y),S=f1(g,a);for(let E=0;E<S.length;++E){let R={};if(await A.onBatchBegin(E,R),K(()=>{let _=S[E][0],M=S[E][1],I=yo(T,_,M-_);R.batch=E,R.size=M-_;let O=vA(r,I),z=t(O);for(let j=0;j<n.length;++j){let X=n[j],D=z[j];R[X]=D,hr(D)}if(E===S.length-1&&m){let j=e.testLoop(l,u,a);for(let X=0;X<n.length;++X){let D=n[X],Q=j[X];hr(Q),w["val_"+D]=Q}}}),await A.onBatchEnd(E,R),O7(R),e.stopTraining_)break}T.dispose()}if(await A.onEpochEnd(b,w),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function XV(e,t,r,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,d,h,p;try{let c=n.batchSize==null?32:n.batchSize;c1(c);let f=!1,m=await e.standardizeUserData(t,r,n.sampleWeight,n.classWeight,f,c);a=m[0],s=m[1],p=m[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)l=n.validationData[0],u=n.validationData[1];else throw n.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let E=!0,R=await e.standardizeUserData(l,u,null,null,E,c);d=R[0],h=R[1],y=d.concat(h)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let E=Math.floor(a[0].shape[0]*(1-n.validationSplit)),R=a[0].shape[0];d=hp(a,E,R),i=a,a=hp(a,0,E),h=hp(s,E,R),o=s,s=hp(s,0,E),y=d.concat(h)}else n.validationSteps!=null&&(g=!0);let A=a.concat(s).concat(p);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,T;g?(e.makeTestFunction(),w=e.testFunction,T=b.slice().concat(b.map(E=>"val_"+E))):(w=null,y=[],T=b.slice());let S=W7(n.callbacks,n.yieldEvery);return await KV(e,x,A,b,c,n.epochs,n.verbose,S,w,y,n.shuffle,T,n.initialEpoch,null,null)}finally{e.isTraining=!1,sa(a,t),sa(s,r),sa(i,t),sa(o,r),sa(d,l),sa(h,u),p!=null&&re(p)}}function J7(e){let t=[];e instanceof rt&&(e=[e]);for(let r=0;r<e.length;++r){let n=e[r];if(n.rank===1)t.push(gh(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function sa(e,t){if(e==null)return;let r=[];if(t instanceof rt)r.push(t.id);else if(Array.isArray(t))t.forEach(a=>r.push(a.id));else if(t!=null)for(let a in t){let s=t[a];r.push(s.id)}let n=[];if(e instanceof rt)r.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(a=>{r.indexOf(a.id)===-1&&n.push(a)});else if(e!=null)for(let a in e){let s=e[a];r.indexOf(s.id)===-1&&n.push(s)}n.forEach(a=>{a.isDisposed||a.dispose()})}function ZV(e){return e instanceof rt}function m1(e){return Array.isArray(e)}function q3(e){return!ZV(e)&&!m1(e)}function K3(e,t,r,n=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(m1(e)&&e.length>0)i=!0;else if(q3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new q(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(q3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new q(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(m1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new q(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=J7(s),r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d>=0&&u!==d)throw new q(`${a} expected a batch of elements where each example has shape [${r[i].slice(1,r[i].length)}] (i.e.,tensor shape [*,${r[i].slice(1,r[i].length)}]) but the ${a} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function YV(e,t,r){let n=Is(e.map(s=>s.shape[0]));n.sort();let a=Is(t.map(s=>s.shape[0]));if(a.sort(),n.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&a.length>0&&!v.arraysEqual(n,a))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${a[0]} target sample(s).`)}function JV(e,t,r){let n=[Il,Hm,Fp];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=r[a];if(i!=null){if(i===Fp&&s.shape[s.shape.length-1]===1)throw new q(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new q(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function X3(e,t,r,n=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d!==u)throw new q(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(r[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function QV(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let r;if(typeof e=="string"||typeof e=="function")r=[e];else if(Array.isArray(e)||typeof e=="object")r=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(r))return t.map(n=>r);{let n=[];for(let a of t){let s=r.hasOwnProperty(a)?r[a]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var eU="layers-model",Ga=class extends ka{constructor(e){super(e);this.isTraining=!1}summary(e,t,r=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");MV(this,e,t,r)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=RV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ya))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new q(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Dy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Dy(s))}else{let s=Dy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let r=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],go("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let n=QV(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};go("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=n[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Hm?["accuracy","acc"].indexOf(p)!==-1?d=yA:["crossentropy","ce"].indexOf(p)!==-1&&(d=j7):this.lossFunctions[s]===yf?["accuracy","acc"].indexOf(p)!==-1?d=H7:["crossentropy","ce"].indexOf(p)!==-1&&(d=q7):["accuracy","acc"].indexOf(p)!==-1?d=AA:["crossentropy","ce"].indexOf(p)!==-1&&(d=xA);let m;["accuracy","acc"].indexOf(p)!==-1?m="acc":["crossentropy","ce"].indexOf(p)!==-1&&(m="ce"),h=d,u=l+m}else h=EV(p),u=l+Oc(p);let c;go(u,()=>{c=h}),a(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,r={}){let n=r.batchSize==null?32:r.batchSize;c1(n);let a=!0,s=this.standardizeUserDataXY(e,t,a,n);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,n,r.verbose,r.steps);return Jr(l)}finally{sa(s[0],e),sa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),qV(this,e,t)}checkNumSamples(e,t,r,n="steps"){let a;if(r!=null){if(a=null,t!=null)throw new q(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(t),n=r?t:[t],a=this.retrieveSymbolicTensors(n),s=new co;if(e instanceof rt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new q(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=pp(a,s);return r?i:i[0]}retrieveSymbolicTensors(e){let t=Io(null,e.length),r=e.length;for(let n of this.layers){let a=Array.isArray(n.output)?n.output:[n.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],r--),r===0)break}if(r===0)break}if(r>0){let n=[];throw t.forEach((a,s)=>{a==null&&n.push(e[s])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,r=!1){return K(()=>{let n=this.checkNumSamples(e);if(r)throw new Ve("Verbose predictLoop() is not implemented yet.");let a=f1(n,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)K(()=>{let o=a[i][0],l=a[i][1],u=hp(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new co(d);return pp(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return Jr(s.map(i=>kt(i,0)))})}predict(e,t={}){let r=J7(e);X3(r,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return c1(n),this.predictLoop(r,n)}finally{sa(r,e)}}predictOnBatch(e){X3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,r=!0,n){if(this.optimizer_==null)throw new ia("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===yf?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=K3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=K3(t,this.feedOutputNames,a,!1,"target"),YV(e,t,null),JV(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,r,n,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(r!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){let u=X7(n,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await Z7(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,r,n=0,a){return K(()=>{let s=this.checkNumSamples(t,r,a,"steps"),i=[];if(n>0)throw new Ve("Verbose mode is not implemented yet.");if(a!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let o=f1(s,r),l=St(fa(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=yo(l,d,h-d),c=vA(t,p),f=e(c);if(u===0)for(let m=0;m<f.length;++m)i.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=le(i[m],L(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=pe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let r=0;r<e.length;++r){let n=e[r],a=n;$3(e,n)>1&&(a+=`_${$3(e.slice(0,r),n)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],r=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:r[c]});let d=new co(u),h=pp(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let f=this.lossFunctions[c](n[c],h[c]);a[c]!=null&&(f=WV(f,a[c]));let m=Bt(f);t.push(m),c===0?p=f:p=le(p,f)}for(let c=0;c<this.metricsTensors.length;++c){let f;if(this.outputs.length>1&&c<this.outputs.length)f=t[c];else{let m=this.metricsTensors[c][0],g=this.metricsTensors[c][1];f=Bt(m(n[g],h[g]))}hr(f),s.push(f)}return p=Bt(p),this.calculateLosses().forEach(c=>{p=le(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>K(()=>{let t=[],r,n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:n[l]});let i=new co(s),o=pp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Bt(u(a[l],o[l]));l===0?r=d:r=le(r,d),t.push(r)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Bt(u(a[d],o[d]));t.push(h)}return t})}async fit(e,t,r={}){return XV(this,e,t,r)}async fitDataset(e,t){return GV(this,e,t)}async trainOnBatch(e,t){let r=await this.standardizeUserData(e,t),n=r[0],a=r[1],s=this.makeTrainFunction()(n.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return re(s),sa(r[0],e),sa(r[1],t),Jr(i)}getNamedWeights(e){let t=[],r=e!=null&&e.trainableOnly,n=r?this.trainableWeights:this.weights,a=this.getWeights(r);for(let s=0;s<n.length;++s)r&&!n[s].trainable||t.push({name:n[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=pf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-pf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ba(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ba(t))}else{let t=Object.keys(this.loss);e={};let r=this.loss;for(let n of t)if(typeof r[n]=="string")e[n]=Ba(r[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ba(Oc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ba(Oc(e)));{let e={};for(let t in this.metrics)e[t]=Ba(Oc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=$p(e.optimizer_config),r=da(t),n;if(typeof e.loss=="string")n=uo(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(s=>uo(s));else if(e.loss!=null){n={};for(let s in e.loss)n[s]=uo(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>uo(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=uo(e.metrics[s])}this.compile({loss:n,metrics:a,optimizer:r})}async save(e,t){if(typeof e=="string"){let i=Sr.getSaveHandlers(e);if(i.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new q(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Sr.encodeWeights(this.getNamedWeights(t)),n=!1,a=null,s={modelTopology:this.toJSON(a,n),format:eU,generatedBy:`TensorFlow.js tfjs-layers v${bA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Sr.encodeWeights(await this.optimizer.getWeights(),i);r.specs.push(...l),r.data=Sr.concatenateArrayBuffers([r.data,o])}return this.userDefinedMetadata!=null&&(V3(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=r.data,s.weightSpecs=r.specs,e.save(s)}setUserDefinedMetadata(e){V3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ga.className="Model";ue.registerClass(Ga);var Q7=class extends Ga{};Q7.className="Functional";ue.registerClass(Q7);async function tU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let r=e.modelTopology;r.model_config!=null&&(r=r.model_config);let n=$p(r),a=da(n,t);if(e.weightsManifest!=null){let s=await Sr.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),re(s)}return a}async function rU(e,t){if(t==null&&(t={}),typeof e=="string"){let r=Sr.getLoadHandlers(e,t);if(r.length===0)r.push(Sr.browserHTTPRequest(e,t));else if(r.length>1)throw new q(`Found more than one (${r.length}) load handlers for URL '${e}'`);e=r[0]}return nU(e,void 0,t)}async function nU(e,t,r){if(r==null&&(r={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await e.load(),a=n.modelTopology;a.model_config!=null&&(a=a.model_config);let s=r.strict==null?!0:r.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,o=da($p(a),t,i),l=n.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),n.userDefinedMetadata!=null&&o.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=aU(n.weightData,n.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),re(u),re(d.map(h=>h.tensor))}return o}function aU(e,t){let r=Sr.decodeWeights(e,t),n={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:r[s.name]}):n[s.name]=r[s.name]}),{modelWeights:n,optimizerWeights:a}}var g1=class extends Ga{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Um("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof g1||e instanceof Ga,r;if(t){if(r=e,r.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=z7({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=r.outputs,this.inputs=r.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=_7(this.outputs[0])}this.inboundNodes=[],new Gm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Io(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ga({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,r=console.log){this.built||this.build(),super.summary(e,t,r)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,r={}){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.evaluate(e,t,r)}async evaluateDataset(e,t){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,r={}){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.fit(e,t,r)}async fitDataset(e,t){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,r={},n=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof g1))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=da(o,void 0,n);n&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let r={};r.className=t.getClassName(),r.config=t.getConfig(),e.push(r)}return{name:this.name,layers:e}}},qm=g1;qm.className="Sequential";ue.registerClass(qm);function sU(e){return new Ga(e)}function iU(e){return new qm(e)}function oU(e,t){return t==null&&(t={}),rU(e,t)}function e4(e){return z7(e)}function lU(e,t){mA.registerCallbackConstructor(e,t)}var sn=class extends ue.Serializable{getConfig(){return{}}},t4=class extends sn{apply(e,t=1){return PW(e,t)}};t4.className="elu";ue.registerClass(t4);var r4=class extends sn{apply(e){return L2(e)}};r4.className="selu";ue.registerClass(r4);var n4=class extends sn{apply(e){return $a(e)}};n4.className="relu";ue.registerClass(n4);var a4=class extends sn{apply(e){return K(()=>ph(6,$a(e)))}};a4.className="relu6";ue.registerClass(a4);var s4=class extends sn{apply(e){return e}};s4.className="linear";ue.registerClass(s4);var i4=class extends sn{apply(e){return Tr(e)}};i4.className="sigmoid";ue.registerClass(i4);var o4=class extends sn{apply(e){return zW(e)}};o4.className="hardSigmoid";ue.registerClass(o4);var l4=class extends sn{apply(e){return ad(e)}};l4.className="softplus";ue.registerClass(l4);var u4=class extends sn{apply(e){return _W(e)}};u4.className="softsign";ue.registerClass(u4);var d4=class extends sn{apply(e){return fu(e)}};d4.className="tanh";ue.registerClass(d4);var wA=class extends sn{apply(e,t=-1){return od(e,t)}};wA.className="softmax";ue.registerClass(wA);var p4=class extends sn{apply(e,t=-1){return C2(e,t)}};p4.className="logSoftmax";ue.registerClass(p4);var h4=class extends sn{apply(e,t=1){return K(()=>L(Tr(L(e,t)),e))}};h4.className="swish";ue.registerClass(h4);var c4=class extends sn{apply(e){return K(()=>L(e,fu(ad(e))))}};c4.className="mish";ue.registerClass(c4);function Os(e){return e.getClassName()}function By(e,t={}){return fh(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ds(e){if(e==null){let t={};return t.className="linear",t.config={},By(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},By(t)}else return e instanceof sn?e:By(e)}function kA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var f4=class extends ue.Serializable{},xh=class extends f4{constructor(e){super();kA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return K(()=>{let t=Wt([1]);return this.hasL1&&(t=le(t,ke(L(this.l1,er(e))))),this.hasL2&&(t=le(t,ke(L(this.l2,yh(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};xh.className="L1L2";ue.registerClass(xh);function uU(e){return kA(e),new xh({l1:e!=null?e.l1:null,l2:0})}function dU(e){return kA(e),new xh({l2:e!=null?e.l2:null,l1:0})}var Z3={l1l2:"L1L2"};function xt(e){return Q2(e)}function Y3(e,t={}){return fh(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Rt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Z3?Z3[e]:e,config:{}};return Y3(t)}else return e instanceof f4?e:Y3(e)}var IA=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ge(e);let r=$a(e);return this.maxValue!=null&&(r=hn(r,0,this.maxValue)),r}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};IA.className="ReLU";ue.registerClass(IA);var SA=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=Ge(e);return hm(r,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};SA.className="LeakyReLU";ue.registerClass(SA);var TA=class extends st{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Et(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Rt(e.alphaRegularizer),this.alphaConstraint=ar(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)r[n]=e[n];this.inputSpec=[new qt({ndim:e.length,axes:r})],this.built=!0}call(e,t){return e=Ge(e),xm(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Pt(this.alphaInitializer),alphaRegularizer:xt(this.alphaRegularizer),alphaConstraint:nr(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};TA.className="PReLU";ue.registerClass(TA);var NA=class extends st{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=Ge(e);return uh(r)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};NA.className="ELU";ue.registerClass(NA);var CA=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let r=Ge(e);return L(r,me(cn(r,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};CA.className="ThresholdedReLU";ue.registerClass(CA);var EA=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new wA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let r=Ge(e);return this.softmax(r,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};EA.className="Softmax";ue.registerClass(EA);function du(e,t,r){if(typeof e=="number")return Io(e,t);if(e.length!==t)throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){let a=e[n];if(!RW(a))throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function pa(e,t,r,n,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return r==="same"?i=e:i=e-s+1,Math.floor((i+n-1)/n)}function Sa(e,t,r,n){if(e==null)return null;if(n==="valid")e=e*t+zs([r-t,0]);else if(n==="same")e=e*t;else throw new q(`Unsupport padding mode: ${n}.`);return e}function RA(e,t){return K(()=>(Ut(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function m4(e,t){return K(()=>(Ut(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function pU(e,t,r,n=1,a="valid",s,i=1){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(r!=null&&r.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=b2(e,t,n,a==="same"?"same":"valid","NWC",i);return r!=null&&(o=ya(o,r)),o})}function J3(e,t,r,n=[1,1],a="valid",s,i,o=null){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=RA(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_s.conv2d({x:l,filter:t,strides:n,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:r,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function hU(e,t,r,n=[1,1,1],a="valid",s,i){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=m4(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=k2(o,t,n,a==="same"?"same":"valid","NDHWC",i),r!=null&&(o=ya(o,r)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var MA=class extends st{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",MA.verifyArgs(t),this.rank=e,cr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=du(t.kernelSize,e,"kernelSize"),this.strides=du(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Pn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ut(this.dataFormat),this.activation=Ds(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Et(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ar(t.biasConstraint),this.biasRegularizer=Rt(t.biasRegularizer),this.activityRegularizer=Rt(t.activityRegularizer),this.dilationRate=du(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ia("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!eA(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Os(this.activation),useBias:this.useBias,biasInitializer:Pt(this.biasInitializer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),biasConstraint:nr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},bh=class extends MA{constructor(e,t){super(e,t);this.kernel=null,bh.verifyArgs(t),this.filters=t.filters,cr(this.filters,"filters"),this.kernelInitializer=Et(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ar(t.kernelConstraint),this.kernelRegularizer=Rt(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let r=e[t],n=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:r}}],this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r,n=this.bias==null?null:this.bias.read(),a=I7(this.activation.getClassName());if(a!=null&&this.rank===2)r=J3(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)r=pU(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=J3(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=hU(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(e){e=ft(e);let t=[],r=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<r.length;++a){let s=pa(r[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:Pt(this.kernelInitializer),kernelRegularizer:xt(this.kernelRegularizer),kernelConstraint:nr(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},g4=class extends bh{constructor(e){super(2,e);g4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!eA(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Km=g4;Km.className="Conv2D";ue.registerClass(Km);var y4=class extends bh{constructor(e){super(3,e);y4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},Xm=y4;Xm.className="Conv3D";ue.registerClass(Xm);var FA=class extends Km{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=Ge(e);if(r.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=n[s],l=n[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=Sa(o,h,u,this.padding),f=Sa(l,p,d,this.padding),m=[a,c,f,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,1]));let g=w2(r,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=nt(g,[0,3,1,2])),this.bias!=null&&(g=ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3):(r=3,n=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[r]=this.filters,t[n]=Sa(t[n],o,s,this.padding),t[a]=Sa(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};FA.className="Conv2DTranspose";ue.registerClass(FA);var $A=class extends Xm{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:5,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=Ge(e);if(r.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=n[o],u=n[s],d=n[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Sa(l,f,h,this.padding),A=Sa(u,m,p,this.padding),x=Sa(d,g,c,this.padding),b=[a,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,4,1]));let w=Sk(r,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=nt(w,[0,4,1,2,3])),this.bias!==null&&(w=ya(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a,s;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3,s=4):(r=4,n=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[r]=this.filters,t[n]=Sa(t[n],u,i,this.padding),t[a]=Sa(t[a],d,o,this.padding),t[s]=Sa(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};$A.className="Conv3DTranspose";ue.registerClass($A);var A4=class extends bh{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Rt(t.depthwiseRegularizer),this.depthwiseConstraint=ar(t.depthwiseConstraint),this.pointwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Rt(t.pointwiseRegularizer),this.pointwiseConstraint=ar(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let r=e[t],n=this.kernelSize.concat([r,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(r*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),r=qk(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=ya(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=nt(r,[0,3,1,2])),r})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.pointwiseInitializer=Pt(this.pointwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.pointwiseRegularizer=xt(this.pointwiseRegularizer),e.depthwiseConstraint=nr(this.depthwiseConstraint),e.pointwiseConstraint=nr(this.pointwiseConstraint),e}};A4.className="SeparableConv";var PA=class extends A4{constructor(e){super(2,e)}};PA.className="SeparableConv2D";ue.registerClass(PA);var x4=class extends bh{constructor(e){super(1,e);x4.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!eA(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},_A=x4;_A.className="Conv1D";ue.registerClass(_A);var zA=class extends st{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return K(()=>{if(e=Ge(e),this.dataFormat==="channelsLast"){let r=_c(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return _c(r,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=_c(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return _c(r,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};zA.className="Cropping2D";ue.registerClass(zA);var OA=class extends st{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,NW(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],r=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,r]}else{let t=e[1]==null?null:this.size[0]*e[1],r=e[2]==null?null:this.size[1]*e[2];return[e[0],t,r,e[3]]}}call(e,t){return K(()=>{let r=Ge(e),n=r.shape;if(this.dataFormat==="channelsFirst"){r=nt(r,[0,2,3,1]);let a=this.size[0]*n[2],s=this.size[1]*n[3],i=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*n[1],s=this.size[1]*n[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};OA.className="UpSampling2D";ue.registerClass(OA);function cU(e,t,r=[1,1],n="valid",a,s){return K(()=>{a==null&&(a=ca()),Ut(a);let i=RA(e,a);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=lh(i,t,r,n==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var DA=class extends MA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Et(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ar(e.depthwiseConstraint),this.depthwiseRegularizer=Rt(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let r=e[t],n=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r=cU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=ya(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=pa(t,this.kernelSize[0],this.padding,this.strides[0]),s=pa(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,a,s]:[e[0],a,s,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.depthwiseConstraint=nr(this.depthwiseRegularizer),e}};DA.className="DepthwiseConv2D";ue.registerClass(DA);function b4(e,t,r,n){if(Array.isArray(e)){if(t!=null||r!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");n!=null&&(r=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),r=a(r),{inputs:e,initialState:t,constants:r}}function v4(e,t,r,n=!1,a,s,i=!1,o=!1){return K(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(fa(2,l));if(t=nt(t,u),s!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=me(me(a,"bool"),"float32"),a.rank===l-1&&(a=Ht(a,-1)),a=nt(a,u)),n&&(t=Fn(t,0),a!=null&&(a=Fn(a,0)));let d=[],h,p=r,c=t.shape[0],f=en(t),m;a!=null&&(m=en(a));for(let y=0;y<c;++y){let A=f[y],x=K(()=>e(A,p));if(a==null)h=x[0],p=x[1];else{let b=K(()=>{let w=m[y],T=he(Mn(w),w),S=le(L(x[0],w),L(p[0],T)),E=p.map((R,_)=>le(L(x[1][_],w),L(R,T)));return{output:S,newStates:E}});h=b.output,p=b.newStates}o&&d.push(h)}let g;return o&&(g=sr(d,1)),[h,g,p]})}var w4=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Jm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return fa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){u1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let r=t[0],n;if(this.returnSequences?n=[e[0],e[1],r]:n=[e[0],r],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[n].concat(a)}else return n}computeMask(e,t){return K(()=>{Array.isArray(t)&&(t=t[0]);let r=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(a=>null);return[r].concat(n)}else return r})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let r=0;r<e;++r)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");u1(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new qt({shape:[t,null,...r]});let n=[e[0]].concat(e.slice(2));this.cell.build(n);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(s=>new qt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new La("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_=[Wt([r,this.cell.stateSize])];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_[0]=Wt([r,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):re(this.states_);for(let n=0;n<this.states_.length;++n){let a=e[n],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[r,s];if(!v.arraysEqual(a.shape,i))throw new q(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[n]=a}}this.states_=this.states_.map(n=>hr(n.clone()))})}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=b4(e,r,n,this.numConstants);e=a.inputs,r=a.initialState,n=a.constants;let s=[],i=[];if(r!=null){t.initialState=r,s=s.concat(r),this.stateSpec=[];for(let o of r)this.stateSpec.push(new qt({shape:o.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,s=s.concat(n),this.numConstants=n.length),s[0]instanceof oa){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;e=Ge(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new q(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},o=v4((p,c)=>{let f=this.cell.call([p].concat(c),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,r,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,n);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return K(()=>{let t=Wt(e.shape);return t=ke(t,[1,2]),t=gh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?o1(t,[1,r]):t):this.cell.stateSize>1?[o1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===w4.className&&(t.cell={className:this.cell.getClassName(),config:r}),{...r,...e,...t}}static fromConfig(e,t,r={}){let n=t.cell,a=da(n,r);return new e(Object.assign(t,{cell:a}))}},Ja=w4;Ja.className="RNN";ue.registerClass(Ja);var vh=class extends st{},Zm=class extends vh{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cr(this.units,"units"),this.activation=Ds(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=xu([1,zs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=xu([1,zs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let r=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ls({ones:()=>Mn(e),rate:this.dropout,training:n,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ls({ones:()=>Mn(r),rate:this.recurrentDropout,training:n,dropoutFunc:this.dropoutFunc}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Na(L(e,s),this.kernel.read()):a=Na(e,this.kernel.read()),this.bias!=null&&(a=ya(a,this.bias.read())),i!=null&&(r=L(r,i));let o=le(a,Na(r,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Os(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Zm.className="SimpleRNNCell";ue.registerClass(Zm);var LA=class extends Ja{constructor(e){e.cell=new Zm(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return new e(t)}};LA.className="SimpleRNN";ue.registerClass(LA);var Ym=class extends vh{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,cr(this.units,"units"),this.activation=Ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=xu([1,zs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=xu([1,zs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ls({ones:()=>Mn(e),rate:this.dropout,training:r,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ls({ones:()=>Mn(n),rate:this.recurrentDropout,training:r,count:3,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Na(e,this.kernel.read());this.useBias&&(u=ya(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,s[0]));let d=this.recurrentKernel.read(),[h,p]=Kt(d,[2*this.units,this.units],d.rank-1),c=Na(n,h),[f,m,g]=Kt(u,3,u.rank-1),[y,A]=Kt(c,2,c.rank-1);i=this.recurrentActivation.apply(le(f,y)),o=this.recurrentActivation.apply(le(m,A));let x=Na(L(o,n),p);l=this.activation.apply(le(g,x));let b=le(L(i,n),L(le(1,zt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Os(this.activation),recurrentActivation:Os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Ym.className="GRUCell";ue.registerClass(Ym);var BA=class extends Ja{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ym(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};BA.className="GRU";ue.registerClass(BA);var wh=class extends vh{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cr(this.units,"units"),this.activation=Ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=xu([1,zs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=xu([1,zs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let r=e[e.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;n=new(t=class extends Hn{apply(i,o){let l=a.apply([s]),u=new zm().apply([s]),d=a.apply([s*2]);return O3(O3(l,u),d)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ls({ones:()=>Mn(e),rate:this.dropout,training:r,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ls({ones:()=>Mn(n),rate:this.recurrentDropout,training:r,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Na(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,i[0])),h=le(h,Na(n,this.recurrentKernel.read())),this.useBias&&(h=ya(h,this.bias.read()));let[p,c,f,m]=Kt(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=le(L(l,a),L(o,this.activation.apply(f))),d=this.recurrentActivation.apply(m);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Os(this.activation),recurrentActivation:Os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};wh.className="LSTMCell";ue.registerClass(wh);var WA=class extends Ja{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new wh(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};WA.className="LSTM";ue.registerClass(WA);var Jm=class extends vh{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return K(()=>{e=e;let r=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(r.splice(0,i.stateSize.length)):n.push(r.splice(0,1));n.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];r=n[i],i===0?s=[e[0]].concat(r):s=[s[0]].concat(r),s=o.call(s,t),a.push(s.slice(1))}r=[];for(let i of a.slice().reverse())r.push(...i);return[s[0]].concat(r)})}build(e){u1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((r,n)=>{go(`RNNCell_${n}`,()=>{r.build(e),Array.isArray(r.stateSize)?t=r.stateSize[0]:t=r.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=n=>({className:n.getClassName(),config:n.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,r={}){let n=[];for(let a of t.cells)n.push(da(a,r));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.cells)t.push(...r.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return d1(e)}setWeights(e){let t=[];for(let r of this.cells){let n=r.weights.length,a=e.splice(n);for(let s=0;s<r.weights.length;++s)t.push([r.weights[s],a[s]])}fA(t)}};Jm.className="StackedRNNCells";ue.registerClass(Jm);function Ls(e){let{ones:t,rate:r,training:n=!1,count:a=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),r):M7(t(),r),o=()=>Ah(i,t,n);return!a||a<=1?hr(o().clone()):Array(a).fill(void 0).map(o).map(l=>hr(l.clone()))}var k4=class extends Ja{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new qt({ndim:5})]}call(e,t){return K(()=>{if(this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return K(()=>{let{stateSize:t}=this.cell,r=e.shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)],s=Wt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new La("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)];if(r[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_=[Wt(a)];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_[0]=Wt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>hr(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:r,kernelSize:n,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=pa(l,n[0],a,s[0],i[0]),h=pa(u,n[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[r,d,h]:[d,h,r]]}};k4.className="ConvRNN2D";var Qm=class extends wh{constructor(e){let{filters:t,kernelSize:r,strides:n,padding:a,dataFormat:s,dilationRate:i}=e;super({...e,units:t});this.filters=t,cr(this.filters,"filters"),this.kernelSize=du(r,2,"kernelSize"),this.kernelSize.forEach(o=>cr(o,"kernelSize")),this.strides=du(n||1,2,"strides"),this.strides.forEach(o=>cr(o,"strides")),this.padding=a||"valid",Pn(this.padding),this.dataFormat=s||"channelsLast",Ut(this.dataFormat),this.dilationRate=du(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>cr(o,"dilationRate"))}build(e){var t;e=ft(e);let r=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[r]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[r]}`);let n=e[r],a=4,s=this.kernelSize.concat([n,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Hn{apply(d,h){let p=l.apply([u]),c=pn([u]),f=l.apply([u*2]);return iA([p,c,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return K(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training||!1,n=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ls({ones:()=>Mn(n),rate:this.dropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(V,ee,J)=>!ee||!ee[J]?V:L(ee[J],V),u=l(n,o,0),d=l(n,o,1),h=l(n,o,2),p=l(n,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ls({ones:()=>Mn(a),rate:this.recurrentDropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let c=this.recurrentDropoutMask,f=l(a,c,0),m=l(a,c,1),g=l(a,c,2),y=l(a,c,3),A=3,[x,b,w,T]=Kt(this.kernel.read(),i,A),[S,E,R,_]=this.useBias?Kt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),d=this.inputConv(d,b,E,this.padding),h=this.inputConv(h,w,R,this.padding),p=this.inputConv(p,T,_,this.padding);let[M,I,O,z]=Kt(this.recurrentKernel.read(),i,A);f=this.recurrentConv(f,M),m=this.recurrentConv(m,I),g=this.recurrentConv(g,O),y=this.recurrentConv(y,z);let j=this.recurrentActivation.apply(le(u,f)),X=this.recurrentActivation.apply(le(d,m)),D=le(L(X,s),L(j,this.activation.apply(le(h,g)))),Q=L(this.recurrentActivation.apply(le(p,y)),this.activation.apply(D));return[Q,Q,D]})}getConfig(){let{units:e,...t}=super.getConfig(),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...r}}inputConv(e,t,r,n){let a=Fs(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?ya(a,r,this.dataFormat):a}recurrentConv(e,t){return Fs(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Qm.className="ConvLSTM2DCell";ue.registerClass(Qm);var VA=class extends k4{constructor(e){let t=new Qm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};VA.className="ConvLSTM2D";ue.registerClass(VA);var e0=class extends st{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,r=[];for(let n=0;n<this.noiseShape.length;++n)r.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return r}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,a=this.getNoiseShape(r);return Ah(()=>M7(r,this.rate,a,this.seed),()=>r,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};e0.className="Dropout";ue.registerClass(e0);var UA=class extends e0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};UA.className="SpatialDropout1D";ue.registerClass(UA);var GA=class extends st{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,cr(this.units,"units"),this.activation=Ds(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ar(e.kernelConstraint),this.biasConstraint=ar(e.biasConstraint),this.kernelRegularizer=Rt(e.kernelRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=I7(this.activation.getClassName()),a;return n!=null?a=Na(r,this.kernel.read(),n,this.bias?this.bias.read():null):(a=Na(r,this.kernel.read()),this.bias!=null&&(a=ya(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Os(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),biasConstraint:nr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Dense";ue.registerClass(GA);var jA=class extends st{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ss(e,1)]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);if(this.dataFormat==="channelsFirst"&&r.rank>1){let n=[0];for(let a=2;a<r.rank;++a)n.push(a);n.push(1),r=nt(r,n)}return $W(r)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};jA.className="Flatten";ue.registerClass(jA);var HA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ds(e.activation)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return this.activation.apply(r)})}getConfig(){let e={activation:Os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};HA.className="Activation";ue.registerClass(HA);var qA=class extends st{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return K(()=>(e=Ge(e),MW(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};qA.className="RepeatVector";ue.registerClass(qA);var KA=class extends st{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let r="Total size of new array must be unchanged.",n=t.slice(),a=1,s=null;for(let o=0;o<n.length;++o){let l=n[o];if(this.isUnknown(l))if(s===null)s=o;else throw new q("Can only specifiy one unknown dimension.");else a*=l}let i=Ss(e);if(s!==null){if(a===0||i%a!==0)throw new q(r);n[s]=i/a}else if(i!==a)throw new q(r);return n}computeOutputShape(e){let t=!1;for(let r=0;r<e.length;++r)if(this.isUnknown(e[r])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=r.shape,a=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return G(r,a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Reshape";ue.registerClass(KA);var XA=class extends st{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=fa(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((r,n)=>{t[n+1]=e[r]}),t}call(e,t){return nt(Ge(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};XA.className="Permute";ue.registerClass(XA);var ZA=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let r=Ge(e),n=-1;return hf(yu(r,this.maskValue),n)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=-1,a=!0,s=hf(yu(r,this.maskValue),n,a);return L(r,me(s,r.dtype))})}};ZA.className="Masking";ue.registerClass(ZA);var YA=class extends st{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(It(e.inputLength))}this.inputDim=e.inputDim,cr(this.inputDim,"inputDim"),this.outputDim=e.outputDim,cr(this.outputDim,"outputDim"),this.embeddingsInitializer=Et(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Rt(e.embeddingsRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.embeddingsConstraint=ar(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return K(()=>this.maskZero?(e=Ge(e),yu(e,at(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=It(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let r=0;for(let n=0;n<t.length;++n){let a=t[n],s=e[n+1];if(a!=null&&s!=null&&a!==s)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[r]=s),r++}}return[e[0],...t,this.outputDim]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);r.dtype!=="int32"&&(r=Pm(r,"int32"));let n=R7(this.embeddings.read(),G(r,[r.size]));return G(n,ft(this.computeOutputShape(r.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Pt(this.embeddingsInitializer),embeddingsRegularizer:xt(this.embeddingsRegularizer),activityRegularizer:xt(this.activityRegularizer),embeddingsConstraint:nr(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Embedding";ue.registerClass(YA);var Sl=class extends st{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let r=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let a=e[e.length-t.length+n],s=t[n];if(a==null||s==null||a<0||s<0)r.push(null);else if(a===1)r.push(s);else if(s===1)r.push(a);else{if(a!==s)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));r.push(a)}}return r}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Is(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let r=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);r=this.computeElementwiseOpOutputShape(r,s)}let n=e.map(a=>a.length);e.indexOf(null)===-1&&Is(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return K(()=>{if(e=e,this.reshapeRequired){let r=[],n=e.map(a=>a.rank);if(n.indexOf(null)===-1){let a=zs(n);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=gh(s,1);r.push(s)}return this.mergeFunction(r)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=G(o,[d].concat(Ss(u.slice(1))));p=nt(p,[1,0]),p=G(p,h),r.push(p),a=!0}else if(l>1){let u=fa(1,l).concat([0]);r.push(nt(o,u)),a=!0}else r.push(o)}let s=this.mergeFunction(r),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=G(nt(G(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(fa(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let a=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let r=[];for(let n of e)n!=null&&n[0]!==null&&r.push(n[0]);return r=Is(r),r.length===1?t=r.concat(t):t=[null].concat(t),t}computeMask(e,t){return K(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:Ht(n,0));let r=t[0];for(let n=1;n<t.length-1;++n)r=ha(r,t[n]);return r})}},JA=class extends Sl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return t})}};JA.className="Add";ue.registerClass(JA);var QA=class extends Sl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=L(t,e[r]);return t})}};QA.className="Multiply";ue.registerClass(QA);var ex=class extends Sl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return L(1/e.length,t)})}};ex.className="Average";ue.registerClass(ex);var tx=class extends Sl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=Xa(t,e[r]);return t})}};tx.className="Maximum";ue.registerClass(tx);var rx=class extends Sl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=ph(t,e[r]);return t})}};rx.className="Minimum";ue.registerClass(rx);var nx=class extends Sl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let r=[];for(let n=0;n<e.length;++n){let a=e[n].slice();a.splice(this.axis,1);let s=!1;for(let i of r)if(v.arraysEqual(i,a)){s=!0;break}s||r.push(a)}if(r.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return K(()=>iA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,r=t[0].slice(),n=this.axis<0?r.length+this.axis:this.axis;for(let a of t.slice(1)){if(r[n]==null||a[n]==null){r[n]=null;break}r[n]+=a[n]}return r}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return K(()=>{let r=!0;if(t.forEach(s=>{if(s!=null){r=!1;return}}),r)return null;let n=[];for(let s=0;s<e.length;++s)t[s]==null?n.push(me(Mn(e[s]),"bool")):t[s].rank<e[s].rank?n.push(Ht(t[s],-1)):n.push(t[s]);let a=kt(n,this.axis);return g2(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Concatenate";ue.registerClass(nx);function sp(e,t){for(;e<0;)e+=t;return e}function fU(e,t,r){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof r=="number"&&(r=[r,r]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let n=e.shape.length,a=t.shape.length;r==null&&(r=[n-1,a-2]);let s=r;return K(()=>{let i;if(n>a){i=n-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=G(t,t.shape.concat(l))}else if(a>n){i=a-n;let l=[];for(let u=0;u<i;++u)l.push(1);e=G(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ke(L(e,t),s[0]):o=ke(L(nt(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Je(e,t,l,u)}if(i>0){let l;n>a?l=n+a-3:l=n-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=et(o,u)}return o.shape.length===1&&(o=Ht(o,1)),o})}var ax=class extends Sl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],r=e[1];if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);if(t[n[0]]!==r[n[1]])throw new q(`Dimension incompatibility: ${t[n[0]]} !== ${r[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],r=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((a,s)=>sp(a,e[s].shape.length)):n=[sp(this.axes,t.shape.length),sp(this.axes,r.shape.length)],this.normalize&&(t=gf(t,n[0]),r=gf(r,n[1])),fU(t,r,n)}interpretAxes(e,t){let r;return Array.isArray(this.axes)?r=this.axes:r=[sp(this.axes,e.length),sp(this.axes,t.length)],r}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),r=e[1].slice();if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);t.splice(n[0],1),r.splice(n[1],1),r.splice(0,1);let a=t.concat(r);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ax.className="Dot";ue.registerClass(ax);var sx=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return Ah(()=>le(_m(r.shape,0,this.stddev),r),()=>r,t.training||!1)})}};sx.className="GaussianNoise";ue.registerClass(sx);var ix=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return this.rate>0&&this.rate<1?Ah(()=>{let n=Math.sqrt(this.rate/(1-this.rate));return L(r,_m(r.shape,1,n))},()=>r,t.training||!1):r})}};ix.className="GaussianDropout";ue.registerClass(ix);var ox=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ge(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(e);return Ah(()=>{let n=Ge(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=bl(id(r),this.rate);o=Pm(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=le(L(n,o),L(le(o,-1),i));return le(L(d,l),u)},()=>Ge(e),t.training||!1)}return e})}};ox.className="AlphaDropout";ue.registerClass(ox);function Pp(e,t,r,n,a,s=.001){let i;if(e.rank===2)i=gk(e,t,r,n,a,s);else if(e.rank===3)i=yk(e,t,r,n,a,s);else if(e.rank===4)i=Ak(e,t,r,n,a,s);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function mU(e,t,r,n,a=.001){return K(()=>{let s=ym(e,n),i=s.mean,o=s.variance;return[Pp(e,i,o,r,t,a),i,o]})}function gU(e,t,r,n,a=.001){return K(()=>{let s=ym(e,n),i=s.mean,o=s.variance,l=[];for(let c of fa(0,e.rank))n.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=G(i,l),d=G(o,l),h=t==null?null:G(t,l),p=r==null?null:G(r,l);return[Pp(e,u,d,p,h,a),i,o]})}function yU(e,t,r,n,a=.001){return v.arraysEqual(n.slice().sort(),fa(0,e.rank-1))?mU(e,t,r,n,a):gU(e,t,r,n,a)}var lx=class extends st{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.movingMeanInitializer=Et(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Et(e.movingVarianceInitializer||"ones"),this.betaConstraint=ar(e.betaConstraint),this.gammaConstraint=ar(e.gammaConstraint),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,r=e[t];if(r==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:r}})];let n=[r];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training,n=Ge(e),a=n.shape,s=a.length,i=fa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Io(1,s);l[o]=a[o];let u=i.slice();u.sort();let d=!v.arraysEqual(u,fa(0,s).slice(0,s-1)),h=()=>{if(d){let g=G(this.movingMean.read(),l),y=G(this.movingVariance.read(),l),A=this.center?G(this.beta.read(),l):null,x=this.scale?G(this.gamma.read(),l):null;return Pp(n,g,y,A,x,this.epsilon)}else return Pp(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return h();let[p,c,f]=yU(n,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(g,y,A)=>{K(()=>{let x=1-A,b=g.read(),w=L(he(b,y),x);g.write(he(b,w))})};return m(this.movingMean,c,this.momentum),m(this.movingVariance,f,this.momentum),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),movingMeanInitializer:Pt(this.movingMeanInitializer),movingVarianceInitializer:Pt(this.movingVarianceInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer),betaConstraint:nr(this.betaConstraint),gammaConstraint:nr(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};lx.className="BatchNormalization";ue.registerClass(lx);var ux=class extends st{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Is(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(a=>e[a]),n=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let r=Ge(e),n=r.shape,a=n.length;return K(()=>{let{mean:s,variance:i}=ym(r,this.axis,!0),o=Io(1,a);for(let c of this.axis)o[c]=n[c];let l=c=>c!=null&&c.shape.length!==a?G(c,o):c,u=l(this.gamma.read()),d=l(this.beta.read()),h=[],p=[];for(let c=0;c<a;++c)this.axis.indexOf(c)!==-1?(h.push(n[c]),p.push(1)):(h.push(1),p.push(n[c]));return s=Dn(s,h),i=Dn(i,h),u=Dn(u,p),d=Dn(d,p),Pp(r,s,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};ux.className="LayerNormalization";ue.registerClass(ux);function AU(e,t,r){return K(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(r==null&&(r=ca()),r!=="channelsLast"&&r!=="channelsFirst")throw new q(`Unknown data format: ${r}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return r==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Gn(e,n)})}var dx=class extends st{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?ca():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,r;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],r=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);r=e.padding[1]}this.padding=[t,r]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,r;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?r=e[3]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],e[1],t,r]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?r=e[2]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],t,r,e[3]])}call(e,t){return K(()=>AU(Ge(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};dx.className="ZeroPadding2D";ue.registerClass(dx);function t0(e,t,r,n,a,s){return K(()=>{Ut(a),T7(s),Pn(n),r==null&&(r=[1,1]),n==null&&(n="valid"),a==null&&(a=ca()),s==null&&(s="max"),e=RA(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=gm(e,t,r,o):i=lm(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function I4(e,t,r,n,a,s){return K(()=>{Ut(a),T7(s),Pn(n),r==null&&(r=[1,1,1]),n==null&&(n="valid"),a==null&&(a=ca()),s==null&&(s="max"),e=m4(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=F2(e,t,r,o):i=A2(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var S4=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(cr(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Pn(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=pa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return K(()=>{this.invokeCallHook(e,t),e=gh(Ge(e),2);let r=this.poolingFunction(Ge(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return et(r,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},px=class extends S4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),t0(e,t,r,n,a,"max")}};px.className="MaxPooling1D";ue.registerClass(px);var hx=class extends S4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),t0(e,t,r,n,a,"avg")}};hx.className="AveragePooling1D";ue.registerClass(hx);var T4=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];cr(this.poolSize,"poolSize"),cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Pn(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=pa(t,this.poolSize[0],this.padding,this.strides[0]),r=pa(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r]:[e[0],t,r,e[3]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},cx=class extends T4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),t0(e,t,r,n,a,"max")}};cx.className="MaxPooling2D";ue.registerClass(cx);var fx=class extends T4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),t0(e,t,r,n,a,"avg")}};fx.className="AveragePooling2D";ue.registerClass(fx);var N4=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];cr(this.poolSize,"poolSize"),cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Pn(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=pa(t,this.poolSize[0],this.padding,this.strides[0]),r=pa(r,this.poolSize[1],this.padding,this.strides[1]),n=pa(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r,n]:[e[0],t,r,n,e[4]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},mx=class extends N4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),I4(e,t,r,n,a,"max")}};mx.className="MaxPooling3D";ue.registerClass(mx);var gx=class extends N4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),I4(e,t,r,n,a,"avg")}};gx.className="AveragePooling3D";ue.registerClass(gx);var C4=class extends st{constructor(e){super(e);this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},yx=class extends C4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=Ge(e);return Bt(r,1)})}};yx.className="GlobalAveragePooling1D";ue.registerClass(yx);var Ax=class extends C4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=Ge(e);return fr(r,1)})}};Ax.className="GlobalMaxPooling1D";ue.registerClass(Ax);var E4=class extends st{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},xx=class extends E4{call(e,t){return K(()=>{let r=Ge(e);return this.dataFormat==="channelsLast"?Bt(r,[1,2]):Bt(r,[2,3])})}};xx.className="GlobalAveragePooling2D";ue.registerClass(xx);var bx=class extends E4{call(e,t){return K(()=>{let r=Ge(e);return this.dataFormat==="channelsLast"?fr(r,[1,2]):fr(r,[2,3])})}};bx.className="GlobalMaxPooling2D";ue.registerClass(bx);var R4=class extends st{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,r={}){let n=t.layer,a=da(n,r);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},vx=class extends R4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),r=this.layer.computeOutputShape(t),n=e[1];return[r[0],n].concat(r.slice(1))}call(e,t){return K(()=>(e=Ge(e),v4((r,n)=>[Ge(this.layer.call(r,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};vx.className="TimeDistributed";ue.registerClass(vx);function xU(e){kl(TW,"BidirectionalMergeMode",e)}var bU="concat",wx=class extends R4{constructor(e){super(e);let t=e.layer.getConfig(),r={};r.className=e.layer.getClassName(),r.config=t,this.forwardLayer=da(r),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=da(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?bU:e.mergeMode,xU(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,r=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,r)),this.backwardLayer.setWeights(e.slice(r))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let r,n,a;return this.returnState&&(a=t.slice(1)),r=t[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,n=[r]):this.mergeMode==null?n=[r,r.slice()]:n=[r],this.returnState?this.mergeMode==null?n.concat(a).concat(a.slice()):[r].concat(a).concat(a.slice()):Jr(n)}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=b4(e,r,n,this.numConstants);if(e=a.inputs,r=a.initialState,n=a.constants,Array.isArray(e)&&(r=e.slice(1),e=e[0]),(r==null||r.length===0)&&n==null)return super.apply(e,t);let s=[],i=[];if(r!=null){let l=r.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=r,s.push(...r);let u=r.map(d=>new qt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(n!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof oa;for(let l of s)if(l instanceof oa!==o)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t.initialState,n,a;if(r==null)n=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=r.slice(0,r.length/2),l=r.slice(r.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(n)&&(s=n.slice(1).concat(a.slice(1))),n=n[0],a=a[0]),this.returnSequences&&(a=Fn(a,1));let i;return this.mergeMode==="concat"?i=iA([n,a]):this.mergeMode==="sum"?i=le(n,a):this.mergeMode==="ave"?i=L(.5,le(n,a)):this.mergeMode==="mul"?i=L(n,a):this.mergeMode==null&&(i=[n,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){go(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),go(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[t,t]:r=t:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let n=this.forwardLayer.states.map(a=>null);return Array.isArray(r)?r.concat(n).concat(n):[r].concat(n).concat(n)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let r=da(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=r,new e(n)}};wx.className="Bidirectional";ue.registerClass(wx);function vU(e){return new ud(e)}function wU(e){return new NA(e)}function kU(e){return new IA(e)}function IU(e){return new SA(e)}function SU(e){return new TA(e)}function TU(e){return new EA(e)}function NU(e){return new CA(e)}function CU(e){return new _A(e)}function EU(e){return new Km(e)}function RU(e){return new FA(e)}function MU(e){return new Xm(e)}function FU(e){return new $A(e)}function $U(e){return new PA(e)}function PU(e){return new zA(e)}function _U(e){return new OA(e)}function zU(e){return new DA(e)}function OU(e){return new HA(e)}function DU(e){return new GA(e)}function LU(e){return new e0(e)}function BU(e){return new UA(e)}function WU(e){return new jA(e)}function VU(e){return new qA(e)}function UU(e){return new KA(e)}function GU(e){return new XA(e)}function jU(e){return new YA(e)}function HU(e){return new JA(e)}function qU(e){return new ex(e)}function KU(e){return new nx(e)}function XU(e){return new tx(e)}function ZU(e){return new rx(e)}function YU(e){return new QA(e)}function JU(e){return new ax(e)}function QU(e){return new lx(e)}function eG(e){return new ux(e)}function tG(e){return new dx(e)}function kx(e){return new hx(e)}function rG(e){return kx(e)}function nG(e){return kx(e)}function Ix(e){return new fx(e)}function aG(e){return Ix(e)}function sG(e){return Ix(e)}function Sx(e){return new gx(e)}function iG(e){return Sx(e)}function oG(e){return Sx(e)}function lG(e){return new yx(e)}function uG(e){return new xx(e)}function M4(e){return new Ax(e)}function F4(e){return new bx(e)}function $4(e){return new px(e)}function P4(e){return new cx(e)}function dG(e){return new mx(e)}function pG(e){return new BA(e)}function hG(e){return new Ym(e)}function cG(e){return new WA(e)}function fG(e){return new wh(e)}function mG(e){return new LA(e)}function gG(e){return new Zm(e)}function yG(e){return new VA(e)}function AG(e){return new Qm(e)}function xG(e){return new Ja(e)}function bG(e){return new Jm(e)}function vG(e){return new wx(e)}function wG(e){return new vx(e)}var kG=M4,IG=F4,SG=$4,TG=P4;function NG(e){return new sx(e)}function CG(e){return new ix(e)}function EG(e){return new ox(e)}function RG(e){return new ZA(e)}var _4={};Le(_4,{MAPE:()=>WG,MSE:()=>GG,binaryAccuracy:()=>MG,binaryCrossentropy:()=>FG,categoricalAccuracy:()=>PG,categoricalCrossentropy:()=>_G,cosineProximity:()=>DG,mape:()=>VG,meanAbsoluteError:()=>LG,meanAbsolutePercentageError:()=>BG,meanSquaredError:()=>UG,mse:()=>jG,precision:()=>zG,recall:()=>OG,sparseCategoricalAccuracy:()=>$G});function MG(e,t){return yA(e,t)}function FG(e,t){return j7(e,t)}function $G(e,t){return H7(e,t)}function PG(e,t){return AA(e,t)}function _G(e,t){return xA(e,t)}function zG(e,t){return G7(e,t)}function OG(e,t){return vV(e,t)}function DG(e,t){return gA(e,t)}function LG(e,t){return jm(e,t)}function BG(e,t){return dd(e,t)}function WG(e,t){return dd(e,t)}function VG(e,t){return dd(e,t)}function UG(e,t){return Il(e,t)}function GG(e,t){return Il(e,t)}function jG(e,t){return Il(e,t)}var z4={};Le(z4,{modelFromJSON:()=>tU});var O4={};Le(O4,{l1:()=>qG,l1l2:()=>HG,l2:()=>KG});function HG(e){return new xh(e)}function qG(e){return uU(e)}function KG(e){return dU(e)}var D4=class extends bu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ga))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Dc(e,t){return e<t}function Q3(e,t){return e>t}var L4=class extends D4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Dc:this.mode==="max"?this.monitorFunc=Q3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Q3:this.monitorFunc=Dc,this.monitorFunc===Dc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Dc?1/0:-1/0}async onEpochEnd(e,t){await xs(t);let r=this.getMonitorValue(t);r!=null&&(this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function XG(e){return new L4(e)}var ZG={earlyStopping:XG},YG=Y();YG.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var B4=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(B4||{}),ev;(e=>{let t;(r=>{r[r.LEGACY=0]="LEGACY",r[r.V1=1]="V1",r[r.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(ev||(ev={}));var Tx={};function JG(e,t){let r={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Tx[e]=r}function W4(e){return Tx[e]}function QG(e){delete Tx[e]}function k(e,t,r,n,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Or(t.inputNames[s.inputIndexStart],r,n,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Or(h,r,n,a));let u=Or(t.inputNames.slice(o)[0],r,n,a),d=u.dataSync();return s.type==="number"?d[0]:v.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Or(e,t,r,n){let[a,s]=un(e);if(n!=null){let o=n.getHashTableHandleByName(a);if(o!=null)return o}let i=r.currentContextIds.find(o=>!!t[vf(a,o)]);return i!==void 0?t[vf(a,i)][s]:void 0}function ej(e,t,r){return t[vf(e,r.currentContextId)]}function Ta(e,t){let[r,n,a]=un(e);return[vf(r,t&&t.currentContextId),n,a]}function vf(e,t){return t?`${e}-${t}`:e}function un(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let r=t[0],n=t.length===3?t[1]:void 0,a=Number(t[t.length-1]);return[r,a,n]}function qc(e,t,r){let n=k("pad",e,t,r);if(n==="explicit"){n=k("explicitPaddings",e,t,r);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=n[s*2],a[s][1]=n[s*2+1];return a}return n}function Wa(e){return e.kept?e:Lr(e)}var V4={};Le(V4,{json:()=>tj});var tj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],U4={};Le(U4,{json:()=>rj});var rj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],G4={};Le(G4,{json:()=>nj});var nj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],j4={};Le(j4,{json:()=>aj});var aj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],H4={};Le(H4,{json:()=>sj});var sj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],q4={};Le(q4,{json:()=>ij});var ij=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],K4={};Le(K4,{json:()=>oj});var oj=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],X4={};Le(X4,{json:()=>lj});var lj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Z4={};Le(Z4,{json:()=>uj});var uj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Y4={};Le(Y4,{json:()=>dj});var dj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],J4={};Le(J4,{json:()=>pj});var pj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Q4={};Le(Q4,{json:()=>hj});var hj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],e6={};Le(e6,{json:()=>cj});var cj=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],t6={};Le(t6,{json:()=>fj});var fj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],r6={};Le(r6,{json:()=>mj});var mj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],n6={};Le(n6,{json:()=>gj});var gj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],a6={};Le(a6,{json:()=>yj});var yj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],s6={};Le(s6,{json:()=>Aj});var Aj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],i6={};Le(i6,{json:()=>xj});var xj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],tv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[V4,U4,G4,j4,H4,q4,K4,X4,Z4,Y4,J4,Q4,e6,t6,r6,n6,a6,s6,i6],t=[].concat(...e.map(r=>r.json));this.opMappers=t.reduce((r,n)=>(r[n.tfOpName]=n,r),{})}transformGraph(e,t={}){let r=e.node,n=[],a=[],s=[],i=r.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?n.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach((g,y)=>{let[A,,x]=Ta(g),b=i[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let T=`${A}:${w}`;m.inputNames[y]=T}}m.inputs.push(b),b.children.push(m)})}),Object.keys(d).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(d).forEach(f=>{let[m]=Ta(f),g=i[m];g!=null&&(g.signatureKey=d[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Ta(f),g=i[m];g&&(g.signatureKey=u[f],o.push(g))}):o=n;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let c={nodes:i,inputs:o,outputs:l,weights:a,placeholders:n,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,r)=>(t[e[r].name]=r,t),{})}mapNode(e){let t=W4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let r={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(r.inputParams=t.inputs.reduce((n,a)=>(n[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},n),{})),t.attrs!=null&&(r.attrParams=t.attrs.reduce((n,a)=>{let s=a.type,i;switch(a.type){case"string":i=y1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=y1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=I1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=x1(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=x1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=k1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=A1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=A1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=T1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=w1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=w1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=S1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=S1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=b1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=v1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=rv(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=rv(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return n[a.name]={value:i,type:s},n},{})),r}mapFunction(e){let t=e.nodeDef,r=[],n=[],a={};t!=null&&(a=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&n.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ta(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Nx(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[d]=h}),Object.keys(a).forEach(u=>{let d=a[u];d.inputNames.forEach((h,p)=>{let[c,,f]=Ta(h),m=a[c];if(m.outputs!=null){let g=m.outputs.indexOf(f);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(m),m.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=Ta(o[u.name]),p=a[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:n,placeholders:r,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r),t),{}),outputs:e.signature.outputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r,e.ret),t),{})}}mapArgToTensorInfo(e,t){let r=e.name;return t!=null&&(r=t[r]),{name:r,dtype:e.type}}};function bj(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function o6(e,t){let r=Array.isArray(e)?String.fromCharCode.apply(null,e):bj(e);return t?r:r.toLowerCase()}function y1(e,t,r,n=!1){let a=e[t];return a!=null?o6(a.s,n):r}function A1(e,t,r){let n=e[t];return n?n.b:r}function x1(e,t,r){let n=e[t]||{},a=n.i!=null?n.i:n.f!=null?n.f:r;return typeof a=="number"?a:parseInt(a,10)}function Nx(e){switch(typeof e=="string"&&(e=B4[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function rv(e,t,r){let n=e[t];return n&&n.func?n.func.name:r}function b1(e,t,r){let n=e[t];return n&&n.type?Nx(n.type):r}function v1(e,t,r){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(a=>Nx(a)):r}function l6(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function w1(e,t,r){let n=e[t];return n&&n.shape?l6(n.shape):r}function k1(e,t,r){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):r}function I1(e,t,r,n=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>o6(s,n)):r}function S1(e,t,r){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(a=>l6(a)):r}function T1(e,t,r){let n=e[t];return n&&n.list&&n.list.b?n.list.b:r}var vj=class{constructor(e,t,r){this.node=e,this.tensorMap=t,this.context=r,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,a)=>(n[a]=this.getAttr(a),n),{}))}getInput(e){return Or(e,this.tensorMap,this.context)}getAttr(e,t){let r=this.node.rawAttrs[e];if(r.tensor!=null)return Or(e,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return x1(this.node.rawAttrs,e,t);if(r.s!=null)return y1(this.node.rawAttrs,e,t);if(r.b!=null)return A1(this.node.rawAttrs,e,t);if(r.shape!=null)return w1(this.node.rawAttrs,e,t);if(r.type!=null)return b1(this.node.rawAttrs,e,t);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return k1(this.node.rawAttrs,e,t);if(r.list.s!=null)return I1(this.node.rawAttrs,e,t);if(r.list.shape!=null)return S1(this.node.rawAttrs,e,t);if(r.list.b!=null)return T1(this.node.rawAttrs,e,t);if(r.list.type!=null)return v1(this.node.rawAttrs,e,t)}return t}},wj=(e,t,r)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,r),k("b",e,t,r))];case"AddN":return[om(k("tensors",e,t,r))];case"FloorMod":case"Mod":return[sd(k("a",e,t,r),k("b",e,t,r))];case"Mul":return[L(k("a",e,t,r),k("b",e,t,r))];case"RealDiv":case"Div":return[pe(k("a",e,t,r),k("b",e,t,r))];case"DivNoNan":return[Rk(k("a",e,t,r),k("b",e,t,r))];case"FloorDiv":return[ih(k("a",e,t,r),k("b",e,t,r))];case"Sub":return[he(k("a",e,t,r),k("b",e,t,r))];case"Minimum":return[ph(k("a",e,t,r),k("b",e,t,r))];case"Maximum":return[Xa(k("a",e,t,r),k("b",e,t,r))];case"Pow":return[Ps(k("a",e,t,r),k("b",e,t,r))];case"SquaredDifference":return[G2(k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kj=(e,t,r)=>{switch(e.op){case"Abs":case"ComplexAbs":return[er(k("x",e,t,r))];case"Acos":return[sk(k("x",e,t,r))];case"Acosh":return[ik(k("x",e,t,r))];case"Asin":return[lk(k("x",e,t,r))];case"Asinh":return[uk(k("x",e,t,r))];case"Atan":return[dk(k("x",e,t,r))];case"Atan2":return[pk(k("x",e,t,r),k("y",e,t,r))];case"Atanh":return[hk(k("x",e,t,r))];case"Ceil":return[bk(k("x",e,t,r))];case"Complex":return[Rs(k("real",e,t,r),k("imag",e,t,r))];case"Cos":return[dm(k("x",e,t,r))];case"Cosh":return[I2(k("x",e,t,r))];case"Elu":return[uh(k("x",e,t,r))];case"Erf":return[Fk(k("x",e,t,r))];case"Exp":return[En(k("x",e,t,r))];case"Expm1":return[$k(k("x",e,t,r))];case"Floor":return[dh(k("x",e,t,r))];case"Log":return[Rn(k("x",e,t,r))];case"Log1p":return[cm(k("x",e,t,r))];case"Imag":return[pm(k("x",e,t,r))];case"Neg":return[zt(k("x",e,t,r))];case"Reciprocal":return[Hk(k("x",e,t,r))];case"Real":return[Rp(k("x",e,t,r))];case"Relu":return[$a(k("x",e,t,r))];case"Round":return[O2(k("x",e,t,r))];case"Selu":return[L2(k("x",e,t,r))];case"Sigmoid":return[Tr(k("x",e,t,r))];case"Sin":return[B2(k("x",e,t,r))];case"Sign":return[Xk(k("x",e,t,r))];case"Sinh":return[W2(k("x",e,t,r))];case"Softplus":return[ad(k("x",e,t,r))];case"Sqrt":return[Cr(k("x",e,t,r))];case"Square":return[At(k("x",e,t,r))];case"Tanh":return[fu(k("x",e,t,r))];case"Tan":return[Yk(k("x",e,t,r))];case"ClipByValue":return[hn(k("x",e,t,r),k("clipValueMin",e,t,r),k("clipValueMax",e,t,r))];case"Relu6":return[z2(k("x",e,t,r))];case"Rsqrt":return[D2(Or(e.inputNames[0],t,r))];case"Prod":return[$2(k("x",e,t,r),k("axes",e,t,r))];case"LeakyRelu":return[hm(k("x",e,t,r),k("alpha",e,t,r))];case"Prelu":return[xm(k("x",e,t,r),k("alpha",e,t,r))];case"IsNan":return[Pk(Or(e.inputNames[0],t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function On(e,t,r=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>r+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let a=e[n],s=t[n];v.assert(a<0||s<0||a===s,()=>r+` Shapes ${e} and ${t} must match`)}}}function nv(e){return!(typeof e=="number"||e.some(t=>t<0))}function ip(e,t,r){let n=N1(e,r),a=!nv(n);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(a&&t.forEach(s=>{n=N1(s.shape,n)}),!nv(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function N1(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let r=[];for(let n=0;n<e.length;++n){let a=e[n],s=t[n];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);r[n]=a>=0?a:s}return r}var Ij=class{constructor(e,t,r,n,a,s,i){this.name=e,this.dtype=t,this.maxSize=r,this.elementShape=n,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),hr(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),On(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);r.tensor=t,hr(t),r.written=!0,this.tensors[e]=r}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((r,n)=>this.write(r,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ct([],[0].concat(this.elementShape));let r=this.readMany(e);return On(this.elementShape,r[0].shape,"TensorArray shape mismatch: "),sr(r,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let r=this.readMany(t);return On(this.elementShape,r[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${r[0].shape})`),kt(r,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let r=Math.max(...e);if(!this.dynamicSize&&r>=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(e,en(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let r=0,n=e.map(o=>(r+=o,r));if(r!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=r===0?0:t.size/r,s=[];K(()=>{t=G(t,[1,r,a]);for(let o=0;o<e.length;++o){let l=o===0?0:n[o-1],u=[0,l,0],d=[1,e[o],a];s[o]=G(Pe(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},kh=class{constructor(e,t,r,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=r,e!=null&&e.forEach(a=>{if(r!==a.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${a.dtype}`);On(t,a.shape,"TensorList shape mismatch: "),hr(a)}),this.idTensor=Se(0),this.maxNumElements=n,hr(this.idTensor)}get id(){return this.idTensor.id}copy(){return new kh([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,r=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);On(e,this.elementShape,"TensorList shape mismatch: ");let n=ip(this.elementShape,this.tensors,e);return K(()=>{let a=this.tensors.map(s=>G(s,n));return sr(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=ip(this.elementShape,this.tensors,e),n=this.tensors.pop();return On(n.shape,e,"TensorList shape mismatch: "),G(n,r)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(On(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");hr(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);On(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=ip(this.elementShape,this.tensors,t);return G(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);On(this.elementShape,t.shape,"TensorList shape mismatch: "),hr(t),this.tensors[e]=t}gather(e,t,r){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);On(this.elementShape,r,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=ip(this.elementShape,this.tensors,r);return e.length===0?ct([],[0].concat(n)):K(()=>{let a=e.map(s=>G(this.tensors[s],n));return sr(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);On(this.elementShape,t,"TensorList shape mismatch: ");let r=ip(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(r)):K(()=>{let n=this.tensors.map(a=>G(a,r));return kt(n,0)})}};function Sj(e,t,r){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==r)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${r}`);let a=e.shape.slice(1);On(a,t,"TensorList shape mismatch: ");let s=en(e);return new kh(s,t,n)}function Tj(e,t,r){return new kh([],e,t,r)}function Nj(e,t,r,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(n!=null&&n!==-1&&a>=n)throw new Error(`Max index must be < array size (${a} vs. ${n})`);let s=new kh([],r,e.dtype,n),i=en(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Cj(e,t,r){let n=0,a=t.map(d=>(n+=d,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=N1(s,r),o=n===0?0:e.size/n,l=K(()=>{let d=[];e=G(e,[1,n,o]);for(let h=0;h<t.length;++h){let p=h===0?0:a[h-1],c=[0,p,0],f=[1,t[h],o];d[h]=G(Pe(e,c,f),i)}return e.dispose(),d}),u=new kh([],r,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var Ej=async(e,t,r)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,r),a=k("elseBranch",e,t,r),s=k("cond",e,t,r),i=k("args",e,t,r);return(await s.data())[0]?r.functionMap[n].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap):r.functionMap[a].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,r),a=k("cond",e,t,r),s=k("args",e,t,r),i=await r.functionMap[a].executeFunctionAsync(s,r.tensorArrayMap,r.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await r.functionMap[n].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await r.functionMap[a].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,r);return[Wa(n)]}case"Switch":{let n=k("pred",e,t,r),a=k("data",e,t,r);return a.kept||(a=Wa(a)),(await n.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let n=e.inputNames.find(a=>Or(a,t,r)!==void 0);if(n){let a=Or(n,t,r);return[Wa(a)]}return}case"Enter":{let n=k("frameName",e,t,r),a=k("tensor",e,t,r);return r.enterFrame(n),[Wa(a)]}case"Exit":{let n=k("tensor",e,t,r);return r.exitFrame(),[Wa(n)]}case"NextIteration":{let n=k("tensor",e,t,r);return r.nextIteration(),[Wa(n)]}case"TensorArrayV3":{let n=k("size",e,t,r),a=k("dtype",e,t,r),s=k("elementShape",e,t,r),i=k("dynamicSize",e,t,r),o=k("clearAfterRead",e,t,r),l=k("identicalElementShapes",e,t,r),u=k("name",e,t,r),d=new Ij(u,a,n,s,l,i,o);return r.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r);return[r.getTensorArray(n.id).read(a)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("dtype",e,t,r);return[r.getTensorArray(n.id).gather(a,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id),s=k("dtype",e,t,r);return[a.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,r),a=k("tensor",e,t,r),s=k("lengths",e,t,r),i=r.getTensorArray(n.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorList(n.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,r),a=k("tensor",e,t,r),s=k("elementShape",e,t,r),i=k("numElements",e,t,r),o=Nj(a,n,s,i);return r.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,r),a=k("elementDType",e,t,r),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,r),o=Tj(n,a,i);return r.addTensorList(o),[o.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,r),a=k("indices",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).gather(a,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=k("numElements",e,t,r);return[r.getTensorList(n.id).stack(a,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=Sj(n,a,s);return r.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id),s=k("dtype",e,t,r),i=k("elementShape",e,t,r);return[a.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,r),a=k("tensor",e,t,r),s=r.getTensorList(n.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r);return[r.getTensorList(n.id).popBack(a,s)]}case"TensorListSplit":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("lengths",e,t,r),i=Cj(n,s,a);return r.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function av(e,t,r){let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=!s,o=a==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,r);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=k("strides",e,t,r),h=qc(e,t,r),p=k("dataFormat",e,t,r).toUpperCase(),c=k("dilations",e,t,r),[f,m]=k("args",e,t,r);i&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,r);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:f,preluArg:m,activationFunc:a,leakyreluAlpha:g}}var Rj=(e,t,r)=>{switch(e.op){case"Conv1D":{let n=k("stride",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilation",e,t,r);return[b2(k("x",e,t,r),k("filter",e,t,r),n,a,s,i)]}case"Conv2D":{let n=k("strides",e,t,r),a=qc(e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[Fs(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=av(e,t,r);return[_s.conv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=av(e,t,r);return[_s.depthwiseConv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=k("outputShape",e,t,r),a=k("strides",e,t,r),s=qc(e,t,r);return[w2(k("x",e,t,r),k("filter",e,t,r),n,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=k("strides",e,t,r),a=qc(e,t,r),s=k("dilations",e,t,r),i=k("dataFormat",e,t,r).toUpperCase();return[lh(k("input",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[k2(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2],n[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[lm(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[gm(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPoolWithArgmax":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r),i=k("includeBatchInIndex",e,t,r),{result:o,indexes:l}=Vk(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a,i);return[o,l]}case"AvgPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[A2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"MaxPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[F2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"Dilation2D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dilations",e,t,r),i=n[1],o=n[2],l=s[1],u=s[2];return[Ek(k("x",e,t,r),k("filter",e,t,r),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mj=(e,t,r)=>{switch(e.op){case"Fill":{let n=k("shape",e,t,r),a=k("dtype",e,t,r),s=k("value",e,t,r);return[nd(n,s,a)]}case"LinSpace":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("num",e,t,r);return[_k(n,a,s)]}case"Multinomial":{let n=k("logits",e,t,r),a=k("numSamples",e,t,r),s=k("seed",e,t,r);return[Gk(n,a,s)]}case"OneHot":{let n=k("indices",e,t,r),a=k("depth",e,t,r),s=k("onValue",e,t,r),i=k("offValue",e,t,r);return[Ep(n,a,s,i)]}case"Ones":return[pn(k("shape",e,t,r),k("dtype",e,t,r))];case"OnesLike":return[Mn(k("x",e,t,r))];case"RandomUniform":return[id(k("shape",e,t,r),k("minval",e,t,r),k("maxval",e,t,r),k("dtype",e,t,r))];case"Range":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("step",e,t,r);return[Au(n,a,s,k("dtype",e,t,r))]}case"TruncatedNormal":{let n=k("shape",e,t,r),a=k("mean",e,t,r),s=k("stdDev",e,t,r),i=k("seed",e,t,r);return[km(n,a,s,k("dtype",e,t,r),i)]}case"Zeros":return[Wt(k("shape",e,t,r),k("dtype",e,t,r))];case"ZerosLike":return[at(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Wy(e,t,r){let n=k("boxes",e,t,r),a=k("scores",e,t,r),s=k("maxOutputSize",e,t,r),i=k("iouThreshold",e,t,r),o=k("scoreThreshold",e,t,r),l=k("softNmsSigma",e,t,r);return{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Fj=async(e,t,r)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Wy(e,t,r),u=await Ie.nonMaxSuppressionWithScoreAsync(n,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Wy(e,t,r),l=k("padToMaxOutputSize",e,t,r),u=await Ie.nonMaxSuppressionPaddedAsync(n,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Wy(e,t,r);return[await Ie.nonMaxSuppressionAsync(n,a,s,i,o)]}case"Where":{let n=me(k("condition",e,t,r),"bool"),a=[await j2(n)];return n.dispose(),a}case"ListDiff":return Kk(k("x",e,t,r),k("y",e,t,r));default:throw TypeError(`Node type ${e.op} is not implemented`)}},$j=(e,t,r)=>{switch(e.op){case"TopKV2":{let n=k("x",e,t,r),a=k("k",e,t,r),s=k("sorted",e,t,r),i=Jk(n,a,s);return[i.values,i.indices]}case"Unique":{let n=k("x",e,t,r),a=s1(n);return[a.values,a.indices]}case"UniqueV2":{let n=k("x",e,t,r),a=k("axis",e,t,r),s=s1(n,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pj=(e,t,r)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let n=k("default",e,t,r);return[Or(e.name,t,r)||n];case"Placeholder":return[Or(e.name,t,r)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,r);return[Wa(u)]}case"IdentityN":return k("x",e,t,r).map(u=>Wa(u));case"Snapshot":let a=k("x",e,t,r);return[Wa(a)];case"Shape":return[St(k("x",e,t,r).shape,"int32")];case"ShapeN":return k("x",e,t,r).map(u=>St(u.shape));case"Size":return[Se(k("x",e,t,r).size,"int32")];case"Rank":return[Se(k("x",e,t,r).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=k("x",e,t,r),i=k("data",e,t,r),o=k("message",e,t,r),l=k("summarize",e,t,r);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_j=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,hr(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),K(()=>{let n=en(t),a=r.length,s=n.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=r[i],l=n[i];hr(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return K(()=>{let n=[];for(let a=0;a<r.length;a++){let s=r[a],i=this.findWithDefault(s,t);n.push(i)}return sr(n)})}findWithDefault(e,t){let r=this.tensorMap.get(e);return r!=null?r:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},zj=async(e,t,r,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,r),s=k("valueDType",e,t,r),i=new _j(a,s);return n.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("values",e,t,r);return[await n.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("defaultValue",e,t,r);return[await n.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,r,n);return[n.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oj=(e,t,r)=>{switch(e.op){case"ResizeBilinear":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeBilinear(n,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeNearestNeighbor(n,[a[0],a[1]],s,i)]}case"CropAndResize":{let n=k("image",e,t,r),a=k("boxes",e,t,r),s=k("boxInd",e,t,r),i=k("cropSize",e,t,r),o=k("method",e,t,r),l=k("extrapolationValue",e,t,r);return[Ie.cropAndResize(n,a,s,i,o,l)]}case"ImageProjectiveTransformV3":{let n=k("images",e,t,r),a=k("transforms",e,t,r),s=k("outputShape",e,t,r),i=k("fillValue",e,t,r),o=k("interpolation",e,t,r),l=k("fillMode",e,t,r);return[Ie.transform(n,a,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dj=(e,t,r)=>{switch(e.op){case"Equal":return[Cn(k("a",e,t,r),k("b",e,t,r))];case"NotEqual":return[yu(k("a",e,t,r),k("b",e,t,r))];case"Greater":return[cn(k("a",e,t,r),k("b",e,t,r))];case"GreaterEqual":return[bl(k("a",e,t,r),k("b",e,t,r))];case"Less":return[N2(k("a",e,t,r),k("b",e,t,r))];case"LessEqual":return[vl(k("a",e,t,r),k("b",e,t,r))];case"LogicalAnd":return[ha(k("a",e,t,r),k("b",e,t,r))];case"LogicalNot":return[mm(k("a",e,t,r))];case"LogicalOr":return[M2(k("a",e,t,r),k("b",e,t,r))];case"Select":case"SelectV2":return[Br(k("condition",e,t,r),k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lj=(e,t,r)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Je(k("a",e,t,r),k("b",e,t,r),k("transposeA",e,t,r),k("transposeB",e,t,r))];case"Einsum":return[Mk(k("equation",e,t,r),...k("tensors",e,t,r))];case"Transpose":return[nt(k("x",e,t,r),k("perm",e,t,r))];case"_FusedMatMul":let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=a==="prelu",o=k("numArgs",e,t,r),l=k("leakyreluAlpha",e,t,r);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=k("args",e,t,r);return[_s.matMul({a:k("a",e,t,r),b:k("b",e,t,r),transposeA:k("transposeA",e,t,r),transposeB:k("transposeB",e,t,r),bias:u,activation:a,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bj=(e,t,r)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[mu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"FusedBatchNormV3":return[mu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"LRN":return[zk(k("x",e,t,r),k("radius",e,t,r),k("bias",e,t,r),k("alpha",e,t,r),k("beta",e,t,r))];case"Softmax":return[od(k("x",e,t,r))];case"LogSoftmax":return[C2(k("x",e,t,r))];case"SparseToDense":return[q2(k("sparseIndices",e,t,r),k("outputShape",e,t,r),k("sparseValues",e,t,r),k("defaultValue",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wj=(e,t,r)=>{switch(e.op){case"Max":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[fr(k("x",e,t,r),i,o)]}case"Mean":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Bt(k("x",e,t,r),i,o)]}case"Min":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[$s(k("x",e,t,r),i,o)]}case"Sum":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ke(k("x",e,t,r),i,o)]}case"All":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[g2(k("x",e,t,r),i,o)]}case"Any":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[hf(k("x",e,t,r),i,o)]}case"ArgMax":{let i=k("axis",e,t,r);return[Nn(k("x",e,t,r),i)]}case"ArgMin":{let i=k("axis",e,t,r);return[ok(k("x",e,t,r),i)]}case"Prod":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[$2(k("x",e,t,r),i,o)]}case"Cumprod":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[Tk(k("x",e,t,r),i,o,l)]}case"Cumsum":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[S2(k("x",e,t,r),i,o,l)]}case"Bincount":let n=k("x",e,t,r),a=k("weights",e,t,r),s=k("size",e,t,r);return[x2(n,a,s)];case"DenseBincount":{let i=k("x",e,t,r),o=k("weights",e,t,r),l=k("size",e,t,r),u=k("binaryOutput",e,t,r);return[Nk(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vj=(e,t,r)=>{switch(e.op){case"ConcatV2":case"Concat":{let n=k("n",e,t,r),a=k("axis",e,t,r),s=k("tensors",e,t,r);return s=s.slice(0,n),[kt(s,a)]}case"Gather":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[gu(n,me(a,"int32"),0)]}case"GatherV2":{let n=k("axis",e,t,r),a=k("batchDims",e,t,r),s=k("x",e,t,r),i=k("indices",e,t,r);return[gu(s,me(i,"int32"),n,a)]}case"Reverse":{let n=k("dims",e,t,r),a=[];for(let i=0;i<n.length;i++)n[i]&&a.push(i);let s=k("x",e,t,r);return[Fn(s,a)]}case"ReverseV2":{let n=k("axis",e,t,r),a=k("x",e,t,r);return[Fn(a,n)]}case"Slice":{let n=k("begin",e,t,r),a=k("size",e,t,r);return[Pe(k("x",e,t,r),n,a)]}case"StridedSlice":{let n=k("begin",e,t,r),a=k("end",e,t,r),s=k("strides",e,t,r),i=k("beginMask",e,t,r),o=k("endMask",e,t,r),l=k("ellipsisMask",e,t,r),u=k("newAxisMask",e,t,r),d=k("shrinkAxisMask",e,t,r),h=k("x",e,t,r);return[Zk(h,n,a,s,i,o,l,u,d)]}case"Pack":return K(()=>{let n=k("axis",e,t,r),a=k("tensors",e,t,r),s=a[0].shape,i=et(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(et(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:G(l,s)});return[sr(o,n)]});case"Unpack":{let n=k("axis",e,t,r),a=k("tensor",e,t,r);return en(a,n)}case"Tile":{let n=k("reps",e,t,r);return[Dn(k("x",e,t,r),n)]}case"Split":case"SplitV":{let n=k("axis",e,t,r),a=k("numOrSizeSplits",e,t,r),s=k("x",e,t,r);return Kt(s,a,n)}case"ScatterNd":{let n=k("indices",e,t,r),a=k("values",e,t,r),s=k("shape",e,t,r);return[n7(n,a,s)]}case"GatherNd":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[a7(n,a)]}case"SparseToDense":{let n=k("sparseIndices",e,t,r),a=k("outputShape",e,t,r),s=k("sparseValues",e,t,r),i=k("defaultValue",e,t,r);return[q2(n,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uj=(e,t,r)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:a,emptyRowIndicator:s,reverseIndexMap:i}=dp.sparseFillEmptyRows(k("indices",e,t,r),k("values",e,t,r),k("denseShape",e,t,r),k("defaultValue",e,t,r));return[n,a,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:a}=dp.sparseReshape(k("inputIndices",e,t,r),k("inputShape",e,t,r),k("newShape",e,t,r));return[n,a]}case"SparseSegmentMean":return[dp.sparseSegmentMean(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];case"SparseSegmentSum":return[dp.sparseSegmentSum(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gj=(e,t,r)=>{switch(e.op){case"FFT":return[vm(k("x",e,t,r))];case"IFFT":return[Mp(k("x",e,t,r))];case"RFFT":return[wm(k("x",e,t,r))];case"IRFFT":return[U2(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jj=(e,t,r)=>{switch(e.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:a}=Hc.stringNGrams(k("data",e,t,r),k("dataSplits",e,t,r),k("separator",e,t,r),k("nGramWidths",e,t,r),k("leftPad",e,t,r),k("rightPad",e,t,r),k("padWidth",e,t,r),k("preserveShortSequences",e,t,r));return[n,a]}case"StringSplit":{let{indices:n,values:a,shape:s}=Hc.stringSplit(k("input",e,t,r),k("delimiter",e,t,r),k("skipEmpty",e,t,r));return[n,a,s]}case"StringToHashBucketFast":return[Hc.stringToHashBucketFast(k("input",e,t,r),k("numBuckets",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hj=(e,t,r)=>{switch(e.op){case"Cast":return[me(k("x",e,t,r),k("dtype",e,t,r))];case"ExpandDims":{let n=k("axis",e,t,r);return[Ht(k("x",e,t,r),n)]}case"Squeeze":{let n=k("axis",e,t,r);return[et(k("x",e,t,r),n)]}case"Reshape":return[G(k("x",e,t,r),k("shape",e,t,r))];case"MirrorPad":return[Uk(k("x",e,t,r),k("padding",e,t,r),k("mode",e,t,r))];case"PadV2":case"Pad":return[Gn(k("x",e,t,r),k("padding",e,t,r),k("constantValue",e,t,r))];case"SpaceToBatchND":{let n=k("blockShape",e,t,r),a=k("paddings",e,t,r);return[Am(k("x",e,t,r),n,a)]}case"BatchToSpaceND":{let n=k("blockShape",e,t,r),a=k("crops",e,t,r);return[um(k("x",e,t,r),n,a)]}case"DepthToSpace":{let n=k("blockSize",e,t,r),a=k("dataFormat",e,t,r).toUpperCase();return[Ck(k("x",e,t,r),n,a)]}case"BroadcastTo":return[xp(k("x",e,t,r),k("shape",e,t,r))];case"BroadcastArgs":return[xk(k("s0",e,t,r),k("s1",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sv(e,t,r,n){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return K(()=>wj(s,i,o));case"basic_math":return K(()=>kj(s,i,o));case"control":return Ej(s,i,o);case"convolution":return K(()=>Rj(s,i,o));case"creation":return K(()=>Mj(s,i,o));case"dynamic":return Fj(s,i,o);case"evaluation":return K(()=>$j(s,i,o));case"image":return K(()=>Oj(s,i,o));case"graph":return K(()=>Pj(s,i,o));case"logical":return K(()=>Dj(s,i,o));case"matrices":return K(()=>Lj(s,i,o));case"normalization":return K(()=>Bj(s,i,o));case"reduction":return K(()=>Wj(s,i,o));case"slice_join":return K(()=>Vj(s,i,o));case"sparse":return K(()=>Uj(s,i,o));case"spectral":return K(()=>Gj(s,i,o));case"string":return K(()=>jj(s,i,o));case"transformation":return K(()=>Hj(s,i,o));case"hash_table":return zj(s,i,o,n);case"custom":let l=W4(s.op);if(l&&l.customExecutor)return l.customExecutor(new vj(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,r);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var iv=class{constructor(e={},t={},r={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=r,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let r=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(r))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ov(e,t,r,n){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>un(p)[0]),d=[];n!=null&&(d=n.map(p=>un(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((u6(p)||Yj(p)||Jj(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>a.has(c))),a.add(p.name),r[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function qj(e,t,r){let{usedNodes:n,inputs:a}=r,s=[],i=Object.keys(a).map(d=>un(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{n.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{n.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{n.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&n.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var Kj=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Xj=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Zj=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function u6(e){return Kj.indexOf(e.op)>=0}function Yj(e){return Xj.indexOf(e.op)>=0}function Jj(e){return Zj.indexOf(e.op)>=0}var C1=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(r=>{this._functionExecutorMap[r]=new C1(e.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(r=>e[r].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let r=e.map(a=>a.name).sort(),n=t.map(a=>a.name).sort();return r.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let r=ov(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:a,syncInputs:s}=r;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return qj(this.graph,this.weightMap,r)}execute(e,t){e=this.mapInputs(e);let r=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=r.map(d=>this.graph.nodes[un(d)[0]]),a=t.map(d=>un(d)[0]),s=a.map(d=>this.graph.nodes[d]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return K(()=>{let d=new iv(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=un(f),y=[];y[g]=e[f],h[m]=y});let p=this.getFrozenTensorIds(h),c={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let g=sv(m,h,d,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=g,this.checkTensorForDisposal(m.name,m,h,d,p,a,c)}}return this.parent==null&&d.dispose(p),t.map(f=>Or(f,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(r=>e[r]).map(r=>r.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,r,n,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(r[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=ej(o.name,r,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!a.has(u.id)){let d=i[u.id];if(d===1){if(!this.keepTensorForDebug)u.dispose();else{let[h,p]=Ta(t.name,n);this.intermediateTensors[h]?this.intermediateTensors[h][p]=u:(this.intermediateTensors[h]=[],this.intermediateTensors[h][p]=u)}delete i[u.id]}else d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,r=!1,n={},a={}){r||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new iv(this.weightMap,n,a,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,r);let i=t.map(u=>Or(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,r){let n=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(n,this.outputNodes,!0,t,r)}async executeWithControlFlow(e,t,r,n){let a=Object.keys(e),s=a.map(A=>this.graph.nodes[un(A)[0]]),i=r.map(A=>un(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=ov(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=un(A),w=[];w[b]=e[A],c[x]=w});let f={},m=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,m,i,f,l);await Promise.all(A)}d==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!u6(A)&&!Or(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,r,n,a,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();r.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&k("isConstant",d.node,n,r)&&([h]=Ta(d.node.name,r)),n[d.node.name]==null){let p=sv(d.node,n,r,this._resourceManager);h||([h]=Ta(d.node.name,r));let c=r.currentContext;v.isPromise(p)?u.push(p.then(f=>(n[h]=f,r.currentContext=c,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l),f))):(n[h]=p,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l))}else this.processChildNodes(d.node,t,r,n,a,l)}return u}processChildNodes(e,t,r,n,a,s){e.children.forEach(i=>{let[o]=Ta(i.name,r);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Or(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})):i.inputNames.every(l=>!!Or(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let r=e[t],[n]=un(t),a=this.graph.nodes[n];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===r.shape.length&&r.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${r.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(r.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(e){let t={};for(let r in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let n=this._signature.inputs[r];t[n.name]=e[r]}else t[r]=e[r];return t}checkInputs(e){let t=Object.keys(e).filter(r=>{let[n]=un(r);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[r]=un(t);if(!this.graph.nodes[r])throw new Error(`The output '${t}' is not found in the graph`)})}},Qj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},eH="?tfjs-format=file",tH="model.json",r0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Qj}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Sr.browserHTTPRequest(e,this.loadOptions);else{let t=Sr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Sr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,r;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?r=this.artifacts.userDefinedMetadata.signature:r=this.artifacts.signature,this.signature=r,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Sr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new C1(tv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=tv.Instance.transformGraph(e.modelInitializer);this.initializer=new C1(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let r=Sr.getSaveHandlers(e);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${e}'`);e=r[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof rt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,r,n)=>(t[r]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=this.executor.execute(e,t);return r.length>1?r:r[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=await this.executor.executeAsync(e,t);return r.length>1?r:r[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,r)=>(t[r]=[e[r]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function rH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${tH}${eH}`);let r=new r0(e,t);return await r.load(),r}var nH="0.0.0",d6={};Le(d6,{CSVDataset:()=>w6,Dataset:()=>pd,FileDataSource:()=>E6,TextLineDataset:()=>v6,URLDataSource:()=>R6,array:()=>TH,csv:()=>OH,func:()=>DH,generator:()=>LH,microphone:()=>WH,version_data:()=>VH,webcam:()=>BH,zip:()=>NH});var aH=Ro(Ff()),sH=Ro(Ff());function iH(e,t){return wf(e,t)}function wf(e,t,r=new Map,n=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(n.has(e))throw new Error("Circular references are not supported.");if(r.has(e))return r.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(vu(e)){let s=Array.isArray(e)?[]:{};n.add(e);for(let i in e){let o=e[i],l=wf(o,t,r,n);s[i]=l}return n.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return r.set(e,a.value),a.value}function oH(e,t=h6){return p6(e,t)}function p6(e,t,r=new Set){let n=e[0];if(r.has(n))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(vu(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let i in n){let o=e.map(u=>u[i]),l=p6(o,t,r);s[i]=l}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return a.value}function h6(e){return e===null?null:vu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function c6(e,t){let r=new Map;wf(e,t,r);for(let n of Array.from(r.keys())){let a=r.get(n);if(v.isPromise(a)){let s=await a;r.set(n,s)}}return wf(e,t,r)}function vu(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:r}=Yv();t=e instanceof r}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof rt)&&!(e instanceof Promise)&&!t)}function lH(e){return e==null||uH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof rt||v.isTypedArray(e)}function uH(e){return e===null||typeof e!="object"&&typeof e!="function"}function dH(e){return iH(e,pH)}function pH(e){return e instanceof rt?{value:e.clone(),recurse:!1}:vu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var f6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),r=this.get(t);return this.set(t,this.pop()),r}},m6=class extends f6{constructor(){super(m6.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),r=this.length();for(let n=0;n<r;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=r}},g6=m6;g6.INITIAL_CAPACITY=32;function y6(e){return new fH(e)}function Cx(e){return new mH(e)}function hH(e,t){return new A6(e,t)}function cH(e,t=x6.FAIL){return new IH(e,t)}var gr=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],r=await e.next();for(;!r.done;)t.push(r.value),r=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),r=e(t.value);for(;!t.done&&r;)t=await this.next(),r=e(t.value)}handleErrors(e){return new wH(this,e)}filter(e){return new bH(this,e)}map(e){return new vH(this,e)}mapAsync(e){return new lv(this,e)}serialMapAsync(e){return new lv(this,e).serial()}flatmap(e){return new kH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new xH(this,e,t)}columnMajorBatch(e,t=!0,r=h6){return this.rowMajorBatch(e,t).map(n=>oH(n,r))}concatenate(e,t){return new A6(y6([this,e]),t)}take(e){return e<0||e==null?this:new AH(this,e)}skip(e){return e<0||e==null?this:new yH(this,e)}prefetch(e){return new b6(this,e)}shuffle(e,t){return new SH(this,e,t)}serial(){return new gH(this)}},fH=class extends gr{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:dH(e),done:!1}}},mH=class extends gr{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},gH=class extends gr{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},yH=class extends gr{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;re(e.value)}return this.upstream.next()}},AH=class extends gr{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},xH=class extends gr{constructor(e,t,r=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},bH=class extends gr{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;re(e.value)}}},vH=class extends gr{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=la.getTensorsInContainer(e.value),r=this.transform(e.value),n=la.getTensorsInContainer(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},wH=class extends gr{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},lv=class extends gr{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=la.getTensorsInContainer(e.value),r=await this.transform(e.value),n=la.getTensorsInContainer(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},Ex=class extends gr{constructor(){super();this.outputQueue=new g6,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},kH=class extends Ex{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=la.getTensorsInContainer(e.value),r=this.transform(e.value),n=la.getTensorsInContainer(r);this.outputQueue.pushAll(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return!0}},A6=class extends gr{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},x6=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(x6||{}),IH=class extends gr{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,r=0;function n(s){return s instanceof gr?{value:s.next().then(i=>(t++,i.done&&r++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await c6(this.iterators,n);if(t===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},b6=class extends gr{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new f6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},SH=class extends b6{constructor(e,t,r){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sH.alea(r||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},pd=class{constructor(){this.size=null}batch(e,t=!0){let r=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let n;return this.size===1/0||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),ln(async()=>(await r.iterator()).columnMajorBatch(e,t,CH),n)}concatenate(e){let t=this,r;return this.size===1/0||e.size===1/0?r=1/0:this.size!=null&&e.size!=null?r=this.size+e.size:r=null,ln(async()=>(await t.iterator()).concatenate(await e.iterator()),r)}filter(e){let t=this,r;return this.size===1/0?r=1/0:r=null,ln(async()=>(await t.iterator()).filter(n=>K(()=>e(n))),r)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ln(async()=>(await t.iterator()).map(r=>K(()=>e(r))),this.size)}mapAsync(e){let t=this;return ln(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ln(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,r;return this.size!=null&&e>0?r=this.size*e:e===0?r=0:this.size!=null&&(e===void 0||e<0)?r=1/0:r=null,ln(async()=>{let n=Cx(async()=>({value:await t.iterator(),done:!1}));return hH(n.take(e))},r)}skip(e){let t=this,r;return this.size!=null&&e>=0&&this.size>=e?r=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?r=0:r=null,ln(async()=>(await t.iterator()).skip(e),r)}shuffle(e,t,r=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,a=aH.alea(t||v.now().toString());return ln(async()=>{let s=a.int32();return r&&(s+=a.int32()),(await n.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,r;return this.size!=null&&this.size>e?r=e:this.size!=null&&this.size<=e?r=this.size:r=null,ln(async()=>(await t.iterator()).take(e),r)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};pd.MAX_BUFFER_SIZE=1e4;function ln(e,t=null){return new class extends pd{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function TH(e){return ln(async()=>y6(e),e.length)}function NH(e){if(!vu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let r=0;r<e.length;r++)t=t==null?e[r].size:Math.min(t,e[r].size);else if(e instanceof Object)for(let r in e)t=t==null?e[r].size:Math.min(t,e[r].size);return ln(async()=>{let r=await c6(e,n=>{if(n instanceof pd)return{value:n.iterator(),recurse:!1};if(vu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return cH(r,1)},t)}function CH(e){if(e===null)return null;let t=e[0];return lH(t)?{value:EH(e),recurse:!1}:{value:null,recurse:!0}}function EH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof rt?sr(e):ct(e)}var v6=class extends pd{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Lc='"',op=Symbol("out"),uv=Symbol("field"),Bc=Symbol("quote"),Vy=Symbol("quoteafterquote"),dv=Symbol("quoteinquote"),w6=class extends pd{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new v6(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,a)=>(n[a]=n[a]+1||1,n),{}),r=Object.keys(t).filter(n=>t[n]>1);if(v.assert(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),r={},n={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?n[s]=l:r[s]=l}}return Object.keys(n).length===0?r:{xs:r,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let r=[],n=0,a=e.length,s=op;for(let i=0;i<a;i++)switch(s){case op:switch(e.charAt(i)){case Lc:n=i+1,s=Bc;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;r.push(""),s=op;break;default:s=uv,n=i;break}break;case uv:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i)),s=op,n=i+1;break;default:}break;case Bc:switch(e.charAt(i)){case Lc:s=Vy;break;default:}break;case Vy:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i-1)),s=op,n=i+1;break;case Lc:s=Bc;break;default:s=dv;break}break;case dv:switch(e.charAt(i)){case Lc:s=Bc;break;default:}break;default:}if(s===Vy?r.push(e.substring(n,a-1)):r.push(e.substring(n)),t&&r.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${r}`);return r}},k6=class extends gr{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Y().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new k6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,r=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(r.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(r.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],r=0;return new Promise(n=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(a),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,r=new Float32Array(e.length*t);return e.forEach((n,a)=>r.set(n,a*t)),r}getTensorFromAudioDataArray(e,t){let r=new Float32Array(v.sizeFromShape(t));return r.set(e,r.length-e.length),ct(r,t)}},I6=class extends gr{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=St([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-r)/2,s=(1-n)/2,i=a+r,o=n+s;this.cropBox=ua([s,a,o,i],[1,4])}else this.cropBox=ua([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Y().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let r=new I6(e,t);return await r.start(),r}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=$n.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return K(()=>{let t=Ht(me(e,"float32"),0),r;r=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=r.shape;return G(r,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},S6=class{},T6=class extends gr{split(e){return new RH(this,e)}},RH=class extends T6{constructor(e,t){super();this.upstream=e,this.impl=new MH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},MH=class extends Ex{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let r of t.slice(0,-1))this.outputQueue.push(r);return this.carryover=t[t.length-1],!0}},FH=class extends gr{decodeUTF8(){return new $H(this)}},$H=class extends T6{constructor(e){super();this.upstream=e,this.impl=new PH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},PH=class extends Ex{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Yv();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let r;return Y().get("IS_BROWSER")?r=this.decoder.decode(t,{stream:!0}):r=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(r),!0}},N6=class extends FH{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,r)));else{let n=new FileReader;n.onload=s=>{let i=n.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},n.onabort=s=>t(new Error("Aborted")),n.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,r);n.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function _H(e,t={},r){let n,a;typeof e=="string"?n=e:(n=e.url,a=zH(e));let s=await(r||v.fetch)(n,a);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new N6(i,t)}else throw new Error(s.statusText)}var zH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function C6(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var E6=class extends S6{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(C6(this.input)&&Y().get("IS_NODE")){let e=H1();this.input=e.readFileSync(this.input.substr(7))}return new N6(this.input,this.options)}},R6=class extends S6{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return C6(this.url)?new E6(this.url,this.fileOptions).iterator():_H(this.url,this.fileOptions)}};function OH(e,t={}){return new w6(new R6(e),t)}function DH(e){let t=Cx(e);return ln(async()=>t)}function LH(e){return ln(async()=>{let t=await e();return Cx(()=>t.next())})}async function BH(e,t){return I6.create(e,t)}async function WH(e){return k6.create(e)}var VH="0.0.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var UH=jn.whereImpl,M6=class extends Su{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Op(this,Ar())}nextDataId(){return M6.nextDataId++}write(e,t,r){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:r,refCount:1}),n}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,r,n,a){this.data.set(e,{values:t,dtype:n,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:r}=this.data.get(e);if(t==="complex64"){let n=this.readSync(r.real.dataId),a=this.readSync(r.imag.dataId);return N.mergeRealAndImagArrays(n,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}makeOutput(e,t,r){let n=this.write(e,t,r);return Ar().makeTensorFromDataId(n,t,r,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:r}=this.data.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return UH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},Rx=M6;Rx.nextDataId=0;var n0={};Le(n0,{addImpl:()=>$6,bincountImpl:()=>Fx,bincountReduceImpl:()=>P6,ceilImpl:()=>_6,concatImpl:()=>$x,equalImpl:()=>z6,expImpl:()=>D6,expm1Impl:()=>B6,floorImpl:()=>W6,gatherNdImpl:()=>V6,gatherV2Impl:()=>U6,greaterEqualImpl:()=>j6,greaterImpl:()=>G6,lessEqualImpl:()=>q6,lessImpl:()=>H6,linSpaceImpl:()=>K6,logImpl:()=>X6,maxImpl:()=>Z6,maximumImpl:()=>Y6,minimumImpl:()=>J6,multiplyImpl:()=>Px,negImpl:()=>Q6,notEqualImpl:()=>eI,prodImpl:()=>tI,rangeImpl:()=>zx,rsqrtImpl:()=>rI,sigmoidImpl:()=>Mq,simpleAbsImpl:()=>F6,sliceImpl:()=>If,sparseFillEmptyRowsImpl:()=>aI,sparseReshapeImpl:()=>sI,sparseSegmentReductionImpl:()=>Ox,sqrtImpl:()=>Pq,squaredDifferenceImpl:()=>iI,stridedSliceImpl:()=>oI,stringNGramsImpl:()=>lI,stringSplitImpl:()=>uI,stringToHashBucketFastImpl:()=>dI,subImpl:()=>pI,tileImpl:()=>hI,topKImpl:()=>fI,transposeImpl:()=>_x,uniqueImpl:()=>mI});function F6(e){let t=new Float32Array(e.length);for(let r=0;r<e.length;++r)t[r]=Math.abs(e[r]);return t}var GH=e=>{let{x:t}=e.inputs,r=e.backend;Te(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId).values;return n=F6(a),r.makeOutput(n,t.shape,t.dtype)},jH={kernelName:Fo,backendName:"cpu",kernelFunc:GH};function Zt(e){return(t,r,n,a,s)=>{let i=N.assertAndGetBroadcastShape(t,r),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),d=v.getTypedArrayFromDType(s,u),h=t.length,p=r.length,c=v.computeStrides(t),f=v.computeStrides(r),m=N.getBroadcastDims(t,i),g=N.getBroadcastDims(r,i);if(m.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(n[y%n.length],a[y%a.length]);else for(let y=0;y<d.length;++y){let A=v.indexToLoc(y,o,l),x=A.slice(-h);m.forEach(S=>x[S]=0);let b=v.locToIndex(x,h,c),w=A.slice(-p);g.forEach(S=>w[S]=0);let T=v.locToIndex(w,p,f);d[y]=e(n[b],a[T])}return[d,i]}}function dn(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=r.makeTensorInfo(n.shape,"complex64"),l=r.data.get(o.dataId);return l.complexTensorInfos={real:r.makeTensorInfo(n.shape,"float32",s),imag:r.makeTensorInfo(a.shape,"float32",i)},o}var HH={kernelName:Lp,backendName:"cpu",kernelFunc:dn};function kf(e,t,r="float32"){if(r==="complex64"){let a=kf(e,t,"float32"),s=kf(e,t,"float32");return dn({inputs:{real:a,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),r);return e.makeTensorInfo(t,r,n)}function Ma(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var qH={kernelName:oi,backendName:"cpu",kernelFunc:Ma};function So(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.real,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var KH={kernelName:Kp,backendName:"cpu",kernelFunc:So};function Bs(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Ma({inputs:{x:a},backend:r});let i=kf(r,a.shape,a.dtype),o=Bs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=dn({inputs:{real:o,imag:i},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=So({inputs:{input:a},backend:r}),o=Bs({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Ma({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=r.data.get(a.dataId).values,o=Int32Array.from(i);return r.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=r.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Zt((d,h)=>d!==h?1:0)(a.shape,[],i,o,"bool");return r.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var XH={kernelName:qs,backendName:"cpu",kernelFunc:Bs};function yr(e,t,r,n){return r==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Te([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?N.fromUint8ToStringArray(u):u,p=i.dtype==="string"?N.fromUint8ToStringArray(d):d,c=n||i.dtype,[f,m]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(m,c,f)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Bs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,f=l.data.get(p.dataId).values,m=Bs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,T,S]=r(i.shape,o.shape,c,f,x,b),E=l.makeTensorInfo(S,"float32",w),R=l.makeTensorInfo(S,"float32",T),_=dn({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),_}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=n||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function Mx(e){return(t,r,n,a,s,i)=>{let o=N.assertAndGetBroadcastShape(t,r),l=v.sizeFromShape(o),u=o.length,d=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),c=N.getBroadcastDims(t,o),f=N.getBroadcastDims(r,o),m=N.mergeRealAndImagArrays(n,a),g=N.mergeRealAndImagArrays(s,i),y=t.length,A=v.computeStrides(t),x=r.length,b=v.computeStrides(r);if(c.length+f.length===0)for(let w=0;w<h.length;w++){let T=w%m.length,S=w%g.length,E=e(m[T*2],m[T*2+1],g[S*2],g[S*2+1]);h[w]=E.real,p[w]=E.imag}else for(let w=0;w<h.length;w++){let T=v.indexToLoc(w,u,d),S=T.slice(-y);c.forEach(I=>S[I]=0);let E=v.locToIndex(S,y,A),R=T.slice(-x);f.forEach(I=>R[I]=0);let _=v.locToIndex(R,x,b),M=e(m[E*2],m[E*2+1],g[_*2],g[_*2+1]);h[w]=M.real,p[w]=M.imag}return[h,p,o]}}var $6=Zt((e,t)=>e+t),ZH=Mx((e,t,r,n)=>({real:e+r,imag:t+n})),Ih=yr(Ha,$6,ZH),YH={kernelName:Ha,backendName:"cpu",kernelFunc:Ih};function Fx(e,t,r,n,a){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(a,r);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function P6(e,t,r,n=!1){let a=e.shape[0],s=e.shape[1],i=We([a,r],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=r||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Oi(e){return(t,r,n)=>{let a=v.getTypedArrayFromDType(r,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],n);return a}}function mt(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),d=r||i.dtype,h=v.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,d,h)}}function hd(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=r||i.dtype,d=t(l,u,a);return o.makeTensorInfo(i.shape,u,d)}}var _6=Oi(e=>Math.ceil(e)),JH=hd(Ks,_6),QH={kernelName:Ks,backendName:"cpu",kernelFunc:JH};function $x(e,t,r,n){let a=v.getArrayFromDType(r,v.sizeFromShape(t));if(n&&r!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=r==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[d+h]=o[l++]}s+=i.shape[1]})}return a}var z6=Zt((e,t)=>e===t?1:0),O6=yr(Do,z6,null,"bool"),eq={kernelName:Do,backendName:"cpu",kernelFunc:O6},D6=Oi(e=>Math.exp(e)),L6=hd(ri,D6,"float32"),tq={kernelName:ri,backendName:"cpu",kernelFunc:L6},B6=Oi(e=>Math.expm1(e)),rq=hd(Bo,B6),nq={kernelName:Bo,backendName:"cpu",kernelFunc:rq},W6=Oi(e=>Math.floor(e)),aq=hd(ni,W6),sq={kernelName:ni,backendName:"cpu",kernelFunc:aq};function V6(e,t,r,n,a,s,i,o,l){let u=We([n,s],r);for(let d=0;d<n;d++){let h=[],p=0;for(let c=0;c<a;c++){let f=e[d*a+c];p+=f*i[c],h.push(f)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function U6(e,t,r){let n=We(r,e.dtype);for(let a=0;a<n.size;++a){let s=n.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[a]=e.values[u])}return n}var G6=Zt((e,t)=>e>t?1:0),iq=yr(Go,G6,null,"bool"),oq={kernelName:Go,backendName:"cpu",kernelFunc:iq},j6=Zt((e,t)=>e>=t?1:0),lq=yr(ii,j6,null,"bool"),uq={kernelName:ii,backendName:"cpu",kernelFunc:lq},H6=Zt((e,t)=>e<t?1:0),dq=yr(jo,H6,null,"bool"),pq={kernelName:jo,backendName:"cpu",kernelFunc:dq},q6=Zt((e,t)=>e<=t?1:0),hq=yr(Ho,q6,null,"bool"),cq={kernelName:Ho,backendName:"cpu",kernelFunc:hq};function K6(e,t,r){let n=(t-e)/(r-1),a=v.makeZerosTypedArray(r,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+n;return a}var X6=Oi(e=>Math.log(e)),fq=hd(ui,X6),mq={kernelName:ui,backendName:"cpu",kernelFunc:fq};function Z6(e,t,r,n){let a=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}a[s]=o}return a}var Y6=Zt((e,t)=>Math.max(e,t)),gq=yr(pi,Y6),yq={kernelName:pi,backendName:"cpu",kernelFunc:gq},J6=Zt((e,t)=>Math.min(e,t)),Aq=yr(mi,J6),xq={kernelName:mi,backendName:"cpu",kernelFunc:Aq},Px=Zt((e,t)=>e*t),bq=Mx((e,t,r,n)=>({real:e*r-t*n,imag:e*n+t*r})),a0=yr(yi,Px,bq),vq={kernelName:yi,backendName:"cpu",kernelFunc:a0};function Q6(e,t,r){let n=v.createScalarValue(-1,r);return Px([],t,n,e,r)}function wq(e){let{inputs:t,backend:r}=e,{x:n}=t;Te(n,"neg");let a=r.data.get(n.dataId).values,[s,i]=Q6(a,n.shape,n.dtype);return r.makeTensorInfo(i,n.dtype,s)}var kq={kernelName:Ko,backendName:"cpu",kernelFunc:wq},eI=Zt((e,t)=>e!==t?1:0),Iq=yr(Xo,eI,null,"bool"),Sq={kernelName:Xo,backendName:"cpu",kernelFunc:Iq};function _x(e,t,r,n,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(r,v.sizeFromShape(a));for(let d=0;d<i;++d){let h=v.indexToLoc(d,s,o),p=new Array(h.length);for(let f=0;f<p.length;f++)p[f]=h[n[f]];let c=v.locToIndex(p,s,l);u[c]=e[d]}return u}function rn(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{perm:s}=r;Te(a,"transpose");let i=a.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=a.shape[s[d]];let l=n.data.get(a.dataId).values,u=_x(l,a.shape,a.dtype,s,o);return{dataId:n.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var Tq={kernelName:$i,backendName:"cpu",kernelFunc:rn};function tI(e,t,r,n){let[a,s]=N.computeOutAndReduceShapes(e,n),i=Nr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=r[d+p];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function Nq(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=N.getAxesPermutation(l,o),d=l,h=a,p=[];u!=null&&(h=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),p.push(h),d=N.getInnerMostAxes(d.length,o));let c=r.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:g}=tI(h.shape,h.dtype,c,d),y=m;return i&&(y=N.expandShapeToKeepDim(m,l)),p.forEach(A=>r.disposeIntermediateTensorInfo(A)),r.makeTensorInfo(y,g,f)}var Cq={kernelName:tl,backendName:"cpu",kernelFunc:Nq};function zx(e,t,r,n){let a=e===t,s=e<t&&r<0,i=t<e&&r>1;if(a||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/r)),l=v.makeZerosTypedArray(o,n);t<e&&r===1&&(r=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+r;return l}var rI=Oi(e=>1/Math.sqrt(e)),Eq=hd(Ii,rI),Rq={kernelName:Ii,backendName:"cpu",kernelFunc:Eq},Mq=Oi(e=>1/(1+Math.exp(-e))),nI=mt(Ti,e=>1/(1+Math.exp(-e))),Fq={kernelName:Ti,backendName:"cpu",kernelFunc:nI};function If(e,t,r,n,a){let s=_t.isSliceContinous(n,t,r),i=v.sizeFromShape(r),o=v.computeStrides(n);if(s){let h=_t.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?N.fromUint8ToStringArray(e):e,u=We(n,a,l),d=We(r,a);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((f,m)=>f+t[m]);d.set(u.get(...c),...p)}return a==="string"?N.fromStringArrayToUint8(d.values):d.values}function To(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n;Te(a,"slice");let[o,l]=_t.parseSliceParams(a,s,i);_t.assertParamsValid(a,o,l);let u=r.data.get(a.dataId).values,d=If(u,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,d)}var $q={kernelName:ol,backendName:"cpu",kernelFunc:To};function aI(e,t,r,n,a,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(r,0),y=v.getArrayFromDType(a,0);return[g,[0,h],y,u,d]}let p=!0,c=0,f=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],p=p&&y>=c,c=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,y=n;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=f[l-1],y=v.getArrayFromDType(r,g*h),A=v.getArrayFromDType(a,g),x=new Array(l).fill(0);for(let b=0;b<o;++b){let w=e[b*h],T=x[w],S=(w===0?0:f[w-1])+T;x[w]++;for(let E=0;E<h;++E)y[S*h+E]=e[b*h+E];A[S]=n[b],d[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let w=b===0?0:f[b-1];y[w*h+0]=b;for(let T=1;T<h;++T)y[w*h+T]=0;A[w]=i}return[y,[g,h],A,u,d]}}function sI(e,t,r,n,a){let s=v.sizeFromShape(n),i=t[0],o=a.length,l=[],u=1,d=-1;for(let m=0;m<o;++m){let g=a[m];if(g===-1){if(d!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(d,m));d=m,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(m,g));u*=g,l.push(g)}}if(d!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let m=Math.trunc(s/u);if(u*m!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[d]=m}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let h=n.length,p=[];if(h>0){p[h-1]=1;for(let m=h-2;m>=0;--m)p[m]=p[m+1]*n[m+1]}let c=[];if(o>0){c[o-1]=1;for(let m=o-2;m>=0;--m)c[m]=c[m+1]*l[m+1]}let f=v.getArrayFromDType(r,i*o);for(let m=0;m<i;++m){let g=0;for(let y=0;y<h;++y)g+=e[m*h+y]*p[y];for(let y=0;y<o;++y)f[m*o+y]=Math.trunc(g/c[y]),g%=c[y]}return[f,[i,o],l]}function Ox(e,t,r,n,a,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],d=o>0?a[o-1]+1:0;if(d<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=v.getArrayFromDType(r,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let f=0,m=1,g=0,y=a[f];for(;;){let A=0;if(m<o){if(A=a[m],y===A){++m;continue}if(y>=A)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>g&&c.fill(i,g*u,y*u);for(let x=f;x<m;++x){let b=n[x];if(b<0||b>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,n[x],l[0]));for(let w=0;w<u;w++)c[y*u+w]+=e[b*u+w]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=m-f;if(f=m,++m,g=y+1,y=A,m>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var Pq=Oi(e=>Math.sqrt(e)),_q=mt(Ni,e=>Math.sqrt(e)),zq={kernelName:Ni,backendName:"cpu",kernelFunc:_q},iI=Zt((e,t)=>{let r=e-t;return r*r}),Oq=yr(Ri,iI),Dq={kernelName:Ri,backendName:"cpu",kernelFunc:Oq};function oI(e,t,r,n){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*r[l]+n[l];a.set(t.get(...o),...i)}return a}var Lq=class{constructor(e,t,r,n,a,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(r),this.rightPad=v.encodeString(n),this.padWidth=a,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let r=this.getPadWidth(t);return Math.max(0,e+2*r-t+1)}createNGrams(e,t,r,n,a,s){for(let i=0;i<a;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(a-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,r[n+i]=new Uint8Array(p);let c=r[n+i],f=0,m=g=>g.forEach(y=>c[f++]=y);for(let g=0;g<l;++g)m(this.leftPad),m(this.separator);for(let g=0;g<d-1;++g)m(e[h+g]),m(this.separator);if(d>0){m(e[h+d-1]);for(let g=0;g<u;++g)m(this.separator),m(this.rightPad)}else{for(let g=0;g<u-1;++g)m(this.rightPad),m(this.separator);m(this.rightPad)}}}compute(e,t){let r=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=r,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${r}]`);o=t[l]}if(o!==r)throw new Error(`Last split value must be data size. Expected ${r}, got ${o}`)}let a=n-1,s=v.getArrayFromDType("int32",n);if(r===0||n===0){let o=new Array(r);for(let l=0;l<=a;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=a;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[a]);for(let o=0;o<a;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function lI(e,t,r,n,a,s,i,o){return new Lq(r,n,a,s,i,o).compute(e,t)}function Bq(e,t,r,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!r||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!r||e.length!==0)&&n.push(e);return}let a=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(a,s);(!r||i.length!==0)&&n.push(i),a=s+1}}function uI(e,t,r){let n=e.length,a=[],s=0,i=0,o=new Array(n);for(let p=0;p<n;++p){let c=a.length;Bq(e[p],t,r,a);let f=a.length-c;o[p]=f,s+=f,i=Math.max(i,f)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),d=[n,i],h=0;for(let p=0;p<n;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=a[h],++h;return[l,u,d]}function dI(e,t){let r=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)r[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return r}var pI=Zt((e,t)=>e-t),Wq=Mx((e,t,r,n)=>({real:e-r,imag:t-n})),Dx=yr(Mi,pI,Wq),Vq={kernelName:Mi,backendName:"cpu",kernelFunc:Dx};function hI(e,t){let r=new Array(e.rank);for(let a=0;a<r.length;a++)r[a]=e.shape[a]*t[a];let n=We(r,e.dtype);for(let a=0;a<n.values.length;++a){let s=n.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[a]=e.values[o]}return n}var cp=(e,t)=>{let r=t.value-e.value;return r===0?e.index-t.index:r};function cI(e,t,r=0,n=e.length-1){for(;n>r;){if(n-r>600){let o=n-r+1,l=t-r+1,u=Math.log(o),d=.5*Math.exp(2*u/3),h=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),p=Math.max(r,Math.floor(t-l*d/o+h)),c=Math.min(n,Math.floor(t+(o-l)*d/o+h));cI(e,t,p,c)}let a=e[t],s=r,i=n;for(v.swap(e,r,t),cp(e[n],a)>0&&v.swap(e,r,n);s<i;){for(v.swap(e,s,i),s++,i--;cp(e[s],a)<0;)s=s+1;for(;cp(e[i],a)>0;)i=i-1}cp(e[r],a)===0?v.swap(e,r,i):(i=i+1,v.swap(e,i,n)),i<=t&&(r=i+1),t<=i&&(n=i-1)}}function fI(e,t,r,n,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(r,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),f=new Array(c.length);c.forEach((A,x)=>f[x]={value:A,index:x}),n<f.length&&(cI(f,n),f=f.slice(0,n)),a&&f.sort(cp);let m=h*n,g=l.subarray(m,m+n),y=u.subarray(m,m+n);for(let A=0;A<n;A++)g[A]=f[A].value,y[A]=f[A].index}let d=t.slice();return d[d.length-1]=n,[We(d,r,l),We(d,"int32",u)]}function mI(e,t,r,n){let a=v.parseAxisParam(t,r)[0],s=[1,r[0],1];for(let f=0;f<a;f++)s[0]*=r[f];s[1]=r[a];for(let f=a+1;f<r.length;f++)s[2]*=r[f];let i={},o=new Int32Array(r[a]),l=new rr(s,n,e),u=[],d=s[0]===1&&s[2]===1;for(let f=0;f<r[a];f++){let m;if(d)m=e[f].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,f,A));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new rr(h,n);u.forEach((f,m)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,f,y),g,m,y)});let c=r.slice();return c[a]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var Uq="0.0.0";xl("cpu",()=>new Rx,1);var gI=mt(ti,e=>e>=0?e:Math.exp(e)-1),Gq={kernelName:ti,backendName:"cpu",kernelFunc:gI};function yI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n;Te([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=r.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return r.makeTensorInfo(a.shape,"float32",l)}var jq={kernelName:li,backendName:"cpu",kernelFunc:yI},Hq=Zt((e,t)=>e<0?t*e:e);function AI(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t;Te([n,a],"prelu");let s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,[o,l]=Hq(n.shape,a.shape,s,i,"float32");return r.makeTensorInfo(l,"float32",o)}var qq={kernelName:bi,backendName:"cpu",kernelFunc:AI},xI=mt(vi,e=>Math.max(0,e)),Kq={kernelName:vi,backendName:"cpu",kernelFunc:xI},bI=mt(ki,e=>Math.min(Math.max(0,e),6)),Xq={kernelName:ki,backendName:"cpu",kernelFunc:bI};function Lx(e,t,r,n,a){if(r==="linear")return Ma({inputs:{x:t},backend:e});if(r==="relu")return xI({inputs:{x:t},backend:e});if(r==="elu")return gI({inputs:{x:t},backend:e});if(r==="relu6")return bI({inputs:{x:t},backend:e});if(r==="prelu")return AI({inputs:{x:t,alpha:n},backend:e});if(r==="leakyrelu")return yI({inputs:{x:t},backend:e,attrs:{alpha:a}});if(r==="sigmoid")return nI({inputs:{x:t},backend:e});throw new Error(`Activation ${r} has not been implemented for the CPU backend.`)}function Mt(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),r.incRef(a.dataId);let u=r.data.get(a.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var Zq={kernelName:rl,backendName:"cpu",kernelFunc:Mt};function vI(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;Te([a,s],"matMul");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=Al.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Mt({inputs:{x:a},backend:r,attrs:{shape:x}}),T=Mt({inputs:{x:s},backend:r,attrs:{shape:b}}),S=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],R=o?T.shape[1]:T.shape[2],_=Math.max(g,y),M=r.data.get(w.dataId).values,I=r.data.get(T.dataId).values,O=v.computeStrides(w.shape),z=v.computeStrides(T.shape),[j,X,D]=i?[O[0],1,O[1]]:[O[0],O[1],1],[Q,V,ee]=o?[1,z[1],z[0]]:[z[1],1,z[0]],J=E*R,se=We([_,E,R],w.dtype),Z=se.values,ae=r.blockSize;for(let de=0;de<_;de++)for(let Ae=0;Ae<E;Ae+=ae)for(let be=0;be<R;be+=ae)for(let Ee=0;Ee<S;Ee+=ae){let Me=Math.min(Ae+ae,E),De=Math.min(be+ae,R),Be=Math.min(Ee+ae,S);for(let Ze=Ae;Ze<Me;Ze++)for(let ot=be;ot<De;ot++){let dt=0;for(let pt=Ee;pt<Be;pt++){let $e=Math.min(de,g-1)*j,vt=Math.min(de,y-1)*ee,yt=M[$e+Ze*X+pt*D],Fr=I[pt*Q+ot*V+vt];dt+=yt*Fr}Z[de*J+(Ze*R+ot)]+=dt}}return r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(T),r.makeTensorInfo(A,se.dtype,se.values)}var Yq={kernelName:Hs,backendName:"cpu",kernelFunc:vI};function Jq(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p,c,f,m=[];p=vI({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:r}),i&&(c=Ih({inputs:{a:p,b:i},backend:r}),m.push(p),p=c),d&&(f=Lx(r,p,d,o,h),m.push(p),p=f);for(let g of m)r.disposeIntermediateTensorInfo(g);return p}var Qq={kernelName:Ns,backendName:"cpu",kernelFunc:Jq},eK=mt(Nu,e=>Math.acos(e)),tK={kernelName:Nu,backendName:"cpu",kernelFunc:eK},rK=mt(Cu,e=>Math.acosh(e)),nK={kernelName:Cu,backendName:"cpu",kernelFunc:rK};function aK(e){let{inputs:t,backend:r}=e,n=t;Te(t,"addN");let a=n.map(o=>r.data.get(o.dataId).values),s=We(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return r.makeTensorInfo(s.shape,s.dtype,s.values)}var sK={kernelName:Us,backendName:"cpu",kernelFunc:aK};function iK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];x=x&&w}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var oK={kernelName:Eu,backendName:"cpu",kernelFunc:iK};function lK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];x=x||w}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var uK={kernelName:Ru,backendName:"cpu",kernelFunc:lK};function dK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=rn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w>A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var pK={kernelName:Gs,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=rn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w<A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var cK={kernelName:Mu,backendName:"cpu",kernelFunc:hK},fK=mt(Fu,e=>Math.asin(e)),mK={kernelName:Fu,backendName:"cpu",kernelFunc:fK},gK=mt($u,e=>Math.asinh(e)),yK={kernelName:$u,backendName:"cpu",kernelFunc:gK},AK=mt(Pu,e=>Math.atan(e)),xK={kernelName:Pu,backendName:"cpu",kernelFunc:AK},bK=Zt((e,t)=>Math.atan2(e,t)),vK=yr(zu,bK),wK={kernelName:zu,backendName:"cpu",kernelFunc:vK},kK=mt(_u,e=>Math.atanh(e)),IK={kernelName:_u,backendName:"cpu",kernelFunc:kK};function Bx(e,t,r,n,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,d=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,c=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,r),g=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],A=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,T=b*n[0];for(let S=0;S<a.inChannels;++S)for(let E=0;E<a.outHeight;++E){let R=E*i-p,_=Math.max(0,R),M=Math.min(a.inHeight,d+R),I=w+E*A;for(let O=0;O<a.outWidth;++O){let z=O*o-c,j=Math.max(0,z),X=Math.min(a.inWidth,h+z),D=f,Q=0,V=0;for(let J=_;J<M;J+=l){let se=T+J*n[1];for(let Z=j;Z<X;Z+=u){let ae=se+Z*n[2],de=e[ae+S];s==="max"&&de>D?D=de:s==="avg"&&(Q+=de,V++)}if(isNaN(D))break}let ee=I+O*x+S;g[ee]=s==="avg"?Q/V:D}}}return m}function wI(e,t,r,n,a=!1,s=!1){let i=We(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,d=n.dilationWidth,h=n.effectiveFilterHeight,p=n.effectiveFilterWidth,c=n.padInfo.top,f=n.padInfo.left,m=We(t,r,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let A=0;A<n.outHeight;++A){let x=A*o-c,b=x;for(;b<0;)b+=u;let w=Math.min(n.inHeight,h+x);for(let T=0;T<n.outWidth;++T){let S=T*l-f,E=S;for(;E<0;)E+=d;let R=Math.min(n.inWidth,p+S),_=Number.NEGATIVE_INFINITY,M=-1;for(let I=b;I<w;I+=u){let O=I-x;for(let z=E;z<R;z+=d){let j=z-S,X=m.get(g,I,z,y);X>_&&(_=X,a?M=s?((g*n.inHeight+I)*n.inWidth+z)*n.inChannels+y:(I*n.inWidth+z)*n.inChannels+y:M=O*p+j)}}i.set(M,g,A,T,y)}}return i}function kI(e,t,r,n,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,d=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,c=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,g=a.padInfo.top,y=a.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(a.outShape,r),b=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[2]*a.outShape[3]*a.outShape[4],S=a.outShape[3]*a.outShape[4],E=a.outShape[4];for(let R=0;R<a.batchSize;++R){let _=R*w,M=R*n[0];for(let I=0;I<a.inChannels;++I)for(let O=0;O<a.outDepth;++O){let z=O*i-m,j=z;for(;j<0;)j+=u;let X=Math.min(a.inDepth,p+z),D=_+O*T;for(let Q=0;Q<a.outHeight;++Q){let V=Q*o-g,ee=V;for(;ee<0;)ee+=d;let J=Math.min(a.inHeight,c+V),se=D+Q*S;for(let Z=0;Z<a.outWidth;++Z){let ae=Z*l-y,de=ae;for(;de<0;)de+=h;let Ae=Math.min(a.inWidth,f+ae),be=se+Z*E,Ee=A,Me=0,De=0;for(let Ze=j;Ze<X;Ze+=u){let ot=M+Ze*n[1];for(let dt=ee;dt<J;dt+=d){let pt=ot+dt*n[2];for(let $e=de;$e<Ae;$e+=h){let vt=pt+$e*n[3],yt=e[vt+I];if(s==="max"&&yt>Ee?Ee=yt:s==="avg"&&(Me+=yt,De++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Be=be+I;b[Be]=s==="avg"?Me/De:Ee}}}}return x}function SK(e,t){let r=We(t.outShape,"int32"),n=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*n-p,x=A;for(;x<0;)x+=i;let b=Math.min(t.inDepth,u+A);for(let w=0;w<t.outHeight;++w){let T=w*a-c,S=T;for(;S<0;)S+=o;let E=Math.min(t.inHeight,d+T);for(let R=0;R<t.outWidth;++R){let _=R*s-f,M=_;for(;M<0;)M+=l;let I=Math.min(t.inWidth,h+_),O=Number.NEGATIVE_INFINITY,z=-1;for(let j=x;j<b;j+=i){let X=j-A;for(let D=S;D<E;D+=o){let Q=D-T;for(let V=M;V<I;V+=l){let ee=V-_,J=e.get(m,j,D,V,g);J>=O&&(O=J,z=X*d*h+Q*d+ee)}}}r.set(z,m,y,w,R,g)}}}return r}function TK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Ma({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),f=Bx(p,a.shape,a.dtype,c,d,"avg");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var NK={kernelName:js,backendName:"cpu",kernelFunc:TK};function CK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"avgPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=kI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"avg");return r.makeTensorInfo(p.shape,"float32",p.values)}var EK={kernelName:Dp,backendName:"cpu",kernelFunc:CK};function RK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"avgPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,f=d.filterDepth,m=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,b=d.effectiveFilterDepth,w=d.effectiveFilterHeight,T=d.effectiveFilterWidth,S=b-1-d.padInfo.front,E=T-1-d.padInfo.left,R=w-1-d.padInfo.top,_=We(s.shape,"float32"),M=1/(f*m*g),I=r.bufferSync(a);for(let O=0;O<d.batchSize;++O)for(let z=0;z<d.inChannels;++z)for(let j=0;j<d.inDepth;++j)for(let X=0;X<d.inHeight;++X)for(let D=0;D<d.inWidth;++D){let Q=j-S,V=X-R,ee=D-E,J=0;for(let se=0;se<b;se+=y){let Z=(Q+se)/h;if(!(Z<0||Z>=d.outDepth||Math.floor(Z)!==Z))for(let ae=0;ae<w;ae+=A){let de=(V+ae)/p;if(!(de<0||de>=d.outHeight||Math.floor(de)!==de))for(let Ae=0;Ae<T;Ae+=x){let be=(ee+Ae)/c;be<0||be>=d.outWidth||Math.floor(be)!==be||(J+=I.get(O,Z,de,be,z))}}}_.set(J*M,O,j,X,D,z)}return r.makeTensorInfo(_.shape,_.dtype,_.values)}var MK={kernelName:zf,backendName:"cpu",kernelFunc:RK};function FK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Te([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,b=y-1-d.padInfo.top,w=We(i.shape,"float32"),T=1/(c*f),S=r.data.get(a.dataId).values,E=We(a.shape,"float32",S);for(let R=0;R<d.batchSize;++R)for(let _=0;_<d.inChannels;++_)for(let M=0;M<d.inHeight;++M)for(let I=0;I<d.inWidth;++I){let O=M-b,z=I-x,j=0;for(let X=0;X<y;X+=m){let D=(O+X)/h;if(!(D<0||D>=d.outHeight||Math.floor(D)!==D))for(let Q=0;Q<A;Q+=g){let V=(z+Q)/p;V<0||V>=d.outWidth||Math.floor(V)!==V||(j+=E.get(R,D,V,_))}}w.set(j*T,R,M,I,_)}return r.makeTensorInfo(w.shape,w.dtype,w.values)}var $K={kernelName:_f,backendName:"cpu",kernelFunc:FK};function PK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let d=r.data.get(a.dataId).values,h=r.data.get(o.dataId).values,p=r.data.get(l.dataId).values,c=s?r.data.get(s.dataId).values:new Float32Array([1]),f=i?r.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(d.length),g=f.length,y=c.length,A=p.length,x=h.length,b=0,w=0,T=0,S=0;for(let E=0;E<d.length;++E)m[E]=f[b++]+(d[E]-h[w++])*c[T++]/Math.sqrt(p[S++]+u),b>=g&&(b=0),w>=x&&(w=0),T>=y&&(T=0),S>=A&&(S=0);return r.makeTensorInfo(a.shape,a.dtype,m)}var _K={kernelName:si,backendName:"cpu",kernelFunc:PK};function zK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;Te([a],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=Mt({inputs:{x:a},backend:r,attrs:{shape:l}}),f=rn({inputs:{x:c},backend:r,attrs:{perm:u}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=To({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var OK={kernelName:$o,backendName:"cpu",kernelFunc:zK};function DK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=Fx(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var LK={kernelName:Of,backendName:"cpu",kernelFunc:DK};function BK(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var WK={kernelName:Df,backendName:"cpu",kernelFunc:BK},VK=mt(qa,(e,t)=>{let r=t;return e>r.clipValueMax?r.clipValueMax:e<r.clipValueMin?r.clipValueMin:e}),UK={kernelName:qa,backendName:"cpu",kernelFunc:VK},GK=e=>{let{x:t}=e.inputs,r=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];n[u]=Math.hypot(d,h)}return r.makeOutput(n,t.shape,"float32")},jK={kernelName:Bp,backendName:"cpu",kernelFunc:GK};function wu(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.imag,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var HK={kernelName:Gp,backendName:"cpu",kernelFunc:wu};function ku(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return Ma({inputs:{x:o[0]},backend:r});let l=o.map(m=>m.shape);if(N.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>So({inputs:{input:b},backend:r})),g=o.map(b=>wu({inputs:{input:b},backend:r})),y=ku({inputs:m,backend:r,attrs:{axis:s}}),A=ku({inputs:g,backend:r,attrs:{axis:s}}),x=dn({inputs:{real:y,imag:A},backend:r});return m.forEach(b=>r.disposeIntermediateTensorInfo(b)),g.forEach(b=>r.disposeIntermediateTensorInfo(b)),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),x}let u=o.map(m=>{let g=v.sizeFromShape(m.shape.slice(s));return Mt({inputs:{x:m},backend:r,attrs:{shape:[-1,g]}})}),d=u.map(m=>({vals:r.data.get(m.dataId).values,shape:m.shape}));i=N.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,p=$x(d,i,t[0].dtype,h),c=N.computeOutShape(o.map(m=>m.shape),s),f=r.makeTensorInfo(c,t[0].dtype,p);return u.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var qK={kernelName:Po,backendName:"cpu",kernelFunc:ku};function II(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n;Te([a,s],"conv2d");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new rr(p.outShape,a.dtype),w=v.computeStrides(a.shape),T=v.computeStrides(s.shape),S=w[0],E=x?w[1]:w[2],R=x?w[2]:1,_=x?1:w[1],M=b.strides[0],I=x?b.strides[1]:b.strides[2],O=x?b.strides[2]:1,z=x?1:b.strides[1],j=r.data.get(a.dataId).values,X=r.data.get(s.dataId).values,D=b.values;for(let Q=0;Q<p.batchSize;++Q){let V=Q*S,ee=Q*M;for(let J=0;J<p.outHeight;++J){let se=ee+J*I,Z=J*p.strideHeight-A;for(let ae=0;ae<c;++ae){let de=Z+ae*m;if(de<0||de>=p.inHeight)continue;let Ae=ae*T[0],be=V+de*E;for(let Ee=0;Ee<p.outWidth;++Ee){let Me=se+Ee*O,De=Ee*p.strideWidth-y;for(let Be=0;Be<f;++Be){let Ze=De+Be*g;if(Ze<0||Ze>=p.inWidth)continue;let ot=Ae+Be*T[1],dt=be+Ze*R,pt=ot;for(let $e=0;$e<p.inChannels;++$e){let vt=j[dt+$e*_];for(let yt=0;yt<p.outChannels;++yt)D[Me+yt*z]+=vt*X[pt+yt];pt+=p.outChannels}}}}}}return r.makeTensorInfo(b.shape,b.dtype,D)}var KK={kernelName:Xs,backendName:"cpu",kernelFunc:II};function XK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"conv2dBackpropFilter");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:f,filterHeight:m,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new rr(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=r.data.get(a.dataId).values,T=r.data.get(s.dataId).values,S=new rr(a.shape,a.dtype,w),E=new rr(s.shape,s.dtype,T);for(let R=0;R<m;++R){let _=Math.max(0,Math.ceil((b-R)/c)),M=Math.min(p.outHeight,(p.inHeight+b-R)/c);for(let I=0;I<g;++I){let O=Math.max(0,Math.ceil((x-I)/f)),z=Math.min(p.outWidth,(p.inWidth+x-I)/f);for(let j=0;j<p.inChannels;++j)for(let X=0;X<p.outChannels;++X){let D=0;for(let Q=0;Q<p.batchSize;++Q)for(let V=_;V<M;++V){let ee=R+V*c-b;for(let J=O;J<z;++J){let se=I+J*f-x;y?D+=S.get(Q,ee,se,j)*E.get(Q,V,J,X):D+=S.get(Q,j,ee,se)*E.get(Q,X,V,J)}}A.set(D,R,I,j,X)}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var ZK={kernelName:Lf,backendName:"cpu",kernelFunc:XK};function YK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n;Te([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),p=v.computeStrides(a.shape),c=N.convertConv2DDataFormat(u),f=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),m=new rr(f.inShape,"float32"),g=m.values,y=r.data.get(a.dataId).values,A=r.data.get(s.dataId).values,[x,b,w]=h,{batchSize:T,filterHeight:S,filterWidth:E,inChannels:R,inHeight:_,inWidth:M,outChannels:I,outHeight:O,outWidth:z,strideHeight:j,strideWidth:X}=f;c=f.dataFormat;let D=S-1-f.padInfo.top,Q=E-1-f.padInfo.left,V=c==="channelsLast",ee=m.strides[0],J=V?m.strides[1]:m.strides[2],se=V?m.strides[2]:1,Z=V?1:m.strides[1],ae=p[0],de=V?p[1]:p[2],Ae=V?p[2]:1,be=V?1:p[1];for(let Ee=0;Ee<T;++Ee)for(let Me=0;Me<R;++Me)for(let De=0;De<_;++De){let Be=De-D,Ze=Math.max(0,Math.ceil(Be/j)),ot=Math.min(O,(S+Be)/j);for(let dt=0;dt<M;++dt){let pt=dt-Q,$e=Math.max(0,Math.ceil(pt/X)),vt=Math.min(z,(E+pt)/X),yt=0;for(let ur=Ze;ur<ot;++ur){let Xr=ur*j-Be;for(let Jt=$e;Jt<vt;++Jt){let dr=Jt*X-pt,Yn=ae*Ee+de*ur+Ae*Jt,Zr=x*(S-1-Xr)+b*(E-1-dr)+w*Me;for(let Qt=0;Qt<I;++Qt){let bn=y[Yn+be*Qt],vn=A[Zr+Qt];yt+=bn*vn}}}let Fr=ee*Ee+J*De+se*dt+Z*Me;g[Fr]=yt}}return r.makeTensorInfo(m.shape,m.dtype,m.values)}var JK={kernelName:Zs,backendName:"cpu",kernelFunc:YK};function QK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Te([a,s],"conv3d");let u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,A=g.left,x=g.top,b=new rr(u.outShape,a.dtype),w=r.data.get(a.dataId).values,T=r.data.get(s.dataId).values,S=b.values,E=v.computeStrides(a.shape),R=v.computeStrides(s.shape);for(let _=0;_<u.batchSize;++_){let M=_*E[0],I=_*b.strides[0];for(let O=0;O<u.outDepth;++O){let z=I+O*b.strides[1],j=O*u.strideDepth-y;for(let X=0;X<d;++X){let D=j+X*c;if(D<0||D>=u.inDepth)continue;let Q=X*R[0],V=M+D*E[1];for(let ee=0;ee<u.outHeight;++ee){let J=z+ee*b.strides[2],se=ee*u.strideHeight-x;for(let Z=0;Z<h;++Z){let ae=se+Z*f;if(ae<0||ae>=u.inHeight)continue;let de=Q+Z*R[1],Ae=V+ae*E[2];for(let be=0;be<u.outWidth;++be){let Ee=J+be*u.outChannels,Me=be*u.strideWidth-A;for(let De=0;De<p;++De){let Be=Me+De*m;if(Be<0||Be>=u.inWidth)continue;let Ze=de+De*R[2],ot=Ae+Be*u.inChannels,dt=Ze;for(let pt=0;pt<u.inChannels;++pt){let $e=w[ot+pt];for(let vt=0;vt<u.outChannels;++vt)S[Ee+vt]+=$e*T[dt+vt];dt+=u.outChannels}}}}}}}}return r.makeTensorInfo(b.shape,b.dtype,b.values)}var eX={kernelName:Wp,backendName:"cpu",kernelFunc:QK};function tX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Te([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=N.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,f=h.strideWidth,m=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new rr(h.filterShape,"float32"),x=A.values,[b,w,T,S]=A.strides,E=r.data.get(s.dataId).values,[R,_,M,I]=d,O=r.data.get(a.dataId).values,[z,j,X,D]=u,Q=h.padInfo.front,V=h.padInfo.left,ee=h.padInfo.top;for(let J=0;J<m;++J){let se=Math.max(0,Math.ceil((Q-J)/p)),Z=Math.min(h.outDepth,(h.inDepth+Q-J)/p),ae=J*b;for(let de=0;de<g;++de){let Ae=Math.max(0,Math.ceil((ee-de)/c)),be=Math.min(h.outHeight,(h.inHeight+ee-de)/c),Ee=de*w+ae;for(let Me=0;Me<y;++Me){let De=Math.max(0,Math.ceil((V-Me)/f)),Be=Math.min(h.outWidth,(h.inWidth+V-Me)/f),Ze=Me*T+Ee;for(let ot=0;ot<h.inChannels;++ot){let dt=ot*S+Ze;for(let pt=0;pt<h.outChannels;++pt){let $e=0;for(let vt=0;vt<h.batchSize;++vt){let yt=vt*z,Fr=vt*R;for(let ur=se;ur<Z;++ur){let Xr=(J+ur*p-Q)*j+yt,Jt=ur*_+Fr;for(let dr=Ae;dr<be;++dr){let Yn=(de+dr*c-ee)*X+Xr,Zr=dr*M+Jt;for(let Qt=De;Qt<Be;++Qt){let bn=(Me+Qt*f-V)*D+Yn,vn=Qt*I+Zr;$e+=O[bn+ot]*E[vn+pt]}}}}x[dt+pt]=$e}}}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var rX={kernelName:Bf,backendName:"cpu",kernelFunc:tX};function nX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Te([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=N.computeConv3DInfo(l,s.shape,o,1,i),p=new rr(h.inShape,"float32"),c=p.values,[f,m,g,y]=p.strides,A=r.data.get(a.dataId).values,[x,b,w,T]=u,S=r.data.get(s.dataId).values,[E,R,_,M]=d,{batchSize:I,filterDepth:O,filterHeight:z,filterWidth:j,inChannels:X,inDepth:D,inHeight:Q,inWidth:V,outChannels:ee,outDepth:J,outHeight:se,outWidth:Z,strideDepth:ae,strideHeight:de,strideWidth:Ae}=h,be=O-1-h.padInfo.front,Ee=z-1-h.padInfo.top,Me=j-1-h.padInfo.left;for(let De=0;De<I;++De)for(let Be=0;Be<X;++Be)for(let Ze=0;Ze<D;++Ze){let ot=Ze-be,dt=Math.max(0,Math.ceil(ot/ae)),pt=Math.min(J,(O+ot)/ae);for(let $e=0;$e<Q;++$e){let vt=$e-Ee,yt=Math.max(0,Math.ceil(vt/de)),Fr=Math.min(se,(z+vt)/de);for(let ur=0;ur<V;++ur){let Xr=ur-Me,Jt=Math.max(0,Math.ceil(Xr/Ae)),dr=Math.min(Z,(j+Xr)/Ae),Yn=0;for(let Zr=dt;Zr<pt;++Zr){let Qt=Zr*ae-ot;for(let bn=yt;bn<Fr;++bn){let vn=bn*de-vt;for(let ps=Jt;ps<dr;++ps){let Zi=ps*Ae-Xr,Zh=x*De+b*Zr+w*bn+T*ps,hs=E*(O-1-Qt)+R*(z-1-vn)+_*(j-1-Zi)+M*Be;for(let Da=0;Da<ee;++Da){let Vd=A[Zh+Da],Ll=S[hs+Da];Yn+=Vd*Ll}}}}c[f*De+m*Ze+g*$e+y*ur+Be]=Yn}}}return r.makeTensorInfo(p.shape,p.dtype,p.values)}var aX={kernelName:Wf,backendName:"cpu",kernelFunc:nX},sX=mt(Ys,e=>Math.cos(e)),iX={kernelName:Ys,backendName:"cpu",kernelFunc:sX},oX=mt(Js,e=>Math.cosh(e)),lX={kernelName:Js,backendName:"cpu",kernelFunc:oX};function uX(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[d,h,p,c]=a.shape,f=s.shape[0],[m,g]=o,y=We([f,m,g,c],"float32"),A=r.data.get(s.dataId).values,x=r.data.get(i.dataId).values,b=r.data.get(a.dataId).values,w=v.computeStrides(a.shape),T=v.computeStrides(y.shape);for(let S=0;S<f;S++){let E=S*4,R=A[E],_=A[E+1],M=A[E+2],I=A[E+3],O=x[S];if(O>=d)continue;let z=m>1?(M-R)*(h-1)/(m-1):0,j=g>1?(I-_)*(p-1)/(g-1):0;for(let X=0;X<m;X++){let D=m>1?R*(h-1)+X*z:.5*(R+M)*(h-1);if(D<0||D>h-1){for(let Q=0;Q<g;Q++)for(let V=0;V<c;V++){let ee=V+Q*T[2]+X*T[1]+S*T[0];y.values[ee]=u}continue}if(l==="bilinear"){let Q=Math.floor(D),V=Math.ceil(D),ee=D-Q;for(let J=0;J<g;J++){let se=g>1?_*(p-1)+J*j:.5*(_+I)*(p-1);if(se<0||se>p-1){for(let Ae=0;Ae<c;Ae++){let be=Ae+J*T[2]+X*T[1]+S*T[0];y.values[be]=u}continue}let Z=Math.floor(se),ae=Math.ceil(se),de=se-Z;for(let Ae=0;Ae<c;Ae++){let be=Ae+Z*w[2]+Q*w[1]+O*w[0],Ee=b[be];be=Ae+ae*w[2]+Q*w[1]+O*w[0];let Me=b[be];be=Ae+Z*w[2]+V*w[1]+O*w[0];let De=b[be];be=Ae+ae*w[2]+V*w[1]+O*w[0];let Be=b[be],Ze=Ee+(Me-Ee)*de,ot=De+(Be-De)*de;be=Ae+J*T[2]+X*T[1]+S*T[0],y.values[be]=Ze+(ot-Ze)*ee}}}else for(let Q=0;Q<g;++Q){let V=g>1?_*(p-1)+Q*j:.5*(_+I)*(p-1);if(V<0||V>p-1){for(let se=0;se<c;se++){let Z=se+Q*T[2]+X*T[1]+S*T[0];y.values[Z]=u}continue}let ee=Math.round(V),J=Math.round(D);for(let se=0;se<c;se++){let Z=se+ee*w[2]+J*w[1]+O*w[0],ae=se+Q*T[2]+X*T[1]+S*T[0];y.values[ae]=b[Z]}}}}return r.makeTensorInfo(y.shape,y.dtype,y.values)}var dX={kernelName:zo,backendName:"cpu",kernelFunc:uX};function pX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumprod");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=rn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeOnesTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?1:c[x];else{let b=m(y,A-1);p[x]=i?c[b]*p[b]:c[x]*p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=rn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var hX={kernelName:Ou,backendName:"cpu",kernelFunc:pX};function cX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumsum");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=rn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?0:c[x];else{let b=m(y,A-1);p[x]=i?c[b]+p[b]:c[x]+p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=rn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var fX={kernelName:_o,backendName:"cpu",kernelFunc:cX};function mX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Fx(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=P6(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var gX={kernelName:Vf,backendName:"cpu",kernelFunc:mX};function yX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],d=a.shape[3],h=l*s,p=u*s,c=d/(s*s),f=r.data.get(a.dataId).values,m=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),b=A%s;for(let w=0;w<p;++w){let T=Math.floor(w/s),S=w%s,E=(b*s+S)*c;for(let R=0;R<c;++R){let _=R+E+d*(T+u*(x+l*y));m[g++]=f[_]}}}return r.makeTensorInfo([o,h,p,c],a.dtype,m)}var AX={kernelName:Oo,backendName:"cpu",kernelFunc:yX};function SI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Te([a,s],"depthwiseConv2DNative");let d=v.computeStrides(a.shape),h=v.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=N.computeConv2DInfo(a.shape,s.shape,i,p,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,b=A.top,w=c.outChannels/c.inChannels,T=new rr(c.outShape,a.dtype),S=r.data.get(a.dataId).values,E=r.data.get(s.dataId).values,R=T.values;for(let _=0;_<c.batchSize;++_){let M=_*d[0],I=_*T.strides[0];for(let O=0;O<c.outHeight;++O){let z=I+O*T.strides[1],j=O*c.strideHeight-b;for(let X=0;X<f;++X){let D=j+X*g;if(D<0||D>=c.inHeight)continue;let Q=X*h[0],V=M+D*d[1];for(let ee=0;ee<c.outWidth;++ee){let J=z+ee*T.strides[2],se=ee*c.strideWidth-x;for(let Z=0;Z<m;++Z){let ae=se+Z*y;if(ae<0||ae>=c.inWidth)continue;let de=Q+Z*h[1],Ae=V+ae*c.inChannels,be=J,Ee=de;for(let Me=0;Me<c.inChannels;++Me){let De=S[Ae+Me];for(let Be=0;Be<w;++Be)R[be+Be]+=De*E[Ee+Be];be+=w,Ee+=w}}}}}}return r.makeTensorInfo(T.shape,T.dtype,T.values)}var xX={kernelName:Qs,backendName:"cpu",kernelFunc:SI};function bX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"depthwiseConv2dNativeBackpropFilter");let h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:f,filterWidth:m}=h,g=new rr(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,b=r.data.get(a.dataId).values,w=new rr(a.shape,a.dtype,b),T=r.data.get(s.dataId).values,S=new rr(s.shape,s.dtype,T);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((A-E)/p)),_=Math.min(h.outHeight,(h.inHeight+A-E)/p);for(let M=0;M<m;++M){let I=Math.max(0,Math.ceil((y-M)/c)),O=Math.min(h.outWidth,(h.inWidth+y-M)/c);for(let z=0;z<h.outChannels;++z){let j=Math.trunc(z/x),X=z%x,D=0;for(let Q=0;Q<h.batchSize;++Q)for(let V=R;V<_;++V){let ee=E+V*p-A;for(let J=I;J<O;++J){let se=M+J*c-y;D+=w.get(Q,ee,se,j)*S.get(Q,V,J,z)}}g.set(D,E,M,j,X)}}}return r.makeTensorInfo(g.shape,g.dtype,g.values)}var vX={kernelName:Uf,backendName:"cpu",kernelFunc:bX};function wX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n;Te([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),p=v.computeStrides(s.shape),c=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),f=new rr(c.inShape,"float32"),m=f.values,[g,y,A]=f.strides,x=r.data.get(a.dataId).values,[b,w,T]=h,S=r.data.get(s.dataId).values,[E,R,_]=p,{batchSize:M,filterHeight:I,filterWidth:O,inChannels:z,inHeight:j,inWidth:X,outChannels:D,outHeight:Q,outWidth:V,strideHeight:ee,strideWidth:J}=c,se=I-1-c.padInfo.top,Z=O-1-c.padInfo.left,ae=D/z;for(let de=0;de<M;++de)for(let Ae=0;Ae<z;++Ae)for(let be=0;be<j;++be){let Ee=be-se,Me=Math.max(0,Math.ceil(Ee/ee)),De=Math.min(Q,(I+Ee)/ee);for(let Be=0;Be<X;++Be){let Ze=Be-Z,ot=Math.max(0,Math.ceil(Ze/J)),dt=Math.min(V,(O+Ze)/J),pt=0;for(let $e=Me;$e<De;++$e){let vt=$e*ee-Ee;for(let yt=ot;yt<dt;++yt){let Fr=yt*J-Ze,ur=b*de+w*$e+T*yt,Xr=E*(I-1-vt)+R*(O-1-Fr)+_*Ae;for(let Jt=0;Jt<ae;++Jt){let dr=Ae*ae+Jt,Yn=x[ur+dr],Zr=S[Xr+Jt];pt+=Yn*Zr}}}m[g*de+y*be+A*Be+Ae]=pt}}return r.makeTensorInfo(f.shape,f.dtype,f.values)}var kX={kernelName:Gf,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:r}=e,{x:n}=t,a=v.sizeFromShape(n.shape),s=r.data.get(n.dataId).values,i=We([a,a],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...n.shape,...n.shape];return r.makeTensorInfo(l,i.dtype,i.values)}var SX={kernelName:jf,backendName:"cpu",kernelFunc:IX},TX={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a}=e,{strides:s,pad:i,dilations:o}=r,l=t,u=l.data.get(n.dataId).values,d=n.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:c,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:T,filterWidth:S,dilationHeight:E,dilationWidth:R,outShape:_}=N.computeDilation2DInfo(n.shape,a.shape,s,i,"NHWC",o),M=v.sizeFromShape(_),I=_.length,O=v.getArrayFromDType(n.dtype,M);for(let z=0;z<c;++z)for(let j=0;j<y;++j){let X=j*b-x.top;for(let D=0;D<A;++D){let Q=D*w-x.left;for(let V=0;V<g;++V){let ee=Number.MIN_SAFE_INTEGER;for(let se=0;se<T;++se){let Z=X+se*E;if(Z>=0&&Z<f)for(let ae=0;ae<S;++ae){let de=Q+ae*R;if(de>=0&&de<m){let Ae=v.locToIndex([z,Z,de,V],d,v.computeStrides(n.shape)),be=v.locToIndex([se,ae,V],p,v.computeStrides(a.shape)),Ee=u[Ae]+h[be];Ee>ee&&(ee=Ee)}}}let J=v.locToIndex([z,j,D,V],I,v.computeStrides(_));O[J]=ee}}}return{dataId:l.write(v.toTypedArray(O,n.dtype),_,n.dtype),shape:_,dtype:n.dtype}}},NX={kernelName:sf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:T,dilationHeight:S,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${sf}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let I=0;I<p;++I)for(let O=0;O<g;++O){let z=O*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=0,ee=0;for(let J=0;J<w;++J){let se=z+J*S;if(se>=0&&se<c)for(let Z=0;Z<T;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=J,ee=Z)}}}M[V][ee][D]+=_[I][O][j][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},CX={kernelName:af,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:T,dilationHeight:S,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${af}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let I=0;I<p;++I)for(let O=0;O<g;++O){let z=O*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=z<0?0:z,ee=X<0?0:X;for(let J=0;J<w;++J){let se=z+J*S;if(se>=0&&se<c)for(let Z=0;Z<T;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=se,ee=ae)}}}M[I][V][ee][D]+=_[I][O][j][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Sh(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"sum");let o;a.dtype==="bool"?o=Bs({inputs:{x:a},backend:r,attrs:{dtype:"int32"}}):o=Ma({inputs:{x:a},backend:r});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),d=N.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=rn({inputs:{x:o},backend:r,attrs:{perm:d}}),h=N.getInnerMostAxes(h.length,l)),N.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,f]=N.computeOutAndReduceShapes(p.shape,h),m=N.upcastType(p.dtype,"int32"),g=kf(r,c,m),y=v.sizeFromShape(f),A=r.data.get(g.dataId).values,x=r.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let w=b*y,T=0;for(let S=0;S<y;++S)T+=x[w+S];A[b]=T}if(i){let b=N.expandShapeToKeepDim(g.shape,u),w=g;g=Mt({inputs:{x:g},backend:r,attrs:{shape:b}}),r.disposeIntermediateTensorInfo(w)}return r.disposeIntermediateTensorInfo(o),d!=null&&r.disposeIntermediateTensorInfo(p),g}var EX={kernelName:Ci,backendName:"cpu",kernelFunc:Sh};function RX(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=rn({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Mt({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=a0({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=Sh({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var MX={kernelName:Up,backendName:"cpu",kernelFunc:RX};function FX(e){let{inputs:t,backend:r}=e,{dy:n,y:a}=t;Te([n,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=r.data.get(a.dataId).values,o=r.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return r.makeTensorInfo(a.shape,"float32",s)}var $X={kernelName:Hf,backendName:"cpu",kernelFunc:FX},PX=N.ERF_P,_X=N.ERF_A1,zX=N.ERF_A2,OX=N.ERF_A3,DX=N.ERF_A4,LX=N.ERF_A5,BX=mt(Du,e=>{let t=Math.sign(e),r=Math.abs(e),n=1/(1+PX*r);return t*(1-((((LX*n+DX)*n+OX)*n+zX)*n+_X)*n*Math.exp(-r*r))}),WX={kernelName:Du,backendName:"cpu",kernelFunc:BX};function Sf(e){let{inputs:t,backend:r,attrs:n}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Mt({inputs:{x:a},backend:r,attrs:{shape:o}})}var VX={kernelName:Lo,backendName:"cpu",kernelFunc:Sf},UX=Zt((e,t)=>e/t),Wx=yr(ei,UX),E1={kernelName:ei,backendName:"cpu",kernelFunc:Wx};function TI(e,t,r){let n=e.shape,a=n[0],s=n[1],i=r.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],d=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",d),p=v.getTypedArrayFromDType("float32",d);for(let g=0;g<a;g++){let y=To({inputs:{x:o},backend:r,attrs:{begin:[g,0],size:[1,s]}}),A=To({inputs:{x:l},backend:r,attrs:{begin:[g,0],size:[1,s]}}),x=dn({inputs:{real:y,imag:A},backend:r}),{real:b,imag:w}=GX(x,t,r),T=N.mergeRealAndImagArrays(b,w);for(let S=0;S<s;S++){let E=N.getComplexWithIndex(T,S);h[g*s+S]=E.real,p[g*s+S]=E.imag}r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x)}let c=r.makeTensorInfo(u,"float32",h),f=r.makeTensorInfo(u,"float32",p),m=dn({inputs:{real:c,imag:f},backend:r});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}function GX(e,t,r){let n=v.sizeFromShape(e.shape),a=r.data.get(e.dataId),s=r.data.get(a.complexTensorInfos.real.dataId).values,i=r.data.get(a.complexTensorInfos.imag.dataId).values;if(jX(n)){let o=R1(s,i,n,t,r),l=[e.shape[0],e.shape[1]];if(t){let u=r.makeTensorInfo(l,"float32",o.real),d=r.makeTensorInfo(l,"float32",o.imag),h=r.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),p=Ma({inputs:{x:h},backend:r}),c=E1.kernelFunc({inputs:{a:u,b:h},backend:r}),f=E1.kernelFunc({inputs:{a:d,b:p},backend:r}),m=r.data.get(c.dataId).values,g=r.data.get(f.dataId).values;return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=HX(o,n,t);return N.splitRealAndImagArrays(l)}}function jX(e){return(e&e-1)===0}function R1(e,t,r,n,a){if(r===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=r/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=a.makeTensorInfo(d,"float32",l),p=a.makeTensorInfo(d,"float32",u),c=dn({inputs:{real:h,imag:p},backend:a}),f=N.complexWithOddIndex(s),m=f.real,g=f.imag,y=[m.length],A=a.makeTensorInfo(y,"float32",m),x=a.makeTensorInfo(y,"float32",g),b=dn({inputs:{real:A,imag:x},backend:a}),w=R1(l,u,i,n,a),T=w.real,S=w.imag,E=[T.length],R=a.makeTensorInfo(E,"float32",T),_=a.makeTensorInfo(E,"float32",S),M=dn({inputs:{real:R,imag:_},backend:a}),I=R1(m,g,i,n,a),O=I.real,z=I.imag,j=[O.length],X=a.makeTensorInfo(j,"float32",O),D=a.makeTensorInfo(j,"float32",z),Q=dn({inputs:{real:X,imag:D},backend:a}),V=N.exponents(r,n),ee=[V.real.length],J=a.makeTensorInfo(ee,"float32",V.real),se=a.makeTensorInfo(ee,"float32",V.imag),Z=dn({inputs:{real:J,imag:se},backend:a}),ae=a0({inputs:{a:Z,b:Q},backend:a}),de=Ih({inputs:{a:M,b:ae},backend:a}),Ae=Dx({inputs:{a:M,b:ae},backend:a}),be=So({inputs:{input:de},backend:a}),Ee=So({inputs:{input:Ae},backend:a}),Me=wu({inputs:{input:de},backend:a}),De=wu({inputs:{input:Ae},backend:a}),Be=ku({inputs:[be,Ee],backend:a,attrs:{axis:0}}),Ze=ku({inputs:[Me,De],backend:a,attrs:{axis:0}}),ot=a.data.get(Be.dataId).values,dt=a.data.get(Ze.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(R),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(se),a.disposeIntermediateTensorInfo(Z),a.disposeIntermediateTensorInfo(ae),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo(Me),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(Be),a.disposeIntermediateTensorInfo(Ze),{real:ot,imag:dt}}function HX(e,t,r){let n=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(a*o,t,r),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}r&&(s/=t,i/=t),N.assignToTypedArray(n,s,i,a)}return n}function qX(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=TI(o,!1,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var KX={kernelName:qf,backendName:"cpu",kernelFunc:qX};function Vx(e){let{backend:t,attrs:r}=e,{shape:n,value:a,dtype:s}=r,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(n));return ZX(o,a,i),t.makeTensorInfo(n,i,o)}var XX={kernelName:Lu,backendName:"cpu",kernelFunc:Vx};function ZX(e,t,r){e.fill(t)}var YX={kernelName:Wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,a=r,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,d=a.data.get(n.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let f=c*(l*u);for(let m=0;m<l;m++){let g=m*u;for(let y=0;y<u;y++){let A=Math.round(l-m-1),x=p+f+g+y,b=d[x];if(A>=0&&A<l){let w=A*u,T=p+f+w+y;b=d[T]}s[x]=b}}}}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},JX=Zt((e,t)=>Math.floor(e/t)),QX=yr(ai,JX,null,"int32"),eZ={kernelName:ai,backendName:"cpu",kernelFunc:QX};function tZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=II({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=Ih({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=Lx(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var rZ={kernelName:Cs,backendName:"cpu",kernelFunc:tZ};function nZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=SI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=Ih({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=Lx(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var aZ={kernelName:Es,backendName:"cpu",kernelFunc:nZ};function sZ(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=v.sizeFromShape(n.shape),i=a.shape,o=i[i.length-1],[l,u,d,h]=N.prepareAndValidate(n,a);if(u===0)return r.makeTensorInfo(l,n.dtype,[]);let p=r.data.get(a.dataId).values,c=r.bufferSync(n),f=V6(p,c,n.dtype,u,o,d,h,n.shape,s);return r.makeTensorInfo(l,n.dtype,f.values)}var iZ={kernelName:Uo,backendName:"cpu",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n;Te([a,s],"gatherV2");let l=v.parseAxisParam(i,a.shape)[0],u=r.data.get(s.dataId).values,d=a.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=d-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${d-1}]`)}let h=o;o==null&&(h=0);let p=v.sizeFromShape(s.shape),c=N.segment_util.collectGatherOpShapeInfo(a,s,l,h),f=Mt({inputs:{x:a},backend:r,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),m=Mt({inputs:{x:s},backend:r,attrs:{shape:[c.batchSize,p/c.batchSize]}}),g=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],y=r.bufferSync(m),A=r.bufferSync(f),x=U6(A,y,g);return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),r.makeTensorInfo(c.outputShape,x.dtype,x.values)}var lZ={kernelName:Vo,backendName:"cpu",kernelFunc:oZ};function uZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=TI(o,!0,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var dZ={kernelName:Kf,backendName:"cpu",kernelFunc:uZ},pZ=mt(Bu,e=>Number.isFinite(e)?1:0,"bool"),hZ={kernelName:Bu,backendName:"cpu",kernelFunc:pZ},cZ=mt(Wu,e=>Math.abs(e)===1/0?1:0,"bool"),fZ={kernelName:Wu,backendName:"cpu",kernelFunc:cZ},mZ=mt(Vu,e=>Number.isNaN(e)?1:0,"bool"),gZ={kernelName:Vu,backendName:"cpu",kernelFunc:mZ};function yZ(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=K6(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var AZ={kernelName:Xf,backendName:"cpu",kernelFunc:yZ},xZ=mt(Uu,e=>Math.log1p(e)),bZ={kernelName:Uu,backendName:"cpu",kernelFunc:xZ},vZ=Zt((e,t)=>e&&t),wZ=yr(qo,vZ,null,"bool"),kZ={kernelName:qo,backendName:"cpu",kernelFunc:wZ},IZ=mt(Gu,e=>e?0:1,"bool"),SZ={kernelName:Gu,backendName:"cpu",kernelFunc:IZ},TZ=Zt((e,t)=>e||t),NZ=yr(jp,TZ,null,"bool"),CZ={kernelName:jp,backendName:"cpu",kernelFunc:NZ};function EZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Te(a,"LRN");let u=a.shape[3],d=u-1,h=r.data.get(a.dataId).values,p=v.sizeFromShape(a.shape),c=new Float32Array(p);function f(m){let g=m%u,y=m-g+Math.max(0,g-s),A=m-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let b=h[y];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),y=h[m]*Math.pow(i+o*g,-l);c[m]=y}return r.makeTensorInfo(a.shape,a.dtype,c)}var RZ={kernelName:Hp,backendName:"cpu",kernelFunc:EZ};function MZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n;Te(i,"LRNGrad");let h=v.sizeFromShape(i.shape),p=i.shape[3],c=r.data.get(i.dataId).values,f=r.data.get(a.dataId).values,m=r.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-o),w=A-x+Math.min(p,x+o+1),T=0;for(let S=b;S<w;S++)T+=Math.pow(f[S],2);T=u*T+l;for(let S=b;S<w;S++){let E=-2*u*d*f[S]*m[A]/T;A===S&&(E+=Math.pow(T,-d)),E*=c[A],g[S]+=E}}return r.makeTensorInfo(i.shape,a.dtype,g)}var FZ={kernelName:Zf,backendName:"cpu",kernelFunc:MZ};function NI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=r,l=a.shape,u=l.length,d=v.parseAxisParam(s,l),h=d,p=N.getAxesPermutation(h,u),c=o.data.get(a.dataId).values;if(p!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[p[w]];c=_x(c,l,a.dtype,p,b),h=N.getInnerMostAxes(h.length,u),l=b}Te(a,"max"),N.assertAxesAreInnerMostDims("max",h,u);let[f,m]=N.computeOutAndReduceShapes(l,h),g=v.sizeFromShape(m),y=Z6(c,g,f,a.dtype),A=o.write(y,f,a.dtype),x=f;return i&&(x=N.expandShapeToKeepDim(f,d)),{dataId:A,shape:x,dtype:a.dtype}}var $Z={kernelName:di,backendName:"cpu",kernelFunc:NI};function PZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Ma({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),f=Bx(p,a.shape,a.dtype,c,d,"max");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var _Z={kernelName:hi,backendName:"cpu",kernelFunc:PZ};function zZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"maxPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=kI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"max");return r.makeTensorInfo(p.shape,"float32",p.values)}var OZ={kernelName:qp,backendName:"cpu",kernelFunc:zZ};function DZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"maxPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=r.bufferSync(s),p=SK(h,d),c=d.strideDepth,f=d.strideHeight,m=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,T=x-1-d.padInfo.front,S=w-1-d.padInfo.left,E=b-1-d.padInfo.top,R=We(s.shape,"float32"),_=r.bufferSync(a);for(let M=0;M<d.batchSize;++M)for(let I=0;I<d.inChannels;++I)for(let O=0;O<d.inDepth;++O)for(let z=0;z<d.inHeight;++z)for(let j=0;j<d.inWidth;++j){let X=O-T,D=z-E,Q=j-S,V=0;for(let ee=0;ee<x;ee+=g){let J=(X+ee)/c;if(!(J<0||J>=d.outDepth||Math.floor(J)!==J))for(let se=0;se<b;se+=y){let Z=(D+se)/f;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let ae=0;ae<w;ae+=A){let de=(Q+ae)/m;if(de<0||de>=d.outWidth||Math.floor(de)!==de)continue;let Ae=x*b*w-1-p.get(M,J,Z,de,I),be=ee*b*w+se*w+ae,Ee=Ae===be?1:0;Ee!==0&&(V+=_.get(M,J,Z,de,I)*Ee)}}}R.set(V,M,O,z,j,I)}return r.makeTensorInfo(R.shape,R.dtype,R.values)}var LZ={kernelName:Jf,backendName:"cpu",kernelFunc:DZ};function BZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Te([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=r.data.get(o.dataId).values,f=We(p.outShape,o.dtype,wI(c,o.shape,o.dtype,p).values),m=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,T=x-1-p.padInfo.top,S=We(o.shape,"float32"),E=r.data.get(a.dataId).values,R=We(a.shape,"float32",E);for(let _=0;_<p.batchSize;++_)for(let M=0;M<p.inChannels;++M)for(let I=0;I<p.inHeight;++I)for(let O=0;O<p.inWidth;++O){let z=I-T,j=O-w,X=0;for(let D=0;D<x;D+=y){let Q=(z+D)/m;if(!(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q))for(let V=0;V<b;V+=A){let ee=(j+V)/g;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let J=x*b-1-f.get(_,Q,ee,M),se=D*b+V,Z=J===se?1:0;Z!==0&&(X+=R.get(_,Q,ee,M)*Z)}}S.set(X,_,I,O,M)}return r.makeTensorInfo(S.shape,S.dtype,S.values)}var WZ={kernelName:Yf,backendName:"cpu",kernelFunc:BZ};function VZ(e,t,r,n,a){let s=v.computeStrides(t),i=Bx(e,t,r,s,a,"max"),o=wI(e,t,r,a,!0,n);return[i.values,o.values]}var UZ={kernelName:Qf,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;Te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,d=N.computePool2DInfo(n.shape,a,s,[1,1],i),[h,p]=VZ(u,n.shape,n.dtype,o,d),c=l.write(h,d.outShape,n.dtype),f=l.write(p,d.outShape,n.dtype);return[{dataId:c,shape:d.outShape,dtype:n.dtype},{dataId:f,shape:d.outShape,dtype:"int32"}]}};function GZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,a.shape),l=N.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),d=[],h=r.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=Bs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}});d.push(p);let c=Wx({inputs:{a:p,b:h},backend:r});d.push(c);let f=Sh({inputs:{x:c},backend:r,attrs:{axis:s,keepDims:i}});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var jZ={kernelName:ci,backendName:"cpu",kernelFunc:GZ};function HZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];(Number.isNaN(w)||w<x)&&(x=w)}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var qZ={kernelName:fi,backendName:"cpu",kernelFunc:HZ};function KZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,mode:i}=n;Te(a,"mirrorPad");let o=s.map((A,x)=>A[0]+a.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+a.shape[x]),d=i==="reflect"?0:1,h=r.data.get(a.dataId).values,p=a.shape.length,c=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,f);for(let A=0;A<f;A++){let x=v.indexToLoc(A,m,g);for(let w=0;w<m;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-d:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+d);x=x.map((w,T)=>w-l[T]);let b=v.locToIndex(x,p,c);y[A]=h[b]}return{dataId:r.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var XZ={kernelName:gi,backendName:"cpu",kernelFunc:KZ},ZZ=Zt((e,t)=>{let r=e%t;return e<0&&t<0||e>=0&&t>=0?r:(r+t)%t}),YZ=yr(ju,ZZ),JZ={kernelName:ju,backendName:"cpu",kernelFunc:YZ},QZ=Ro(Ff());function CI(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=NI({inputs:{x:a},backend:r,attrs:{reductionIndices:l,keepDims:!1}}),d=N.expandShapeToKeepDim(u.shape,l),h=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),p=Dx({inputs:{a,b:h},backend:r}),c=L6({inputs:{x:p},backend:r}),f=Sh({inputs:{x:c},backend:r,attrs:{axis:l,keepDims:!1}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=Wx({inputs:{a:c,b:m},backend:r});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var eY={kernelName:Ei,backendName:"cpu",kernelFunc:CI};function tY(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n;Te(a,"multinomial");let l=o?a:CI({inputs:{logits:a},backend:r,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=r.data.get(l.dataId).values,p=[u,s],c=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*d,g=new Float32Array(d-1);g[0]=h[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[m+x];let y=QZ.alea(i.toString()),A=f*s;for(let x=0;x<s;++x){let b=y();c[A+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){c[A+x]=w;break}}}return o||r.disposeIntermediateTensorInfo(l),r.makeTensorInfo(p,"int32",c)}var rY={kernelName:em,backendName:"cpu",kernelFunc:tY},nY=jn.nonMaxSuppressionV3Impl;function aY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Te(a,"NonMaxSuppression");let u=r.data.get(a.dataId).values,d=r.data.get(s.dataId).values,{selectedIndices:h}=nY(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var sY={kernelName:Zo,backendName:"cpu",kernelFunc:aY},iY=jn.nonMaxSuppressionV4Impl;function oY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Te(a,"NonMaxSuppressionPadded");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=iY(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var lY={kernelName:Hu,backendName:"cpu",kernelFunc:oY},uY=jn.nonMaxSuppressionV5Impl;function dY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Te(a,"NonMaxSuppressionWithScore");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=uY(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var pY={kernelName:Yo,backendName:"cpu",kernelFunc:dY};function hY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n;Te(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let d=r.data.get(a.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return r.makeTensorInfo([...a.shape,s],"int32",u)}var cY={kernelName:Qo,backendName:"cpu",kernelFunc:hY};function Tf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let a=So({inputs:{input:n},backend:r}),s=Tf({inputs:{x:a},backend:r}),i=wu({inputs:{input:n},backend:r}),o=Tf({inputs:{x:i},backend:r}),l=dn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Vx({backend:r,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var fY={kernelName:gl,backendName:"cpu",kernelFunc:Tf};function EI(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let a=So({inputs:{input:n},backend:r}),s=EI({inputs:{x:a},backend:r}),i=wu({inputs:{input:n},backend:r}),o=Tf({inputs:{x:i},backend:r}),l=dn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Vx({backend:r,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var mY={kernelName:Jo,backendName:"cpu",kernelFunc:EI};function RI(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Sf({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Sf({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=ku({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var gY={kernelName:el,backendName:"cpu",kernelFunc:RI};function yY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;Te(a,"pad");let o=s.map((y,A)=>y[0]+a.shape[A]+y[1]),l=s.map(y=>y[0]),u=r.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),h=a.shape.length,p=v.computeStrides(a.shape),c=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=v.indexToLoc(y,h,p).map((b,w)=>b+l[w]),x=v.locToIndex(A,f,m);g[x]=u[y]}return{dataId:r.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var MI={kernelName:Ai,backendName:"cpu",kernelFunc:yY},AY=Zt((e,t)=>Math.pow(e,t)),xY=yr(xi,AY),bY={kernelName:xi,backendName:"cpu",kernelFunc:xY};function vY(e){let{backend:t,attrs:r}=e,{start:n,stop:a,dtype:s,step:i}=r,o=zx(n,a,i,s);return t.makeTensorInfo([o.length],s,o)}var wY={kernelName:qu,backendName:"cpu",kernelFunc:vY},kY=mt(Ku,e=>1/e),IY={kernelName:Ku,backendName:"cpu",kernelFunc:kY};function SY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(v.sizeFromShape([h,u,d,f])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let T=0;T<h;T++)for(let S=0;S<u;S++){let E;i?E=b*(S+.5)-.5:E=b*S;let R=Math.max(0,Math.floor(E)),_=E-R,M=Math.min(p-1,Math.ceil(E)),I=T*l[0]+R*l[1],O=T*l[0]+M*l[1];for(let z=0;z<d;z++){let j;i?j=w*(z+.5)-.5:j=w*z;let X=Math.max(0,Math.floor(j)),D=j-X,Q=Math.min(c-1,Math.ceil(j)),V=I+X*l[2],ee=O+X*l[2],J=I+Q*l[2],se=O+Q*l[2];for(let Z=0;Z<f;Z++){let ae=m[V+Z],de=m[ee+Z],Ae=m[J+Z],be=m[se+Z],Ee=ae+(Ae-ae)*D,Me=de+(be-de)*D,De=Ee+(Me-Ee)*_;g[x++]=De}}}return r.makeTensorInfo([h,u,d,f],"float32",g)}var TY={kernelName:wi,backendName:"cpu",kernelFunc:SY};function NY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,d,h]=a.shape,[,p,c]=s.shape,f=new Float32Array(l*u*d*h),m=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=m[0]/g[0],A=m[1]/g[1],x=r.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let T=w*o[0];for(let S=0;S<p;S++){let E=S*y,R=Math.floor(E),_=Math.min(Math.ceil(E),u-1),M=T+R*o[1],I=T+_*o[1],O=E-R,z=1-O;for(let j=0;j<c;j++){let X=j*A,D=Math.floor(X),Q=Math.min(Math.ceil(X),d-1),V=X-D,ee=1-V,J=M+D*o[2],se=M+Q*o[2],Z=I+D*o[2],ae=I+Q*o[2],de=z*ee,Ae=z*V,be=O*ee,Ee=O*V;for(let Me=0;Me<h;Me++){let De=x[b++];f[J+Me]+=De*de,f[se+Me]+=De*Ae,f[Z+Me]+=De*be,f[ae+Me]+=De*Ee}}}}return r.makeTensorInfo([l,d,u,h],"float32",f)}var CY={kernelName:rm,backendName:"cpu",kernelFunc:NY};function EY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(h*u*d*f),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let T=0;T<h;T++){let S=T*l[0];for(let E=0;E<u;E++){let R=i?x*(E+.5):x*E,_=Math.min(p-1,s?Math.round(R):Math.floor(R));i&&(_=Math.max(0,_));let M=S+_*l[1];for(let I=0;I<d;I++){let O=i?b*(I+.5):b*I,z=Math.min(c-1,s?Math.round(O):Math.floor(O));i&&(z=Math.max(0,z));let j=M+z*l[2];for(let X=0;X<f;X++){let D=m[j+X];g[w++]=D}}}}return r.makeTensorInfo([h,u,d,f],a.dtype,g)}var RY={kernelName:Xu,backendName:"cpu",kernelFunc:EY};function MY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,d,h,p]=a.shape,[,c,f]=s.shape,m=new Float32Array(u*d*h*p),g=r.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&f>1?h-1:h],A=[i&&c>1?c-1:c,i&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],w=1/x,T=1/b,S=Math.ceil(w)*2+2,E=Math.ceil(T)*2+2;for(let R=0;R<u;R++){let _=R*o[0];for(let M=0;M<d;M++){let I=_+M*o[1],O=Math.floor(M*w),z=Math.floor(O-S/2);for(let j=0;j<h;j++){let X=I+j*o[2],D=Math.floor(j*T),Q=Math.floor(D-E/2);for(let V=0;V<p;V++){let ee=0;for(let J=0;J<S;J++){let se=J+z;if(se<0||se>=c)continue;let Z=_+se*l[1],ae=se*x,de=Math.min(d-1,i?Math.round(ae):Math.floor(ae));if(M===de)for(let Ae=0;Ae<E;Ae++){let be=Ae+Q;if(be<0||be>=f)continue;let Ee=Z+be*l[2],Me=be*b,De=Math.min(h-1,i?Math.round(Me):Math.floor(Me));j===De&&(ee+=g[Ee+V])}}m[X+V]=ee}}}}return r.makeTensorInfo(a.shape,a.dtype,m)}var FY={kernelName:tm,backendName:"cpu",kernelFunc:MY};function $Y(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n;Te(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Ma({inputs:{x:a},backend:r});let l=new rr(a.shape,a.dtype),u=r.bufferSync(a);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=a.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return r.makeTensorInfo(l.shape,l.dtype,l.values)}var PY={kernelName:nl,backendName:"cpu",kernelFunc:$Y},_Y={kernelName:yl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,d,h,p]=n.shape,[c,f]=N.getImageCenter(i,d,h),m=255,g=Math.sin(a),y=Math.cos(a),A=o.data.get(n.dataId).values;for(let x=0;x<u;x++){let b=x*h*d*p;for(let w=0;w<d;w++){let T=w*(h*p);for(let S=0;S<h;S++){let E=S*p;for(let R=0;R<p;R++){let _=[u,w,S,R],M=_[2],I=_[1],O=(M-c)*y-(I-f)*g,z=(M-c)*g+(I-f)*y;O=Math.round(O+c),z=Math.round(z+f);let j=s;if(typeof s!="number"&&(R===3?j=m:j=s[R]),O>=0&&O<h&&z>=0&&z<d){let D=z*(h*p),Q=O*p,V=b+D+Q+R;j=A[V]}let X=b+T+E+R;l[X]=j}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},zY=mt(al,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),OY={kernelName:al,backendName:"cpu",kernelFunc:zY};function FI(e,t,r,n,a,s,i,o,l,u){let d=[n/a,a],h=e.values,p=t.values;if(n===0)return We(r,t.dtype);let c=We(d,t.dtype);c.values.fill(l);for(let f=0;f<s;f++){let m=[],g=0;for(let y=0;y<i;y++){let A=h[f*i+y];m.push(A),g+=A*o[y]}if(g<0||g>=n/a)throw new Error(`Invalid indices: ${m} does not index into ${r}`);for(let y=0;y<a;y++)u?c.values[g*a+y]+=p[f*a+y]:c.values[g*a+y]=t.rank===0?p[0]:p[f*a+y]}return c}function DY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=!0,c=r.bufferSync(a),f=r.bufferSync(s),m=FI(c,f,i,h,u,l,o,d,0,p);return r.makeTensorInfo(i,m.dtype,m.values)}var LY={kernelName:sl,backendName:"cpu",kernelFunc:DY};function BY(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t;Te([n,a,s],"select");let i=n.shape.length,o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Nr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),d),p=0,c=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<c;m++)o[f]===1?h[p++]=l[f]:h[p++]=u[f];return r.makeTensorInfo(a.shape,d,h)}var WY={kernelName:il,backendName:"cpu",kernelFunc:BY},VY=N.SELU_SCALEALPHA,UY=N.SELU_SCALE,GY=mt(Zu,e=>e>=0?UY*e:VY*(Math.exp(e)-1)),jY={kernelName:Zu,backendName:"cpu",kernelFunc:GY},HY=mt(Yu,e=>e<0?-1:e>0?1:0),qY={kernelName:Yu,backendName:"cpu",kernelFunc:HY},KY=mt(Si,e=>Math.sin(e)),XY={kernelName:Si,backendName:"cpu",kernelFunc:KY},ZY=mt(ll,e=>Math.sinh(e)),YY={kernelName:ll,backendName:"cpu",kernelFunc:ZY},JY=11920928955078125e-23,pv=Math.log(JY)+2,QY=mt(Ju,e=>{let t=e>-pv,r=e<pv,n=Math.exp(e),a;return r?a=n:t?a=e:a=Math.log(1+n),a}),eJ={kernelName:Ju,backendName:"cpu",kernelFunc:QY};function tJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;Te([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=MI.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),f=rn({inputs:{x:c},backend:r,attrs:{perm:h}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}var rJ={kernelName:ul,backendName:"cpu",kernelFunc:tJ};function nJ(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=r.data.get(i.dataId).values[0],[h,p,c,f,m]=aI(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var aJ={kernelName:Xp,backendName:"cpu",kernelFunc:nJ};function sJ(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.data.get(a.dataId).values),o=r.data.get(n.dataId).values,l=Array.from(r.data.get(s.dataId).values),[u,d,h]=sI(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var iJ={kernelName:Qu,backendName:"cpu",kernelFunc:sJ};function oJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Ox(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var lJ={kernelName:Zp,backendName:"cpu",kernelFunc:oJ};function uJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Ox(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var dJ={kernelName:Yp,backendName:"cpu",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=N.calculateShapes(s,a,o),c=!1,f=r.bufferSync(a),m=r.bufferSync(s),g=r.data.get(i.dataId).values[0],y=FI(f,m,o,p,d,u,l,h,g,c);return r.makeTensorInfo(o,y.dtype,y.values)}var hJ={kernelName:Jp,backendName:"cpu",kernelFunc:pJ};function cJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=To({inputs:{x:a},backend:r,attrs:{begin:u,size:p}});return u[o]+=h,c})}var fJ={kernelName:dl,backendName:"cpu",kernelFunc:cJ},mJ={kernelName:ed,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t;Te(r,"square");let a=n.data.get(r.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:n.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},gJ=mt(Pi,(e,t)=>{let r=t;return isNaN(e)?NaN:e>0?1:r.alpha}),yJ={kernelName:Pi,backendName:"cpu",kernelFunc:gJ};function AJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n;Te(a,"stridedSlice");let{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=Mt({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=To({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});w=Mt({inputs:{x:S},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(S)}else{let T=r.bufferSync(a),S=oI(c,T,b,A);w=r.makeTensorInfo(f,S.dtype,S.values)}return w}var xJ={kernelName:pl,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.data.get(d.dataId).values,c=r.data.get(h.dataId).values,[f,m]=lI(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var vJ={kernelName:Qp,backendName:"cpu",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values[0],[u,d,h]=uI(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var kJ={kernelName:nm,backendName:"cpu",kernelFunc:wJ};function IJ(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.data.get(s.dataId).values,o=dI(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var SJ={kernelName:am,backendName:"cpu",kernelFunc:IJ},TJ=mt(hl,e=>Math.tan(e)),NJ={kernelName:hl,backendName:"cpu",kernelFunc:TJ},CJ=mt(Fi,e=>Math.tanh(e)),EJ={kernelName:Fi,backendName:"cpu",kernelFunc:CJ};function RJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;Te(a,"tile");let i=hI(r.bufferSync(a),s);return r.makeTensorInfo(i.shape,i.dtype,i.values)}var MJ={kernelName:Ka,backendName:"cpu",kernelFunc:RJ};function FJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n;Te(a,"topk");let o=r.data.get(a.dataId).values,[l,u]=fI(o,a.shape,a.dtype,s,i);return[r.makeTensorInfo(l.shape,l.dtype,l.values),r.makeTensorInfo(u.shape,u.dtype,u.values)]}var $J={kernelName:cl,backendName:"cpu",kernelFunc:FJ};function PJ(e){let{inputs:t,attrs:r,backend:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=v.computeStrides(a.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(g));w.fill(l);let T=n.data.get(a.dataId).values,S=n.data.get(s.dataId).values;for(let E=0;E<d;++E){let R=s.shape[0]===1?S:S.subarray(E*8,E*8+8);for(let _=0;_<f;++_)for(let M=0;M<m;++M)for(let I=0;I<c;++I){let O,z=R[6]*M+R[7]*_+1;if(z===0)continue;let j=(R[0]*M+R[1]*_+R[2])/z,X=(R[3]*M+R[4]*_+R[5])/z,D=hv(j,p,o),Q=hv(X,h,o);switch(i){case"nearest":O=BJ(T,h,p,A,x,b,E,Q,D,I,l);break;case"bilinear":O=WJ(T,h,p,A,x,b,E,Q,D,I,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let V=E*A+_*x+M*b+I;w[V]=O}return n.makeTensorInfo(g,a.dtype,w)}return{dataId:n.write(w,g,a.dtype),shape:a.shape,dtype:a.dtype}}var _J={kernelName:fl,backendName:"cpu",kernelFunc:PJ};function hv(e,t,r){switch(r){case"reflect":return zJ(e,t);case"wrap":return OJ(e,t);case"nearest":return LJ(e,t);case"constant":default:return DJ(e,t)}}function zJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=2*t;r<n&&(r=n*Math.trunc(-r/n)+r),r=r<-t?r+n:-r-1}else if(r>t-1)if(t<=1)r=0;else{let n=2*t;r-=n*Math.trunc(r/n),r>=t&&(r=n-r-1)}return v.clamp(0,r,t-1)}function OJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=t-1;r+=t*(Math.trunc(-r/n)+1)}else if(r>t-1)if(t<=1)r=0;else{let n=t-1;r-=t*Math.trunc(r/n)}return v.clamp(0,r,t-1)}function DJ(e,t){return e}function LJ(e,t){return v.clamp(0,e,t-1)}function fp(e,t,r,n,a,s,i,o,l,u,d){let h=i*n+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<r?e[h]:d}function BJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return fp(e,t,r,n,a,s,i,h,p,u,d)}function WJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,f=p+1,m=(f-l)*fp(e,t,r,n,a,s,i,h,p,u,d)+(l-p)*fp(e,t,r,n,a,s,i,h,f,u,d),g=(f-l)*fp(e,t,r,n,a,s,i,c,p,u,d)+(l-p)*fp(e,t,r,n,a,s,i,c,f,u,d);return(c-o)*m+(o-h)*g}function VJ(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Te(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=mI(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var UJ={kernelName:sm,backendName:"cpu",kernelFunc:VJ};function GJ(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let f=To({inputs:{x:a},backend:r,attrs:{begin:d,size:h}});p[c]=Mt({inputs:{x:f},backend:r,attrs:{shape:l}}),r.disposeIntermediateTensorInfo(f)}return p}var jJ={kernelName:ml,backendName:"cpu",kernelFunc:GJ};function HJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n;Te(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let f=0;f<h;++f){let m=Sf({inputs:{input:p},backend:r,attrs:{dim:f+1}});p=m,d.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),g=r.makeTensorInfo([],"int32",m),y=O6({inputs:{a:g,b:p},backend:r}),A=Bs({inputs:{x:y},backend:r,attrs:{dtype:"float32"}}),x=a0({inputs:{a:A,b:a},backend:r}),b=Sh({inputs:{x},backend:r,attrs:{axis:0,keepDims:!1}});u.push(b),d.push(g),d.push(y),d.push(A),d.push(x),d.push(b)}let c=RI({inputs:u,backend:r,attrs:{axis:0}});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var qJ={kernelName:eh,backendName:"cpu",kernelFunc:HJ},KJ=[Qq,jH,tK,nK,YH,sK,oK,uK,pK,cK,mK,yK,xK,wK,IK,NK,EK,MK,$K,Yq,_K,OK,LK,WK,XH,QH,UK,HH,jK,qK,KK,ZK,JK,eX,rX,aX,iX,lX,dX,hX,fX,gX,AX,xX,vX,kX,SX,TX,NX,CX,MX,Gq,$X,eq,WX,tq,VX,nq,KX,XX,YX,sq,eZ,rZ,aZ,iZ,lZ,oq,uq,qH,dZ,HK,hZ,fZ,gZ,jq,pq,cq,AZ,mq,bZ,kZ,SZ,CZ,RZ,FZ,$Z,yq,_Z,OZ,LZ,WZ,UZ,jZ,qZ,xq,XZ,JZ,rY,vq,kq,sY,lY,pY,Sq,cY,mY,gY,MI,bY,qq,Cq,wY,KH,E1,IY,Kq,Xq,Zq,TY,CY,RY,FY,PY,_Y,OY,Rq,LY,WY,jY,Fq,qY,XY,YY,$q,eY,eJ,rJ,aJ,iJ,lJ,dJ,hJ,fJ,zq,mJ,Dq,yJ,xJ,vJ,kJ,SJ,Vq,EX,NJ,EJ,MJ,$J,_J,Tq,UJ,jJ,qJ,fY];for(let e of KJ)Vn(e);var $I={};Le($I,{assertNotComplex:()=>fd,bindCanvasToFramebuffer:()=>sQ,bindColorTextureToFramebuffer:()=>Xc,bindTextureToProgramUniformSampler:()=>KI,bindTextureUnit:()=>jI,bindVertexBufferToProgramAttribute:()=>M1,callAndCheck:()=>we,canBeRepresented:()=>PI,createFragmentShader:()=>OI,createFramebuffer:()=>GI,createProgram:()=>DI,createStaticIndexBuffer:()=>WI,createStaticVertexBuffer:()=>BI,createTexture:()=>VI,createVertexShader:()=>zI,getBatchDim:()=>No,getExtensionOrThrow:()=>mp,getFramebufferErrorMessage:()=>XI,getMaxTexturesInShader:()=>QI,getNumChannels:()=>nQ,getProgramUniformLocation:()=>qI,getProgramUniformLocationOrThrow:()=>HI,getRowsCols:()=>Co,getShapeAs3D:()=>Zc,getTextureShapeFromLogicalShape:()=>YI,getWebGLDisjointQueryTimerVersion:()=>eS,getWebGLErrorMessage:()=>_I,getWebGLMaxTextureSize:()=>JI,hasExtension:()=>Tn,isCapableOfRenderingToFloatTexture:()=>tS,isDownloadFloatTextureEnabled:()=>rS,isReshapeFree:()=>_p,isWebGLFenceEnabled:()=>nS,isWebGLVersionEnabled:()=>$1,linkProgram:()=>LI,logShaderSourceAndInfoLog:()=>Gx,resetMaxTextureSize:()=>iQ,resetMaxTexturesInShader:()=>oQ,unbindColorTextureFromFramebuffer:()=>F1,unbindTextureUnit:()=>aQ,validateFramebuffer:()=>gp,validateProgram:()=>Kc,validateTextureSize:()=>UI});var po={},Uy={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function s0(e,t){po[e]=t}function ma(e,t){if(!(e in po)||t!=null){let n=ZJ(e,t);if(n!==null)po[e]=n;else return console.log("Could not get context for WebGL version",e),null}let r=po[e];return r==null||r.isContextLost()?(delete po[e],ma(e)):(r.disable(r.DEPTH_TEST),r.disable(r.STENCIL_TEST),r.disable(r.BLEND),r.disable(r.DITHER),r.disable(r.POLYGON_OFFSET_FILL),r.disable(r.SAMPLE_COVERAGE),r.enable(r.SCISSOR_TEST),r.enable(r.CULL_FACE),r.cullFace(r.BACK),po[e])}function XJ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ZJ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let r=t==null?XJ(e):t;return r.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete po[e]},!1),e===1?r.getContext("webgl",Uy)||r.getContext("experimental-webgl",Uy):r.getContext("webgl2",Uy)}function Th(e,t){return[t,e]}function YJ(e,t){return e*t}function Wc(e){let t=v.sizeFromShape(e),r=Math.ceil(t/4);return v.sizeToSquarishShape(r)}function cd(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function JJ(e,t){let[r,n]=cd(e,t);return r*n*4}function Ux(e,t){let r=e,n,a,s,i,o,l,u,d,h,p;return Y().getNumber("WEBGL_VERSION")===2?(n=r.R32F,a=r.R16F,s=r.RGBA16F,i=r.RGBA32F,o=r.RED,u=4,d=1,h=r.HALF_FLOAT,p=r.FLOAT,l=r.RGBA8):(n=e.RGBA,a=e.RGBA,s=e.RGBA,i=r.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function we(e,t){let r=t();return Y().getBool("DEBUG")&&QJ(e),r}function QJ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+_I(e,t))}var eQ=596e-10,tQ=65504;function PI(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||eQ<Math.abs(e)&&Math.abs(e)<tQ)}function _I(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function mp(e,t){return Qa(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function zI(e,t){let r=Qa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(r)),new Error("Failed to compile vertex shader.");return r}function OI(e,t){let r=Qa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),Y().get("ENGINE_COMPILE_ONLY"))return r;if(e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw Gx(t,e.getShaderInfoLog(r)),new Error("Failed to compile fragment shader.");return r}var rQ=/ERROR: [0-9]+:([0-9]+):/g;function Gx(e,t){let r=rQ.exec(t);if(r==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+r[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,p)=>v.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),d=i.slice(n);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function DI(e){return Qa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function LI(e,t){if(we(e,()=>e.linkProgram(t)),!Y().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Kc(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function BI(e,t){let r=Qa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function WI(e,t){let r=Qa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function nQ(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function VI(e){return Qa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function UI(e,t){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>r||t>r){let n=`[${e}x${t}]`,a=`[${r}x${r}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+a+".")}}function GI(e){return Qa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function M1(e,t,r,n,a,s,i){let o=e.getAttribLocation(t,r);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function jI(e,t,r){ZI(e,r),we(e,()=>e.activeTexture(e.TEXTURE0+r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function aQ(e,t){ZI(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function HI(e,t,r){return Qa(e,()=>e.getUniformLocation(t,r),'uniform "'+r+'" not present in program.')}function qI(e,t,r){return e.getUniformLocation(t,r)}function KI(e,t,r,n){we(e,()=>jI(e,t,n)),we(e,()=>e.uniform1i(r,n))}function sQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Xc(e,t,r){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,r)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function F1(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function gp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+XI(e,t))}function XI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qa(e,t,r){let n=we(e,()=>t());if(n==null)throw new Error(r);return n}function ZI(e,t){let r=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>r){let a=`[gl.TEXTURE0, gl.TEXTURE${r}]`;throw new Error(`textureUnit must be in ${a}.`)}}function No(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Co(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Zc(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[No(e),...Co(e)]),t}function YI(e,t=!1){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(r=r*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let n=v.sizeFromShape(e);if(e.length<=1&&n<=r)return[1,n];if(e.length===2&&e[0]<=r&&e[1]<=r)return e;if(e.length===3&&e[0]*e[1]<=r&&e[2]<=r)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=r&&e[1]*e[2]<=r)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=r&&e[3]<=r)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=r&&e[1]*e[2]*e[3]<=r)return[e[0],e[1]*e[2]*e[3]];if(t){let a=No(e),s=2,i=2;return e.length&&([s,i]=Co(e)),n=a*(s/2)*(i/2),v.sizeToSquarishShape(n).map(o=>o*2)}return v.sizeToSquarishShape(n)}function Vc(e){return e%2===0}function _p(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let r=e.slice(-1)[0],n=t.slice(-1)[0];if(r===n||Vc(r)&&Vc(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Vc(e[0])&&Vc(t[0])}var Yc,Jc;function JI(e){if(Yc==null){let t=ma(e);Yc=t.getParameter(t.MAX_TEXTURE_SIZE)}return Yc}function iQ(){Yc=null}function oQ(){Jc=null}function QI(e){if(Jc==null){let t=ma(e);Jc=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Jc)}function eS(e){if(e===0)return 0;let t,r=ma(e);return Tn(r,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Tn(r,"EXT_disjoint_timer_query")?t=1:t=0,t}function Tn(e,t){return e.getExtension(t)!=null}function $1(e){try{if(ma(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function tS(e){if(e===0)return!1;let t=ma(e);if(e===1){if(!Tn(t,"OES_texture_float"))return!1}else if(!Tn(t,"EXT_color_buffer_float"))return!1;return P1(t)}function rS(e){if(e===0)return!1;let t=ma(e);if(e===1){if(!Tn(t,"OES_texture_float")||!Tn(t,"WEBGL_color_buffer_float"))return!1}else{if(Tn(t,"EXT_color_buffer_float"))return P1(t);let r="EXT_color_buffer_half_float";if(Tn(t,r)){let n=t.getExtension(r);return lQ(t,n)}return!1}return P1(t)}function P1(e){let t=Ux(e),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let n=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(s),i}function lQ(e,t){let r=Ux(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,r.internalFormatHalfFloat,a,s,0,r.textureFormatFloat,r.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function nS(e){return e!==2?!1:ma(e).fenceSync!=null}function fd(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Y();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>$1(2)?2:$1(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>JI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>QI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:eS(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!ah.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>tS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>rS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>nS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>ah.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Ur(){let e,t,r,n,a,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",r="out",n="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",r="varying",n="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:r,varyingFs:n,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Tl(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / ${a}`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function i0(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function uQ(e,t){let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function dQ(e,t,r="index"){let n=e.map((s,i)=>i),a=uQ(n,t);return a.map((s,i)=>{let o=`int ${e[i]} = ${r} / ${a[i]}`,l=i===a.length-1?`int ${e[i+1]} = ${r} - ${e[i]} * ${a[i]}`:`index -= ${e[i]} * ${a[i]}`;return`${o}; ${l};`}).join("")}function jx(e){let t=v.computeStrides(e).map(r=>r.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function Hx(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var aS=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:sS}=N;function pQ(e,t,r){let n=[];if(e.forEach(p=>{let c=v.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?n.push(`uniform float ${p.name}${c>1?`[${c}]`:""};`):(n.push(`uniform sampler2D ${p.name};`),n.push(`uniform int offset${p.name};`)),r.enableShapeUniforms){let{uniformShape:f}=qx(r.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(f.length){case 1:n.push(`uniform int ${p.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${p.name}TexShape;`)}}),r.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}r.customUniforms&&r.customUniforms.forEach(p=>{n.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let a=n.join(`
|
|
`),s=e.map(p=>hQ(p,t,r.packedInputs,r.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=Ur(),l=mQ(o),u,d,h=AQ(o);return t.isPacked?(u=cQ(t.logicalShape,i,r.enableShapeUniforms),d=yQ(o)):(u=fQ(t.logicalShape,i,r.enableShapeUniforms),d=gQ(o)),r.packedInputs&&(h+=wQ),[h,l,d,a,u,s,r.userCode].join(`
|
|
`)}function md(e,t=!1){let r=e.shapeInfo.logicalShape;switch(r.length){case 0:return PQ(e,t);case 1:return zQ(e,t);case 2:return DQ(e,t);case 3:return BQ(e,t);case 4:return VQ(e,t);case 5:return UQ(e);case 6:return GQ(e);default:throw new Error(`${r.length}-D input sampling is not yet supported`)}}function iS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return $Q(e);case 1:return _Q(e,t);case 2:return OQ(e,t);case 3:return LQ(e,t);default:return WQ(e,t)}}function hQ(e,t,r=!1,n){let a="";r?a+=iS(e,n):a+=md(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(r?a+=jQ(e,t):a+=HQ(e,t)),a}function cQ(e,t,r){switch(e.length){case 0:return oS();case 1:return kQ(e,t,r);case 2:return MQ(e,t,r);case 3:return SQ(e,t,r);default:return NQ(e,t,r)}}function fQ(e,t,r){switch(e.length){case 0:return oS();case 1:return IQ(e,t,r);case 2:return FQ(e,t,r);case 3:return TQ(e,t,r);case 4:return CQ(e,t,r);case 5:return EQ(e,t);case 6:return RQ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mQ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function gQ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function yQ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function AQ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${xQ}
|
|
${bQ}
|
|
${vQ}
|
|
`}var xQ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,bQ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,vQ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,wQ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function oS(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function kQ(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function IQ(e,t,r){return t[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function SQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),s=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function TQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${i0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=Tl(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function NQ(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),s=a*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function CQ(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${i0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=Tl(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function EQ(e,t){let r=Tl(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function RQ(e,t){let r=Tl(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function MQ(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function FQ(e,t,r){return v.arraysEqual(e,t)?r?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Nl(e){return`offset${e}`}function $Q(e){let t=e.name,r="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Ur();return`
|
|
vec4 ${r}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function PQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${r};}`;let[a,s]=e.shapeInfo.texShape;if(a===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let i=Nl(r);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function _Q(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,s=Ur();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`;let i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`}function zQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${gd(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,s=a[0],i=a[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let o=Nl(r);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${r}TexShape[0]));
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${r}TexShape[1]), 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function OQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Ur();if(s!=null&&v.arraysEqual(r,s))return t?`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${a}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`}function DQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(r,s)){if(t)return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=s[0],c=s[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=v.squeezeShape(r),l=i;if(l.length<r.length){let p=yd(e,l),c=["row","col"];return`
|
|
${md(p,t)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${Ad(c,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${r[1]}, 1)));
|
|
${gd(e)}
|
|
}
|
|
`;let u=s[0],d=s[1],h=Nl(n);return d===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${h};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r[1]} + col + ${h};
|
|
vec2 uv = uvFromFlat(${u}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(r[0]===1){let p=r.slice(1),c=[1,2],f=yd(e,p),m=["b","row","col"];return`
|
|
${iS(f,t)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${Ad(m,c)});
|
|
}
|
|
`}let o=Ur();if(t)return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],d=Math.ceil(r[2]/2),h=d*Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${h}, ${d}, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function BQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[1]*r[2],i=r[2],{newShape:o,keptDims:l}=v.squeezeShape(r),u=o;if(u.length<r.length){let m=yd(e,u),g=["row","col","depth"];return`
|
|
${md(m,t)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${Ad(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${gd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.texShape,h=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===s&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===i&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${r[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Nl(n);return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function WQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=Ur();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${r}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${r}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],h=Math.ceil(s[i-1]/2),p=h*Math.ceil(s[i-2]/2),c="int b, int row, int col",f=`b * ${p} + (row / 2) * ${h} + (col / 2)`;for(let m=2;m<i-1;m++)c=`int b${m}, `+c,p*=s[i-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${n}(${c}) {
|
|
int index = ${f};
|
|
int texR = index / ${d};
|
|
int texC = index - texR * ${d};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
|
|
return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`}function VQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[3],i=r[2]*s,o=r[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(r);if(l.length<r.length){let A=yd(e,l),x=["row","col","depth","depth2"];return`
|
|
${md(A,t)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${Ad(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${gd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1],f=`int stride2 = ${n}Shape[3];`,m=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(c===o&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===s&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${r[1]*r[2]}, ${r[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let y=Nl(n);return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function UQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=yd(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${md(m)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${Ad(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${gd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(c===a&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let f=Nl(r);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function GQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let g=yd(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${md(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${Ad(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${gd(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],f=p[1];if(f===d&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let m=Nl(r);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${f}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function gd(e){let t=e.name,r=v.sizeFromShape(e.shapeInfo.logicalShape);return r<2?`return ${t};`:`
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function jQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=sS(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
|
|
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)c=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?c=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:c=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${n}(${p});
|
|
${c}
|
|
}
|
|
`}function HQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${r}, resultUV);
|
|
}
|
|
`;let u=gt(l),d=sS(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(m=>`coords.${c[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${c[g+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${n}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function qx(e,t,r){let{newShape:n,keptDims:a}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,r)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:a}}function yd(e,t){let r=JSON.parse(JSON.stringify(e));return r.shapeInfo.logicalShape=t,r}function Ad(e,t){return t.map(r=>e[r]).join(", ")}function qQ(e,t,r,n){let a=r.map((d,h)=>{let p={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(p.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[h],shapeInfo:p}}),s=a.map(d=>d.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=pQ(a,i,t),l=OI(e.gl,o),u=e.createProgram(l);return Y().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,...lS(e,t,u)}}function lS(e,t,r){let n={},a={},s={},i=[],o,l,u,d=null,h=null;h=e.getUniformLocation(r,"NAN",!1),Y().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(r,"INFINITY",!1));let p=!1;for(let c=0;c<t.variableNames.length;c++){let f=t.variableNames[c];n[f]=e.getUniformLocation(r,f,p),n[`offset${f}`]=e.getUniformLocation(r,`offset${f}`,p),t.enableShapeUniforms&&(a[`${f}Shape`]=e.getUniformLocation(r,`${f}Shape`,p),s[`${f}TexShape`]=e.getUniformLocation(r,`${f}TexShape`,p))}return t.enableShapeUniforms&&(o=e.getUniformLocation(r,"outShape",p),u=e.getUniformLocation(r,"outShapeStrides",p),l=e.getUniformLocation(r,"outTexShape",p)),t.customUniforms&&t.customUniforms.forEach((c,f)=>{i[f]=e.getUniformLocation(r,c.name,p)}),{uniformLocations:n,customUniformLocations:i,infLoc:d,nanLoc:h,inShapesLocations:a,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function cv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((r,n)=>{let a=r.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(r.isUniform&&s.isUniform)return;let o=r.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function KQ(e,t,r,n,a){t.program.enableShapeUniforms||(cv(t.inShapeInfos,r),cv([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),r.forEach((l,u)=>{let d=t.program.variableNames[u],h=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`],c=t.inShapesLocations[`${d}Shape`],f=t.inTexShapesLocations[`${d}TexShape`];if(c){let{uniformShape:m}=qx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),h!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(h,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(h,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,h,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&a&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],h=a[u];if(l.type==="float")e.gl.uniform1fv(d,h);else if(l.type==="vec2")e.gl.uniform2fv(d,h);else if(l.type==="vec3")e.gl.uniform3fv(d,h);else if(l.type==="vec4")e.gl.uniform4fv(d,h);else if(l.type==="int")e.gl.uniform1iv(d,h);else if(l.type==="ivec2")e.gl.uniform2iv(d,h);else if(l.type==="ivec3")e.gl.uniform3iv(d,h);else if(l.type==="ivec4")e.gl.uniform4iv(d,h);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function XQ(e,t,r){let n="";t.concat(r).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:h}=qx(e.packedInputs,i.shape,l),p="",c="",f="";if(d.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(d.length===2&&!e.packedInputs)c=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let w=v.computeStrides(d);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=i.shape.length,g=d.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,A=N.getBroadcastDims(i.shape,r.shape),x=!e.packedInputs&&m===r.shape.length&&v.arraysEqual(l,r.texData.texShape),b=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${m}_${x}_${u?h:""}_${d.length}_${y}_${A}_${g}_${p}_${c}_${f}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let a=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+a+`${Y().getNumber("WEBGL_VERSION")}`,s}function on(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var ZQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?i0(["r","c","d"],e):Tl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},YQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?i0(["r","c","d"],e):Tl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JQ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=Ur();this.outputShape=e,this.userCode=`
|
|
${aS}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},QQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=Ur();this.outputShape=e,this.userCode=`
|
|
${aS}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},eee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let n="result";t&&(n="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?Hx():jx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${n}, 0., 0., 0.);
|
|
}
|
|
`}},tee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let n="",a="result";t&&(a="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?Hx():jx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${n}
|
|
|
|
${r.output} = ${a};
|
|
}
|
|
`}},uS={};Le(uS,{bindVertexProgramAttributeStreams:()=>AS,createBufferFromOutputTexture:()=>vS,createFloat16MatrixTexture:()=>fS,createFloat16PackedMatrixTexture:()=>yS,createFloat32MatrixTexture:()=>cS,createIndexBuffer:()=>hS,createPackedMatrixTexture:()=>gS,createUnsignedBytesMatrixTexture:()=>mS,createVertexBuffer:()=>pS,createVertexShader:()=>dS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>kS,downloadFloat32MatrixFromBuffer:()=>wS,downloadMatrixFromPackedOutputTexture:()=>SS,downloadPackedMatrixFromBuffer:()=>IS,getInternalFormatForFloat16MatrixTexture:()=>Xx,getInternalFormatForFloat16PackedMatrixTexture:()=>Jx,getInternalFormatForFloat32MatrixTexture:()=>Kx,getInternalFormatForPackedMatrixTexture:()=>Yx,getInternalFormatForUnsignedBytesMatrixTexture:()=>Zx,uploadDenseMatrixToTexture:()=>xS,uploadPixelDataToTexture:()=>bS});function dS(e){let t=Ur(),r=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return zI(e,r)}function pS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return BI(e,t)}function hS(e){let t=new Uint16Array([0,1,2,2,1,3]);return WI(e,t)}function Nh(e,t,r,n,a,s){UI(t,r);let i=VI(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(o,0,n,t,r,0,a,s,null)):we(e,()=>e.texStorage2D(o,1,n,t,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[r,t]}}function Kx(e){return e.internalFormatFloat}function cS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,Kx(n),n.textureFormatFloat,e.FLOAT)}function Xx(e){return e.internalFormatHalfFloat}function fS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,Xx(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Zx(e){return e.downloadTextureFormat}function mS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,Zx(n),e.RGBA,e.UNSIGNED_BYTE)}function Yx(e){return e.internalFormatPackedFloat}function gS(e,t,r,n){let[a,s]=cd(t,r);return Nh(e,a,s,Yx(n),e.RGBA,e.FLOAT)}function Jx(e){return e.internalFormatPackedHalfFloat}function yS(e,t,r,n){let[a,s]=cd(t,r);return Nh(e,a,s,Jx(n),e.RGBA,n.textureTypeHalfFloat)}function AS(e,t,r){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),M1(e,t,"clipSpacePos",r,3,20,0)&&M1(e,t,"uv",r,2,20,12)}function xS(e,t,r,n,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(r*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(r*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r,n,e.RGBA,o,i)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,r,n,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function bS(e,t,r){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),r.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r.width,r.height,e.RGBA,e.UNSIGNED_BYTE,r.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,r.width,r.height,0,e.RGBA,e.UNSIGNED_BYTE,r.data)):Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,r)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function vS(e,t,r,n){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*r;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function wS(e,t,r){let n=e,a=new Float32Array(r);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,a),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),a}function kS(e,t,r,n){let[a,s]=Th(t,r),i=4,o=new Uint8Array(YJ(t*r,i));return we(e,()=>e.readPixels(0,0,a,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function IS(e,t,r,n,a,s,i,o){let l=e,u=new Float32Array(JJ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function SS(e,t,r){let n=new Float32Array(t*r*4);return we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,n)),n}var pu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,s0(t,e)):this.gl=ma(t);let r="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Y().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=mp(this.gl,a),Tn(this.gl,s))this.textureHalfFloatExtension=mp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),Tn(this.gl,n))this.colorBufferHalfFloatExtension=mp(this.gl,n);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",Tn(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(Tn(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=pS(this.gl),this.indexBuffer=hS(this.gl),this.framebuffer=GI(this.gl),this.textureConfig=Ux(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),cS(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),fS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),mS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),bS(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,r,n){this.throwIfDisposed(),xS(this.gl,e,t,r,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),yS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),gS(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(F1(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,r){return this.downloadMatrixDriver(e,()=>kS(this.gl,t,r,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,r,n,a,s){return IS(this.gl,e,t,r,n,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return wS(this.gl,e,t)}createBufferFromTexture(e,t,r){this.bindTextureToFrameBuffer(e);let n=vS(this.gl,t,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,r;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,a=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),r=()=>{let s=n.clientWaitSync(a,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=a}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:t,isFencePassed:r}}downloadMatrixFromPackedTexture(e,t,r){return this.downloadMatrixDriver(e,()=>SS(this.gl,t,r))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=dS(t));let r=DI(t);return we(t,()=>t.attachShader(r,this.vertexShader)),we(t,()=>t.attachShader(r,e)),LI(t,r),this.debug&&Kc(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=AS(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Kc(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,r=!0){return this.throwIfDisposed(),r?HI(this.gl,e,t):qI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,r){this.throwIfDisposed(),this.throwIfNoProgram(),KI(this.gl,e,t,r)}setOutputMatrixTexture(e,t,r){this.setOutputMatrixTextureDriver(e,r,t)}setOutputPackedMatrixTexture(e,t,r){this.throwIfDisposed();let[n,a]=cd(t,r);this.setOutputMatrixTextureDriver(e,n,a)}setOutputMatrixWriteRegion(e,t,r,n){this.setOutputMatrixWriteRegionDriver(r,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,r,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Kc(this.gl,this.program),gp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=mp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.createQuery();return r.beginQuery(n.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,r=this.getQueryTimerExtensionWebGL2();t.endQuery(r.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let r=this.gl;return r.getQueryParameter(e,r.QUERY_RESULT)/1e6}else{let r=this.getQueryTimerExtensionWebGL1();return r.getQueryObjectEXT(e,r.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.getQueryParameter(e,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),n=r.getQueryObjectEXT(e,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=ree(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:r}=this.itemsToPoll[t];r()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Xc(this.gl,e,this.framebuffer),this.debug&&gp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Xc(this.gl,this.outputTexture,this.framebuffer),this.debug&&gp(this.gl)):F1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let r=t();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(e,t,r){this.throwIfDisposed();let n=this.gl;Xc(n,e,this.framebuffer),this.debug&&gp(n),this.outputTexture=e,we(n,()=>n.viewport(0,0,t,r)),we(n,()=>n.scissor(0,0,t,r))}setOutputMatrixWriteRegionDriver(e,t,r,n){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,r,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function ree(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:nee,bincountImpl:TS,bincountReduceImpl:aee,ceilImpl:see,concatImpl:iee,equalImpl:oee,expImpl:lee,expm1Impl:uee,floorImpl:dee,gatherNdImpl:pee,gatherV2Impl:hee,greaterImpl:cee,greaterEqualImpl:fee,lessImpl:mee,lessEqualImpl:gee,linSpaceImpl:yee,logImpl:Aee,maxImpl:xee,maximumImpl:bee,minimumImpl:vee,multiplyImpl:wee,negImpl:kee,notEqualImpl:Iee,prodImpl:See,rangeImpl:Tee,rsqrtImpl:Nee,sigmoidImpl:Cee,simpleAbsImpl:NS,sliceImpl:Eee,sparseFillEmptyRowsImpl:Ree,sparseReshapeImpl:Mee,sparseSegmentReductionImpl:CS,sqrtImpl:Fee,stridedSliceImpl:$ee,stringNGramsImpl:Pee,stringSplitImpl:_ee,stringToHashBucketFastImpl:zee,subImpl:Oee,tileImpl:Dee,topKImpl:Lee,transposeImpl:Qx,uniqueImpl:Bee}=n0;function ES(e,t){return["x","y","z","w","u","v"].slice(0,t).map(r=>`${e}.${r}`)}function Dr(e,t){return t===1?[e]:ES(e,t)}function Wee(e,t){if(e===1)return"rc";let r="";for(let n=0;n<e;n++)r+=t[n],n<e-1&&(r+=",");return r}var Vee=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=on(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Dr("rc",this.rank),r=gt(this.rank),n=this.getOutOfBoundsCondition(t),a=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${n}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let r=0;r<=1;r++)for(let n=0;n<=1;n++){let a=`${r===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)a=`${e[e.length-1-s]},`+a;t.push(a)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let r=this.rank-2;r<this.rank;r++)t+=`${e[r]} >= ${this.enableShapeUniforms?`outShape[${r}]`:this.outputShape[r]}`,r<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),r=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${r};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},RS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let r="";for(let n=0;n<4;n++){let a="thisRC = rc;";n%2===1&&(a+="thisRC.z += 1;"),n>1&&(a+="thisRC.y += 1;"),r+=`
|
|
${a}
|
|
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${n}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${n>0?"}":""}
|
|
`}this.userCode=`
|
|
${Uee(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?Hx():jx(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${r}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Uee(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?dQ(["r","c","d"],"inputShape"):Tl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Gee=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,r){let n=mv(t,r),a=gv(e,n,r);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=fv(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return n===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,r,n){if(this.freeTextures==null)return;let a=mv(r,n),s=gv(t,a,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=fv(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function jee(e,t){let r=e;if(t===r.R32F)return 4;if(t===r.R16F)return 2;if(t===r.RGBA32F||t===e.RGBA)return 16;if(t===r.RGBA16F)return 8;if(t===r.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function fv(e,t,r,n,a){let s=Hee(t,n),i;if(a){let[l,u]=cd(e[0],e[1]);i=l*u}else{let[l,u]=Th(e[0],e[1]);i=l*u}let o=jee(r,s);return i*o}function Hee(e,t){switch(e){case 3:return Yx(t);case 4:return Jx(t);case 1:return Kx(t);case 0:return Xx(t);case 2:return Zx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function qee(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function mv(e,t){if(e===1)return 3;if(e===0||e==null)return qee(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function gv(e,t,r){return`${e[0]}_${e[1]}_${t}_${r}`}var Ua=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},qn="if (isnan(x)) return x;",Kee="return x;",yv="return abs(x);",Xee="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zee=qn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Yee=qn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Ql="return x;",Jee="return 1.0 / (1.0 + exp(-1.0 * x));",Qee="return x;",ete=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,tte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,rte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,nte="return 1.0 / (1.0 + exp(-1.0 * x));",fo=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ate=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let t=e.length,r=Dr("rc",t),n=gt(t),a=Wee(t,r),s=r.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},ste=jn.whereImpl,ite=1e-7,ote=1e-4,Gy={};function lte(e){return e in Gy||(Gy[e]={}),Gy[e]}var ute=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),dte=600;function pte(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*dte/1024/1024}var MS=class extends Su{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof pu)t=e;else{let r=ma(Y().getNumber("WEBGL_VERSION"),e);t=new pu(r)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let r=ma(Y().getNumber("WEBGL_VERSION"));t=new pu(r),this.binaryCache=lte(Y().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Gee(this.gpgpu),this.numMBBeforeWarning=pte(),this.texData=new Op(this,Ar())}nextDataId(){return MS.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,r){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:r,values:e,usage:1,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,r,n,a){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:r,dtype:n,values:t,usage:1,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:r,dtype:n,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new fo(i,Ql):h=new Ua(i,Ql);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:n}],n),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(r!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return r;let l=this.activeTimers!=null,u;l&&(u=v.now());let d;if(n==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);d=N.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(f=>c.push(f))}let t=this.texData.get(e),{values:r,shape:n,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let c;o?c=new fo(n,Ql):c=new Ua(n,Ql);let f=this.runWebGLProgram(c,[{dataId:e,shape:n,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(r!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture.texture,...Wc(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=c[0],m=c[1];d=N.mergeRealAndImagArrays(f,m)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=v.sizeFromShape(n);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let c=this.gpgpu.gl;we(c,()=>c.deleteBuffer(l))}let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ar().removeDataId(e,this),this.pendingDeletes--),h}readToGPU(e,t={}){let r=this.texData.get(e),{values:n,shape:a,slice:s,dtype:i,isPacked:o,texture:l}=r;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let p;o?p=new fo(a,Ql):p=new Ua(a,Ql);let c=this.runWebGLProgram(p,[{dataId:e,shape:a,dtype:i}],i),f=this.readToGPU(c,t);return this.disposeIntermediateTensorInfo(c),f}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),d=Ar().makeTensorFromDataId(u.dataId,u.shape,u.dtype),h=this.texData.get(u.dataId);return{tensorRef:d,...h.texture}}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let r=e[t];if(!PI(r))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${r} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${r} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:r,isPacked:n}=this.texData.get(e),a=v.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...Wc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),c}let s=Y().getBool("WEBGL_PACK")&&n===!0,i=s?Zc(t):t,o=s?new QQ(i):new JQ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:r,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:r}=this.texData.get(e);return r!=null&&(this.disposeData(r.real.dataId,t),this.disposeData(r.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:r,texShape:n,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,r),this.textureManager.releaseTexture(t,n,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=ute){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return ste(e.shape,t)}packedUnaryOp(e,t,r){let n=new fo(e.shape,t),a=this.compileAndRun(n,[e],r);return Ar().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=NS(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,yv,e.dtype);let t=new Ua(e.shape,yv),r=this.compileAndRun(t,[e]);return Ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,r){let{dataId:n}=this.makeTensorInfo(e,t,r);return Ar().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new ate(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Vee(e.shape),r=!0;return this.runWebGLProgram(t,[e],e.dtype,null,r)}packedReshape(e,t){let r=[No(e.shape),...Co(e.shape)],n={dtype:e.dtype,shape:r,dataId:e.dataId},a=[No(t),...Co(t)],s=new RS(a,r),i=!0,o=[r],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let r=this.texData.get(e),{isPacked:n,shape:a,dtype:s}=r;if(t!=null){let h=v.sizeFromShape(a),p=t[0]*t[1]*4;v.assert(h<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Zc(a),o;n?o=new YQ(i):o=new ZQ(i);let l=!0,u=[t!=null?t:Wc(i)],d=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,r,n,a=!1,s){let i=this.makeTensorInfo(e.outputShape,r),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=s!=null?s:Wc(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!_p(y.shape,g.shape)){let A=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),A.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let d={shape:i.shape,texData:o,isUniform:!1},h=XQ(e,u,d),p=this.getAndSaveBinary(h,()=>qQ(this.gpgpu,e,u,d)),c=this.activeTimers!=null,f;c&&(f=this.startTimer()),Y().get("ENGINE_COMPILE_ONLY")||KQ(this.gpgpu,p,u,d,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),c&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=Y().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&a===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,r,n,a=!1){return r=r||t[0].dtype,this.runWebGLProgram(e,t,r,n,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=K(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?ite:ote}uploadToGPU(e){let t=this.texData.get(e),{shape:r,dtype:n,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let d=t.texShape;if(d==null&&(d=YI(r,o),t.texShape=d),a!=null){let h=Zc(r),p,c=d[1],f=d[0],m=a instanceof Uint8Array||a instanceof Uint8ClampedArray;(o||!m)&&([c,f]=cd(d[0],d[1])),o?p=new tee(h,m):p=new eee(h,m);let g=m?[f,c]:d,y=this.makeTensorInfo(g,n),A=this.texData.get(y.dataId);m?A.usage=2:A.usage=1,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),c,f,a);let x=[[f,c]],b=!0,w=this.runWebGLProgram(p,[y],n,x,b),T=this.texData.get(w.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,Y().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(d,i,n,o);t.texture=h}}convertAndCacheOnCPU(e,t){let r=this.texData.get(e),{dtype:n}=r;return this.releaseGPUData(e),t!=null&&(r.values=hte(t,n)),r.values}acquireTexture(e,t,r,n){if(this.numBytesInGPU+=this.computeBytes(e,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let r=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(a){throw a}});e.push(r)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Y2(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Gx(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:r,infLoc:n,nanLoc:a,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=lS(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=r,e.infLoc=n,e.nanLoc=a,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Ch=MS;Ch.nextDataId=0;function hte(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let r=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<r.length;++n)r[n]=Math.round(e[n]);return r}else throw new Error(`Unknown dtype ${t}`)}var cte="0.0.0";function FS(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}ah.isBrowser()&&xl("webgl",()=>new Ch,2);var fte={forceHalfFloat:FS},$S=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Iu=class{constructor(e,t,r){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},o0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Eh=class{constructor(e,t,r,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r);let a=this.outputShape.length;this.enableShapeUniforms=on(a);let s="";if(n)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${gt(a)} coords = getOutputCoords();
|
|
`,a===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Dr("coords",a);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= outShape[${a} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= outShape[${a} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function nn(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var mte={kernelName:oi,backendName:"webgl",kernelFunc:nn};function Di(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.texData.get(s.dataId),o=nn({inputs:{x:n},backend:r}),l=nn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var gte={kernelName:Lp,backendName:"webgl",kernelFunc:Di},PS="return (a < 0.) ? b * a : a;",_S=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function yte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=r.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(_S,a.shape,i.shape):new Iu(PS,a.shape,i.shape),l=r.runWebGLProgram(o,[a,i],"float32");return r.disposeIntermediateTensorInfo(i),l}var Ate={kernelName:li,backendName:"webgl",kernelFunc:yte},zS="return (a < 0.) ? b * a : a;",OS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function xte(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(OS,n.shape,a.shape):new Iu(zS,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],"float32")}var bte={kernelName:bi,backendName:"webgl",kernelFunc:xte},xd="if (isnan(x)) return x;",vte=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,wte=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:r,dtype:n}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&r!=null){let h=o.texData.get(i.dataId),p=r(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new fo(i.shape,t):d=new Ua(i.shape,e),o.runWebGLProgram(d,[i],l)}}function br({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:r=!1,supportsComplex:n=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(n&&l.dtype==="complex64"){let f=d.texData.get(l.dataId),m=d.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,w]=x,T={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Iu(e,l.shape,u.shape);return d.runWebGLProgram(E,[T,S],Nr(b.dtype,w.dtype))}),A=Di({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Nr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&a!=null){let f=d.texData.get(l.dataId).values,m=d.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(f):f,y=l.dtype==="string"?N.fromUint8ToStringArray(m):m,[A,x]=a(l.shape,u.shape,g,y,h),b=d.makeTensorInfo(x,h),w=d.texData.get(b.dataId);return w.values=A,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new Eh(t,l.shape,u.shape,r):c=new Iu(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function l0(e,t=!1){if(e==="linear")return t?Qee:Kee;if(e==="relu")return t?tte:Zee;if(e==="elu")return t?ete:Xee;if(e==="relu6")return t?rte:Yee;if(e==="prelu")return t?OS:zS;if(e==="leakyrelu")return t?_S:PS;if(e==="sigmoid")return t?nte:Jee;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var DS=class{constructor(e,t,r,n=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r,this.enableShapeUniforms=on(this.outputShape.length);let u=n?e[1]:e[2],d=Math.ceil(u/2),h=n?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",c=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${c[0]} * ${f[0]});
|
|
result += (${c[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Av={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},xv=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},bv="return a * b;";function eb(e){let{inputs:t,backend:r}=e,{a:n,b:a}=t,s=N.upcastType(n.dtype,a.dtype);if(n.dtype==="complex64"){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),u=new xv(Av.REAL,n.shape,a.shape),d=new xv(Av.IMAG,n.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Di({inputs:{real:p,imag:c},backend:r});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}if(r.shouldExecuteOnCPU([n,a])){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),[u,d]=wee(n.shape,a.shape,o.values,l.values,s),h=r.makeTensorInfo(d,s),p=r.texData.get(h.dataId);return p.values=u,h}let i;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Eh(bv,n.shape,a.shape):i=new Iu(bv,n.shape,a.shape),r.runWebGLProgram(i,[n,a],s)}var kte={kernelName:yi,backendName:"webgl",kernelFunc:eb};function Ite(e,t,r){let n=[No(e.shape),...Co(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},s=[No(t),...Co(t)],i=new RS(s,n),o=!0,l=[n],u=r.runWebGLProgram(i,[a],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=r,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(a.dataId);return d.isPacked&&!_p(a.shape,l)&&!(d.texture!==null&&_p(d.shape,l))?Ite(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var Ste={kernelName:rl,backendName:"webgl",kernelFunc:ve},vv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(r/4)*4,o=r%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${v.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";a%r>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Tte=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(r/4)*4,d=r%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Nte(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let r=t.length?t[t.length-1].outSize:e[1],n=N.computeOptimalWindowSize(r);t.push({inSize:r,windowSize:n,outSize:Math.ceil(r/n)})}return t}function Cl(e,t,r,n){let a=Nte(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],d,h;r==="mean"?d=i===0?new vv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new vv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new Tte({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},r),h=s,s=n.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(h)}return s}var Cte=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[t[s]];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=Ete(t);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function Ete(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let a=0;a<e.length;a++)n[e[a]]=r[a];return n.join()}var Rte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let r=new Array(e.length);for(let u=0;u<r.length;u++)r[u]=e[t[u]];if(this.outputShape=r,this.rank=r.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=gt(this.rank),a=ES("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${r[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${r[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function u0(e,t,r){let n=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Rte(e.shape,t):new Cte(e.shape,t);return r.runWebGLProgram(n,[e],e.dtype)}function Mte(e,t,r,n){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=u0(e,l,n),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,o),c=h;r&&(c=N.expandShapeToKeepDim(h,i));let f=v.sizeFromShape(p),m=v.sizeFromShape(e.shape)/f,g=ve({inputs:{x:d},attrs:{shape:[m,f]},backend:n}),y=nh(e.dtype),A=Cl(g,y,"sum",n),x=ve({inputs:{x:A},attrs:{shape:c},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(d),x}function d0(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Mte(a,s,i,r)}var Fte={kernelName:Ci,backendName:"webgl",kernelFunc:d0};function xr(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];let u;if(i.shouldExecuteOnCPU([a])){let d=i.texData.get(a.dataId).values,h=Qx(d,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=u0(a,s,i);return u}var $te={kernelName:$i,backendName:"webgl",kernelFunc:xr},LS=1e3;function Nf({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=Al.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,f,p]:[A,p,f],T=ve({inputs:{x:e},backend:a,attrs:{shape:b}}),S=ve({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[T,S],R=Math.max(y,A),_=r?T.shape[1]:T.shape[2],M=s!=null,I=i!=null,O=l==="leakyrelu",z=l!=null?l0(l,!0):null,j=M||I||O||z!=null,X;if((c===1||f===1)&&_>LS&&j===!1){let Q=T,V=S;r&&(Q=xr({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(Q)),n&&(V=xr({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),E.push(V));let ee=f!==1,J=f===1,se=Q;ee&&(se=ve({inputs:{x:Q},backend:a,attrs:{shape:[R,_,1]}}),E.push(se));let Z=f===1?2:1,ae=V;J&&(ae=ve({inputs:{x:V},backend:a,attrs:{shape:[R,1,_]}}),E.push(ae));let de=eb({inputs:{a:se,b:ae},backend:a});X=d0({inputs:{x:de},backend:a,attrs:{axis:Z,keepDims:!0}}),E.push(de)}else{let Q=Nr(e.dtype,t.dtype),V=new DS(b,w,[R,c,f],r,n,M,z,I,O),ee=[T,S];if(s!=null&&ee.push(s),I&&ee.push(i),O){let J=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));ee.push(J),E.push(J)}X=a.runWebGLProgram(V,ee,Q)}let D=ve({inputs:{x:X},backend:a,attrs:{shape:x}});E.push(X);for(let Q of E)a.disposeIntermediateTensorInfo(Q);return D}function Pte(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return Nf({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var _te={kernelName:Ns,backendName:"webgl",kernelFunc:Pte},wv="return abs(x);";function zte(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=r.texData.get(n.dataId),i=NS(s.values);return r.makeTensorInfo(n.shape,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new fo(n.shape,wv):a=new Ua(n.shape,wv),r.runWebGLProgram(a,[n],n.dtype)}var Ote={kernelName:Fo,backendName:"webgl",kernelFunc:zte},Dte=qn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Lte=it({opSnippet:Dte}),Bte={kernelName:Nu,backendName:"webgl",kernelFunc:Lte},Wte=qn+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,Vte=it({opSnippet:Wte}),Ute={kernelName:Cu,backendName:"webgl",kernelFunc:Vte},kv="return a + b;",Gte=br({opSnippet:kv,packedOpSnippet:kv,supportsComplex:!0,cpuKernelImpl:nee}),jte={kernelName:Ha,backendName:"webgl",kernelFunc:Gte},Hte=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`float v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
float result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}},qte=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`vec4 v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
vec4 result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};function Qc(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return nn({inputs:{x:n[0]},backend:r});if(n.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=Qc({inputs:n.slice(0,o),backend:r}),u=Qc({inputs:n.slice(o),backend:r});return Qc({inputs:[l,u],backend:r})}let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=Y().getBool("WEBGL_PACK")?new qte(n[0].shape,s):new Hte(n[0].shape,s);return r.runWebGLProgram(i,n,a)}var Kte={kernelName:Us,backendName:"webgl",kernelFunc:Qc};function Xte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Cl(m,m.dtype,"all",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Zte={kernelName:Eu,backendName:"webgl",kernelFunc:Xte};function Yte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Cl(m,m.dtype,"any",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Jte={kernelName:Ru,backendName:"webgl",kernelFunc:Yte},Qte=class{constructor(e,t,r){this.variableNames=["A"];let{windowSize:n,batchSize:a,outSize:s}=e;r||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},ere=class{constructor(e,t,r,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=Dr("coords",o),d,h;if(s===1){h=o+1;let S=gt(h);d=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],f=p.map(S=>"int "+S),m=Dr("sourceLocR",h-1).concat("inIdx.r"),g=Dr("sourceLocG",h-1).concat("inIdx.g"),y=Dr("sourceLocB",h-1).concat("inIdx.b"),A=Dr("sourceLocA",h-1).concat("inIdx.a"),x=r==="max"?"greaterThan":"lessThan",b=n?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,T=n?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
|
|
sourceLocB${c}, sourceLocA${c}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function BS(e,t,r,n=null){let a=t.shape[0],s=t.shape[1];n!=null&&(a=n.shape[0],s=n.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new Qte(o,r,n==null),u=[t];n!=null&&u.push(n);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=BS(e,t,r,d);return e.disposeIntermediateTensorInfo(d),h}function WS(e,t,r,n=null){let a=n!=null?n.shape:t.shape,s=a[a.length-1],i=N.computeOptimalWindowSize(s),o=new ere(a,i,r,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=WS(e,t,r,u);return e.disposeIntermediateTensorInfo(u),d}return u}function VS(e,t,r,n){let a=[r];if(N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),a,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=N.computeOutAndReduceShapes(l.shape,a),h=v.sizeFromShape(d),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,h]}});s.push(p);let c=BS(e,p,n);s.push(c);let f=ve({inputs:{x:c},backend:e,attrs:{shape:u}});return s.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return WS(e,t,n)}function tre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=VS(r,l,i[0],"max");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var rre={kernelName:Gs,backendName:"webgl",kernelFunc:tre};function nre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=VS(r,l,i[0],"min");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var are={kernelName:Mu,backendName:"webgl",kernelFunc:nre},sre=qn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,ire=it({opSnippet:sre}),ore={kernelName:Fu,backendName:"webgl",kernelFunc:ire},lre=qn+"return log(x + sqrt(x * x + 1.0));",ure=it({opSnippet:lre}),dre={kernelName:$u,backendName:"webgl",kernelFunc:ure},pre=qn+`
|
|
return atan(x);
|
|
`,hre=it({opSnippet:pre}),cre={kernelName:Pu,backendName:"webgl",kernelFunc:hre},fre=vte+`
|
|
return atan(a, b);
|
|
`,mre=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+wte+`
|
|
return result;
|
|
`,gre=br({opSnippet:fre,packedOpSnippet:mre}),yre={kernelName:zu,backendName:"webgl",kernelFunc:gre},Are=qn+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,xre=it({opSnippet:Are}),bre={kernelName:_u,backendName:"webgl",kernelFunc:xre},zp=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),r){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?m:g:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,T=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},tb=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),r){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let T=Math.floor(s/4)*4,S=s%4,E=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function vre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;fd(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return nn({inputs:{x:a},backend:r});let h=new zp(d,"avg",!1);return r.runWebGLProgram(h,[a],"float32")}var wre={kernelName:js,backendName:"webgl",kernelFunc:vre};function kre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,l,u),p=new tb(h,"avg",!1);return r.runWebGLProgram(p,[a],"float32")}var Ire={kernelName:Dp,backendName:"webgl",kernelFunc:kre},Sre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*r);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Tre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,f=h-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*r*n);this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Nre(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new Tre(p);return r.runWebGLProgram(c,[a],i.dtype)}var Cre={kernelName:zf,backendName:"webgl",kernelFunc:Nre};function Ere(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;fd([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=new Sre(d);return r.runWebGLProgram(h,[a],i.dtype)}var Rre={kernelName:_f,backendName:"webgl",kernelFunc:Ere};function Mre(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return Nf({a,b:s,transposeA:i,transposeB:o,backend:r})}var Fre={kernelName:Hs,backendName:"webgl",kernelFunc:Mre},$re=class{constructor(e,t,r,n,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},Pre=class{constructor(e,t,r,n,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},_re=({inputs:e,backend:t,attrs:r})=>{let{x:n,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=[n,a,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Pre(n.shape,a.shape,s.shape,d,h,l):new $re(n.shape,a.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},zre={kernelName:si,backendName:"webgl",kernelFunc:_re},Ore=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let r=Dre(this.rank),n,a=e.map((s,i)=>`sourceLoc.${_1[i]} = start[${i}] + coords.${_1[i]};`);n=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${n}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}},_1=["x","y","z","w","u","v"];function Dre(e){if(e===1)return"sourceLoc";if(e<=6)return _1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Lre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),r=Dr("coords",this.rank),n=Dr("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.y = ${s};
|
|
--${n[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${r[this.rank-1]};
|
|
if (++${r[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${n[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${n[d]} = ${r[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function Bre(e,t,r,n){let a=n.texData.get(e.dataId),s=n.makeTensorInfo(r,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=r,i.dtype=e.dtype;let o=_t.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function bd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);if(r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.texData.get(a.dataId),p=Eee(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}let{isPacked:u}=r.texData.get(a.dataId),d=_t.isSliceContinous(a.shape,o,l);if(u||!d){let h=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Lre(l):new Ore(l),p=[o];return r.runWebGLProgram(h,[a],a.dtype,p)}return r.uploadToGPU(a.dataId),Bre(a,o,l,r)}var Wre={kernelName:ol,backendName:"webgl",kernelFunc:bd},Vre=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=ve({inputs:{x:a},backend:r,attrs:{shape:l}}),m=xr({inputs:{x:f},backend:r,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:d}}),y=bd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeIntermediateTensorInfo(A)),y},Ure={kernelName:$o,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.readSync(a.dataId),l=r.readSync(s.dataId),u=TS(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var jre={kernelName:Of,backendName:"webgl",kernelFunc:Gre};function Hre(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.readSync(n.dataId),i=r.readSync(a.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var qre={kernelName:Df,backendName:"webgl",kernelFunc:Hre},Kre="return float(a != b);",US=br({opSnippet:Kre,cpuKernelImpl:Iee,dtype:"bool"}),Xre={kernelName:Xo,backendName:"webgl",kernelFunc:US};function Rh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return nn({inputs:{x:a.complexTensorInfos.real},backend:r})}var Zre={kernelName:Kp,backendName:"webgl",kernelFunc:Rh},Yre="return float(int(x));";function Jre(e,t){let r=new Ua(e.shape,Yre),n=t.runWebGLProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function z1(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return nn({inputs:{x:a},backend:r});let i=Wt(a.shape),o=z1({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Di({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Rh({inputs:{input:a},backend:r}),o=z1({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=nn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return Jre(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=US({inputs:{a,b:i},backend:r});return r.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var Qre={kernelName:qs,backendName:"webgl",kernelFunc:z1},Iv="return ceil(x);",ene=it({opSnippet:Iv,packedOpSnippet:Iv,cpuKernelImpl:see}),tne={kernelName:Ks,backendName:"webgl",kernelFunc:ene},rne=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},nne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function ane(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o;Y().getBool("WEBGL_PACK_CLIP")?o=new nne(a.shape):o=new rne(a.shape);let l=[[s],[i]];return r.runWebGLProgram(o,[a],a.dtype,l)}var sne={kernelName:qa,backendName:"webgl",kernelFunc:ane},ine=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Sv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function one(e){let{inputs:t,backend:r}=e,{x:n}=t,a=r.texData.get(n.dataId),s=new ine(n.shape),i=[Sv(n,a.complexTensorInfos.real),Sv(n,a.complexTensorInfos.imag)];return r.runWebGLProgram(s,i,i[0].dtype)}var lne={kernelName:Bp,backendName:"webgl",kernelFunc:one},une=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let r=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];r.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,a=t[t.length-1];r.push(`else setOutput(getT${n}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${r.join(`
|
|
`)}
|
|
}
|
|
`}},dne=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let r=this.outputShape,n=r.length,a=gt(n),s=Dr("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Uc(i,l,m)}),
|
|
vec2(${Uc(u,l,m)}));
|
|
}`}let p=o.length,c=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${p}(${Uc(i,l,c)}),
|
|
vec2(${Uc(u,l,c)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[n-1]} = ${s[n-1]} + 1;
|
|
if (${s[n-1]} < ${r[n-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[n-2]} = ${s[n-2]} + 1;
|
|
if (${s[n-2]} < ${r[n-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[n-1]} = ${s[n-1]} - 1;
|
|
if (${s[n-2]} < ${r[n-2]} &&
|
|
${s[n-1]} < ${r[n-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Uc(e,t,r){let n=e.indexOf(t);return e.map((a,s)=>s===n?`${a} - ${r}`:a).join()}function p0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return nn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var pne={kernelName:Gp,backendName:"webgl",kernelFunc:p0};function su(e,t,r){let n=e[0].dtype;if(n==="complex64"){let d=e.map(m=>Rh({inputs:{input:m},backend:r})),h=e.map(m=>p0({inputs:{input:m},backend:r})),p=su(d,t,r),c=su(h,t,r),f=Di({inputs:{real:p,imag:c},backend:r});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),h.forEach(m=>r.disposeIntermediateTensorInfo(m)),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let d=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:r,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:r.readSync(y.dataId),shape:y.shape})),p=N.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,f=iee(h,p,n,c),m=N.computeOutShape(e.map(y=>y.shape),t),g=r.makeTensorInfo(m,n,f);return d.forEach(y=>r.disposeIntermediateTensorInfo(y)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=su(e.slice(0,d),t,r),p=su(e.slice(d),t,r),c=su([h,p],t,r);return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),c}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new dne(e.map(h=>h.shape),t);return r.runWebGLProgram(d,e,n)}let{tensors2D:s,outShape:i}=hne(e,t,r),o=new une(s.map(d=>d.shape)),l=r.runWebGLProgram(o,s,n);s.forEach(d=>r.disposeIntermediateTensorInfo(d));let u=ve({inputs:{x:l},attrs:{shape:i},backend:r});return r.disposeIntermediateTensorInfo(l),u}function hne(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:r})),outShape:n}}function GS(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return nn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),su(o,s,r)}var cne={kernelName:Po,backendName:"webgl",kernelFunc:GS},jS=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";r&&(n?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${c}) *
|
|
getW(wR, wC, ${c}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${c}, xR, xC) *
|
|
getW(wR, wC, ${c}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2),
|
|
getW(wR, wC, ${c} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1),
|
|
getX(batch, xR, xC, ${c} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC),
|
|
getX(batch, ${c} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},fne=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,r=e.padInfo.top,n=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${r}, ${n});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${c}) *
|
|
getW(wF, wR, wC, ${c}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1),
|
|
getX(batch, xF, xR, xC, ${c} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2),
|
|
getW(wF, wR, wC, ${c} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mne=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let{dataFormat:r}=t,n=Ur(),a=r==="channelsLast",s=a?0:1,i=a?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
|
|
blockIndex = rc.y + ${d};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${a}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};function HS({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),d=r.inChannels,h=l[0]*l[1]*l[2],p=r.outChannels,c=r.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((h===1||p===1)&&d>LS)&&u.isPacked&&c&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,A,r.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(_p(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});y.push(w);let T=Nf({a:x,b:w,backend:n,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),S=n.texData.get(T.dataId);v.assert(S.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,S.shape=r.outShape,g=nn({inputs:{x:T},backend:n}),g.shape=r.outShape,y.push(T)}else{let A=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=ve({inputs:{x:e},backend:n,attrs:{shape:[1,A,r.inChannels]}}),b=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}}),w=Nf({a:x,b,transposeA:f,transposeB:m,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ve({inputs:{x:w},backend:n,attrs:{shape:r.outShape}}),y.push(x),y.push(b),y.push(w)}for(let A of y)n.disposeIntermediateTensorInfo(A);return g}function qS({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=r,f=c==="channelsLast",m=l*u*d,g=p*h,y=[m,g],A=!0,x=!1,b=[],w=ve({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),T=ve({inputs:{x:t},backend:n,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(T);let S=new mne(y,r),E=[w.shape,[r.padInfo.top,r.padInfo.left],[r.strideHeight,r.strideWidth],[r.dilationHeight,r.dilationWidth],[r.inChannels],[r.filterWidth*r.inChannels],[r.outWidth]],R=n.runWebGLProgram(S,[w],"float32",E),_=ve({inputs:{x:R},backend:n,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push(_);let M=a!=null,I=s!=null,O=o==="leakyrelu",z=o?l0(o,!0):null,j=new DS(_.shape,T.shape,[1,g,r.outChannels],A,x,M,z,I,O),X=[_,T];if(a&&X.push(a),I&&X.push(s),O){let ee=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));X.push(ee),b.push(ee)}let D=n.runWebGLProgram(j,X,"float32"),Q=f?[1,p,h,r.outChannels]:[1,r.outChannels,p,h],V=ve({inputs:{x:D},backend:n,attrs:{shape:Q}});b.push(D);for(let ee of b)n.disposeIntermediateTensorInfo(ee);return V}function gne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=HS({x:a,filter:s,convInfo:p,backend:r});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)c=qS({x:a,filter:s,convInfo:p,backend:r});else{let m=new jS(p);c=r.runWebGLProgram(m,[a,s],"float32")}let f=ve({inputs:{x:c},backend:r,attrs:{shape:p.outShape}});return r.disposeIntermediateTensorInfo(c),f}var yne={kernelName:Xs,backendName:"webgl",kernelFunc:gne},Ane=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=r-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${r} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=r-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${r}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${r} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function wne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),c=new Ane(p);return r.runWebGLProgram(c,[a,s],"float32")}var kne={kernelName:Lf,backendName:"webgl",kernelFunc:wne};function Ine(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new xne(p);return r.runWebGLProgram(c,[a,s],"float32")}var Sne={kernelName:Zs,backendName:"webgl",kernelFunc:Ine};function Tne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),d=new fne(u);return r.runWebGLProgram(d,[a,s],"float32")}var Nne={kernelName:Wp,backendName:"webgl",kernelFunc:Tne};function Cne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=N.computeConv3DInfo(a.shape,l,i,1,o),d=new bne(u);return r.runWebGLProgram(d,[a,s],"float32")}var Ene={kernelName:Bf,backendName:"webgl",kernelFunc:Cne};function Rne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=N.computeConv3DInfo(l,s.shape,o,1,i),d=new vne(u);return r.runWebGLProgram(d,[a,s],"float32")}var Mne={kernelName:Wf,backendName:"webgl",kernelFunc:Rne},Fne=xd+`
|
|
return cos(x);
|
|
`,$ne=it({opSnippet:Fne}),Pne={kernelName:Ys,backendName:"webgl",kernelFunc:$ne},_ne=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,zne=it({opSnippet:_ne}),One={kernelName:Js,backendName:"webgl",kernelFunc:zne},Dne=class{constructor(e,t,r,n,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=r;this.outputShape=[u,d,h,l];let p=n==="bilinear"?1:0,[c,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${c} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Lne=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Dne(a.shape,s.shape,o,l,u);return r.runWebGLProgram(d,[a,s,i],"float32")},Bne={kernelName:zo,backendName:"webgl",kernelFunc:Lne},Tv=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"1.0":`getX(${Nv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${Cv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Cv(n,"coords")} = idx;
|
|
val *= getX(${Nv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Nv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function Cv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function Wne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=xr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=nn({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Tv(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Tv(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=xr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Vne={kernelName:Ou,backendName:"webgl",kernelFunc:Wne},Ev=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"0.0":`getX(${Rv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${Mv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Mv(n,"coords")} = idx;
|
|
val += getX(${Rv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Rv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Mv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Une(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=xr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=nn({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Ev(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Ev(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=xr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Gne={kernelName:_o,backendName:"webgl",kernelFunc:Une};function jne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=TS(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=aee(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Hne={kernelName:Vf,backendName:"webgl",kernelFunc:jne},qne=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Kne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=new qne(f,s,i);return r.runWebGLProgram(m,[a],a.dtype)}var Xne={kernelName:Oo,backendName:"webgl",kernelFunc:Kne},KS=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=on(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";r&&(n?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${d}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},XS=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=on(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,h=d,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<d;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(h+1)/2;g++){let y=g*2;if(p+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?p+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<d)){let A=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):A===1?p+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:p+=`
|
|
xCOffset = xC + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<d&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<d&&(p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<d&&(p+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<d&&(p+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let c="",f="";r&&(n?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:c=`vec4 activation(vec4 x) {
|
|
${r}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Zne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels===1?p=new XS(h):p=new KS(h);let c=[[h.padInfo.top,h.padInfo.left],[h.strideHeight,h.strideWidth],[h.dilationHeight,h.dilationWidth],[h.inHeight,h.inWidth]];return r.runWebGLProgram(p,[a,s],"float32",c)}var Yne={kernelName:Qs,backendName:"webgl",kernelFunc:Zne},Jne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Qne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=r-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function eae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n,h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),p=new Jne(h);return r.runWebGLProgram(p,[a,s],"float32")}var tae={kernelName:Uf,backendName:"webgl",kernelFunc:eae};function rae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n,h=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new Qne(h);return r.runWebGLProgram(p,[a,s],"float32")}var nae={kernelName:Gf,backendName:"webgl",kernelFunc:rae},aae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function sae(e){let{inputs:t,backend:r}=e,{x:n}=t,a=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=ve({inputs:{x:n},backend:r,attrs:{shape:[s]}}),o=new aae(s),l=r.runWebGLProgram(o,[i],i.dtype),u=ve({inputs:{x:l},backend:r,attrs:{shape:a}});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var iae={kernelName:jf,backendName:"webgl",kernelFunc:sae},oae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:r,padInfo:n,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=n;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${r}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function lae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),d,h=new oae(u);d=r.runWebGLProgram(h,[a,s],"float32");let p=ve({inputs:{x:d},backend:r,attrs:{shape:u.outShape}});return r.disposeIntermediateTensorInfo(d),p}var uae={kernelName:Vp,backendName:"webgl",kernelFunc:lae};function dae(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=xr({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=eb({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=d0({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var pae={kernelName:Up,backendName:"webgl",kernelFunc:dae},hae="return (x >= 0.0) ? x : (exp(x) - 1.0);",cae=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,fae=it({opSnippet:hae,packedOpSnippet:cae}),mae={kernelName:ti,backendName:"webgl",kernelFunc:fae},gae="return (b >= 1.0) ? a : a * (b + 1.0);",yae=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Aae=e=>{let{inputs:t,backend:r}=e,{dy:n,y:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(yae,n.shape,a.shape):new Iu(gae,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],n.dtype)},xae={kernelName:Hf,backendName:"webgl",kernelFunc:Aae},bae=`
|
|
return vec4(equal(a, b));
|
|
`,vae="return float(a == b);",wae=br({opSnippet:vae,packedOpSnippet:bae,dtype:"bool",cpuKernelImpl:oee}),kae={kernelName:Do,backendName:"webgl",kernelFunc:wae},Iae=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Sae=it({opSnippet:Iae}),Tae={kernelName:Du,backendName:"webgl",kernelFunc:Sae},Nae=xd+`
|
|
return exp(x);
|
|
`,Cae=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ZS=it({opSnippet:Nae,packedOpSnippet:Cae,cpuKernelImpl:lee,dtype:"float32"}),Eae={kernelName:ri,backendName:"webgl",kernelFunc:ZS};function O1(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ve({inputs:{x:s},backend:n,attrs:{shape:o}})}var Rae={kernelName:Lo,backendName:"webgl",kernelFunc:O1},Fv="return exp(x) - 1.0;",Mae=it({opSnippet:Fv,packedOpSnippet:Fv,cpuKernelImpl:uee}),Fae={kernelName:Bo,backendName:"webgl",kernelFunc:Mae},$v=class{constructor(e,t,r){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let a=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=r?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${n});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function YS(e,t,r){let n=r.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ve({inputs:{x:e},backend:r,attrs:{shape:[i,s]}}),l=o.shape,u=new $v("real",l,t),d=new $v("imag",l,t),h=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Di({inputs:{real:p,imag:c},backend:r});r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c);let m=ve({inputs:{x:f},backend:r,attrs:{shape:e.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(f),m}function $ae(e){let{inputs:t,backend:r}=e,{input:n}=t;return YS(n,!1,r)}var Pae={kernelName:qf,backendName:"webgl",kernelFunc:$ae},_ae=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Mh(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new _ae(n,a),o=[[a]];return t.runWebGLProgram(i,[],s,o)}}var zae={kernelName:Lu,backendName:"webgl",kernelFunc:Mh},Oae=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Dae={kernelName:Wo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new Oae(r.shape);return n.runWebGLProgram(a,[r],r.dtype)}},Pv="return floor(x);",Lae=it({opSnippet:Pv,packedOpSnippet:Pv,cpuKernelImpl:dee}),Bae={kernelName:ni,backendName:"webgl",kernelFunc:Lae},Wae=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Vae=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,Uae=br({opSnippet:Wae,packedOpSnippet:Vae,dtype:"int32"}),Gae={kernelName:ai,backendName:"webgl",kernelFunc:Uae},jae=class{constructor(e){this.variableNames=["A"];let t=Ur(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${r}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Hae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ur(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}.0, ${r}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},qae={kernelName:Ip,backendName:"webgl",kernelFunc:Kae},eu;function Kae(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],d=[u,l],h=[u,l,s];(o||i)&&(eu==null&&(eu=document.createElement("canvas").getContext("2d")),eu.canvas.width=l,eu.canvas.height=u,eu.drawImage(a,0,0,l,u),a=eu.canvas);let p=r.makeTensorInfo(d,"int32");r.texData.get(p.dataId).usage=2,r.gpgpu.uploadPixelDataToTexture(r.getTexture(p.dataId),a);let c=Y().getBool("WEBGL_PACK")?new Hae(h):new jae(h),f=r.runWebGLProgram(c,[p],"int32");return r.disposeData(p.dataId),f}function Xae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=HS({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=qS({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,w=o!=null,T=c==="leakyrelu",S=c?l0(c,!1):null,E=new jS(g,b,S,w,T),R=[a,s];if(i&&R.push(i),o&&R.push(o),T){let _=r.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(_),A.push(_)}y=r.runWebGLProgram(E,R,"float32")}let x=ve({inputs:{x:y},backend:r,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Zae={kernelName:Cs,backendName:"webgl",kernelFunc:Xae};function Yae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,f=[],m=d;m==null&&(m=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=N.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=p?l0(p,y):null,x=[a,s],b=i!=null,w=o!=null,T=p==="leakyrelu";if(b&&x.push(i),w&&x.push(o),T){let _=r.makeTensorInfo([],"float32",v.createScalarValue(c,"float32"));x.push(_),f.push(_)}let S;y?S=new XS(g,b,A,w,T):S=new KS(g,b,A,w,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=r.runWebGLProgram(S,x,"float32",E);return f.forEach(_=>r.disposeIntermediateTensorInfo(_)),R}var Jae={kernelName:Es,backendName:"webgl",kernelFunc:Yae},Qae=class{constructor(e,t,r){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=r;let n=gt(t.length),a=gt(r.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${n} strides = ${n}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function ese(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=ve({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=ve({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let y=r.readSync(a.dataId),A=r.bufferSync(n),x=pee(y,A,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,x.values)}let f=new Qae(i,h,[u,d]),m=r.runWebGLProgram(f,[c,p],c.dtype),g=ve({inputs:{x:m},backend:r,attrs:{shape:l}});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),g}var tse={kernelName:Uo,backendName:"webgl",kernelFunc:ese},rse=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let r=gt(this.rank),n=nse(e,2);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${n}));
|
|
}
|
|
`}};function nse(e,t){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push("index"):n.push(`${r[a]}`);return n.join()}function JS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0];if(Y().get("DEBUG")){let A=r.readSync(s.dataId),x=a.shape[l];for(let b=0;b<A.length;++b){let w=A[b];v.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=ve({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=ve({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let A=r.bufferSync(c),x=r.bufferSync(p),b=hee(x,A,f);return h.forEach(w=>r.disposeIntermediateTensorInfo(w)),r.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new rse(p.shape,f),g=r.runWebGLProgram(m,[p,c],p.dtype);h.push(g);let y=ve({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeIntermediateTensorInfo(A)),y}var ase={kernelName:Vo,backendName:"webgl",kernelFunc:JS},sse="return float(a > b);",ise=`
|
|
return vec4(greaterThan(a, b));
|
|
`,ose=br({opSnippet:sse,packedOpSnippet:ise,cpuKernelImpl:cee,dtype:"bool"}),lse={kernelName:Go,backendName:"webgl",kernelFunc:ose},use="return float(a >= b);",dse=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,pse=br({opSnippet:use,packedOpSnippet:dse,dtype:"bool",cpuKernelImpl:fee}),hse={kernelName:ii,backendName:"webgl",kernelFunc:pse};function cse(e){let{inputs:t,backend:r}=e,{input:n}=t;return YS(n,!0,r)}var fse={kernelName:Kf,backendName:"webgl",kernelFunc:cse},mse="return float(!isnan(x) && !isinf(x));",gse=it({opSnippet:mse,dtype:"bool"}),yse={kernelName:Bu,backendName:"webgl",kernelFunc:gse},Ase="return float(isinf(x));",xse=it({opSnippet:Ase,dtype:"bool"}),bse={kernelName:Wu,backendName:"webgl",kernelFunc:xse},vse="return float(isnan(x));",wse=it({opSnippet:vse,dtype:"bool"}),kse={kernelName:Vu,backendName:"webgl",kernelFunc:wse},Ise="return float(a < b);",Sse=`
|
|
return vec4(lessThan(a, b));
|
|
`,Tse=br({opSnippet:Ise,packedOpSnippet:Sse,cpuKernelImpl:mee,dtype:"bool"}),Nse={kernelName:jo,backendName:"webgl",kernelFunc:Tse},Cse="return float(a <= b);",Ese=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Rse=br({opSnippet:Cse,packedOpSnippet:Ese,cpuKernelImpl:gee,dtype:"bool"}),Mse={kernelName:Ho,backendName:"webgl",kernelFunc:Rse};function Fse(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=yee(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var $se={kernelName:Xf,backendName:"webgl",kernelFunc:Fse},Pse=xd+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,_se=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,zse=it({opSnippet:Pse,packedOpSnippet:_se,cpuKernelImpl:Aee}),Ose={kernelName:ui,backendName:"webgl",kernelFunc:zse},Dse=xd+`
|
|
return log(1.0 + x);
|
|
`,Lse=it({opSnippet:Dse}),Bse={kernelName:Uu,backendName:"webgl",kernelFunc:Lse},Wse="return float(a >= 1.0 && b >= 1.0);",Vse=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Use=br({opSnippet:Wse,packedOpSnippet:Vse,dtype:"bool"}),Gse={kernelName:qo,backendName:"webgl",kernelFunc:Use},jse="return float(!(x >= 1.0));",Hse=it({opSnippet:jse}),qse={kernelName:Gu,backendName:"webgl",kernelFunc:Hse},Kse="return float(a >= 1.0 || b >= 1.0);",Xse=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Zse=br({opSnippet:Kse,packedOpSnippet:Xse,dtype:"bool"}),Yse={kernelName:jp,backendName:"webgl",kernelFunc:Zse},Jse=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Qse=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},eie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Qse(a.shape,s,i,o,l):new Jse(a.shape,s,i,o,l);return r.runWebGLProgram(u,[a],a.dtype)},tie={kernelName:Hp,backendName:"webgl",kernelFunc:eie},rie=class{constructor(e,t,r,n,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=r,this.alpha=n,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${n}) * norm + float(${r});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${n})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},nie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n,h=new rie(a.shape,o,l,u,d);return r.runWebGLProgram(h,[a,s,i],a.dtype)},aie={kernelName:Zf,backendName:"webgl",kernelFunc:nie};function sie(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Cl(i,e.dtype,"max",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function QS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=r.shouldExecuteOnCPU([a]),c=a;if(h){if(p){let A=r.texData.get(c.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=a.shape[d[T]];let b=Qx(A,a.shape,a.dtype,d,x);c=r.makeTensorInfo(x,a.dtype);let w=r.texData.get(c.dataId);w.values=b}else c=u0(a,d,r);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[f,m]=N.computeOutAndReduceShapes(c.shape,u),g=f;i&&(g=N.expandShapeToKeepDim(f,l));let y;if(p){let A=r.texData.get(c.dataId).values,x=xee(A,v.sizeFromShape(m),g,a.dtype);y=r.makeTensorInfo(g,a.dtype);let b=r.texData.get(y.dataId);b.values=x}else y=sie(c,m,g,r);return h&&r.disposeIntermediateTensorInfo(c),y}var iie={kernelName:di,backendName:"webgl",kernelFunc:QS},oie=$S+`
|
|
return max(a, b);
|
|
`,lie=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+o0+`
|
|
return result;
|
|
`,uie=br({opSnippet:oie,packedOpSnippet:lie,cpuKernelImpl:bee}),die={kernelName:pi,backendName:"webgl",kernelFunc:uie};function pie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;fd(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return nn({inputs:{x:a},backend:r});let h=new zp(d,"max",!1);return r.runWebGLProgram(h,[a],a.dtype)}var hie={kernelName:hi,backendName:"webgl",kernelFunc:pie};function cie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,u,l),p=new tb(h,"max",!1);return r.runWebGLProgram(p,[a],a.dtype)}var fie={kernelName:qp,backendName:"webgl",kernelFunc:cie},mie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,r=e.strideWidth,n=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${n}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},gie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${c} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function yie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new tb(p,"max",!0),f=r.runWebGLProgram(c,[i],i.dtype),m=new gie(p),g=r.runWebGLProgram(m,[a,f],i.dtype);return r.disposeIntermediateTensorInfo(f),g}var Aie={kernelName:Jf,backendName:"webgl",kernelFunc:yie};function xie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;fd([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,f=new zp(p,"max",c),m=r.runWebGLProgram(f,[o],o.dtype),g=new mie(p),y=r.runWebGLProgram(g,[a,m],o.dtype);return r.disposeIntermediateTensorInfo(m),y}var bie={kernelName:Yf,backendName:"webgl",kernelFunc:xie};function vie(e,t,r,n){let a=new zp(r,"max",!1),s=n.runWebGLProgram(a,[e],"float32");a=new zp(r,"max",!0,!0,t);let i=n.runWebGLProgram(a,[e],"float32");return[s,i]}var wie={kernelName:Qf,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=N.computePool2DInfo(n.shape,a,s,u,i),[h,p]=vie(n,o,d,l);return[h,p]}};function kie(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Cl(i,"float32","mean",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var Iie={kernelName:ci,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{keepDims:a,axis:s}=t,i=r,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([n]),c=[],f=n;if(h){if(p){let x=i.texData.get(f.dataId).values,b=new Array(o);for(let S=0;S<b.length;S++)b[S]=n.shape[d[S]];let w=Qx(x,n.shape,n.dtype,d,b);f=i.makeTensorInfo(b,n.dtype);let T=i.texData.get(f.dataId);T.values=w}else f=u0(n,d,i);c.push(f),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[m,g]=N.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=N.expandShapeToKeepDim(m,l));let A=kie(f,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function Sie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Cl(m,m.dtype,"min",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Tie={kernelName:fi,backendName:"webgl",kernelFunc:Sie},Nie=$S+`
|
|
return min(a, b);
|
|
`,Cie=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+o0+`
|
|
return result;
|
|
`,Eie=br({opSnippet:Nie,packedOpSnippet:Cie,cpuKernelImpl:vee}),Rie={kernelName:mi,backendName:"webgl",kernelFunc:Eie},Mie=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let n=e.length,a=gt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=r==="reflect"?0:1;if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},Fie=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,f)=>c[0]+e[f]+c[1]);let n=e.length,a=gt(n),s=t.map(c=>c[0]).join(","),i=t.map((c,f)=>c[0]+e[f]).join(","),o=Dr("rc",n),l=Dr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=r==="reflect"?0:1,p="";if(n===1){let c=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let c=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {
|
|
${c}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},$ie=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{paddings:a,mode:s}=r,i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fie(n.shape,a,s):new Mie(n.shape,a,s);return t.runWebGLProgram(i,[n],n.dtype)},Pie={kernelName:gi,backendName:"webgl",kernelFunc:$ie},_ie=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,zie=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+o0+`
|
|
return result;
|
|
`,Oie=br({opSnippet:_ie,packedOpSnippet:zie}),Die={kernelName:ju,backendName:"webgl",kernelFunc:Oie},Lie=class{constructor(e,t,r){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,r],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Bie=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Wie=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,e8=br({opSnippet:Bie,packedOpSnippet:Wie,checkOutOfBounds:!0}),Vie={kernelName:ei,backendName:"webgl",kernelFunc:e8},_v="return a - b;",t8=br({opSnippet:_v,packedOpSnippet:_v,supportsComplex:!0,cpuKernelImpl:Oee}),Uie={kernelName:Mi,backendName:"webgl",kernelFunc:t8};function r8(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=QS({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ve({inputs:{x:o},backend:r,attrs:{shape:l}}),d=t8({inputs:{a,b:u},backend:r}),h=ZS({inputs:{x:d},backend:r}),p=d0({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=ve({inputs:{x:p},backend:r,attrs:{shape:l}}),f=e8({inputs:{a:h,b:c},backend:r});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}var Gie={kernelName:Ei,backendName:"webgl",kernelFunc:r8};function jie(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?a:r8({inputs:{logits:a},backend:r,attrs:{dim:a.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new Lie(u,d,s),p=[[i]],c=r.runWebGLProgram(h,[l],"int32",p);return o||r.disposeIntermediateTensorInfo(l),c}var Hie={kernelName:em,backendName:"webgl",kernelFunc:jie},qie=qn+`
|
|
return -x;
|
|
`,Kie=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Xie(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.texData.get(n.dataId),[i,o]=kee(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new fo(n.shape,Kie):a=new Ua(n.shape,qie),r.runWebGLProgram(a,[n],n.dtype)}var Zie={kernelName:Ko,backendName:"webgl",kernelFunc:Xie},Yie=jn.nonMaxSuppressionV3Impl;function Jie(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Yie(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Qie={kernelName:Zo,backendName:"webgl",kernelFunc:Jie},eoe=jn.nonMaxSuppressionV4Impl;function toe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=eoe(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var roe={kernelName:Hu,backendName:"webgl",kernelFunc:toe},noe=jn.nonMaxSuppressionV5Impl;function aoe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=noe(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var soe={kernelName:Yo,backendName:"webgl",kernelFunc:aoe},ioe=class{constructor(e,t,r,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${n}), float(${r}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},ooe=e=>{let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=v.sizeFromShape(a.shape),u=new ioe(l,s,i,o),d=ve({inputs:{x:a},backend:r,attrs:{shape:[l]}}),h=r.runWebGLProgram(u,[d],a.dtype);r.disposeIntermediateTensorInfo(d);let p=[...a.shape,s],c=ve({inputs:{x:h},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(h),c},loe={kernelName:Qo,backendName:"webgl",kernelFunc:ooe};function Cf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Rh({inputs:{input:n},backend:r}),s=Cf({inputs:{x:a},backend:r}),i=p0({inputs:{input:n},backend:r}),o=Cf({inputs:{x:i},backend:r}),l=Di({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Mh({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var uoe={kernelName:gl,backendName:"webgl",kernelFunc:Cf};function n8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Rh({inputs:{input:n},backend:r}),s=n8({inputs:{x:a},backend:r}),i=p0({inputs:{input:n},backend:r}),o=Cf({inputs:{x:i},backend:r}),l=Di({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Mh({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var doe={kernelName:Jo,backendName:"webgl",kernelFunc:n8};function poe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return O1({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=O1({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=GS({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var hoe={kernelName:el,backendName:"webgl",kernelFunc:poe},coe=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,a=gt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},foe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let n=e.length,a=gt(n),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=Dr("rc",n),l=Dr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[n-1]} += 1;
|
|
if(${u}) {
|
|
`,n===1?"":`}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
|
|
if(${u}) {`],p=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let f=0,m=n===1?2:4;f<m;f++)c+=`
|
|
${h[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;c+=n===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},a8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Mh({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new foe(a.shape,s,i):new coe(a.shape,s,i),l=[[i]];return r.runWebGLProgram(o,[a],a.dtype,l)},moe={kernelName:Ai,backendName:"webgl",kernelFunc:a8},goe=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,yoe=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+o0+`
|
|
return result;
|
|
`,Aoe=br({opSnippet:goe,packedOpSnippet:yoe}),xoe={kernelName:xi,backendName:"webgl",kernelFunc:Aoe};function boe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),d=u,h=N.getAxesPermutation(d,o),p=a;h!=null&&(p=xr({inputs:{x:a},backend:r,attrs:{perm:h}}),d=N.getInnerMostAxes(d.length,o),l.push(p)),N.assertAxesAreInnerMostDims("prod",d,o);let c;if(r.shouldExecuteOnCPU([p])){let f=r.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:y}=See(p.shape,p.dtype,f,d);c=r.makeTensorInfo(g,y,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,d),g=v.sizeFromShape(m),y=ve({inputs:{x:p},backend:r,attrs:{shape:[-1,g]}}),A=nh(a.dtype),x=Cl(y,A,"prod",r);c=ve({inputs:{x},backend:r,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(c);let f=N.expandShapeToKeepDim(c.shape,u);c=ve({inputs:{x:c},backend:r,attrs:{shape:f}})}return l.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var voe={kernelName:tl,backendName:"webgl",kernelFunc:boe},s8=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Tee(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},woe={kernelName:qu,backendName:"webgl",kernelFunc:s8},koe="return 1.0 / x;",Ioe=it({opSnippet:koe}),Soe={kernelName:Ku,backendName:"webgl",kernelFunc:Ioe},Toe=qn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Noe=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Coe=it({opSnippet:Toe,packedOpSnippet:Noe}),Eoe={kernelName:vi,backendName:"webgl",kernelFunc:Coe},Roe=qn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Moe=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Foe=it({opSnippet:Roe,packedOpSnippet:Moe}),$oe={kernelName:ki,backendName:"webgl",kernelFunc:Foe},Poe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},_oe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function zoe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new _oe(a.shape,l,u,s,i):new Poe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],"float32")}var Ooe={kernelName:wi,backendName:"webgl",kernelFunc:zoe},Doe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Loe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Doe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Boe={kernelName:rm,backendName:"webgl",kernelFunc:Loe},Woe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Voe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Uoe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Voe(a.shape,l,u,s,i):new Woe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],a.dtype)}var Goe={kernelName:Xu,backendName:"webgl",kernelFunc:Uoe},joe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${n}) - 1),
|
|
${r} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${r} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Hoe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new joe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var qoe={kernelName:tm,backendName:"webgl",kernelFunc:Hoe},Koe=class{constructor(e,t){this.variableNames=["x"];let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=e,r===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>n(o)).join(","),s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},Xoe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=e;let n=Dr("rc",r),a=`${n[r-1]} + 1 < ${this.outputShape[r-1]}`,s=`${n[r-2]} + 1 < ${this.outputShape[r-2]}`,i=gt(r);r===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(n.slice())};
|
|
if(${a}){
|
|
result.g = ${l(n.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(n.slice())};
|
|
if(${a}) {
|
|
result.a = ${d(n.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(c){return h(c)}function l(c){return c[r-1]="("+c[r-1]+" + 1)",h(c)}function u(c){return c[r-2]="("+c[r-2]+" + 1)",h(c)}function d(c){return c[r-1]="("+c[r-1]+" + 1)",c[r-2]="("+c[r-2]+" + 1)",h(c)}function h(c){let f=e.map((y,A)=>p(A,c)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(c,f){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${f[c]} - 1`:`${f[c]}`}}};function Zoe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return nn({inputs:{x:a},backend:r});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Xoe(a.shape,o):new Koe(a.shape,o);return r.runWebGLProgram(l,[a],a.dtype)}var Yoe={kernelName:nl,backendName:"webgl",kernelFunc:Zoe},Joe=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let r=e[1],n=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${a}
|
|
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${r}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Qoe={kernelName:yl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new Joe(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[[u,d,Math.sin(a),Math.cos(a)]];return o.runWebGLProgram(l,[n],n.dtype,h)}},ele=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,tle=it({opSnippet:ele}),rle={kernelName:al,backendName:"webgl",kernelFunc:tle},nle="return inversesqrt(x);",ale=it({opSnippet:nle,cpuKernelImpl:Nee}),sle={kernelName:Ii,backendName:"webgl",kernelFunc:ale},i8=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(a.length),l=gt(s.length),u="";r===1?u="i":r===2&&(u="i, j");let d=`getIndices(${u})`,h="";n===1?h="i":n===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${c};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function ile(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=ve({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=ve({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=r.makeTensorInfo([],"float32",new Float32Array([0])),g=new i8(l,o,c.shape.length,f.shape.length,d,p),y=r.runWebGLProgram(g,[f,c,m],f.dtype),A=ve({inputs:{x:y},backend:r,attrs:{shape:i}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(m),A}var ole={kernelName:sl,backendName:"webgl",kernelFunc:ile},lle=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.outputShape=t;let n,a;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)a="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),a=l.join()}let s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${n});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function ule(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new lle(n.shape.length,a.shape,a.shape.length);return r.runWebGLProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var dle={kernelName:il,backendName:"webgl",kernelFunc:ule},ple=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,hle=it({opSnippet:ple}),cle={kernelName:Zu,backendName:"webgl",kernelFunc:hle},fle=xd+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,mle=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gle=it({opSnippet:fle,packedOpSnippet:mle,cpuKernelImpl:Cee}),yle={kernelName:Ti,backendName:"webgl",kernelFunc:gle},Ale=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,xle=it({opSnippet:Ale}),ble={kernelName:Yu,backendName:"webgl",kernelFunc:xle},vle=xd+`
|
|
return sin(x);
|
|
`,wle=it({opSnippet:vle}),kle={kernelName:Si,backendName:"webgl",kernelFunc:wle},Ile=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Sle=it({opSnippet:Ile}),Tle={kernelName:ll,backendName:"webgl",kernelFunc:Sle},Nle=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Cle=it({opSnippet:Nle}),Ele={kernelName:Ju,backendName:"webgl",kernelFunc:Cle},Rle=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=a8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=ve({inputs:{x:d},backend:r,attrs:{shape:h}}),m=xr({inputs:{x:f},backend:r,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeIntermediateTensorInfo(y)),g},Mle={kernelName:ul,backendName:"webgl",kernelFunc:Rle};function Fle(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.readSync(n.dataId),l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=r.readSync(i.dataId)[0],[h,p,c,f,m]=Ree(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var $le={kernelName:Xp,backendName:"webgl",kernelFunc:Fle};function Ple(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.readSync(a.dataId)),o=r.readSync(n.dataId),l=Array.from(r.readSync(s.dataId)),[u,d,h]=Mee(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var _le={kernelName:Qu,backendName:"webgl",kernelFunc:Ple};function zle(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=CS(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var Ole={kernelName:Zp,backendName:"webgl",kernelFunc:zle};function Dle(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=CS(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var Lle={kernelName:Yp,backendName:"webgl",kernelFunc:Dle};function Ble(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=new i8(u,l,a.shape.length,s.shape.length,d,[h,1],p),f=r.runWebGLProgram(c,[s,a,i],s.dtype),m=ve({inputs:{x:f},backend:r,attrs:{shape:o}});return r.disposeIntermediateTensorInfo(f),m}var Wle={kernelName:Jp,backendName:"webgl",kernelFunc:Ble};function Vle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=bd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var Ule={kernelName:dl,backendName:"webgl",kernelFunc:Vle},zv="return sqrt(x);",Gle=it({opSnippet:zv,packedOpSnippet:zv,cpuKernelImpl:Fee}),jle={kernelName:Ni,backendName:"webgl",kernelFunc:Gle},Hle="return x * x;",qle=it({opSnippet:Hle}),Kle={kernelName:ed,backendName:"webgl",kernelFunc:qle},Ov="return (a - b) * (a - b);",Xle=br({opSnippet:Ov,packedOpSnippet:Ov}),Zle={kernelName:Ri,backendName:"webgl",kernelFunc:Xle};function Yle({inputs:e,attrs:t,backend:r}){let{x:n}=e,a=qn+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ua(n.shape,a);return r.runWebGLProgram(s,[n],n.dtype)}var Jle={kernelName:Pi,backendName:"webgl",kernelFunc:Yle},Qle=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=r;let n=r.length,a=gt(r.length),s=gt(r.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=r.map((l,u)=>(o++,r.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function eue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=ve({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let S=_t.computeOutShape(A,x,b),E=bd({inputs:{x:a},backend:r,attrs:{begin:A,size:S}});w=ve({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(E)}else if(r.shouldExecuteOnCPU([a])){let S=r.readSync(a.dataId),E=We(a.shape,a.dtype,S),R=$ee(c,E,b,A);w=r.makeTensorInfo(f,a.dtype,R.values)}else{let S=new Qle(A,b,c);w=r.runWebGLProgram(S,[a],a.dtype)}let T=ve({inputs:{x:w},backend:r,attrs:{shape:f}});return r.disposeIntermediateTensorInfo(w),T}var tue={kernelName:pl,backendName:"webgl",kernelFunc:eue};function rue(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=Pee(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var nue={kernelName:Qp,backendName:"webgl",kernelFunc:rue};function aue(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.readSync(s.dataId),l=r.readSync(i.dataId)[0],[u,d,h]=_ee(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var sue={kernelName:nm,backendName:"webgl",kernelFunc:aue};function iue(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.readSync(s.dataId),o=zee(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var oue={kernelName:am,backendName:"webgl",kernelFunc:iue},lue="return tan(x);",uue=it({opSnippet:lue}),due={kernelName:hl,backendName:"webgl",kernelFunc:uue},pue=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,hue=it({opSnippet:pue}),cue={kernelName:Fi,backendName:"webgl",kernelFunc:hue},fue=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[s]*t[s];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=mue(e);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function mue(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let a=0;a<e.length;a++)n.push(`imod(${r[a]}, ${e[a]})`);return n.join()}function o8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(a.dtype==="string"||a.shape.length>5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Dee(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new fue(a.shape,s);return r.runWebGLProgram(i,[a],a.dtype)}var gue={kernelName:Ka,backendName:"webgl",kernelFunc:o8},yue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Aue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function ao(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Dv(e){let t=1;for(;t<e;)t*=2;return t}function xue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=a.shape,d=u[u.length-1];if(r.shouldExecuteOnCPU([a])||d<o||s>l){let R=r.readSync(a.dataId),[_,M]=Lee(R,u,a.dtype,s,i);return[r.makeTensorInfo(_.shape,_.dtype,_.values),r.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[r.makeTensorInfo(u,a.dtype,[]),r.makeTensorInfo(u,"int32",[])];if(d===1)return[a,Mh({attrs:{shape:u,dtype:"int32",value:0},backend:r})];let h=r.texData.get(a.dataId),p=h!==null&&h.isPacked,c=p?r.unpackTensor(a):a,f=v.sizeFromShape(u)/d,m=ve({inputs:{x:c},attrs:{shape:[f,d]},backend:r});p&&ao(r,c);let g=Dv(s),y=Dv(d),A=null,x=()=>A===null?[m,m]:[m,A],b=(R,_,M)=>{let I=x(),O=new yue(M),z=[[d],[A===null?1:0],[Number.NEGATIVE_INFINITY],[R],[_]],j=A;A=r.runWebGLProgram(O,I,"int32",z),ao(r,j)};for(let R=1;R<g;R*=2){let _=R*2;for(let M=R;M>=1;M/=2)b(_,M,[f,y])}for(let R=y;R>g;R/=2){let _=x(),M=new Aue([f,R/2]),I=[[d],[A===null?1:0],[g]],O=A;A=r.runWebGLProgram(M,_,"int32",I),ao(r,O);let z=g/2,j=z*2;for(let X=z;X>=1;X/=2)b(j,X,A.shape)}let w=A;A=bd({inputs:{x:A},backend:r,attrs:{begin:0,size:[f,s]}}),ao(r,w);let T=JS({inputs:{x:m,indices:A},backend:r,attrs:{axis:1,batchDims:1}});ao(r,m);let S=u.slice(0,-1);S.push(s),w=A,A=ve({inputs:{x:A},attrs:{shape:S},backend:r}),ao(r,w);let E=T;return T=ve({inputs:{x:T},attrs:{shape:S},backend:r}),ao(r,E),[T,A]}var bue={kernelName:cl,backendName:"webgl",kernelFunc:xue},vue=class{constructor(e,t,r,n,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=r==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${a});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${a});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function wue(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new vue(h,p,i,o,l,g);return r.runWebGLProgram(y,[a,s],"float32")}var kue={kernelName:fl,backendName:"webgl",kernelFunc:wue};function Iue(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;fd(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Bee(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var Sue={kernelName:sm,backendName:"webgl",kernelFunc:Iue};function Tue(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=bd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=ve({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var Nue={kernelName:ml,backendName:"webgl",kernelFunc:Tue},Cue=class{constructor(e,t){this.variableNames=["x","segmentIds"];let r=e.windowSize,n=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/r);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(r/4)*4,d=r%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";a%r>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${c}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${r}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Eue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n,o=a.shape.length,l=[],u=0,d=N.getAxesPermutation([u],o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),l.push(h),u=N.getInnerMostAxes(1,o)[0]);let p=N.segment_util.computeOutShape(h.shape,u,i),c=v.sizeFromShape([h.shape[u]]),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,c]}});l.push(f);let m=nh(a.dtype),g=(b,w,T,S,E)=>{let R=b.shape[0],_=b.shape[1],M=N.segment_util.segOpComputeOptimalWindowSize(_,E),I={windowSize:M,inSize:_,batchSize:R,numSegments:E},O=new Cue(I,w),z=r.compileAndRun(O,[b,T],S);if(l.push(z),z.shape[1]===E)return z;let j=s8({backend:r,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),X=o8({inputs:{x:j},backend:r,attrs:{reps:[_/M]}});return l.push(j),l.push(X),g(z,w,X,S,E)},y=g(f,"unsortedSegmentSum",s,m,i),A=ve({inputs:{x:y},backend:r,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let b=N.getUndoAxesPermutation(d);x=xr({inputs:{x},backend:r,attrs:{perm:b}})}return l.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Rue={kernelName:eh,backendName:"webgl",kernelFunc:Eue},Mue=[_te,Ote,Bte,Ute,jte,Kte,Zte,Jte,rre,are,ore,dre,cre,yre,bre,wre,Ire,Cre,Rre,Fre,zre,Ure,jre,qre,Qre,tne,sne,gte,lne,cne,yne,kne,Sne,Nne,Ene,Mne,Pne,One,Bne,Vne,Gne,Hne,Xne,Yne,tae,nae,iae,uae,pae,mae,xae,kae,Tae,Eae,Rae,Fae,Pae,zae,Dae,Bae,Gae,qae,Zae,Jae,tse,ase,lse,hse,mte,fse,pne,yse,bse,kse,Ate,Nse,Mse,$se,Ose,Bse,Gse,qse,Yse,tie,aie,iie,die,hie,fie,Aie,bie,wie,Iie,Tie,Rie,Pie,Die,Hie,kte,Zie,Qie,roe,soe,Xre,loe,doe,hoe,moe,xoe,bte,voe,woe,Zre,Vie,Soe,Eoe,$oe,Ste,Ooe,Boe,Goe,qoe,Yoe,Qoe,rle,sle,ole,dle,cle,yle,ble,kle,Tle,Wre,Gie,Ele,Mle,$le,_le,Ole,Lle,Wle,Ule,jle,Kle,Zle,Jle,tue,nue,sue,oue,Uie,Fte,due,cue,gue,bue,kue,$te,Sue,Nue,Rue,uoe];for(let e of Mue)Vn(e);var Pa=Y();Pa.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Pa.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Pa.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Pa.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Pa.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Pa.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Pa.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Pa.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Pa.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Pa.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Fue(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function mr(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function ef(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function rb(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Li(){return`
|
|
${rb()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function tt(){return`
|
|
${Li()}
|
|
let index = getGlobalIndex();
|
|
`}function $ue(e,t,r,n=!1){let a=[];if(a.push(`
|
|
let workGroupSizeX = ${r.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${r.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${r.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),n===!0)return a.push(`
|
|
struct Matrix0 {
|
|
numbers: array<${ef(t.dtype,r.isVec4)}>;
|
|
};
|
|
struct Uniform {
|
|
size : i32;
|
|
numChannels : i32;
|
|
outShapeStrides : vec2<i32>;
|
|
dispatchSize : vec3<u32>;
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result : Matrix0;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Lv,a.join(`
|
|
`),Bv(t.shape),r.getUserCode()].join(`
|
|
`);let s="struct Uniforms { NAN : f32; ";r.variableNames.forEach((d,h)=>{s+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${mr(e[h].shape.length)}; `}),s+=`outShape : ${mr(t.shape.length)} ; `;let i=t.shape.length-1;s+=`
|
|
outShapeStrides: ${mr(i)}; `,r.size&&(s+="size : i32; "),r.uniforms&&(s+=r.uniforms),s+="};",a.push(s),r.atomic?a.push(`
|
|
struct Matrix0 {
|
|
numbers: array<atomic<i32>>;
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, read_write> result : Matrix0;
|
|
`):a.push(`
|
|
struct Matrix0 {
|
|
numbers: array<${ef(t.dtype,r.isVec4)}>;
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result : Matrix0;
|
|
`),r.variableNames.forEach((d,h)=>{a.push(`
|
|
struct Matrix${1+h} {
|
|
numbers: array<${ef(e[h].dtype,r.isVec4)}>;
|
|
};
|
|
@group(0) @binding(${1+h}) var<storage, read> ${d} : Matrix${1+h};
|
|
`)}),s!==""&&a.push(`
|
|
@group(0) @binding(${1+r.variableNames.length}) var<uniform> uniforms : Uniforms;
|
|
`);let[o,l]=Lue(t.shape,r.dispatchLayout),u=[Lv,a.join(`
|
|
`),Bv(t.shape),o,Pue(t.shape.length)];if(r.atomic||u.push(_ue(t.shape,t.dtype,r.isVec4)),l===t.shape.length){let d=e.map(h=>zue(h,t.shape,r.isVec4,r.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);u.push(d)}return u.push(r.getUserCode()),u.join(`
|
|
`)}var Lv=`
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Pue(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function _ue(e,t,r){let n=e.length,a=ef(t,r),s;if(r?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result.numbers[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result.numbers[flatIndex] = ${a}(value);
|
|
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result.numbers[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result.numbers[flatIndex] = ${a}(value);
|
|
}`,n>=2){let i=["d0","d1","d2","d3"].slice(0,n),o=mr(n);r?s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return s}function zue(e,t,r,n){let a=Oue(e,r);return e.shape.length<=t.length&&(a+=Due(e,t,r,n)),a}function Oue(e,t){let r=e.name,n=e.shape.length,a=mr(n),s="get"+r.charAt(0).toUpperCase()+r.slice(1),i=["d0","d1","d2","d3"].slice(0,n),o=i.map(d=>`${d} : i32`).join(", ");if(n<1)return t?`
|
|
fn ${s}() -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[0]);
|
|
}
|
|
`:`
|
|
fn ${s}() ->f32 {
|
|
return f32(${r}.numbers[0]);
|
|
}
|
|
`;let l=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
|
|
fn ${s}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${s}(${o}) -> f32 {
|
|
return f32(${r}.numbers[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function Due(e,t,r,n){let a=e.name,s=a.charAt(0).toUpperCase()+a.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=mr(l);if(v.arraysEqual(e.shape,t)&&n)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${a}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${a}.numbers[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${a}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32 {
|
|
return f32(${a}.numbers[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let d=N.getBroadcastDims(e.shape,t),h=l-o,p="";if(o===0)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32{
|
|
return get${s}();
|
|
}
|
|
`;l<2&&d.length>=1?p="coords = 0;":p=d.map(g=>`coords[${g+h}] = 0;`).join(`
|
|
`);let c="";if(l<2&&o>0)c="coords";else if(l>1){let g=mr(o),y=e.shape.map((A,x)=>`coords[${x+h}]`).join(", ");c=`${g}(${y})`}else c="coords";let f=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,m=`${o}D`;return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return ${a}.numbers[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${a}.numbers[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return f32(${a}.numbers[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${a}.numbers[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
`}function Lue(e,t){let{x:r,y:n=[],z:a=[]}=t,s=e.length;if(r.length===s)return[`fn getOutputCoords() -> ${mr(s)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,s];let i="",o=[r,n,a],l=0;for(let p=0;p<o.length;p++){let c=o[p];if(c.length!==0)if(l+=c.length,c.length===1)i+=`let d${c[0]} = i32(globalId[${p}]);`;else{let f=Fue(c,"uniforms.outShape");i+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)i+=`let d${c[m]} = index${p} / ${f[m]};`,m===f.length-1?i+=`let d${c[m+1]} = index${p} - d${c[m]} * ${f[m]};`:i+=`index${p} = index${p} - d${c[m]} * ${f[m]};`}}let u=[];for(let p=0;p<l;p++)u.push(`d${p}`);let d=mr(l),h=`fn getOutputCoords() -> ${d} {
|
|
${i}
|
|
`;return u.length===0?h+=`return ${d}(0); }`:h+=`return ${d}(${u.join(",")}); }`,[h,l]}function Bv(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let r=v.computeStrides(e),n=mr(t),a=[];for(let i=0;i<t;i++)a.push(`d${i}`);if(r.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let s="var index2 = index;"+r.map((i,o)=>{let l=`let ${a[o]} = index2 / uniforms.outShapeStrides[${o}]`,u=o===r.length-1?`let ${a[o+1]} = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`:`index2 = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`;return`${l}; ${u};`}).join("");return`
|
|
fn getCoordsFromIndex(index : i32) -> ${n} {
|
|
${s}
|
|
return ${n}(${a.join(",")});
|
|
}
|
|
`}var l8={};Le(l8,{ArrayBufferToTypedArray:()=>d8,GPUBytesPerElement:()=>D1,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>nb,computeWorkGroupSizeForMatMul:()=>u8,computeWorkPerThreadForConv2d:()=>ab,flatDispatchLayout:()=>Xe,isWebGPUSupported:()=>sb,tilesFitEvenlyIntoShape:()=>ja});var Ao=e=>{let t=1;for(let r=0;r<e.length;r++)t*=e[r];return t};function ja(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((r,n)=>r%e[n]===0)}function Oe(e,t,r=[1,1,1],n=[1,1,1]){let[a,s,i]=[Math.ceil(Ao(e.x.map(o=>t[o]))/(r[0]*n[0])),e.y?Math.ceil(Ao(e.y.map(o=>t[o]))/(r[1]*n[1])):1,e.z?Math.ceil(Ao(e.z.map(o=>t[o]))/(r[2]*n[2])):1];return[a,s,i]}function nb(e,t){let r=Ao(e.x.map(a=>t[a])),n=Ao(e.y.map(a=>t[a]));return r<=4?[4,16,1]:n<=4?[16,4,1]:[16,16,1]}function u8(e,t,r){return e===1?[32,1,1]:r===1?[1,32,1]:[8,8,1]}function ab(e,t){let r=Ao(e.x.map(a=>t[a])),n=Ao(e.y.map(a=>t[a]));return r<=4?[1,2,1]:n<=4?[2,1,1]:[2,2,1]}function Xe(e){return{x:e.map((t,r)=>r)}}function D1(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function d8(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function sb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Bue="return a + b;",Wue="return areal * breal - aimag * bimag;",Vue="return areal * bimag + aimag * breal;",Uue="return a / b;",Gue="return a * b;",jue="return (a - b) * (a - b);",Hue="return a - b;",que="return f32(a == b);",Kue="return vec4<f32>(a == b);",Xue="return f32(a > b);",Zue="return vec4<f32>(a > b);",Yue="return f32(a >= b);",Jue="return vec4<f32>(a >= b);",Que="return f32(a < b);",ede="return vec4<f32>(a < b);",tde="return f32(a <= b);",rde="return vec4<f32>(a <= b);",nde="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",ade=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,sde=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,p8=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,ide=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,ode=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,lde="return f32(a != b);",ude="return vec4<f32>(a != b);",dde=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,pde=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${p8}
|
|
return resultTemp;
|
|
`,hde="if (a < 0.0) { return b * a; } return a;",cde=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Wv(e,t){let r=t?p8:sde;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+r+`
|
|
return resultTemp;
|
|
`:r+`
|
|
return ${e}(a, b);
|
|
`}function Fh(e,t){switch(e){case 0:return Gue;case 1:return Bue;case 2:return Hue;case 3:return Uue;case 4:return t?Kue:que;case 5:return t?Zue:Xue;case 6:return t?Jue:Yue;case 7:return t?ede:Que;case 8:return t?rde:tde;case 9:return t?ade:nde;case 10:return t?ude:lde;case 11:return jue;case 12:return t?ode:ide;case 14:return t?cde:hde;case 15:return Wv("max",t);case 16:return Wv("min",t);case 13:return t?pde:dde;case 17:return Wue;case 18:return Vue;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var fde="return abs(a);",mde="return ceil(a);",gde="return cos(a);",yde=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Ade="return exp(a) - 1.0;",xde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",bde=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,vde="return exp(a);",wde="return floor(a);",kde="return a;",Ide=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Sde="return f32(!(a >= 1.0));",Tde="return -a;",Nde="return (a < 0.0) ? b * a : a;",Cde="if (a < 0.0) { return uniforms.alpha * a; } return a;",Ede="if(a < 0.0) { return 0.0; } return a;",Rde="return clamp(a, 0.0, 6.0);",Mde="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Fde=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isnanVec4(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,$de="return 1.0/sqrt(a);",Pde="return 1.0 / (1.0 + exp(-1.0 * a));",_de="return sin(a);",zde=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Ode="return sqrt(a);",Dde="return a * a;",Lde=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Bde="return f32(i32((a)));";function iu(e,t){switch(e){case 0:return fde;case 2:return gde;case 3:return yde;case 1:return mde;case 4:return t?bde:xde;case 5:return vde;case 6:return Ade;case 7:return wde;case 8:return kde;case 9:return Ide;case 10:return Sde;case 11:return Tde;case 12:return Nde;case 15:return Cde;case 13:return t?Fde:Ede;case 14:return t?Mde:Rde;case 16:return $de;case 19:return Pde;case 17:return _de;case 18:return zde;case 20:return Ode;case 21:return Dde;case 22:return Lde;case 23:return Bde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function es(e,t=!1){if(e===null)return null;if(e==="linear")return iu(8);if(e==="relu")return iu(13,t);if(e==="elu")return iu(4,t);if(e==="relu6")return iu(14,t);if(e==="prelu")return Fh(14,t);if(e==="sigmoid")return iu(19);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function h8(e,t,r,n){return v.assert(n%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n/e[0]}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${r/e[0]}>, ${n}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${n};
|
|
|
|
${Li()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var Wde=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],r=[this.outputShape[0],e,t],n=[this.tileAOuter,this.tileInner],a=[this.tileInner,this.tileBOuter];return[ja(n,this.aShape.slice(1)),ja(a,r.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,r="",n="";if(this.activation){let s=es(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${h8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function ib(e,t){let r=t[1]*e[1],n=t[0]*e[0],a=r>n?r:n;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${a}>, ${r}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${a}>;
|
|
${Li()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${a} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${a} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${a} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${a} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${a} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${a}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function Vde(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Li()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var c8=class{constructor(e,t,r,n=!1,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=n?e[1]:e[2];this.workGroupSize=u8(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(r=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(r=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]));let u=s!=null,d=o!=null;u&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=r,this.aShape=e,this.transposeA=n,this.transposeB=a,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=d;let h=this.outputShape[2],p=this.transposeB?[this.outputShape[0],h,l]:[this.outputShape[0],l,h];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${n}_${a}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread,n=t>r?t:r;this.outputShape[1]===1&&(n*=4),v.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let a=[t,n],s=[n,r];return[ja(a,this.aShape.slice(1)),ja(s,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let r="",n="";if(this.activation){let s=es(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?ib([this.workPerThread,this.workPerThread,1],this.workGroupSize):Vde(this.workGroupSize)}
|
|
`}};function Ude(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Li()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Gde=class{constructor(e,t=!1,r=!1,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=r,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulReduce_${this.activation}_${t}_${r}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let r="",n="";if(this.activation){let s=es(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${Ude()}
|
|
`}};function jde(e){let t=e[1]/2,r=e[0],n=t>r?t:r;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${r}>, ${n}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Li()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Hde=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=r,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(r[2]/this.workGroupSize[0]),Math.ceil(r[1]*2/this.workGroupSize[1]),r[0]];let i=n!=null;i&&this.variableNames.push("bias");let o=s!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,r="",n="";if(this.activation){let s=es(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${jde(this.workGroupSize)}
|
|
`}};function qe(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var qde={kernelName:rl,backendName:"webgpu",kernelFunc:qe};function ob({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=Al.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,f,p]:[A,p,f],T=qe({inputs:{x:e},backend:a,attrs:{shape:b}}),S=qe({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[T,S],R=Math.max(y,A),_=h%4===0&&f%4===0&&!r&&!n&&f>=32,M;c*f<=32?M=new Gde([R,c,f],r,n,s,l,i):!r&&!n&&(c<=16&&(f<=512||p>=2*f)||f<=16&&(c<=512||h>=2*c))?M=new Hde(b,w,[R,c,f],s,l,i):_?M=new Wde(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),s,l,i):M=new c8(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),r,n,s,l,i);let I=[T,S];s&&I.push(s),i&&I.push(i);let O=[{type:"int32",data:[c]},{type:"int32",data:[f]},{type:"int32",data:[h]}],z=a.runWebGPUProgram(M,I,e.dtype,O),j=qe({inputs:{x:z},backend:a,attrs:{shape:x}});E.push(z);for(let X of E)a.disposeData(X.dataId);return j}function Kde(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return ob({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Xde={kernelName:Ns,backendName:"webgpu",kernelFunc:Kde},Vv=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Zde=class{constructor(e,t,r,n){this.variableNames=["A","B"],this.size=!0;let a=256;this.workGroupSize=[a,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.lastDimensionSize=n?r[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=n,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${tt()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},Yde=class{constructor(e,t,r){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${Fh(this.op,this.isVec4)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},f8=class{constructor(e,t,r){this.variableNames=["A","B"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function Uv(e,t,r){if(v.arraysEqual(t,r)&&v.sizeFromShape(t)%4===0)return new Yde(e,t,r);let n=t.length===1&&r.length>1&&t[0]<1024,a=r.length===1&&t.length>1&&r[0]<1024;return n||a?new Zde(e,t,r,a):new f8(e,t,r)}function Bn(e){let{inputs:t}=e,{x:r}=t;return e.backend.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Jde={kernelName:oi,backendName:"webgpu",kernelFunc:Bn};function vd(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.tensorMap.get(s.dataId),o=Bn({inputs:{x:n},backend:r}),l=Bn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var Qde={kernelName:Lp,backendName:"webgpu",kernelFunc:vd},$h=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${iu(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function vr({opType:e,cpuKernelImpl:t,dtype:r}){return({inputs:n,backend:a})=>{let{x:s}=n,i=a,o=r||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),d=t(u.values,o);return i.makeTensorInfo(s.shape,o,d)}let l=new $h(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function Gr({opSnippet:e,cpuKernelImpl:t,supportsComplex:r=!1,dtype:n}){return({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(r&&i.dtype==="complex64"){let h=l.tensorMap.get(i.dataId),p=l.tensorMap.get(o.dataId),c,f;if(e!==0)[c,f]=[[h.complexTensorInfos.real,p.complexTensorInfos.real],[h.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},w=Uv(e,i.shape,o.shape);return l.runWebGPUProgram(w,[x,b],Nr(y.dtype,A.dtype))});else{let g=new Vv(17,i.shape,o.shape),y=new Vv(18,i.shape,o.shape),A=[{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}];c=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(y,A,"float32")}let m=vd({inputs:{real:c,imag:f},backend:l});return l.disposeData(c.dataId),l.disposeData(f.dataId),m}let u=n||Nr(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let h=l.tensorMap.get(i.dataId).values,p=l.tensorMap.get(o.dataId).values,c=i.dtype==="string"?N.fromUint8ToStringArray(h):h,f=i.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(i.shape,o.shape,c,f,u);return l.makeTensorInfo(g,u,m)}let d=Uv(e,i.shape,o.shape);return l.runWebGPUProgram(d,[i,o],u)}}var{addImpl:epe,ceilImpl:tpe,concatImpl:rpe,equalImpl:npe,expImpl:ape,expm1Impl:spe,floorImpl:ipe,gatherNdImpl:ope,gatherV2Impl:lpe,greaterEqualImpl:upe,greaterImpl:dpe,lessEqualImpl:ppe,lessImpl:hpe,logImpl:cpe,maxImpl:fpe,maximumImpl:mpe,minimumImpl:gpe,multiplyImpl:ype,negImpl:Ape,notEqualImpl:xpe,prodImpl:bpe,rangeImpl:vpe,rsqrtImpl:wpe,simpleAbsImpl:kpe,sliceImpl:Ipe,stridedSliceImpl:Spe,stringNGramsImpl:Tpe,subImpl:Npe,tileImpl:Cpe,topKImpl:Epe,transposeImpl:Rpe,uniqueImpl:zAe}=n0,Mpe=vr({opType:0,cpuKernelImpl:kpe}),Fpe={kernelName:Fo,backendName:"webgpu",kernelFunc:Mpe},$pe=Gr({opSnippet:1,cpuKernelImpl:epe,supportsComplex:!0}),Ppe={kernelName:Ha,backendName:"webgpu",kernelFunc:$pe},_pe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}ByOutputCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
|
|
${tt()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function zpe(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return Bn({inputs:{x:n[0]},backend:r});let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=new _pe(s);return r.runWebGPUProgram(i,n,a)}var Ope={kernelName:Us,backendName:"webgpu",kernelFunc:zpe},m8=class{constructor(e,t,r){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32; infinityValue : f32;",this.size=!0;let n=[t];N.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),n,e.length),this.op=r==="min"?"<":">";let[a]=N.computeOutAndReduceShapes(e,n);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=(n,a)=>this.outputShape.length===1?n:`${n}[${a}]`,r=n=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${n}]`;return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${r(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${t("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let coordInfo = getInputCoordInfo(outputIndex);
|
|
let Length = ${r("uniforms.axis")};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x.numbers[getInputIndex(coordInfo, k)]);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Dpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${rb()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] =
|
|
A.numbers[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Lpe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=mr(this.outputShape.length),t=Bpe(this.newDim);return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A.numbers[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Bpe(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let r=new Array(t);for(let n=0;n<e.length;n++)r[e[n]]=`resRC[${n}]`;return r.join()}function El(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];if(r.shouldExecuteOnCPU([a])){let d=i.tensorMap.get(a.dataId).values,h=Rpe(d,a.shape,a.dtype,s,l);return r.makeTensorInfo(l,a.dtype,h)}if(a.shape.length===2&&v.arraysEqual(s,[1,0])){let d=new Dpe(a.shape,s);return i.runWebGPUProgram(d,[a],a.dtype)}let u=new Lpe(a.shape,s);return i.runWebGPUProgram(u,[a],a.dtype)}var Wpe={kernelName:$i,backendName:"webgpu",kernelFunc:El};function Vpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=El({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=new m8(l.shape,i[0],"max"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Upe={kernelName:Gs,backendName:"webgpu",kernelFunc:Vpe};function Gpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=El({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=new m8(l.shape,i[0],"min"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var jpe={kernelName:Mu,backendName:"webgpu",kernelFunc:Gpe},g8=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},y8=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Hpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return Bn({inputs:{x:a},backend:r});let h,p=[{type:"int32",data:[d.strideHeight,d.strideWidth]}];return d.filterHeight===1&&d.filterWidth===1?h=new y8(d):(h=new g8(d,"avg"),p.push({type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]})),r.runWebGPUProgram(h,[a],a.dtype,p)}var qpe={kernelName:js,backendName:"webgpu",kernelFunc:Hpe};function Kpe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return ob({a,b:s,transposeA:i,transposeB:o,backend:r})}var Xpe={kernelName:Hs,backendName:"webgpu",kernelFunc:Kpe},Zpe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${mr(e.length)}; `,this.shaderKey="slice"}getUserCode(){let e=mr(this.rank),t=Ype(this.rank),r;return this.start.length===1?r=this.outputShape.map((n,a)=>"sourceLoc = uniforms.start + coords;"):r=this.outputShape.map((n,a)=>`sourceLoc.${L1[a]} = uniforms.start[${a}] + coords.${L1[a]};`),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${r.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},L1=["x","y","z","w","u","v"];function Ype(e){if(e===1)return"sourceLoc";if(e<=6)return L1.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function wd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.tensorMap.get(a.dataId),p=Ipe(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}if(v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);let u=new Zpe(o,l),d=[{type:"int32",data:o}];return r.runWebGPUProgram(u,[a],a.dtype,d)}var Jpe={kernelName:ol,backendName:"webgpu",kernelFunc:wd},Qpe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=qe({inputs:{x:a},backend:r,attrs:{shape:l}}),m=El({inputs:{x:f},backend:r,attrs:{perm:u}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:d}}),y=wd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeData(A.dataId)),y},ehe={kernelName:$o,backendName:"webgpu",kernelFunc:Qpe},A8=Gr({opSnippet:10,dtype:"bool",cpuKernelImpl:xpe}),the={kernelName:Xo,backendName:"webgpu",kernelFunc:A8};function Ph(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Bn({inputs:{x:a.complexTensorInfos.real},backend:r})}var rhe={kernelName:Kp,backendName:"webgpu",kernelFunc:Ph};function nhe(e,t){let r=new $h(e.shape,23),n=t.runWebGPUProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function B1(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Bn({inputs:{x:a},backend:r});let i=Wt(a.shape),o=B1({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=vd({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeData(o.dataId),l}if(a.dtype==="complex64"){let i=Ph({inputs:{input:a},backend:r}),o=B1({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeData(i.dataId),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Bn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return nhe(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=A8({inputs:{a,b:i},backend:r});return r.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ahe={kernelName:qs,backendName:"webgpu",kernelFunc:B1},she=vr({opType:1,cpuKernelImpl:tpe}),ihe={kernelName:Ks,backendName:"webgpu",kernelFunc:she},ohe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},lhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function uhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(a.shape)%4===0?o=new ohe(a.shape):o=new lhe(a.shape),r.runWebGPUProgram(o,[a],a.dtype,l)}var dhe={kernelName:qa,backendName:"webgpu",kernelFunc:uhe},phe=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32;`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${tt()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function h0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Bn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var hhe={kernelName:Gp,backendName:"webgpu",kernelFunc:h0};function W1(e,t,r){let n=e[0].dtype;if(n==="complex64"){let c=e.map(A=>Ph({inputs:{input:A},backend:r})),f=e.map(A=>h0({inputs:{input:A},backend:r})),m=W1(c,t,r),g=W1(f,t,r),y=vd({inputs:{real:m,imag:g},backend:r});return c.forEach(A=>r.disposeData(A.dataId)),f.forEach(A=>r.disposeData(A.dataId)),r.disposeData(m.dataId),r.disposeData(g.dataId),y}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let c=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return qe({inputs:{x:b},backend:r,attrs:{shape:[-1,w]}})}),f=c.map(b=>({vals:r.readSync(b.dataId),shape:b.shape})),m=N.computeOutShape(c.map(b=>b.shape),1),g=c[0].shape[0]===1,y=rpe(f,m,n,g),A=N.computeOutShape(e.map(b=>b.shape),t),x=r.makeTensorInfo(A,n,y);return c.forEach(b=>r.disposeData(b.dataId)),x}let{tensors2D:s,outShape:i}=che(e,t,r),o=s.map(c=>c.shape),l=new phe(o),u=[],d=new Array(o.length-1);if(d.length>0){d[0]=o[0][1],u.push({type:"int32",data:[d[0]]});for(let c=1;c<d.length;c++)d[c]=d[c-1]+o[c][1],u.push({type:"int32",data:[d[c]]})}let h=r.runWebGPUProgram(l,s,s[0].dtype,u);s.forEach(c=>r.disposeData(c.dataId));let p=qe({inputs:{x:h},backend:r,attrs:{shape:i}});return r.disposeData(h.dataId),p}function che(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:r,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:n}}function x8(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return Bn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),W1(o,s,r)}var fhe={kernelName:Po,backendName:"webgpu",kernelFunc:x8},mhe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
|
|
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}},ghe=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
|
|
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.hasLeakyreluAlpha=a,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],r=this.outputShape[1]*this.outputShape[2],n=this.outputShape[3],a=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ja(e,[r,a]),ja(t,[a,n])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x.numbers[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x.numbers[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} else if (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} else if (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let e=h8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x.numbers[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} else if (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,r=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,n=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,a="",s="";if(this.activation){let o=es(this.activation,this.isVec4);if(this.hasPreluActivationWeights)a=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw a=`fn activation(outCoord: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaByOutputCoords(outCoord);
|
|
${o}
|
|
}`,new Error("Leakyrelu is not supported.");a=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`}s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${i}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},yhe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=nb(this.dispatchLayout,this.outputShape),this.elementsPerThread=ab(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],r=e>t?e:t;v.assert(r%this.workGroupSize[0]===0&&r%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let n=[e,r],a=[r,t],s=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ja(n,[s,o]),ja(a,[o,i])]}getUserCode(){let e=ib(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x.numbers[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,r=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,n=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,a="",s="";if(this.activation){let o=es(this.activation,!1);this.hasPreluActivationWeights?a=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:a=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${i}
|
|
${s}
|
|
result.numbers[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},Ahe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=es(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${n}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Li()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}};function xhe({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.dataFormat==="channelsLast",d=!1,h=!1,p=r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID",c,f;if(p){let y=r.inHeight*r.inWidth*r.inChannels;c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,r.batchSize,y]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,y,r.outChannels]}})}else{let y=u?l[0]*l[1]*l[2]:l[0]*l[2]*l[3];c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,y,r.inChannels]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}})}let m=ob({a:c,b:f,transposeA:d,transposeB:h,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=qe({inputs:{x:m},backend:n,attrs:{shape:r.outShape}});return n.disposeData(c.dataId),n.disposeData(f.dataId),n.disposeData(m.dataId),g}function bhe({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,strideWidth:h,strideHeight:p,padInfo:c,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:A}=r,x=A==="channelsLast",b=l*u*d,w=m*f,T=[w,b],S=!1,E=!1,R=[],_=qe({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),M=qe({inputs:{x:t},backend:n,attrs:{shape:[1,b,-1]}});R.push(_),R.push(M);let I=new mhe(T,x),O=[{type:"int32",data:[c.left,c.top]},{type:"int32",data:[h,p]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[d*l]},{type:"int32",data:[d]}],z=n.runWebGPUProgram(I,[_],_.dtype,O),j=qe({inputs:{x:z},backend:n,attrs:{shape:[1,T[0],T[1]]}});R.push(z),R.push(j);let X=[1,T[0],T[1]],D=new c8(X,[1,w,r.outChannels],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,E,a,o,s),Q=X[1],V=X[2],ee=r.outChannels,J=[{type:"int32",data:[Q]},{type:"int32",data:[ee]},{type:"int32",data:[V]}],se=[j,M];a&&se.push(a),s&&se.push(s);let Z=n.runWebGPUProgram(D,se,j.dtype,J),ae=x?[1,m,f,r.outChannels]:[1,r.outChannels,m,f],de=qe({inputs:{x:Z},backend:n,attrs:{shape:ae}});R.push(Z);for(let Ae of R)n.disposeData(Ae.dataId);return de}function b8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a!=null,u=s!=null,d;if(r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID"||r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return xhe({x:e,filter:t,convInfo:r,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});if(Y().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&e.shape[0]===1)return bhe({x:e,filter:t,convInfo:r,backend:n,bias:a,preluActivationWeights:s,leakyreluAlpha:i,activation:o});let h=Y().getBool("WEBGPU_USE_NAIVE_CONV2D"),p=(r.inChannels%4===0||r.inChannels===3&&r.padInfo.type==="VALID")&&r.outChannels%4===0&&r.outChannels>=32,c=[r.padInfo.top,r.padInfo.left],f=[{type:"int32",data:[r.filterHeight,r.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[r.strideHeight,r.strideWidth]},{type:"int32",data:[r.dilationHeight,r.dilationWidth]}];if(h)d=new Ahe(r,l,o,u);else{p?d=new ghe(r,l,o,u):d=new yhe(r,l,o,u);let g=r.outShape[1]*r.outShape[2],y=r.outShape[3],A=r.filterHeight*r.filterWidth*r.inShape[3];f.push({type:"int32",data:[g]},{type:"int32",data:[y]},{type:"int32",data:[A]})}let m=[e,t];return l&&m.push(a),u&&m.push(s),n.runWebGPUProgram(d,m,e.dtype,f)}function vhe(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=r,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h);return b8({x:a,filter:s,convInfo:p,backend:n})}var whe={kernelName:Xs,backendName:"webgpu",kernelFunc:vhe},khe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=nb(this.dispatchLayout,this.outputShape),this.elementsPerThread=ab(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x.numbers[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W.numbers[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result.numbers[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${ib(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Ihe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,r=this.isChannelsLast?3:1;return`
|
|
${tt()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${r}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function She(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Y().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Ihe(p);else{f=new khe(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;c.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return r.runWebGPUProgram(f,[a,s],"float32",c)}var The={kernelName:Zs,backendName:"webgpu",kernelFunc:She},Nhe=vr({opType:2}),Che={kernelName:Ys,backendName:"webgpu",kernelFunc:Nhe},Ehe=vr({opType:3}),Rhe={kernelName:Js,backendName:"webgpu",kernelFunc:Ehe},Mhe=class{constructor(e,t,r,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1],this.size=!0;let[a]=t;this.outputShape=[a,r[0],r[1],e],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[r,n,a]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${r});
|
|
let width_ratio = f32(${s});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${n};
|
|
let width_scale = ${i};
|
|
let in_y = ${a};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Fhe=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Mhe(a.shape[3],s.shape,o,l),h=[{type:"float32",data:[u]}];return r.runWebGPUProgram(d,[a,s,i],"float32",h)},$he={kernelName:zo,backendName:"webgpu",kernelFunc:Fhe},Phe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _he(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=[{type:"int32",data:[s]}],g=new Phe(f,i);return r.runWebGPUProgram(g,[a],a.dtype,m)}var zhe={kernelName:Oo,backendName:"webgpu",kernelFunc:_he},v8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise3x3_${r}`}getUserCode(){let e="",t="";if(this.activation){let n=es(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let r=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${rb()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},w8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
|
|
inDims : vec2<i32>; filterHeight : i32; filterWidth : i32;
|
|
channelMul : i32;`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=es(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${n}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let r=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Li()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${r}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Ohe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]},{type:"int32",data:[h.inHeight,h.inWidth]}],c;return h.batchSize===1&&h.inHeight===h.outHeight&&h.inWidth===h.outWidth&&h.strideHeight===1&&h.strideWidth===1&&h.filterHeight===h.filterWidth&&h.inChannels===h.outChannels&&h.filterHeight===3&&h.inChannels%4===0?c=new v8(h):(c=new w8(h),p.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.outChannels/h.inChannels]})),r.runWebGPUProgram(c,[a,s],a.dtype,p)}var Dhe={kernelName:Qs,backendName:"webgpu",kernelFunc:Ohe},k8=Gr({opSnippet:0,cpuKernelImpl:ype,supportsComplex:!0}),Lhe={kernelName:yi,backendName:"webgpu",kernelFunc:k8},Bhe=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[r]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let r=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x.numbers[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${r}
|
|
}
|
|
}
|
|
`}};function _h(e,t,r,n,a){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=N.getAxesPermutation(l,s),d=e;u!=null&&(d=El({inputs:{x:e},attrs:{perm:u},backend:a}),l=N.getInnerMostAxes(l.length,s),i.push(d)),N.assertAxesAreInnerMostDims(n,l,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=h;r&&(c=N.expandShapeToKeepDim(h,o));let f;if((n==="max"||n==="prod")&&a.shouldExecuteOnCPU([d])){let m=a.tensorMap.get(d.dataId).values;switch(n){case"max":let g=fpe(m,v.sizeFromShape(p),c,e.dtype);f=a.makeTensorInfo(c,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=bpe(d.shape,d.dtype,m,l);f=a.makeTensorInfo(A,x,y);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),g=v.sizeFromShape(d.shape)/m,y={windowSize:m,inSize:m,batchSize:g,outSize:1},A=n==="mean"?"float32":nh(e.dtype),x=[{type:"int32",data:[m]}],b=new Bhe(y,n),w=a.runWebGPUProgram(b,[d],A,x);i.push(w),f=qe({inputs:{x:w},attrs:{shape:c},backend:a})}return i.forEach(m=>a.disposeData(m.dataId)),f}function lb(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"sum",r)}var Whe={kernelName:Ci,backendName:"webgpu",kernelFunc:lb};function Vhe(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=El({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=qe({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=k8({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=lb({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeData(m.dataId);return p}var Uhe={kernelName:Up,backendName:"webgpu",kernelFunc:Vhe},Ghe=vr({opType:4}),jhe={kernelName:ti,backendName:"webgpu",kernelFunc:Ghe},Hhe=Gr({opSnippet:4,dtype:"bool",cpuKernelImpl:npe}),qhe={kernelName:Do,backendName:"webgpu",kernelFunc:Hhe},I8=vr({opType:5,cpuKernelImpl:ape,dtype:"float32"}),Khe={kernelName:ri,backendName:"webgpu",kernelFunc:I8};function V1(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),qe({inputs:{x:s},backend:n,attrs:{shape:o}})}var Xhe={kernelName:Lo,backendName:"webgpu",kernelFunc:V1},Zhe=vr({opType:6,cpuKernelImpl:spe}),Yhe={kernelName:Bo,backendName:"webgpu",kernelFunc:Zhe},Jhe=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function kd(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new Jhe(n),o=[{type:"float32",data:[a]}];return t.runWebGPUProgram(i,[],s,o)}}var Qhe={kernelName:Lu,backendName:"webgpu",kernelFunc:kd},ece=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},tce={kernelName:Wo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new ece(r.shape);return n.runWebGPUProgram(a,[r],r.dtype)}},rce=vr({opType:7,cpuKernelImpl:ipe}),nce={kernelName:ni,backendName:"webgpu",kernelFunc:rce},ace=Gr({opSnippet:12,dtype:"int32"}),sce={kernelName:ai,backendName:"webgpu",kernelFunc:ace},ice=(e,t,r,n,a)=>{let s=[n,...r];return a&&s.push(a),e.createBindGroup({layout:t,entries:s.map((i,o)=>({binding:o,resource:i}))})},S8=(e,t,r,n,a,s=!1)=>{let i={dtype:a.dtype,shape:a.shape},o=$ue(n,i,t,s),l=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:r,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function T8(e,t,r,n="",a=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(s=>s.length).join(",")+r.join(",")+e.variableNames.join(",")+n+a}function Gv(e){let{externalImage:t,backend:r,attrs:n,outShape:a,useImport:s}=e,{numChannels:i}=n,o=v.sizeFromShape(a),l=v.computeStrides(a),u=r.makeTensorInfo(a,"int32"),d=r.getFromPixelsProgram(s?"import":"copyExternal");d.updateOutputShape(a);let h=[u.shape],p=[u.dtype,s?"import":"copyExternal"],c=T8(d,h,p),f=d.getLayout(r.device),m=r.getAndSavePipeline(c,()=>S8(r.device,d,f.pipelineLayout,[],u,!0));d.setPipeline(m),s||r.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:d.makeInputTexture(r.device,a[1],a[0])},[a[1],a[0]]);let g=r.tensorMap.get(u.dataId);g.bufferInfo.buffer=r.acquireBuffer(g.bufferInfo.byteSize);let y=[o,i,...l,...d.dispatch];d.setUniform(r.device,y);let A;if(s){let x={source:t};A=r.device.importExternalTexture(x)}else A=d.inputTexture.createView();return r.runFromPixelsProgram(d,g.bufferInfo.buffer,f,A,u.dataId),u}var oce={kernelName:Ip,backendName:"webgpu",kernelFunc:lce},tu;function lce(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n;if(a==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&a instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&a instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[d,h]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],p=[h,d,s];if(Y().getBool("WEBGPU_USE_IMPORT")&&i)return Gv({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!0});if((i||o)&&(tu==null&&(tu=document.createElement("canvas").getContext("2d")),tu.canvas.width=d,tu.canvas.height=h,tu.drawImage(a,0,0,d,h),a=tu.canvas),u||l||i||o)return Gv({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!1});let c=a.data,f=c;if(s!=null&&s!==4){f=new Uint8Array(a.width*a.height*s);let y=c.length,A=0;for(let x=0;x<y;x++)x%4<s&&(f[A++]=c[x])}let m=r.makeTensorInfo(p,"int32"),g=r.tensorMap.get(m.dataId);return g.values=new Int32Array(f),r.maybeReleaseBuffer(m.dataId),r.uploadToGPU(m.dataId),m}var uce=class{constructor(e,t,r,n,a){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r),this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=a,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${tt()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},dce={kernelName:si,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n,scale:a,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=r,d=[n,i,o],h=null;s!=null&&(h=s.shape,d.push(s));let p=null;a!=null&&(p=a.shape,d.push(a));let c=new uce(n.shape,i.shape,o.shape,h,p),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(c,d,n.dtype,f)}};function pce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m);return b8({x:a,filter:s,convInfo:g,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:c})}var hce={kernelName:Cs,backendName:"webgpu",kernelFunc:pce};function cce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p}=n,c=d;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${c}'`);let f=N.computeConv2DInfo(a.shape,s.shape,l,c,u,h,!0),m=[a,s],g=i!=null,y=o!=null;g&&m.push(i),y&&m.push(o);let A=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}],x;return f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4===0?x=new v8(f,g,p,y):(x=new w8(f,g,p,y),A.push({type:"int32",data:[f.filterHeight]},{type:"int32",data:[f.filterWidth]},{type:"int32",data:[f.outChannels/f.inChannels]})),r.runWebGPUProgram(x,m,"float32",A)}var fce={kernelName:Es,backendName:"webgpu",kernelFunc:cce},mce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${mr(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function gce(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=qe({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=qe({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let A=r.readSync(a.dataId),x=r.bufferSync(n),b=ope(A,x,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,b.values)}let f=new mce(i,[u,d]),m=[{type:"int32",data:[i]},{type:"int32",data:h}],g=r.runWebGPUProgram(f,[c,p],c.dtype,m),y=qe({inputs:{x:g},backend:r,attrs:{shape:l}});return r.disposeData(p.dataId),r.disposeData(c.dataId),r.disposeData(g.dataId),y}var yce={kernelName:Uo,backendName:"webgpu",kernelFunc:gce},Ace=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=xce(this.aShape,"i32");return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function xce(e,t="int"){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push(`${t}(getIndices(resRC.x, resRC.z))`):n.push(`${r[a]}`);return n.join()}function N8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=qe({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=qe({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])){let A=r.tensorMap.get(c.dataId).values,x=We(c.shape,c.dtype,A),b=r.tensorMap.get(p.dataId).values,w=We(p.shape,p.dtype,b),T=lpe(w,x,f);return h.forEach(S=>r.disposeData(S.dataId)),r.makeTensorInfo(u.outputShape,T.dtype,T.values)}let m=new Ace(p.shape,f),g=r.runWebGPUProgram(m,[p,c],p.dtype);h.push(g);let y=qe({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeData(A.dataId)),y}var bce={kernelName:Vo,backendName:"webgpu",kernelFunc:N8},vce=Gr({opSnippet:5,cpuKernelImpl:dpe,dtype:"bool"}),wce={kernelName:Go,backendName:"webgpu",kernelFunc:vce},kce=Gr({opSnippet:6,dtype:"bool",cpuKernelImpl:upe}),Ice={kernelName:ii,backendName:"webgpu",kernelFunc:kce};function Sce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new $h(a.shape,15);return o.uniforms="alpha : f32;",r.runWebGPUProgram(o,[a],"float32",i)}var Tce={kernelName:li,backendName:"webgpu",kernelFunc:Sce},Nce=Gr({opSnippet:7,dtype:"bool",cpuKernelImpl:hpe}),Cce={kernelName:jo,backendName:"webgpu",kernelFunc:Nce},Ece=Gr({opSnippet:8,dtype:"bool",cpuKernelImpl:ppe}),Rce={kernelName:Ho,backendName:"webgpu",kernelFunc:Ece},Mce=vr({opType:9,cpuKernelImpl:cpe}),Fce={kernelName:ui,backendName:"webgpu",kernelFunc:Mce},$ce=Gr({opSnippet:9,dtype:"bool"}),Pce={kernelName:qo,backendName:"webgpu",kernelFunc:$ce},_ce=vr({opType:10}),zce={kernelName:Gu,backendName:"webgpu",kernelFunc:_ce};function C8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n;return _h(a,s,i,"max",r)}var Oce={kernelName:di,backendName:"webgpu",kernelFunc:C8},Dce=Gr({opSnippet:15,cpuKernelImpl:mpe}),Lce={kernelName:pi,backendName:"webgpu",kernelFunc:Dce};function Bce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l),h,p=[];if(d.filterHeight===1&&d.filterWidth===1){if(v.arraysEqual(d.inShape,d.outShape))return Bn({inputs:{x:a},backend:r});h=new y8(d),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]})}else h=new g8(d,"max"),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]});return r.runWebGPUProgram(h,[a],a.dtype,p)}var Wce={kernelName:hi,backendName:"webgpu",kernelFunc:Bce};function Vce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{keepDims:s,axis:i}=n;return _h(a,i,s,"mean",r)}var Uce={kernelName:ci,backendName:"webgpu",kernelFunc:Vce};function Gce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"min",r)}var jce={kernelName:fi,backendName:"webgpu",kernelFunc:Gce},Hce=Gr({opSnippet:16,cpuKernelImpl:gpe}),qce={kernelName:mi,backendName:"webgpu",kernelFunc:Hce},Kce=class{constructor(e,t,r){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,a)=>n[0]+e[a]+n[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((n,a)=>{this.uniforms+=` pad${a} : vec2<i32>;`}),this.offset=r==="reflect"?0:1,this.shaderKey=`mirrorPad_${r}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),r=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",a=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=mr(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${r});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${s} < ${n}) {
|
|
${s} = ${n} * 2 - ${s} - ${this.offset};
|
|
} else if(${s} >= ${a}) {
|
|
${s} = (${a} - 1) * 2 - ${s} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},Xce={kernelName:gi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{paddings:a,mode:s}=t,i=r,o=a.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Kce(n.shape,a,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}};function Zce(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.tensorMap.get(n.dataId),[i,o]=Ape(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a=new $h(n.shape,11);return r.runWebGPUProgram(a,[n],n.dtype)}var Yce={kernelName:Ko,backendName:"webgpu",kernelFunc:Zce};function Jce(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=jn.nonMaxSuppressionV3Impl(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Qce={kernelName:Zo,backendName:"webgpu",kernelFunc:Jce};function efe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=jn.nonMaxSuppressionV5Impl(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var tfe={kernelName:Yo,backendName:"webgpu",kernelFunc:efe};function Ef(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Ph({inputs:{input:n},backend:r}),s=Ef({inputs:{x:a},backend:r}),i=h0({inputs:{input:n},backend:r}),o=Ef({inputs:{x:i},backend:r}),l=vd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return kd({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var rfe={kernelName:gl,backendName:"webgpu",kernelFunc:Ef};function E8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Ph({inputs:{input:n},backend:r}),s=E8({inputs:{x:a},backend:r}),i=h0({inputs:{input:n},backend:r}),o=Ef({inputs:{x:i},backend:r}),l=vd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return kd({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var nfe={kernelName:Jo,backendName:"webgpu",kernelFunc:E8};function afe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return V1({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=V1({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=x8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var sfe={kernelName:el,backendName:"webgpu",kernelFunc:afe},ife=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,n)=>r[0]+e[n]+r[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((r,n)=>{this.uniforms+=` pad${n} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=mr(e),r=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),a=e>1?`${t}(${r})`:`${r}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${a};
|
|
let end = ${s};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},R8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return Bn({inputs:{x:a},backend:r});if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return kd({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new ife(a.shape,s);return r.runWebGPUProgram(l,[a],a.dtype,o)},ofe={kernelName:Ai,backendName:"webgpu",kernelFunc:R8},lfe=Gr({opSnippet:13}),ufe={kernelName:xi,backendName:"webgpu",kernelFunc:lfe};function dfe(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=new f8(14,n.shape,a.shape);return r.runWebGPUProgram(s,[n,a],"float32")}var pfe={kernelName:bi,backendName:"webgpu",kernelFunc:dfe};function hfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"prod",r)}var cfe={kernelName:tl,backendName:"webgpu",kernelFunc:hfe},ffe=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=vpe(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},mfe={kernelName:qu,backendName:"webgpu",kernelFunc:ffe},M8=Gr({opSnippet:3}),gfe={kernelName:ei,backendName:"webgpu",kernelFunc:M8},yfe=vr({opType:13}),Afe={kernelName:vi,backendName:"webgpu",kernelFunc:yfe},xfe=vr({opType:14}),bfe={kernelName:ki,backendName:"webgpu",kernelFunc:xfe},vfe=class{constructor(e,t,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>; halfPixelCenters : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function wfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[o?.5:0]}],c=new vfe(a.shape,l,u);return r.runWebGPUProgram(c,[a],"float32",p)}var kfe={kernelName:wi,backendName:"webgpu",kernelFunc:wfe},Ife=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>; roundBase : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Sfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[s?.5:0]}],c=new Ife(a.shape,l,u,i);return r.runWebGPUProgram(c,[a],a.dtype,p)}var Tfe={kernelName:Xu,backendName:"webgpu",kernelFunc:Sfe},Nfe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
|
|
cosRadians : f32;`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Cfe={kernelName:yl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new Nfe(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[{type:"float32",data:[u]},{type:"float32",data:[d]},{type:"float32",data:[Math.sin(a)]},{type:"float32",data:[Math.cos(a)]}];return typeof s=="number"?h.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):h.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,h)}},Efe=vr({opType:16,cpuKernelImpl:wpe}),Rfe={kernelName:Ii,backendName:"webgpu",kernelFunc:Efe},Mfe=class{constructor(e,t,r,n,a,s,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.dispatchLayout=Xe(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${r}_${n}_${this.sliceDimGreaterThanOne}_${i}`;let o=mr(a.length);this.uniforms=`sliceDim : i32; strides: ${o}; size: i32;`,this.updatesRank=n,this.indicesRank=r}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,r=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",a="",s="";this.updatesRank===1?(n="coords[0]",a="flattenedIndex",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(n="coords[0], coords[1]",a="vec2<i32>(flattenedIndex, coords[1])",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${n})`,o=this.type==="int32"?"atomicAdd(&(result.numbers[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result.numbers[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${s}
|
|
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${r};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${a});
|
|
|
|
${o}
|
|
}
|
|
}`}};function Ffe(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=qe({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=qe({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=f.dtype,g=kd({backend:r,attrs:{shape:p,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),A=[{type:"int32",data:[o]},{type:"int32",data:d},{type:"int32",data:[y]}],x=new Mfe(f.shape,o,c.shape.length,f.shape.length,d,p,m),b=r.runWebGPUProgram(x,[f,c],m,A,g),w=qe({inputs:{x:b},backend:r,attrs:{shape:i}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(b.dataId),w}var $fe={kernelName:sl,backendName:"webgpu",kernelFunc:Ffe},Pfe=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=r,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],a=[];for(let s=0;s<this.outputShape.length;s++)a.push(`${r[s]}`),s<this.cRank&&n.push(`${r[s]}`);e=n.join(),t=a.join()}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function _fe(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new Pfe(n.shape.length,a.shape,a.shape.length);return r.runWebGPUProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var zfe={kernelName:il,backendName:"webgpu",kernelFunc:_fe},Ofe=vr({opType:19}),Dfe={kernelName:Ti,backendName:"webgpu",kernelFunc:Ofe},Lfe=vr({opType:17}),Bfe={kernelName:Si,backendName:"webgpu",kernelFunc:Lfe},Wfe=vr({opType:18}),Vfe={kernelName:ll,backendName:"webgpu",kernelFunc:Wfe},F8=Gr({opSnippet:2,cpuKernelImpl:Npe,supportsComplex:!0}),Ufe={kernelName:Mi,backendName:"webgpu",kernelFunc:F8};function Gfe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=C8({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=qe({inputs:{x:o},backend:r,attrs:{shape:l}}),d=F8({inputs:{a,b:u},backend:r}),h=I8({inputs:{x:d},backend:r}),p=lb({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=qe({inputs:{x:p},backend:r,attrs:{shape:l}}),f=M8({inputs:{a:h,b:c},backend:r});return r.disposeData(o.dataId),r.disposeData(u.dataId),r.disposeData(d.dataId),r.disposeData(h.dataId),r.disposeData(p.dataId),r.disposeData(c.dataId),f}var jfe={kernelName:Ei,backendName:"webgpu",kernelFunc:Gfe},Hfe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=R8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=qe({inputs:{x:d},backend:r,attrs:{shape:h}}),m=El({inputs:{x:f},backend:r,attrs:{perm:p}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeData(y.dataId)),g},qfe={kernelName:ul,backendName:"webgpu",kernelFunc:Hfe},Kfe=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=s,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${r}_${n}_${o}`;let l=mr(a.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let u="";r===1?u="i":r===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let d="";n===1?d="i":n===2&&(d="i, coords[1]"),this.updatesSnippet=`getUpdates(${d})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${tt()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function Xfe(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:d}],f=new Kfe(u,l,a.shape.length,s.shape.length,d,[h,1],p),m=r.runWebGPUProgram(f,[s,a,i],s.dtype,c),g=qe({inputs:{x:m},backend:r,attrs:{shape:o}});return r.disposeData(m.dataId),g}var Zfe={kernelName:Jp,backendName:"webgpu",kernelFunc:Xfe};function Yfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=wd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var Jfe={kernelName:dl,backendName:"webgpu",kernelFunc:Yfe},Qfe=vr({opType:20}),eme={kernelName:Ni,backendName:"webgpu",kernelFunc:Qfe},tme={kernelName:ed,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t,a=new $h(r.shape,21);return n.runWebGPUProgram(a,[r],r.dtype)}},rme=Gr({opSnippet:11}),nme={kernelName:Ri,backendName:"webgpu",kernelFunc:rme},ame=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=mr(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((n,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function sme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=qe({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=wd({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});w=qe({inputs:{x:S},backend:r,attrs:{shape:f}}),r.disposeData(S.dataId)}else if(r.shouldExecuteOnCPU([a])){let T=r.readSync(a.dataId),S=We(a.shape,a.dtype,T),E=Spe(c,S,b,A);w=r.makeTensorInfo(f,a.dtype,E.values)}else{let T=new ame(c),S=[{type:"int32",data:A},{type:"int32",data:b}],E=r.runWebGPUProgram(T,[a],a.dtype,S);w=qe({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeData(E.dataId)}return w}var ime={kernelName:pl,backendName:"webgpu",kernelFunc:sme};function ome(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=Tpe(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var lme={kernelName:Qp,backendName:"webgpu",kernelFunc:ome},ume=vr({opType:22}),dme={kernelName:Fi,backendName:"webgpu",kernelFunc:ume},pme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[n]*t[n];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=hme(this.rank,"uniforms.");return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function hme(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e;a++)n.push(`(${r[a]} % ${t}aShape[${a}])`);return n.join()}function cme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(r.shouldExecuteOnCPU([a])||a.dtype==="string"||a.shape.length>=5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Cpe(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new pme(a.shape,s);return r.runWebGPUProgram(i,[a],a.dtype)}var fme={kernelName:Ka,backendName:"webgpu",kernelFunc:cme},mme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
|
|
dir : i32; inc : i32;`,this.shaderKey="swap"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},gme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function ru(e,t){t!==null&&e.disposeData(t.dataId)}function jv(e){let t=1;for(;t<e;)t*=2;return t}function yme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=a.shape,l=o[o.length-1];if(r.shouldExecuteOnCPU([a])){let b=r.readSync(a.dataId),[w,T]=Epe(b,o,a.dtype,s,i);return[r.makeTensorInfo(w.shape,w.dtype,w.values),r.makeTensorInfo(T.shape,T.dtype,T.values)]}if(s===0)return o[o.length-1]=0,[r.makeTensorInfo(o,a.dtype,[]),r.makeTensorInfo(o,"int32",[])];if(l===1)return[a,kd({attrs:{shape:o,dtype:"int32",value:0},backend:r})];let u=v.sizeFromShape(o)/l,d=qe({inputs:{x:a},attrs:{shape:[u,l]},backend:r}),h=jv(s),p=jv(l),c=null,f=()=>c===null?[d,d]:[d,c],m=(b,w,T)=>{let S=f(),E=new mme(T),R=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[w]}],_=c;c=r.runWebGPUProgram(E,S,"int32",R),ru(r,_)};for(let b=1;b<h;b*=2){let w=b*2;for(let T=b;T>=1;T/=2)m(w,T,[u,p])}for(let b=p;b>h;b/=2){let w=f(),T=new gme([u,b/2]),S=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"int32",data:[h]}],E=c;c=r.runWebGPUProgram(T,w,"int32",S),ru(r,E);let R=h/2,_=R*2;for(let M=R;M>=1;M/=2)m(_,M,c.shape)}let g=c;c=wd({inputs:{x:c},backend:r,attrs:{begin:0,size:[u,s]}}),ru(r,g);let y=N8({inputs:{x:d,indices:c},backend:r,attrs:{axis:1,batchDims:1}});ru(r,d);let A=o.slice(0,-1);A.push(s),g=c,c=qe({inputs:{x:c},attrs:{shape:A},backend:r}),ru(r,g);let x=y;return y=qe({inputs:{x:y},attrs:{shape:A},backend:r}),ru(r,x),[y,c]}var Ame={kernelName:cl,backendName:"webgpu",kernelFunc:yme},xme=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function bme(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new xme(g),A=i==="nearest"?1:2,x;switch(o){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return r.runWebGPUProgram(y,[a,s],"float32",b)}var vme={kernelName:fl,backendName:"webgpu",kernelFunc:bme};function wme(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=wd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=qe({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeData(m.dataId)),f}var kme={kernelName:ml,backendName:"webgpu",kernelFunc:wme},Ime=[Xde,Fpe,Ppe,Ope,Upe,jpe,qpe,Xpe,ehe,ahe,ihe,dhe,Qde,fhe,whe,The,Che,Rhe,$he,zhe,Dhe,Uhe,jhe,qhe,Khe,Xhe,Yhe,Qhe,tce,oce,nce,sce,dce,hce,fce,yce,bce,wce,Ice,Jde,hhe,Tce,Cce,Rce,Fce,Pce,zce,Oce,Lce,Wce,Uce,jce,qce,Xce,Lhe,Yce,Qce,tfe,the,nfe,sfe,ofe,ufe,pfe,cfe,mfe,rhe,gfe,Afe,bfe,qde,kfe,Tfe,Cfe,Rfe,$fe,zfe,Dfe,Bfe,Vfe,Jpe,ime,lme,jfe,qfe,Zfe,Jfe,eme,tme,nme,Ufe,Whe,dme,fme,Ame,vme,Wpe,kme,rfe];for(let e of Ime)Vn(e);var Sme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,r=!1){let n=Hv(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let a=this.device.createBuffer({mappedAtCreation:r,size:e,usage:t});return this.usedBuffers.get(n).push(a),a}releaseBuffer(e,t,r){if(this.freeBuffers.size===0)return;let n=Hv(t,r);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let a=this.usedBuffers.get(n),s=a.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");a.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,r){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,r)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Hv(e,t){return`${e}_${t}`}var $8=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${tt()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let r=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=r}!t||t.length===this.lastUniformData.length&&t.every((r,n)=>r===this.lastUniformData[n])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,r){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==r)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,r],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=r),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},Tme=class extends $8{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},Nme=Y().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),qv=(e,t)=>{let r=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,a=t.dispatch;if(a.every(i=>i<=r))return a;v.assert(a[0]>r&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(a[0]));return s>r?(s=Math.ceil(Math.cbrt(a[0])),v.assert(s<=r,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},P8=class extends Su{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!sb())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Sme(this.device),this.tensorMap=new Op(this,Ar()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return P8.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let r=this.tensorMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:n}=this.tensorMap.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,r){if(r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()},a=v.sizeFromShape(t)*D1(r);return this.tensorMap.set(n,{dtype:r,values:e,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:1}),n}move(e,t,r,n,a){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s=v.sizeFromShape(r)*D1(n);this.tensorMap.set(e,{dtype:n,values:t,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:a})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new $8),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Tme),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let r=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),r}convertAndCacheOnCPU(e,t){let r=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),r.values=t,r.values}readSync(e){let t=this.tensorMap.get(e),{values:r}=t;if(r==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return r}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:r}=t;if(r!=null)return this.convertAndCacheOnCPU(e,r);let n;if(t.dtype==="complex64"){let a=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=a[0],i=a[1];n=N.mergeRealAndImagArrays(s,i)}else{let a=await this.getBufferData(t);n=d8(a,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}async time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(a);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let r=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),n=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(n).set(t.values):new Float32Array(n).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let a={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingDisposalQueue.push(a)}}makeUniforms(e){let t=0,r=[];e.forEach(s=>{s.data.length===0&&(s.data=[1]);let i;switch(s.data.length){case 1:i=4;break;case 2:i=8;break;case 3:i=16;break;case 4:i=16;break;default:v.assert(!1,()=>`Unsupported ${s.data.length}D shape`)}t=Math.ceil(t/i)*i,r.push(t),t+=s.data.length*4});let n=new ArrayBuffer(t);e.forEach((s,i)=>{let o=r[i];s.type==="int32"?new Int32Array(n,o,s.data.length).set(s.data):s.type==="uint32"?new Uint32Array(n,o,s.data.length).set(s.data):new Float32Array(n,o,s.data.length).set(s.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(a,0,n,0,t),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let a=0;a<e;a++)t.push({binding:a+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,r,n,a){if(!a){if(a=this.makeTensorInfo(e.outputShape,r),v.sizeFromShape(a.shape)===0){let S=this.tensorMap.get(a.dataId);return S.values=v.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId)}e.dispatch=qv(this.device,e);let s=[{type:"float32",data:[NaN]}],i=t.concat(a).map(S=>S.shape),o="int32";i.map(S=>{s.push({type:o,data:S})});let l=v.computeStrides(a.shape);if(s.push({type:o,data:l}),e.size){let S=v.sizeFromShape(e.outputShape);s.push({type:o,data:[e.isVec4?S/4:S]})}n&&(s=[...s,...n]);let u=this.makeUniforms(s),d=t.map((S,E)=>{if(S.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(S.dataId),{dtype:this.tensorMap.get(S.dataId).dtype,shape:S.shape,name:e.variableNames[E]}}),h=d.map(S=>S.dtype).concat(a.dtype),p=d.map(S=>N.getBroadcastDims(S.shape,a.shape)),c=d.map(S=>v.arraysEqual(S.shape,a.shape)).join("_"),f=p.map(S=>S.join("_")).join(";"),m=T8(e,i,h,f,c),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),A=this.getAndSavePipeline(m,()=>S8(this.device,e,y,d,a)),x=this.activeTimers!=null,b=ice(this.device,g,t.map(S=>this.tensorToBinding(S)),this.tensorToBinding(a),u);this.ensureCommandEncoderReady();let w=this.getComputePass();x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(A),w.setBindGroup(0,b),w.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(S=>{this.commandQueueOwnedIds.add(S.dataId)}),this.commandQueueOwnedIds.add(a.dataId);let T={byteSize:u.size,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};return this.uniformDisposalQueue.push(T),Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),x&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}runFromPixelsProgram(e,t,r,n,a){e.dispatch=qv(this.device,e);let s=this.device.createBindGroup({layout:r.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:n},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let i=this.getComputePass(),o=this.activeTimers!=null;o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,0),i.setPipeline(e.pipeline),i.setBindGroup(0,s),i.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a),this.submitQueue(),o&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,r,0,16),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(r.getMappedRange()),a=Number(n[1]-n[0]);return r.unmap(),this.bufferManager.releaseBuffer(r,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a/1e6}shouldExecuteOnCPU(e,t=Nme){return Y().getBool("WEBGPU_CPU_FORWARD")&&e.every(r=>this.tensorMap.get(r.dataId).bufferInfo.buffer==null&&v.sizeFromShape(r.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},ub=P8;ub.nextDataId=0;var _8={};Le(_8,{WebGPUBackend:()=>ub,webgpu_util:()=>l8});sb()&&xl("webgpu",async()=>{Y().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Y().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),r=t.limits,n={},a=t.features.has("timestamp-query");n.requiredLimits={maxComputeWorkgroupStorageSize:r.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.maxComputeWorkgroupsPerDimension},a?n.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new ub(s,a)},3);var Vt=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Vt||{}),c0=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(c0||{}),z8;function Cme(e){z8=e.wasm.cwrap(Ns,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Eme(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p=r.dataIdMap.get(a.dataId).id,c=r.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let E=r.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:r.dataIdMap.get(o.dataId).id,g=c0[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],A=u?s.shape[1]:s.shape[2],x=Al.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)),b=r.makeOutput([...x,y,A],a.dtype),w=r.dataIdMap.get(b.dataId).id,T=new Uint8Array(new Int32Array(a.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return z8(p,T,a.shape.length,c,S,s.shape.length,l,u,g,f,m,h||0,w),b}var Rme={kernelName:Ns,backendName:"wasm",setupFunc:Cme,kernelFunc:Eme};function wr(e,t){let r;function n(s){r=s.wasm.cwrap(e,null,["number","number","number"])}function a(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),d=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||r(l,Vt[o.dtype],d),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Mme=wr(Fo);function jr(e,t,r){let n;function a(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=r!=null?r:u.dtype,f=N.assertAndGetBroadcastShape(u.shape,d.shape),m=o.makeOutput(f,c);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(m.dataId).id;return n(h,g,u.shape.length,p,y,d.shape.length,Vt[u.dtype],A),m}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Fme=!0,$me=jr(Ha,Fme),O8;function Pme(e){O8=e.wasm.cwrap(Us,null,["array","number","number","number"])}function _me(e){let{inputs:t,backend:r}=e,n=r.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let a=t.map(o=>r.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=r.dataIdMap.get(n.dataId).id;return O8(s,a.length,Vt[n.dtype],i),n}var zme={kernelName:Us,backendName:"wasm",setupFunc:Pme,kernelFunc:_me};function f0(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(n).set(a),n}var Ome={kernelName:oi,backendName:"wasm",kernelFunc:f0},D8;function Dme(e){D8=e.wasm.cwrap($i,null,["number","array","number","number","number","array","number"])}function Ws(e){let{inputs:t,backend:r,attrs:n}=e,[a,s]=Bme(t.x.shape,n.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=Lme(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=f0({inputs:t,backend:r});return f.shape=o,f}let u=r.makeOutput(o,l.dtype),d=r.dataIdMap.get(l.dataId).id,h=r.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return D8(d,c,l.shape.length,Vt[l.dtype],h,p,s.length),u}function Lme(e,t){let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];return r}function Bme(e,t){let r=[],n=[];for(let a=0;a<e.length;++a)e[a]!==1&&r.push(e[a]),e[t[a]]!==1&&n.push(t[a]);for(let a=0;a<n.length;++a){let s=-1;for(let i=0;i<n.length;++i)n[i]>=a&&(s===-1||n[s]>n[i])&&(s=i);n[s]=a}return[r,n]}var Wme={kernelName:$i,backendName:"wasm",kernelFunc:Ws,setupFunc:Dme};function Bi(e,t,r){let n=e.shape,a=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=N.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let d=new Array(a);for(let p=0;p<d.length;p++)d[p]=n[o[p]];i=N.getInnerMostAxes(i.length,a),l=Ws({inputs:{x:e},attrs:{perm:o},backend:r});let h=r.dataIdMap.get(e.dataId).id;r.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var L8;function Vme(e){L8=e.wasm.cwrap(Eu,null,["number, number, number"])}function Ume(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Bi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("all",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;L8(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Gme={kernelName:Eu,backendName:"wasm",setupFunc:Vme,kernelFunc:Ume},B8;function jme(e){B8=e.wasm.cwrap(Ru,null,["number, number, number"])}function Hme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Bi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("any",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;B8(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var qme={kernelName:Ru,backendName:"wasm",setupFunc:jme,kernelFunc:Hme},W8;function Kme(e){W8=e.wasm.cwrap(Gs,null,["number","number","number","number","number"])}function Xme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=Bi(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),f=t.dataIdMap.get(c.dataId).id,m=v.sizeFromShape(c.shape),g=l.shape[d[0]];return W8(o,Vt[l.dtype],m,g,f),h&&t.disposeData(u.dataId),c}var Zme={kernelName:Gs,backendName:"wasm",kernelFunc:Xme,setupFunc:Kme},V8;function Yme(e){V8=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jme(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let b=n.makeOutput(d.outShape,"float32"),w=n.dataIdMap.get(b.dataId).id;return V8(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,w),b}var Qme={kernelName:js,backendName:"wasm",setupFunc:Yme,kernelFunc:Jme};function Qr(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var e0e={kernelName:rl,backendName:"wasm",kernelFunc:Qr},U8;function t0e(e){U8=e.wasm.cwrap(Hs,null,["number","array","number","number","array","number","number","number","number"])}function r0e(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=Al.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Qr({inputs:{x:a},backend:r,attrs:{shape:x}}),T=Qr({inputs:{x:s},backend:r,attrs:{shape:b}}),S=r.dataIdMap.get(w.dataId).id,E=r.dataIdMap.get(T.dataId).id,R=i?w.shape[2]:w.shape[1],_=o?T.shape[1]:T.shape[2],M=Math.max(g,y),I=r.makeOutput([M,R,_],w.dtype),O=r.dataIdMap.get(I.dataId).id,z=new Uint8Array(new Int32Array(w.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return U8(S,z,w.shape.length,E,j,T.shape.length,i,o,O),r.disposeData(w.dataId),r.disposeData(T.dataId),I.shape=A,I}var n0e={kernelName:Hs,backendName:"wasm",setupFunc:t0e,kernelFunc:r0e};function Eo(e){let{inputs:{x:t},attrs:{begin:r,size:n},backend:a}=e,[s,i]=_t.parseSliceParams(t,r,n),o=_t.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),d=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=_t.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(f,f+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=If(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let p=a.typedArrayFromHeap(u),c=t.shape.length;if(c===2)a0e(l,d[0],p,s,i);else if(c===3)s0e(l,d[0],d[1],p,s,i);else if(c===4)i0e(l,d[0],d[1],d[2],p,s,i);else{let f=If(l,s,i,t.shape,t.dtype);p.set(f)}return u}function a0e(e,t,r,n,a){let s=0,i=n[0],o=n[1],l=i+a[0];for(let u=i;u<l;u++){let d=u*t+o;r.set(e.subarray(d,d+a[1]),s),s+=a[1]}}function s0e(e,t,r,n,a,s){let i=0,o=a[0],l=a[1],u=a[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let f=p*t+c*r+u;n.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function i0e(e,t,r,n,a,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],f=s[3];for(let m=l;m<h;m++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=m*t+g*r+y*n+f;a.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var o0e={kernelName:ol,backendName:"wasm",kernelFunc:Eo};function l0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n,o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=Qr({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Ws({inputs:{x:c},backend:r,attrs:{perm:u}}),m=Qr({inputs:{x:f},backend:r,attrs:{shape:d}}),g=Eo({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(c.dataId),g}var u0e={kernelName:$o,backendName:"wasm",kernelFunc:l0e};function zh(e){let{inputs:{x:t},attrs:{dtype:r},backend:n}=e,a=n.makeOutput(t.shape,r),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(s),a}var d0e={kernelName:qs,backendName:"wasm",kernelFunc:zh},p0e=wr(Ks),G8;function h0e(e){G8=e.wasm.cwrap(qa,null,["number","number","number","number"])}function c0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o=r.dataIdMap.get(a.dataId).id,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(l.dataId).id;return G8(o,s,i,u),l}var f0e={kernelName:qa,backendName:"wasm",setupFunc:h0e,kernelFunc:c0e};function j8(e){let{inputs:t,backend:r}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=N.computeOutShape(t.map(c=>c.shape),n),s=t.filter(c=>v.sizeFromShape(c.shape)>0);if(s.length===1)return f0({inputs:{x:s[0]},backend:r});let i=r.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(c=>c.shape);if(N.assertParamsConsistent(o,n),s[0].dtype==="string"){let c=s.map(x=>{let b=v.sizeFromShape(x.shape.slice(n));return Qr({inputs:{x},backend:r,attrs:{shape:[-1,b]}})}),f=c.map(x=>({vals:r.readSync(x.dataId),shape:x.shape}));a=N.computeOutShape(c.map(x=>x.shape),1);let m=c[0].shape[0]===1,g=$x(f,a,t[0].dtype,m),y=N.computeOutShape(s.map(x=>x.shape),n);i.shape=y;let A=r.dataIdMap.get(i.dataId);return A.stringBytes=N.fromStringArrayToUint8(g),c.forEach(x=>r.disposeData(x.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,n)),u=0,d=s.map(c=>{let f=v.sizeFromShape(c.shape.slice(n));return u+=f,f}),h=s.map(c=>r.typedArrayFromHeap(c)),p=r.typedArrayFromHeap(i);for(let c=0;c<l;c++){let f=c*u;for(let m=0;m<h.length;m++){let g=d[m],y=c*g,A=h[m].subarray(y,y+g);p.set(A,f),f+=g}}return i}var m0e={kernelName:Po,backendName:"wasm",kernelFunc:j8},H8;function g0e(e){H8=e.wasm.cwrap(Xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function y0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=r,c=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(a.shape,s.shape,l,u,d,h,!1,c),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,A=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,T=f.dilationWidth,S=f.strideHeight,E=f.strideWidth,R=f.inChannels,_=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let I=n.makeOutput(f.outShape,"float32"),O=n.dataIdMap.get(I.dataId).id;return H8(i,a.shape[0],a.shape[1],a.shape[2],o,m,g,y,A,x,b,M,w,T,S,E,R,_,O),I}var A0e={kernelName:Xs,backendName:"wasm",setupFunc:g0e,kernelFunc:y0e},q8;function x0e(e){q8=e.wasm.cwrap(Zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function b0e(e){let{backend:t,inputs:r,attrs:n}=e,{dy:a,filter:s}=r,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=n,h=1,p=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:w,outWidth:T,strideHeight:S,strideWidth:E}=c,R=m-1-c.padInfo.top,_=g-1-c.padInfo.left,M=c.dataFormat==="channelsLast",I=v.computeStrides(c.inShape),O=v.computeStrides(a.shape),[z,j,X]=v.computeStrides(s.shape),D=I[0],Q=M?I[1]:I[2],V=M?I[2]:1,ee=M?1:I[1],J=O[0],se=M?O[1]:O[2],Z=M?O[2]:1,ae=M?1:O[1],de=t.makeOutput(c.inShape,"float32"),Ae=t.dataIdMap.get(de.dataId).id,be=t.dataIdMap.get(a.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return q8(be,Ee,f,m,g,A,x,y,w,T,b,S,E,R,_,z,j,X,D,Q,V,ee,J,se,Z,ae,Ae),de}var v0e={kernelName:Zs,backendName:"wasm",setupFunc:x0e,kernelFunc:b0e},w0e=wr(Ys),k0e=wr(Js),K8=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(K8||{}),X8;function I0e(e){X8=e.wasm.cwrap(zo,null,["number","number","number","number","array","number","number","number","number","number"])}function S0e(e){let{backend:t,inputs:r,attrs:n}=e,{method:a,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=r,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=zh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return X8(g,y,A,d,w,h,p,K8[a],s,b),m!=null&&t.disposeData(m.dataId),x}var T0e={kernelName:zo,backendName:"wasm",setupFunc:I0e,kernelFunc:S0e},Z8;function N0e(e){Z8=e.wasm.cwrap(Ou,null,["number","number","number","number","number","number"])}function C0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumprod does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=Ws({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;Z8(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=Ws({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var E0e={kernelName:Ou,backendName:"wasm",setupFunc:N0e,kernelFunc:C0e},Y8;function R0e(e){Y8=e.wasm.cwrap(_o,null,["number","number","number","number","number","number"])}function M0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=Ws({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;Y8(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=Ws({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var F0e={kernelName:_o,backendName:"wasm",setupFunc:R0e,kernelFunc:M0e},J8;function $0e(e){J8=e.wasm.cwrap(Oo,null,["number","number","number","array","number","array","array","number","number"])}function P0e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return J8(g,s,i==="NHWC"?1:0,y,a.shape.length-1,A,x,f.length,b),m}var _0e={kernelName:Oo,backendName:"wasm",setupFunc:$0e,kernelFunc:P0e},Q8;function z0e(e){Q8=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function O0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=r,p=u==null?[1,1]:u,c=N.computeConv2DInfo(a.shape,s.shape,l,p,d,h,!0),f=c.filterHeight,m=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,b=c.dilationHeight,w=c.dilationWidth,T=c.strideHeight,S=c.strideWidth,E=c.inChannels,R=c.outChannels,_=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(c.outShape,"float32"),I=n.dataIdMap.get(M.dataId).id;return Q8(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,g,y,A,x,_,b,w,T,S,E,R,I),M}var D0e={kernelName:Qs,backendName:"wasm",setupFunc:z0e,kernelFunc:O0e},L0e=wr(ti),B0e=!1,W0e=jr(Do,B0e,"bool"),V0e=wr(ri,"float32");function U1(e){let{inputs:t,attrs:r,backend:n}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Qr({inputs:{x:a},backend:n,attrs:{shape:o}})}var U0e={kernelName:Lo,backendName:"wasm",kernelFunc:U1};function eT(e){let{attrs:{shape:t,value:r,dtype:n},backend:a}=e,s=a.makeOutput(t,n);return a.typedArrayFromHeap(s).fill(r),s}var G0e={kernelName:Lu,backendName:"wasm",kernelFunc:eT},tT;function j0e(e){tT=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number"])}function H0e(e){let{inputs:t,backend:r}=e,{image:n}=t,a=r.makeOutput(n.shape,n.dtype),s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,[o,l,u,d]=n.shape;return tT(s,o,l,u,d,i),a}var q0e={kernelName:Wo,backendName:"wasm",kernelFunc:H0e,setupFunc:j0e},K0e=wr(ni),X0e=!1,Z0e=jr(ai,X0e),rT;function Y0e(e){rT=e.wasm.cwrap(si,null,["number","number","number","number","number","number","number"])}function J0e(e){let{backend:t,inputs:r,attrs:n}=e,{varianceEpsilon:a}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=r,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return rT(d,h,p,c,f,a,g),m}var Q0e={kernelName:si,backendName:"wasm",setupFunc:Y0e,kernelFunc:J0e},nT;function ege(e){nT=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tge(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p),g=c0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let w=m.filterHeight,T=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,O=m.strideHeight,z=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return nT(y,D,Q,V,A,w,T,b,S,E,R,_,X,M,I,O,z,j,x,g,se,f||0,J),ee}var rge={kernelName:Cs,backendName:"wasm",setupFunc:ege,kernelFunc:tge},aT;function nge(e){aT=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function age(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p,!0),g=c0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let w=m.filterHeight,T=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,O=m.strideHeight,z=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return aT(y,D,Q,V,A,w,T,b,S,E,R,_,X,M,I,O,z,j,x,g,se,f||0,J),ee}var sge={kernelName:Es,backendName:"wasm",setupFunc:nge,kernelFunc:age},sT;function ige(e){sT=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number","array","number"])}function oge(e){let{backend:t,inputs:r}=e,{params:n,indices:a}=r,[s,i,o,l]=s2.prepareAndValidate(n,a),u=t.makeOutput(s,n.dtype);if(i===0)return u;let d=a.shape,h=d[d.length-1],p=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return sT(p,Vt[n.dtype],c,i,h,o,f,m),u}var lge={kernelName:Uo,backendName:"wasm",setupFunc:ige,kernelFunc:oge},iT;function uge(e){iT=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function dge(e){let{backend:t,inputs:r,attrs:n}=e,{x:a,indices:s}=r,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=t.readSync(s.dataId),d=a.shape[l];for(let S=0;S<u.length;++S){let E=u[S];v.assert(E<=d-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${d-1}]`)}let h=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),p=Qr({inputs:{x:a},attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]},backend:t}),c=v.sizeFromShape(s.shape),f=Qr({inputs:{x:s},attrs:{shape:[h.batchSize,c/h.batchSize]},backend:t}),m=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],g=t.makeOutput(m,a.dtype);if(v.sizeFromShape(a.shape)===0)return g;let y=p.shape.length-1,A=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(f.dataId).id,b=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return iT(A,Vt[a.dtype],w,y,x,h.batchSize,T,b),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=h.outputShape,g}var pge={kernelName:Vo,backendName:"wasm",setupFunc:uge,kernelFunc:dge},hge=!1,cge=jr(Go,hge,"bool"),fge=!1,mge=jr(ii,fge,"bool"),oT;function gge(e){oT=e.wasm.cwrap(li,null,["number","number","number","number"])}function yge(e){let{inputs:{x:t},attrs:{alpha:r},backend:n}=e,a=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;oT(a,Vt[t.dtype],r,i)}return s}var Age={kernelName:li,backendName:"wasm",setupFunc:gge,kernelFunc:yge},xge=!1,bge=jr(jo,xge,"bool"),vge=!1,wge=jr(Ho,vge,"bool"),kge=wr(ui),Ige=!1,Sge=jr(qo,Ige,"bool"),lT;function Tge(e){lT=e.wasm.cwrap(di,null,["number","number","number","number"])}function Nge(e){let{backend:t,inputs:r,attrs:n}=e,{reductionIndices:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Bi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("max",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;lT(o,Vt[i.dtype],g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Cge={kernelName:di,backendName:"wasm",setupFunc:Tge,kernelFunc:Nge},Ege=!1,Rge=jr(pi,Ege),uT;function Mge(e){uT=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fge(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id;v.assert(a.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${a.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,b=d.strideWidth,w=d.inChannels,T=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let S=n.makeOutput(d.outShape,"float32"),E=n.dataIdMap.get(S.dataId).id;return uT(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,b,w,T,E),S}var $ge={kernelName:hi,backendName:"wasm",setupFunc:Mge,kernelFunc:Fge},dT;function Pge(e){dT=e.wasm.cwrap(ci,null,["number, number, number"])}function _ge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Bi(i,a,t),f=h;if(c){let b=t.dataIdMap.get(d.dataId).id;b!==o&&(u=d,l=b,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=zh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;dT(l,y,b)}if(c&&t.disposeData(d.dataId),s){let b=N.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var zge={kernelName:ci,backendName:"wasm",setupFunc:Pge,kernelFunc:_ge},pT;function Oge(e){pT=e.wasm.cwrap(fi,null,["number","number","number","number"])}function Dge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Bi(i,a,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let f=u.shape.length;N.assertAxesAreInnerMostDims("min",h,f);let[m,g]=N.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;pT(l,Vt[i.dtype],y,x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Lge={kernelName:fi,backendName:"wasm",setupFunc:Oge,kernelFunc:Dge},Bge=!1,Wge=jr(mi,Bge),hT=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(hT||{}),cT;function Vge(e){cT=e.wasm.cwrap(gi,null,["number","array","number","number","array","array","number","number"])}function Uge(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,mode:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]),i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return cT(i,u,t.shape.length,Vt[t.dtype],p,c,hT[a],l),o}var Gge={kernelName:gi,backendName:"wasm",kernelFunc:Uge,setupFunc:Vge},jge=!0,Hge=jr(yi,jge),qge=wr(Ko);function db(e,t){let r=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=r[0],a=r[1],s=r[2],i=r[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var fT;function Kge(e){fT=e.wasm.cwrap(Zo,"number",["number","number","number","number","number"])}function Xge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=r,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=fT(u,d,s,a,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:f,pValidOutputs:m}=db(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([c],"int32",p)}var Zge={kernelName:Zo,backendName:"wasm",setupFunc:Kge,kernelFunc:Xge},mT;function Yge(e){mT=e.wasm.cwrap(Hu,"number",["number","number","number","number","number","bool"])}function Jge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=mT(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var Qge={kernelName:Hu,backendName:"wasm",setupFunc:Yge,kernelFunc:Jge},gT;function eye(e){gT=e.wasm.cwrap(Yo,"number",["number","number","number","number","number","number"])}function tye(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=gT(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,p);t.wasm._free(g);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([f],"float32",m);return[y,A]}var rye={kernelName:Yo,backendName:"wasm",setupFunc:eye,kernelFunc:tye},nye=!1,aye=jr(Xo,nye,"bool"),yT;function sye(e){yT=e.wasm.cwrap(Qo,null,["number","number","number","number","number"])}function iye(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=r.makeOutput([...a.shape,s],"int32"),u=r.dataIdMap.get(l.dataId).id,d=r.dataIdMap.get(a.dataId).id;return yT(d,s,i,o,u),l}var oye={kernelName:Qo,backendName:"wasm",setupFunc:sye,kernelFunc:iye};function lye(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(1),n}var uye={kernelName:Jo,backendName:"wasm",kernelFunc:lye};function dye(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return U1({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=U1({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=j8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var pye={kernelName:el,backendName:"wasm",kernelFunc:dye},AT;function hye(e){AT=e.wasm.cwrap(Ai,null,["number","array","number","number","array","array","number","number"])}function cye(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,constantValue:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]);if(v.sizeFromShape(t.shape)===0)return eT({backend:r,attrs:{shape:s,value:a,dtype:t.dtype}});let i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return AT(i,u,t.shape.length,Vt[t.dtype],p,c,a,l),o}var xT={kernelName:Ai,backendName:"wasm",kernelFunc:cye,setupFunc:hye},fye=!1,mye=jr(xi,fye),bT;function gye(e){bT=e.wasm.cwrap(bi,null,["number","number","number"])}function yye(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=zh({backend:r,inputs:{x:n},attrs:{dtype:"float32"}}),o=r.dataIdMap.get(u.dataId).id);let d=r.makeOutput(n.shape,"float32"),h=r.dataIdMap.get(d.dataId).id;return bT(o,i,h),l.dtype!=="float32"&&r.disposeData(u.dataId),d}var Aye={kernelName:bi,backendName:"wasm",setupFunc:gye,kernelFunc:yye},vT;function xye(e){vT=e.wasm.cwrap(tl,null,["number","number","number","number"])}function bye(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Bi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;vT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var vye={kernelName:tl,backendName:"wasm",setupFunc:xye,kernelFunc:bye},wye=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=zx(n,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},kye={kernelName:qu,backendName:"wasm",kernelFunc:wye},Iye=!0,Sye=jr(ei,Iye),Tye=wr(vi),Nye=wr(ki),wT;function Cye(e){wT=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","number","number","number","number"])}function Eye(e){let{backend:t,inputs:r,attrs:n}=e,{images:a}=r,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[d,h,p,c]=a.shape,f=[d,l,u,c],m=t.dataIdMap.get(a.dataId),g;m.dtype!=="float32"&&(g=zh({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(v.sizeFromShape(a.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return wT(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var Rye={kernelName:wi,backendName:"wasm",setupFunc:Cye,kernelFunc:Eye},kT;function Mye(e){kT=e.wasm.cwrap(nl,null,["number","array","number","array","number","number"])}function Fye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return f0({inputs:{x:a},backend:r});let o=r.makeOutput(a.shape,a.dtype),l=r.dataIdMap.get(a.dataId).id,u=r.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);kT(l,d,i.length,h,a.shape.length,u);let p=Qr({inputs:{x:o},attrs:{shape:a.shape},backend:r});return r.disposeData(o.dataId),p}var $ye={kernelName:nl,backendName:"wasm",kernelFunc:Fye,setupFunc:Mye},IT;function Pye(e){IT=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ye(e){let{inputs:t,backend:r,attrs:n}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=n,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(a.dataId).id,d=r.dataIdMap.get(l.dataId).id,[h,p,c,f]=a.shape,[m,g]=N.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],b=new Uint8Array(new Int32Array(x).buffer);return IT(u,h,p,c,f,s,m,g,b,x.length,d),l}var zye={kernelName:yl,backendName:"wasm",kernelFunc:_ye,setupFunc:Pye},Oye=wr(al),Dye=wr(Ii),ST;function Lye(e){ST=e.wasm.cwrap(sl,null,["number","number","number","number","number","number","array","number","number"])}function Bye(e){let{backend:t,inputs:r,attrs:n}=e,{indices:a,updates:s}=r,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=i2.calculateShapes(s,a,i),c=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return ST(c,f,Vt[s.dtype],l,u,d,m,p,g),o}var Wye={kernelName:sl,backendName:"wasm",setupFunc:Lye,kernelFunc:Bye},TT;function Vye(e){TT=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Uye(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=r.dataIdMap.get(n.dataId).id,o=r.dataIdMap.get(a.dataId).id,l=r.dataIdMap.get(s.dataId).id,u=r.makeOutput(a.shape,a.dtype),d=r.dataIdMap.get(u.dataId).id,h=n.shape.length,p=a.shape.length,c=h===0||h>1||p===1?1:v.sizeFromShape(a.shape.slice(1));return TT(i,o,l,c,d),u}var Gye={kernelName:il,backendName:"wasm",kernelFunc:Uye,setupFunc:Vye},NT;function jye(e){NT=e.wasm.cwrap(Ti,null,["number","number"])}function Hye(e){let{backend:t,inputs:{x:r}}=e,n=t.dataIdMap.get(r.dataId).id,a=t.makeOutput(r.shape,r.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||NT(n,s),a}var qye={kernelName:"Sigmoid",backendName:"wasm",setupFunc:jye,kernelFunc:Hye},Kye=wr(Si),CT;function Xye(e){CT=e.wasm.cwrap(Ei,null,["number","number","number","number"])}function Zye(e){let{backend:t,inputs:{logits:r},attrs:{dim:n}}=e,a=t.dataIdMap.get(r.dataId).id,s=t.makeOutput(r.shape,r.dtype),i=t.dataIdMap.get(s.dataId).id,o=r.shape[n],l=v.sizeFromShape(r.shape)/o;return v.sizeFromShape(s.shape)===0||CT(a,i,o,l),s}var Yye={kernelName:Ei,backendName:"wasm",setupFunc:Xye,kernelFunc:Zye};function Jye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=xT.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=Qr({inputs:{x:u},backend:r,attrs:{shape:d}}),f=Ws({inputs:{x:c},backend:r,attrs:{perm:h}}),m=Qr({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeData(u.dataId),r.disposeData(c.dataId),r.disposeData(f.dataId),m}var Qye={kernelName:ul,backendName:"wasm",kernelFunc:Jye},ET;function e1e(e){ET=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function t1e(e){let{backend:t,inputs:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=r,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],d=[o+u,l],h=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(d,n.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(d.slice(0,1),a.dtype),y=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),x=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),w=t.dataIdMap.get(b.dataId).id,T=t.makeOutput([4],"int32"),S=t.dataIdMap.get(T.dataId).id,E=ET(h,p,Vt[a.dtype],o,u,l,c,m,y,x,w,S),R=t.readSync(T.dataId),_;switch(R[0]){case 1:{_=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{_=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:_=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:_=""}if(t.disposeData(T.dataId),_)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error(_);let M=f,I=g;return E!==d[0]&&(M=Eo({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),I=Eo({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[M,I,A,b]}var r1e={kernelName:Xp,backendName:"wasm",setupFunc:e1e,kernelFunc:t1e},RT;function n1e(e){RT=e.wasm.cwrap(Qu,null,["number","number","number","number","number","number","number"])}function a1e(e){let{backend:t,inputs:r}=e,{inputIndices:n,inputShape:a,newShape:s}=r;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(a.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],d=v.sizeFromShape(s.shape),h=t.makeOutput([u,d],n.dtype),p=t.dataIdMap.get(h.dataId).id,c=t.makeOutput([d],s.dtype),f=t.dataIdMap.get(c.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;RT(i,o,l,u,p,f,g);let y=t.readSync(m.dataId),A;switch(y[0]){case 0:{A=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{A=N.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:A=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMultipleErrorMessage(x,b);break}case 4:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMismatchErrorMessage(x,b);break}default:A=""}if(t.disposeData(m.dataId),A)throw t.disposeData(h.dataId),t.disposeData(c.dataId),new Error(A);return[h,c]}var s1e={kernelName:Qu,backendName:"wasm",setupFunc:n1e,kernelFunc:a1e},MT;function FT(e){MT=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function $T(e,t){let{backend:r,inputs:n}=e,{data:a,indices:s,segmentIds:i}=n,o=s.shape[0],l=r.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=a.shape.slice();d[0]=u;let h=r.dataIdMap.get(a.dataId).id,p=r.dataIdMap.get(s.dataId).id,c=r.dataIdMap.get(i.dataId).id,f=r.makeOutput(d,a.dtype),m=r.dataIdMap.get(f.dataId).id,g=r.makeOutput([4],"int32"),y=r.dataIdMap.get(g.dataId).id;MT(h,Vt[a.dtype],a.shape[0],p,c,m,y,t,0);let A=r.readSync(g.dataId),x;switch(A[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:x=""}if(r.disposeData(g.dataId),x)throw r.disposeData(f.dataId),new Error(x);return f}function i1e(e){return $T(e,!0)}var o1e={kernelName:Zp,backendName:"wasm",setupFunc:FT,kernelFunc:i1e};function l1e(e){return $T(e,!1)}var u1e={kernelName:Yp,backendName:"wasm",setupFunc:FT,kernelFunc:l1e};function d1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Eo({inputs:{x:a},attrs:{begin:u,size:p},backend:n});return u[o]+=h,c})}var p1e={kernelName:dl,backendName:"wasm",kernelFunc:d1e},h1e=wr(Ni),c1e=wr(ed),f1e=!0,m1e=jr(Ri,f1e),PT;function g1e(e){PT=e.wasm.cwrap(Pi,null,["number","number","number","number"])}function y1e(e){let{backend:t,inputs:r,attrs:n}=e,{alpha:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return PT(i,a,Vt[s.dtype],l),o}var A1e={kernelName:Pi,backendName:"wasm",setupFunc:g1e,kernelFunc:y1e},_T;function x1e(e){_T=e.wasm.cwrap(pl,null,["number","array","number","array","array","array","array","array","number","number"])}function b1e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=Qr({inputs:{x:a},backend:t,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=Eo({inputs:{x:a},backend:t,attrs:{begin:A,size:T}});w=Qr({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}else{let T=t.makeOutput(c,"float32"),S=t.dataIdMap.get(a.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),R=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(x).buffer),M=new Uint8Array(new Int32Array(b).buffer),I=new Uint8Array(new Int32Array(c).buffer),O=new Uint8Array(new Int32Array(v.computeStrides(c)).buffer),z=t.dataIdMap.get(T.dataId).id;_T(S,E,a.shape.length,R,_,M,I,O,c.length,z),w=Qr({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}return w}var v1e={kernelName:pl,backendName:"wasm",setupFunc:x1e,kernelFunc:b1e},w1e=!0,k1e=jr(Mi,w1e),zT;function I1e(e){zT=e.wasm.cwrap(Ci,null,["number","number","number","number"])}function S1e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Bi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;zT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var T1e={kernelName:Ci,backendName:"wasm",setupFunc:I1e,kernelFunc:S1e},N1e=wr(hl),C1e=wr(Fi),OT;function E1e(e){OT=e.wasm.cwrap(Ka,null,["number","array","number","array","number","number"])}function R1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,s=r.dataIdMap.get(a.dataId).id,{reps:i}=n,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=r.makeOutput(o,a.dtype),h=r.dataIdMap.get(d.dataId).id;return OT(s,l,a.shape.length,u,o.length,Vt[d.dtype],h),d}var M1e={kernelName:Ka,backendName:"wasm",setupFunc:E1e,kernelFunc:R1e},DT;function F1e(e){DT=e.wasm.cwrap(cl,null,["number","array","number","number","number","bool","number","number"])}var $1e=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{k:a,sorted:s}=r,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,n.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return DT(i,o,n.shape.length,Vt[n.dtype],a,s,d,p),[u,h]},P1e={kernelName:cl,backendName:"wasm",setupFunc:F1e,kernelFunc:$1e},LT;function _1e(e){LT=e.wasm.cwrap(fl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function z1e(e){let{backend:t,inputs:r,attrs:n}=e,{image:a,transforms:s}=r,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=t.makeOutput(g,a.dtype),x=t.dataIdMap.get(A.dataId).id,b=t.dataIdMap.get(a.dataId).id,w=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,S;switch(o){case"constant":S=1;break;case"reflect":S=2;break;case"wrap":S=3;break;case"nearest":S=4;break;default:S=1;break}return LT(b,w,s.shape[0]>1,d,f,m,c,p,h,y,a.shape.length-1,T,S,l,x),A}var O1e={kernelName:fl,backendName:"wasm",setupFunc:_1e,kernelFunc:z1e};function D1e(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=Eo({inputs:{x:a},attrs:{begin:h,size:p},backend:r});return d.map(({dataId:c,dtype:f})=>({dataId:c,dtype:f,shape:l}))}var L1e={kernelName:ml,backendName:"wasm",kernelFunc:D1e};function B1e(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(0),n}var W1e={kernelName:gl,backendName:"wasm",kernelFunc:B1e},V1e=[Rme,Mme,$me,zme,Gme,qme,Zme,Qme,n0e,u0e,d0e,p0e,f0e,m0e,A0e,v0e,w0e,k0e,T0e,E0e,F0e,_0e,D0e,L0e,W0e,V0e,U0e,G0e,q0e,K0e,Z0e,Q0e,rge,sge,lge,pge,cge,mge,Ome,Age,bge,wge,kge,Sge,Cge,Rge,$ge,zge,Lge,Wge,Gge,Hge,qge,Zge,Qge,rye,aye,oye,uye,pye,xT,mye,Aye,vye,kye,Sye,Tye,Nye,e0e,Rye,$ye,zye,Oye,Dye,Wye,Gye,qye,Kye,o0e,Yye,Qye,r1e,s1e,o1e,u1e,p1e,h1e,c1e,m1e,A1e,v1e,k1e,T1e,N1e,C1e,M1e,P1e,O1e,Wme,L1e,W1e];for(let e of V1e)Vn(e);var G1=Y();G1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));G1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(G1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Kv=Ro(QE()),U1e=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,G1e=Ro(eR()),BT=class extends Su{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(WT),j1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Op(this,Ar())}write(e,t,r){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,r,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,r,n,a){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:r,dtype:n,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(r),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:r,dtype:n,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,r){let{memoryOffset:n,dtype:a,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(a==="string")return(t==null||t===0)&&(r==null||r>=i.length)?i:i.slice(t,r);t=t||0,r=r||v.sizeFromShape(s);let o=v.bytesPerElement(a),l=this.wasm.HEAPU8.slice(n+t*o,n+r*o);return q1e(l.buffer,a)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let r=this.dataIdMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;this.wasm._free(r.memoryOffset),this.wasm.tfjs.disposeData(r.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,r){let n;if(r==null)n=this.write(null,e,t);else{let a=this.dataIdNextNumber++;n={id:a},this.dataIdMap.set(n,{id:a,memoryOffset:r,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,r)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:r}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(r),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,a,s);case"int32":return new Int32Array(n,a,s);case"bool":return new Uint8Array(n,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function j1e(e){return(t,r)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{r(s.instance,s.module)})})}),{})}function Xv(e,t,r){if(Rf!=null)return Rf;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),vp!=null&&vp[n]!=null?vp[n]:r+n}async function H1e(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((r,n)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=U1e.replace(/\n/g,"\\n"),d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?Xv(e,t,yp!=null?yp:l):l+o},pb&&(a.instantiateWasm=j1e(Xv(e,t,yp!=null?yp:"")));let s=!1;a.onAbort=()=>{s||wp||(wp=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Rf==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Kv.default.toString()],{type:"text/javascript"}),i=(0,Kv.default)(a)):i=(0,G1e.default)(a),i.then(o=>{s=!0,wp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},r({wasm:o})})})}function q1e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var K1e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Rf=null,yp=null,vp={},wp=!1,pb=!1;function X1e(e,t=!1){if(c2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),wp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Rf=e,pb=t}function hb(e,t=!1){if(wp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yp=e;else{vp=e;let r=K1e.filter(n=>vp[n]==null);if(r.length>0)throw new Error(`There were no entries found for the following binaries: ${r.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pb=t}var WT=-1,j1=-1;function Z1e(e){WT=e}function Y1e(){if(j1===-1)throw new Error("WASM backend not initialized.");return j1}var J1e="0.0.0",Q1e=2;xl("wasm",async()=>{let{wasm:e}=await H1e();return new BT(e)},Q1e);var ys="3.14.0-20220319",Oh={tfjs:ys,"tfjs-core":ys,"tfjs-data":ys,"tfjs-layers":ys,"tfjs-converter":ys,"tfjs-backend-cpu":ys,"tfjs-backend-webgl":ys,"tfjs-backend-wasm":ys};var VT=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var UT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,GT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,jT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,HT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,qT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var cb=(e,t,r)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(a,s)=>(r[s]=0,a))},KT=class{constructor(t,r,n){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,r)=>{let n=this.gl.createShader(r);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(ie(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)}`),null)):(ie("filter: could not create shader"),null)});this.gl=t;let a=this.compile(r,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!a||!s)){if(!this.id){ie("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,a),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ie(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),cb(r,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);cb(r,"uniform",this.uniform),cb(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function XT(){let e=0,t=null,r=!1,n=-1,a=[null,null],s=[],i=null,o=null,l=Hr(100,100),u={},d={INTERMEDIATE:1},h=l.getContext("webgl");if(this.gl=h,!h){ie("filter: cannot get webgl context");return}function p(A,x){if(!(A===l.width&&x===l.height)){if(l.width=A,l.height=x,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=h.createBuffer(),h.bindBuffer(h.ARRAY_BUFFER,i),h.bufferData(h.ARRAY_BUFFER,b,h.STATIC_DRAW),h.pixelStorei(h.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}h.viewport(0,0,l.width,l.height),a=[null,null]}}function c(A,x){let b=h.createFramebuffer();h.bindFramebuffer(h.FRAMEBUFFER,b);let w=h.createRenderbuffer();h.bindRenderbuffer(h.RENDERBUFFER,w);let T=h.createTexture();return h.bindTexture(h.TEXTURE_2D,T),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,A,x,0,h.RGBA,h.UNSIGNED_BYTE,null),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.framebufferTexture2D(h.FRAMEBUFFER,h.COLOR_ATTACHMENT0,h.TEXTURE_2D,T,0),h.bindTexture(h.TEXTURE_2D,null),h.bindFramebuffer(h.FRAMEBUFFER,null),{fbo:b,texture:T}}function f(A){return a[A]=a[A]||c(l.width,l.height),a[A]}function m(A=0){if(!o)return;let x=null,b=null,w=!1;e===0?x=t:x=f(n).texture||null,e++,r&&!(A&d.INTERMEDIATE)?(b=null,w=e%2===0):(n=(n+1)%2,b=f(n).fbo||null),h.bindTexture(h.TEXTURE_2D,x),h.bindFramebuffer(h.FRAMEBUFFER,b),h.uniform1f(o.uniform.flipY,w?-1:1),h.drawArrays(h.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],h.useProgram((o?o.id:null)||null),o;if(o=new KT(h,VT,A),!o)return ie("filter: could not get webgl program"),null;let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return h.enableVertexAttribArray(o.attribute.pos),h.vertexAttribPointer(o.attribute.pos,2,h.FLOAT,!1,b,0*x),h.enableVertexAttribArray(o.attribute.uv),h.vertexAttribPointer(o.attribute.uv,2,h.FLOAT,!1,b,2*x),u[A]=o,o}let y={colorMatrix:A=>{let x=new Float32Array(A);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?GT:UT,w=g(b);!w||(h.uniform1fv(w.uniform.m,x),m())},brightness:A=>{let x=(A||0)+1;y.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:A=>{let x=(A||0)*2/3+1,b=(x-1)*-.5;y.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:A=>{let x=(A||0)+1,b=-128*(x-1);y.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let x=Math.cos(A),b=Math.sin(A),w=.213,T=.715,S=.072;y.colorMatrix([w+x*(1-w)+b*-w,T+x*-T+b*-T,S+x*-S+b*(1-S),0,0,w+x*-w+b*.143,T+x*(1-T)+b*.14,S+x*-S+b*-.283,0,0,w+x*-w+b*-(1-w),T+x*-T+b*T,S+x*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let x=new Float32Array(A),b=1/l.width,w=1/l.height,T=g(qT);!T||(h.uniform1fv(T.uniform.m,x),h.uniform2f(T.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let x=A||1;y.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:A=>{let x=A||1;y.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:A=>{let x=A/7/l.width,b=A/7/l.height,w=g(HT);!w||(h.uniform2f(w.uniform.px,0,b),m(d.INTERMEDIATE),h.uniform2f(w.uniform.px,x,0),m())},pixelate:A=>{let x=A/l.width,b=A/l.height,w=g(jT);!w||(h.uniform2f(w.uniform.size,x,b),m())}};this.add=function(A){let x=Array.prototype.slice.call(arguments,1),b=y[A];s.push({func:b,args:x})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){p(A.width,A.height),e=0,t||(t=h.createTexture()),h.bindTexture(h.TEXTURE_2D,t),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.NEAREST),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.NEAREST),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,h.RGBA,h.UNSIGNED_BYTE,A);for(let x=0;x<s.length;x++){r=x===s.length-1;let b=s[x];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function m0(e){let t=e.shape.length===4?et(e):e,r=Kt(t,3,2),n=[$s(r[0]),$s(r[1]),$s(r[2])],a=[fr(r[0]),fr(r[1]),fr(r[2])],s=await Promise.all(a.map(c=>c.data())),i=.99*Math.max(s[0][0],s[1][0],s[2][0]),o=[he(r[0],n[0]),he(r[1],n[1]),he(r[2],n[2])],l=[he(a[0],n[0]),he(a[1],n[1]),he(a[2],n[2])],u=[pe(i,l[0]),pe(i,l[1]),pe(i,l[2])],d=[L(o[0],u[0]),L(o[1],u[1]),L(o[2],u[2])],h=sr([d[0],d[1],d[2]],2),p=G(h,[1,t.shape[0],t.shape[1],3]);return re([...r,...n,...a,...o,...l,...u,...d,h,t]),p}var g0=2048,ut=null,or=null,Id=null,Nt,ts={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Hr(e,t){let r;if(ce.browser)if(ce.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");r=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");r=document.createElement("canvas"),r.width=e,r.height=t}else typeof ce.Canvas!="undefined"?r=new ce.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(r=new globalThis.Canvas(e,t));return r}function fb(e,t){let r=t||Hr(e.width,e.height);return r.getContext("2d").drawImage(e,0,0),r}async function Sd(e,t,r=!0){if(!e)return t.debug&&ie("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof rt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ce.Canvas!="undefined"&&e instanceof ce.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof rt){let n=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)n=Ht(e,0);else if(e.shape[2]===4){let a=wl(e,[0,0,0],[-1,-1,3]);n=Ht(a,0),re(a)}}else e.shape.length===4&&(e.shape[3]===3?n=Lr(e):e.shape[3]===4&&(n=ko(e,[0,0,0,0],[-1,-1,-1,3])));if(n==null||n.shape.length!==4||n.shape[0]!==1||n.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(n.dtype==="int32"){let a=me(n,"float32");re(n),n=a}return{tensor:n,canvas:t.filter.return?or:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ie("input stream is not ready"),{tensor:null,canvas:ut};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!a)return t.debug&&ie("cannot determine input dimensions"),{tensor:null,canvas:ut};let s=n,i=a;if(s>g0&&(s=g0,i=Math.trunc(s*a/n)),i>g0&&(i=g0,s=Math.trunc(i*n/a)),(t.filter.width||0)>0?s=t.filter.width:(t.filter.height||0)>0&&(s=n*((t.filter.height||0)/a)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=a*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!ut||(ut==null?void 0:ut.width)!==s||(ut==null?void 0:ut.height)!==i)&&(ut=Hr(s,i));let o=ut.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),(!or||ut.width!==or.width||(ut==null?void 0:ut.height)!==(or==null?void 0:or.height))&&(or=Hr(ut.width,ut.height)),t.filter.enabled&&ce.webgl.supported){if(Nt||(Nt=ce.browser?new XT:null),ce.filter=!!Nt,!Nt||!Nt.add)return t.debug&&ie("input process error: cannot initialize filters"),{tensor:null,canvas:ut};Nt.reset(),t.filter.brightness!==0&&Nt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Nt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Nt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Nt.add("blur",t.filter.blur),t.filter.saturation!==0&&Nt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Nt.add("hue",t.filter.hue),t.filter.negative&&Nt.add("negative"),t.filter.sepia&&Nt.add("sepia"),t.filter.vintage&&Nt.add("brownie"),t.filter.sepia&&Nt.add("sepia"),t.filter.kodachrome&&Nt.add("kodachrome"),t.filter.technicolor&&Nt.add("technicolor"),t.filter.polaroid&&Nt.add("polaroid"),t.filter.pixelate!==0&&Nt.add("pixelate",t.filter.pixelate),Nt.get()>0?or=Nt.apply(ut):or=Nt.draw(ut)}else fb(ut,or),Nt&&(Nt=null),ce.filter=!!Nt;if(!r)return{tensor:null,canvas:or};if(!or)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ce.browser&&$n)l=$n?$n.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=ct(p,[e.height,e.width,u],"int32")}else if((!Id||or.width!==Id.width||or.height!==Id.height)&&(Id=Hr(or.width,or.height)),$n&&ce.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=$n.fromPixels(or):(Id=fb(or),l=$n.fromPixels(Id));else{let f=fb(or).getContext("2d").getImageData(0,0,s,i);u=f.data.length/s/i;let m=new Uint8Array(f.data.buffer);l=ct(m,[s,i,u])}if(u===4){let p=wl(l,[0,0,0],[-1,-1,3]);re(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let d=me(l,"float32"),h=t.filter.equalization?await m0(d):Ht(d,0);return re([l,d]),{tensor:h,canvas:t.filter.return?or:null}}}async function ZT(e,t){let r=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return r;if(!ts.inputTensor)ts.inputTensor=Lr(t);else if(ts.inputTensor.shape[1]!==t.shape[1]||ts.inputTensor.shape[2]!==t.shape[2])re(ts.inputTensor),ts.inputTensor=Lr(t);else{let n={};n.diff=he(t,ts.inputTensor),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;re([ts.inputTensor,n.diff,n.squared,n.sum]),ts.inputTensor=Lr(t),r=s<=(e.cacheSensitivity||0)}return r}async function YT(e,t,r){let n={};if(!t||!r||t.shape.length!==4||t.shape.length!==r.shape.length)return e.debug||ie("invalid input tensor or tensor shapes do not match:",t.shape,r.shape),0;if(t.shape[0]!==1||r.shape[0]!==1||t.shape[3]!==3||r.shape[3]!==3)return e.debug||ie("input tensors must be of shape [1, height, width, 3]:",t.shape,r.shape),0;n.input1=Lr(t),n.input2=t.shape[1]!==r.shape[1]||t.shape[2]!==r.shape[2]?Ie.resizeBilinear(r,[t.shape[1],t.shape[2]]):Lr(r),n.diff=he(n.input1,n.input2),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return re([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var JT=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Oh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);this.platform=r&&r[0]?r[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Ar().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&an()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Hr(100,100),r=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof r!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(an()==="webgl"||an()==="humangl")){let n=Un().gpgpu!=="undefined"?await Un().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(n){this.webgpu.supported=!1}try{this.kernels=Ca(an()).map(n=>n.kernelName.toLowerCase())}catch(n){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},ce=new JT;var rs={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function n2e(e,t){return rs.debug&&ie("load model fetch:",e,t),fetch(e,t)}function QT(e){rs.cacheModels=e.cacheModels,rs.verbose=e.debug,rs.modelBasePath=e.modelBasePath}async function je(e){let t=p3(rs.modelBasePath,e||""),r=t.split("/"),n="indexeddb://"+r[r.length-1].replace(".json",""),a=await Sr.listModels(),s=rs.cacheModels&&Object.keys(a).includes(n),i=typeof fetch=="undefined"?{}:{fetchFunc:(l,u)=>n2e(l,u)},o=new r0(s?n:t,i);try{o.findIOHandler(),rs.debug&&ie("model load handler:",o.handler);let l=await o.handler.load();o.loadSync(l),rs.verbose&&ie("load model:",o.modelUrl)}catch(l){ie("error loading model:",t,l)}if(rs.cacheModels&&!s)try{let l=await o.save(n);ie("model saved:",n,l)}catch(l){ie("error saving model:",t,l)}return o}var mb="2.6.4";var Kn,gb=[],i2e=["white","black","asian","indian","other"],o2e=[15,23,28,35.5,45.5,55.5,65],eN=0,tN=0,yb=Number.MAX_SAFE_INTEGER;async function rN(e){return ce.initial&&(Kn=null),Kn?e.debug&&ie("cached model:",Kn.modelUrl):Kn=await je(e.face.gear),Kn}async function Ab(e,t,r,n){var i,o;if(!Kn)return{age:0,gender:"unknown",genderScore:0,race:[]};let a=yb<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>oe()-tN;return t.skipAllowed&&s&&a&&eN===n&&gb[r]?(yb++,gb[r]):(yb=0,new Promise(async l=>{var y,A;if(!(Kn!=null&&Kn.inputs[0].shape))return;let u={},d=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,d,[0],[Kn.inputs[0].shape[2],Kn.inputs[0].shape[1]]);let h={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Kn.execute(u.resize,["age_output","gender_output","race_output"]));let p=await u.gender.data();h.gender=p[0]>p[1]?"male":"female",h.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let c=await u.race.data();for(let x=0;x<c.length;x++)c[x]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&h.race.push({score:Math.round(100*c[x])/100,race:i2e[x]});h.race.sort((x,b)=>b.score-x.score);let m=Array.from(await u.age.data()).map((x,b)=>[o2e[b],x]).sort((x,b)=>b[1]-x[1]),g=m[0][0];for(let x=1;x<m.length;x++)g+=m[x][1]*(m[x][0]-g);h.age=Math.round(10*g)/10,Object.keys(u).forEach(x=>re(u[x])),gb[r]=h,eN=n,tN=oe(),l(h)}))}var Qe={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function aN(){Qe.tf255=Se(255,"float32"),Qe.tf1=Se(1,"float32"),Qe.tf2=Se(2,"float32"),Qe.tf05=Se(.5,"float32"),Qe.tf127=Se(127.5,"float32"),Qe.rgb=St([.2989,.587,.114],"float32")}var fn,y0=[],sN=0,iN=0,xb=Number.MAX_SAFE_INTEGER;async function oN(e){return ce.initial&&(fn=null),fn?e.debug&&ie("cached model:",fn.modelUrl):fn=await je(e.face.ssrnet.modelPathAge),fn}async function bb(e,t,r,n){var i,o,l,u;if(!fn)return{age:0};let a=xb<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-iN;return t.skipAllowed&&a&&s&&sN===n&&((l=y0[r])==null?void 0:l.age)&&((u=y0[r])==null?void 0:u.age)>0?(xb++,y0[r]):(xb=0,new Promise(async d=>{if(!(fn!=null&&fn.inputs)||!fn.inputs[0]||!fn.inputs[0].shape)return;let h={};h.resize=Ie.resizeBilinear(e,[fn.inputs[0].shape[2],fn.inputs[0].shape[1]],!1),h.enhance=L(h.resize,Qe.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(h.age=fn.execute(h.enhance)),h.age){let c=await h.age.data();p.age=Math.trunc(10*c[0])/10}Object.keys(h).forEach(c=>re(h[c])),y0[r]=p,sN=n,iN=oe(),d(p)}))}var Xn,A0=[],uN=0,dN=0,vb=Number.MAX_SAFE_INTEGER,wb=[.2989,.587,.114];async function pN(e){return ce.initial&&(Xn=null),Xn?e.debug&&ie("cached model:",Xn.modelUrl):Xn=await je(e.face.ssrnet.modelPathGender),Xn}async function kb(e,t,r,n){var i,o,l,u;if(!Xn)return{gender:"unknown",genderScore:0};let a=vb<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-dN;return t.skipAllowed&&a&&s&&uN===n&&((l=A0[r])==null?void 0:l.gender)&&((u=A0[r])==null?void 0:u.genderScore)>0?(vb++,A0[r]):(vb=0,new Promise(async d=>{if(!(Xn!=null&&Xn.inputs[0].shape))return;let h={};h.resize=Ie.resizeBilinear(e,[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]],!1),h.enhance=K(()=>{let[f,m,g]=Kt(h.resize,3,3),y=L(f,wb[0]),A=L(m,wb[1]),x=L(g,wb[2]),b=om([y,A,x]);return L(he(b,Qe.tf05),2)});let p={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(h.gender=Xn.execute(h.enhance));let c=await h.gender.data();p.gender=c[0]>c[1]?"female":"male",p.genderScore=c[0]>c[1]?Math.trunc(100*c[0])/100:Math.trunc(100*c[1])/100,Object.keys(h).forEach(f=>re(h[f])),A0[r]=p,uN=n,dN=oe(),d(p)}))}var Er,x0=[],Ib=Number.MAX_SAFE_INTEGER,cN=0,fN=0;async function mN(e){var t;return ce.initial&&(Er=null),Er?e.debug&&ie("cached model:",Er.modelUrl):Er=await je((t=e.face.antispoof)==null?void 0:t.modelPath),Er}async function Sb(e,t,r,n){var i,o;if(!Er)return 0;let a=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>oe()-fN,s=Ib<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&cN===n&&x0[r]?(Ib++,x0[r]):(Ib=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Er!=null&&Er.inputs[0].shape?Er.inputs[0].shape[2]:0,Er!=null&&Er.inputs[0].shape?Er.inputs[0].shape[1]:0],!1),d=Er==null?void 0:Er.execute(u),h=(await d.data())[0];x0[r]=Math.round(100*h)/100,cN=n,fN=oe(),re([u,d]),l(x0[r])}))}var Zn={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Tb={count:468,mouth:13,symmetryLine:[13,Zn.midwayBetweenEyes[0]]},Lh={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Nb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Bh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Rl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var u2e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],d2e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],p2e=[33,133,362,263,1,78,308],axe=u2e.map(e=>Bh[e]),sxe=d2e.map(e=>Bh[e]),ixe=p2e.map(e=>Bh[e]);var Td=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],b0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Mb=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Fb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],xN=(e,t)=>{let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},Eb=(e,t,r)=>{let n=t.shape[1],a=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a],i=Ie.cropAndResize(t,[s],[0],r),o=pe(i,Qe.tf255);return re(i),o},v0=(e,t)=>{let r=b0(e),n=Td(e),a=[t*n[0]/2,t*n[1]/2];return{startPoint:[r[0]-a[0],r[1]-a[1]],endPoint:[r[0]+a[0],r[1]+a[1]],landmarks:e.landmarks,confidence:e.confidence}},w0=e=>{let t=b0(e),r=Td(e),n=Math.max(...r)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},bN=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...r)],endPoint:[Math.max(...t),Math.max(...r)],landmarks:e}},Rb=[[1,0,0],[0,1,0],[0,0,1]],h2e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),c2e=(e,t)=>h2e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var yN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ml=(e,t)=>{let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r},f2e=(e,t)=>{let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r},AN=(e,t)=>{let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Ml(e[a],f2e(t,s)))}return r},vN=(e,t)=>{let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=yN(t[0],t[1]),i=AN(s,a),o=yN(-t[0],-t[1]);return AN(i,o)},m2e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Ml(t[0],r),-Ml(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},g2e=(e,t)=>[Ml(e,t[0]),Ml(e,t[1])];function wN(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let n=0;n<t.strides.length;n++){let a=t.strides[n],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[n];for(let l=0;l<s;l++){let u=a*(l+.5);for(let d=0;d<i;d++){let h=a*(d+.5);for(let p=0;p<o;p++)r.push([h,u])}}}return r}function kN(e,t,r,n,a){let s=Td(t),i=e.map(c=>[s[0]/a*(c[0]-a/2),s[1]/a*(c[1]-a/2),c[2]||0]),o=r&&r!==0&&Math.abs(r)>.2,l=o?vN(r,[0,0]):Rb,u=o?i.map(c=>[...g2e(c,l),c[2]]):i,d=o?m2e(n):Rb,h=b0(t),p=[Ml(h,d[0]),Ml(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2]||0)])}function IN(e,t,r,n){let a=t.landmarks.length>=Tb.count?Tb.symmetryLine:Lh.symmetryLine,s=0,i=Rb,o;if(e&&ce.kernels.includes("rotatewithoffset"))if(s=c2e(t.landmarks[a[0]],t.landmarks[a[1]]),s&&s!==0&&Math.abs(s)>.2){let u=b0(t),d=[u[0]/r.shape[2],u[1]/r.shape[1]],h=Ie.rotateWithOffset(r,s,0,d);i=vN(-s,u),o=Eb(t,h,[n,n]),re(h)}else o=Eb(t,r,[n,n]);else o=Eb(t,r,[n,n]);return[s,i,o]}var y2e=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...r)+(Math.max(...r)-Math.min(...r))/2]},SN=(e,t)=>{let r=y2e(e),n=Td(t);return{startPoint:[r[0]-n[0]/2,r[1]-n[1]/2],endPoint:[r[0]+n[0]/2,r[1]+n[1]/2]}};var TN=6,A2e=1.2,_a,NN=null,Wi=0,Wh=null,k0=()=>Wi;async function CN(e){var t;return ce.initial&&(_a=null),_a?e.debug&&ie("cached model:",_a.modelUrl):_a=await je((t=e.face.detector)==null?void 0:t.modelPath),Wi=_a.inputs[0].shape?_a.inputs[0].shape[2]:0,Wh=Se(Wi,"int32"),NN=ua(wN(Wi)),_a}function x2e(e){let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,NN),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,Wh),t.centersNormalized=pe(t.centers,Wh),t.halfBoxSize=pe(t.boxSizesNormalized,Qe.tf2),t.starts=he(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Wh),t.endNormalized=L(t.ends,Wh);let r=rd([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>re(t[n])),r}async function EN(e,t){var o,l,u,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let r={};r.resized=Ie.resizeBilinear(e,[Wi,Wi]),r.div=pe(r.resized,Qe.tf127),r.normalized=he(r.div,Qe.tf05);let n=_a==null?void 0:_a.execute(r.normalized);if(Array.isArray(n)){let h=n.sort((p,c)=>p.size-c.size);r.concat384=kt([h[0],h[2]],2),r.concat512=kt([h[1],h[3]],2),r.concat=kt([r.concat512,r.concat384],1),r.batch=et(r.concat,0)}else r.batch=et(n);re(n),r.boxes=x2e(r.batch),r.logits=Pe(r.batch,[0,0],[-1,1]),r.sigmoid=Tr(r.logits),r.scores=et(r.sigmoid),r.nms=await Ie.nonMaxSuppressionAsync(r.boxes,r.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let a=await r.nms.array(),s=[],i=await r.scores.data();for(let h=0;h<a.length;h++){let p=i[a[h]];if(p>(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let c={};c.bbox=Pe(r.boxes,[a[h],0],[1,-1]),c.slice=Pe(r.batch,[a[h],TN-1],[1,-1]),c.squeeze=et(c.slice),c.landmarks=G(c.squeeze,[TN,-1]);let f=await c.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await c.landmarks.array(),confidence:p},g=xN(m,[(e.shape[2]||0)/Wi,(e.shape[1]||0)/Wi]),y=v0(g,t.face.scale||A2e),A=w0(y);s.push(A),Object.keys(c).forEach(x=>re(c[x]))}}return Object.keys(r).forEach(h=>re(r[h])),s}var I0={};ep(I0,{connected:()=>_b,kpt:()=>Pb});var Pb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],_b={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var MN=224,b2e,v2e=5,S0=[8,16,32,32,32];async function FN(){let e=[],t=0;for(;t<v2e;){let r=0,n=t;for(;n<S0.length&&S0[n]===S0[t];)r+=2,n++;let a=S0[t],s=Math.ceil(MN/a),i=Math.ceil(MN/a);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<r;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}b2e={x:St(e.map(r=>r.x)),y:St(e.map(r=>r.y))}}function ns(e,t=[1,1]){let r=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[n[0],n[1],a[0]-n[0],a[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function $N(e,t=[1,1]){let r=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[(n[0]+a[0])/2,(n[1]+a[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+a[0],-s[1]+a[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function T0(e,t){let r=[e[2]*t,e[3]*t];return[e[0]-(r[0]-e[2])/2,e[1]-(r[1]-e[3])/2,r[0],r[1]]}var zN={initial:!0},mn={detector:null,landmarks:null},Nd={detector:[224,224],landmarks:[256,256]},zb=Number.MAX_SAFE_INTEGER,k2e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},C0=null,Vh,Vi=[[0,0],[0,0],[0,0],[0,0]],PN=0,_N=e=>1-1/(1+Math.exp(e));async function ON(e){if(zN.initial&&(mn.detector=null),!mn.detector&&e.body.detector&&e.body.detector.modelPath){mn.detector=await je(e.body.detector.modelPath);let t=Object.values(mn.detector.modelSignature.inputs);Nd.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Nd.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&mn.detector&&ie("cached model:",mn.detector.modelUrl);return await FN(),mn.detector}async function DN(e){if(zN.initial&&(mn.landmarks=null),mn.landmarks)e.debug&&ie("cached model:",mn.landmarks.modelUrl);else{mn.landmarks=await je(e.body.modelPath);let t=Object.values(mn.landmarks.modelSignature.inputs);Nd.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Nd.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return mn.landmarks}async function I2e(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;if(Vh&&(r.cropped=Ie.cropAndResize(e,[Vh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],s=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Vi=[[0,0],a,s,[0,0]],r.pad=Gn(r.cropped||e,Vi),r.resize=Ie.resizeBilinear(r.pad,[t,t]),n=pe(r.resize,Qe.tf255)}else e.shape[1]!==t?(r.resize=Ie.resizeBilinear(r.cropped||e,[t,t]),n=pe(r.resize,Qe.tf255)):n=pe(r.cropped||e,Qe.tf255);return Object.keys(r).forEach(a=>re(r[a])),n}function S2e(e,t){for(let r of e)r.position=[Math.trunc(r.position[0]*(t[0]+Vi[2][0]+Vi[2][1])/t[0]-Vi[2][0]),Math.trunc(r.position[1]*(t[1]+Vi[1][0]+Vi[1][1])/t[1]-Vi[1][0]),r.position[2]],r.positionRaw=[r.position[0]/t[0],r.position[1]/t[1],2*r.position[2]/(t[0]+t[1])];if(Vh)for(let r of e)r.positionRaw=[r.positionRaw[0]+Vh[1],r.positionRaw[1]+Vh[0],r.positionRaw[2]],r.position=[Math.trunc(r.positionRaw[0]*t[0]),Math.trunc(r.positionRaw[1]*t[1]),r.positionRaw[2]];return e}async function T2e(e){let t=e.find(o=>o.part==="leftPalm"),r=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((r.position[2]||0)+(n.position[2]||0))/2;let a=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");a.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function N2e(e,t,r){var f;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(f=mn.landmarks)==null?void 0:f.execute(e,k2e.landmarks);let a=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(m=>re(n[m]));let o=[],l=5;for(let m=0;m<s.length/l;m++){let g=_N(s[l*m+3]),y=_N(s[l*m+4]),A=Math.trunc(100*g*y*a)/100,x=[s[l*m+0]/Nd.landmarks[0],s[l*m+1]/Nd.landmarks[1],s[l*m+2]+0],b=[Math.trunc(r[0]*x[0]),Math.trunc(r[1]*x[1]),x[2]],w=[i[l*m+0],i[l*m+1],i[l*m+2]+0];o.push({part:Pb[m],positionRaw:x,position:b,distance:w,score:A})}if(a<(t.body.minConfidence||0))return null;T2e(o);let u=S2e(o,r),d=u.map(m=>m.position),h=ns(d,[r[0],r[1]]),p={};for(let[m,g]of Object.entries(_b)){let y=[];for(let A=0;A<g.length-1;A++){let x=u.find(w=>w.part===g[A]),b=u.find(w=>w.part===g[A+1]);x&&b&&y.push([x.position,b.position])}p[m]=y}return{id:0,score:Math.trunc(100*a)/100,box:h.box,boxRaw:h.boxRaw,keypoints:u,annotations:p}}async function Ob(e,t){let r=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>oe()-PN,a=zb<(t.body.skipFrames||0);if(t.skipAllowed&&n&&a&&C0!==null)zb++;else{let s={};s.landmarks=await I2e(e,256),C0=await N2e(s.landmarks,t,r),Object.keys(s).forEach(i=>re(s[i])),PN=oe(),zb=0}return C0?[C0]:[]}var Cd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var as,Fl=0,Db=[],BN=0,Lb=Number.MAX_SAFE_INTEGER;async function WN(e){if(ce.initial&&(as=null),as)e.debug&&ie("cached model:",as.modelUrl);else{as=await je(e.object.modelPath);let t=Object.values(as.modelSignature.inputs);Fl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return as}async function C2e(e,t,r){if(!e)return[];let n={},a=[],s=await e.array();n.squeeze=et(e);let i=Kt(n.squeeze,6,1);n.stack=sr([i[1],i[0],i[3],i[2]],1),n.boxes=et(n.stack),n.scores=et(i[4]),n.classes=et(i[5]),re([e,...i]),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let d=Math.trunc(100*s[0][u][4])/100,h=s[0][u][5],p=Cd[h].label,[c,f]=[s[0][u][0]/Fl,s[0][u][1]/Fl],m=[c,f,s[0][u][2]/Fl-c,s[0][u][3]/Fl-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];a.push({id:l++,score:d,class:h,label:p,box:g,boxRaw:m})}return Object.keys(n).forEach(u=>re(n[u])),a}async function Bb(e,t){let r=(t.object.skipTime||0)>oe()-BN,n=Lb<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&Db.length>0?(Lb++,Db):(Lb=0,new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[Fl,Fl]),o=t.object.enabled?as==null?void 0:as.execute(i,["tower_0/detections"]):null;BN=oe(),re(i);let l=await C2e(o,s,t);Db=l,a(l)}))}var E0={};ep(E0,{connected:()=>Vb,kpt:()=>Wb});var Wb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Vb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Rr,UN=0,qr={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Ub=Number.MAX_SAFE_INTEGER;async function GN(e){return ce.initial&&(Rr=null),Rr?e.debug&&ie("cached model:",Rr.modelUrl):Rr=await je(e.body.modelPath),Rr}async function E2e(e,t){let[r,n]=e.shape,a=G(e,[n*r]),s=fr(a,0),i=(await s.data())[0];if(re([a,s]),i>t){let o=Nn(a,0),l=sd(o,r),u=(await l.data())[0],d=pe(o,Se(r,"int32")),h=(await d.data())[0];return re([l,d]),[u,h,i]}return[0,0,i]}async function Gb(e,t){let r=(t.body.skipTime||0)>oe()-UN,n=Ub<(t.body.skipFrames||0);return t.skipAllowed&&r&&n&&Object.keys(qr.keypoints).length>0?(Ub++,[qr]):(Ub=0,new Promise(async a=>{var h;let s=K(()=>{if(!(Rr!=null&&Rr.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[Rr.inputs[0].shape[2],Rr.inputs[0].shape[1]],!1),c=L(p,Qe.tf2);return he(c,Qe.tf1)}),i;if(t.body.enabled&&(i=Rr==null?void 0:Rr.execute(s)),UN=oe(),re(s),i){qr.keypoints.length=0;let p=i.squeeze();re(i);let c=p.unstack(2);re(p);for(let f=0;f<c.length;f++){let[m,g,y]=await E2e(c[f],t.body.minConfidence);y>(((h=t.body)==null?void 0:h.minConfidence)||0)&&qr.keypoints.push({score:Math.round(100*y)/100,part:Wb[f],positionRaw:[m/Rr.inputs[0].shape[2],g/Rr.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Rr.inputs[0].shape[2]),Math.round(e.shape[1]*g/Rr.inputs[0].shape[1])]})}c.forEach(f=>re(f))}qr.score=qr.keypoints.reduce((p,c)=>c.score>p?c.score:p,0);let o=qr.keypoints.map(p=>p.position[0]),l=qr.keypoints.map(p=>p.position[1]);qr.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=qr.keypoints.map(p=>p.positionRaw[0]),d=qr.keypoints.map(p=>p.positionRaw[1]);qr.boxRaw=[Math.min(...u),Math.min(...d),Math.max(...u)-Math.min(...u),Math.max(...d)-Math.min(...d)];for(let[p,c]of Object.entries(Vb)){let f=[];for(let m=0;m<c.length-1;m++){let g=qr.keypoints.find(A=>A.part===c[m]),y=qr.keypoints.find(A=>A.part===c[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}qr.annotations[p]=f}a([qr])}))}var R2e=["angry","disgust","fear","happy","sad","surprise","neutral"],_n,R0=[],HN=0,qN=0,jb=Number.MAX_SAFE_INTEGER;async function KN(e){var t;return ce.initial&&(_n=null),_n?e.debug&&ie("cached model:",_n.modelUrl):_n=await je((t=e.face.emotion)==null?void 0:t.modelPath),_n}async function Hb(e,t,r,n){var i,o;if(!_n)return[];let a=jb<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>oe()-qN;return t.skipAllowed&&s&&a&&HN===n&&R0[r]&&R0[r].length>0?(jb++,R0[r]):(jb=0,new Promise(async l=>{var d,h;let u=[];if((d=t.face.emotion)!=null&&d.enabled){let p={},c=_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[c,c],!1),p.channels=L(p.resize,Qe.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=he(p.grayscale,Qe.tf05),p.grayscaleMul=L(p.grayscaleSub,Qe.tf2),p.emotion=_n==null?void 0:_n.execute(p.grayscaleMul),qN=oe();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((h=t.face.emotion)==null?void 0:h.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:R2e[m]});u.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>re(p[m]))}R0[r]=u,HN=n,l(u)}))}var gn,qb=[],ZN=0,YN=0,JN=Number.MAX_SAFE_INTEGER;async function QN(e){return ce.initial&&(gn=null),gn?e.debug&&ie("cached model:",gn.modelUrl):gn=await je(e.face.mobilefacenet.modelPath),gn}async function Kb(e,t,r,n){var i,o;if(!gn)return[];let a=JN<(((i=t.face.embedding)==null?void 0:i.skipFrames)||0),s=(((o=t.face.embedding)==null?void 0:o.skipTime)||0)>oe()-YN;return t.skipAllowed&&s&&a&&ZN===n&&qb[r]?(JN++,qb[r]):new Promise(async l=>{var d;let u=[];if(((d=t.face.embedding)==null?void 0:d.enabled)&&(gn==null?void 0:gn.inputs[0].shape)){let h={};h.crop=Ie.resizeBilinear(e,[gn.inputs[0].shape[2],gn.inputs[0].shape[1]],!1),h.data=gn==null?void 0:gn.execute(h.crop);let p=await h.data.data();u=Array.from(p)}qb[r]=u,ZN=n,YN=oe(),l(u)})}var ss,Ui=0,M2e=2.3,Xb=Zn.leftEyeLower0,Zb=Zn.rightEyeLower0,Ed={leftBounds:[Xb[0],Xb[Xb.length-1]],rightBounds:[Zb[0],Zb[Zb.length-1]]},Rd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function aC(e){var t;return ce.initial&&(ss=null),ss?e.debug&&ie("cached model:",ss.modelUrl):ss=await je((t=e.face.iris)==null?void 0:t.modelPath),Ui=ss.inputs[0].shape?ss.inputs[0].shape[2]:0,Ui===-1&&(Ui=64),ss}function M0(e,t,r,n){for(let a=0;a<Nb.length;a++){let{key:s,indices:i}=Nb[a],o=Zn[`${r}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var F2e=e=>{let t=e[Ed.leftBounds[0]][2],r=e[Ed.rightBounds[0]][2];return t-r},tC=(e,t,r,n,a,s=!1)=>{let i=w0(v0(bN([e[r],e[n]]),M2e)),o=Td(i),l=Ie.cropAndResize(t,[[i.startPoint[1]/a,i.startPoint[0]/a,i.endPoint[1]/a,i.endPoint[0]/a]],[0],[Ui,Ui]);if(s&&ce.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);re(l),l=u}return{box:i,boxSize:o,crop:l}},rC=(e,t,r,n=!1)=>{let a=[];for(let s=0;s<Rd.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(n?1-i/Ui:i/Ui)*r[0]+t.startPoint[0],o/Ui*r[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Rd.index)}},nC=(e,t,r)=>{let n=e[Zn[`${r}EyeUpper0`][Rd.upperCenter]][2],a=e[Zn[`${r}EyeLower0`][Rd.lowerCenter]][2],s=(n+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=a),[i[0],i[1],l]})};async function sC(e,t,r,n){if(!ss)return r.debug&&ie("face mesh iris detection requested, but model is not loaded"),e;let{box:a,boxSize:s,crop:i}=tC(e,t,Ed.leftBounds[0],Ed.leftBounds[1],n,!0),{box:o,boxSize:l,crop:u}=tC(e,t,Ed.rightBounds[0],Ed.rightBounds[1],n,!0),d=kt([i,u]);re(i),re(u);let h=ss.execute(d);re(d);let p=await h.data();re(h);let c=p.slice(0,Rd.numCoordinates*3),{rawCoords:f,iris:m}=rC(c,a,s,!0),g=p.slice(Rd.numCoordinates*3),{rawCoords:y,iris:A}=rC(g,o,l),x=F2e(e);Math.abs(x)<30?(M0(e,f,"left",null),M0(e,y,"right",null)):x<1?M0(e,f,"left",["EyeUpper0","EyeLower0"]):M0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=nC(e,m,"left"),w=nC(e,A,"right");return e.concat(b).concat(w)}var za={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},is=null,Md=0;async function oC(e,t){var o,l,u,d,h,p,c,f,m;let r=(((o=t.face.detector)==null?void 0:o.skipTime)||0)>oe()-za.timestamp,n=za.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!r||!n||za.boxes.length===0?(za.boxes=await EN(e,t),za.timestamp=oe(),za.skipped=0):za.skipped++;let a=[],s=[],i=0;for(let g=0;g<za.boxes.length;g++){let y=za.boxes[g],A=0,x,b={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([A,x,b.tensor]=IN((u=t.face.detector)==null?void 0:u.rotation,y,e,(d=t.face.mesh)!=null&&d.enabled?Md:k0()),(h=t==null?void 0:t.filter)!=null&&h.equalization){let w=await m0(b.tensor);re(b.tensor),b.tensor=w}if(b.boxScore=Math.round(100*y.confidence)/100,(p=t.face.mesh)!=null&&p.enabled)if(!is)t.debug&&ie("face mesh detection requested, but model is not loaded");else{let[w,T,S]=is.execute(b.tensor),E=await T.data();b.faceScore=Math.round(100*E[0])/100;let R=G(S,[-1,3]),_=await R.array();if(re([S,R,T,w]),b.faceScore<(((c=t.face.detector)==null?void 0:c.minConfidence)||1))y.confidence=b.faceScore;else{(f=t.face.iris)!=null&&f.enabled&&(_=await sC(_,b.tensor,t,Md)),b.mesh=kN(_,y,A,x,Md),b.meshRaw=b.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/Md]);for(let I of Object.keys(Zn))b.annotations[I]=Zn[I].map(O=>b.mesh[O]);b.score=b.faceScore;let M={...SN(b.mesh,y),confidence:y.confidence,landmarks:y.landmarks};b.box=Mb(M,e),b.boxRaw=Fb(M,e),s.push(M)}}else{b.box=Mb(y,e),b.boxRaw=Fb(y,e),b.score=b.boxScore,b.mesh=y.landmarks.map(w=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*w[0]/k0(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*w[1]/k0()]),b.meshRaw=b.mesh.map(w=>[w[0]/(e.shape[2]||0),w[1]/(e.shape[1]||0),(w[2]||0)/Md]);for(let w of Object.keys(Lh))b.annotations[w]=[b.mesh[Lh[w]]]}b.score>(((m=t.face.detector)==null?void 0:m.minConfidence)||1)?a.push(b):re(b.tensor)}return za.boxes=s,a}async function lC(e){var t;return ce.initial&&(is=null),is?e.debug&&ie("cached model:",is.modelUrl):is=await je((t=e.face.mesh)==null?void 0:t.modelPath),Md=is.inputs[0].shape?is.inputs[0].shape[2]:0,is}var uC=Rl,dC=Bh;var yn,F0=[],pC=0,hC=0,Jb=Number.MAX_SAFE_INTEGER;async function cC(e){var t;return ce.initial&&(yn=null),yn?e.debug&&ie("cached model:",yn.modelUrl):yn=await je((t=e.face.description)==null?void 0:t.modelPath),yn}function Qb(e){let t=e.image||e.tensor||e;if(!(yn!=null&&yn.inputs[0].shape))return t;let r=Ie.resizeBilinear(t,[yn.inputs[0].shape[2],yn.inputs[0].shape[1]],!1),n=L(r,Qe.tf255);return re(r),n}async function e5(e,t,r,n){var i,o,l,u;if(!yn)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let a=Jb<(((i=t.face.description)==null?void 0:i.skipFrames)||0),s=(((o=t.face.description)==null?void 0:o.skipTime)||0)>oe()-pC;return t.skipAllowed&&a&&s&&hC===n&&((l=F0[r])==null?void 0:l.age)&&((u=F0[r])==null?void 0:u.age)>0?(Jb++,F0[r]):(Jb=0,new Promise(async d=>{var p,c;let h={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)!=null&&p.enabled){let f=Qb(e),m=yn==null?void 0:yn.execute(f);pC=oe(),re(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),A=Math.trunc(200*Math.abs(y[0]-.5))/100;A>(((c=t.face.description)==null?void 0:c.minConfidence)||0)&&(h.gender=y[0]<=.5?"female":"male",h.genderScore=Math.min(.99,A));let x=Nn(m.find(R=>R.shape[1]===100),1),b=(await x.data())[0];re(x);let T=await m.find(R=>R.shape[1]===100).data();h.age=Math.round(T[b-1]>T[b+1]?10*b-100*T[b-1]:10*b+100*T[b+1])/10;let S=m.find(R=>R.shape[1]===1024),E=S?await S.data():[];h.descriptor=Array.from(E),m.forEach(R=>re(R))}F0[r]=h,hC=n,d(h)}))}function $0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Uh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function gC(e,t,r){let n=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a]];return Ie.cropAndResize(t,s,[0],r)}function yC(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:r,endPoint:n,palmLandmarks:a,confidence:e.confidence}}function P0(e,t=1.5){let r=Uh(e),n=$0(e),a=[t*n[0]/2,t*n[1]/2],s=[r[0]-a[0],r[1]-a[1]],i=[r[0]+a[0],r[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function _0(e){let t=Uh(e),r=$0(e),a=Math.max(...r)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function $2e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function AC(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return $2e(r)}var fC=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Gi(e,t){let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r}function P2e(e,t){let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r}function mC(e,t){let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Gi(e[a],P2e(t,s)))}return r}function r5(e,t){let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=fC(t[0],t[1]),i=mC(s,a),o=fC(-t[0],-t[1]);return mC(i,o)}function xC(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Gi(t[0],r),-Gi(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function n5(e,t){return[Gi(e,t[0]),Gi(e,t[1])]}var vC=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var a5=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=vC.map(r=>[r.x,r.y]),this.anchorsTensor=ua(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=St([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=St([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let r={};r.boxOffsets=Pe(t,[0,0],[-1,2]),r.boxSizes=Pe(t,[0,2],[-1,2]),r.div=pe(r.boxOffsets,this.inputSizeTensor),r.boxCenterPoints=le(r.div,this.anchorsTensor),r.halfBoxSizes=pe(r.boxSizes,this.doubleInputSizeTensor),r.sub=he(r.boxCenterPoints,r.halfBoxSizes),r.startPoints=L(r.sub,this.inputSizeTensor),r.add=le(r.boxCenterPoints,r.halfBoxSizes),r.endPoints=L(r.add,this.inputSizeTensor);let n=rd([r.startPoints,r.endPoints],1);return Object.keys(r).forEach(a=>re(r[a])),n}normalizeLandmarks(t,r){let n={};n.reshape=G(t,[-1,7,2]),n.div=pe(n.reshape,this.inputSizeTensor),n.landmarks=le(n.div,this.anchors[r]);let a=L(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>re(n[s])),a}async predict(t,r){let n={};n.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=pe(n.resize,Qe.tf127),n.image=he(n.div,Qe.tf1),n.batched=this.model.execute(n.image),n.predictions=et(n.batched),n.slice=Pe(n.predictions,[0,0],[-1,1]),n.sigmoid=Tr(n.slice),n.scores=et(n.sigmoid);let a=await n.scores.data();n.boxes=Pe(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await Ie.nonMaxSuppressionAsync(n.norm,n.scores,3*r.hand.maxDetected,r.hand.iouThreshold,r.hand.minConfidence);let s=await n.nms.array(),i=[];for(let o of s){let l={};l.box=Pe(n.norm,[o,0],[1,-1]),l.slice=Pe(n.predictions,[o,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,o),l.palmLandmarks=G(l.norm,[-1,2]);let u=await l.box.data(),d=u.slice(0,2),h=u.slice(2,4),p=await l.palmLandmarks.array(),c={startPoint:d,endPoint:h,palmLandmarks:p,confidence:a[o]},f=yC(c,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);i.push(f),Object.keys(l).forEach(m=>re(l[m]))}return Object.keys(n).forEach(o=>re(n[o])),i}};var O2e=5,wC=1.65,kC=[0,5,9,13,17,1,2],D2e=0,L2e=2,IC=0,s5=class{constructor(t,r){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=r,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let r=t.map(i=>i[0]),n=t.map(i=>i[1]),a=[Math.min(...r),Math.min(...n)],s=[Math.max(...r),Math.max(...n)];return{startPoint:a,endPoint:s}}getBoxForPalmLandmarks(t,r){let n=t.map(s=>n5([...s,1],r)),a=this.calculateLandmarksBoundingBox(n);return P0(_0(a),O2e)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),n=P0(_0(r),wC);n.palmLandmarks=[];for(let a=0;a<kC.length;a++)n.palmLandmarks.push(t[kC[a]].slice(0,2));return n}transformRawCoords(t,r,n,a){let s=$0(r),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=r5(n,[0,0]),u=o.map(c=>[...n5(c,l),c[2]]),d=xC(a),h=[...Uh(r),1],p=[Gi(h,d[0]),Gi(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,r){let n=!1,a,s=(r.hand.skipTime||0)>oe()-IC,i=this.skipped<(r.hand.skipFrames||0);r.skipAllowed&&s&&i&&(a=await this.handDetector.predict(t,r),this.skipped=0),r.skipAllowed&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==r.hand.maxDetected||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(r.hand.landmarks){let d=r.hand.rotation?AC(u.palmLandmarks[D2e],u.palmLandmarks[L2e]):0,h=Uh(u),p=[h[0]/t.shape[2],h[1]/t.shape[1]],c=r.hand.rotation&&ce.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,d,0,p):t.clone(),f=r5(-d,h),m=n?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=gC(m,c,[this.inputSize,this.inputSize]),y=pe(g,Qe.tf255);re(g),re(c);let[A,x]=this.handPoseModel.execute(y);IC=oe(),re(y);let b=(await A.data())[0];if(re(A),b>=r.hand.minConfidence/4){let w=G(x,[-1,3]),T=await w.array();re(x),re(w);let S=this.transformRawCoords(T,m,d,f),E=this.getBoxForHandLandmarks(S);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:S,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(R)}else this.storedBoxes[l]=null;re(x)}else{let d=P0(_0(u),wC),h={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};o.push(h)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>r.hand.maxDetected&&(o.length=r.hand.maxDetected),o}};var Kr={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Kr.nameMapping[e],getPoints:e=>Kr.pointsMapping[e]},ji={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ji.nameMapping[e]},Dt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Dt.nameMapping[e]},$l=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,r,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([r,n])}direction(t,r,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([r,n])}weight(t,r){this.weights[t]=r;let n=this.weights.reduce((a,s)=>a+s,0);this.weightsRelative=this.weights.map(a=>a*5/n)}matchAgainst(t,r){let n=0;for(let a in t){let s=t[a],i=this.curls[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}for(let a in r){let s=r[a],i=this.directions[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}return n/10}};var{thumb:Aa,index:os,middle:ls,ring:Pl,pinky:_l}=Kr,{none:xa,half:W2e,full:ba}=ji,{verticalUp:Fd,verticalDown:Xxe,horizontalLeft:i5,horizontalRight:V2e,diagonalUpRight:U2e,diagonalUpLeft:$d,diagonalDownRight:Zxe,diagonalDownLeft:Yxe}=Dt,Hi=new $l("thumbs up");Hi.curl(Aa,xa,1);Hi.direction(Aa,Fd,1);Hi.direction(Aa,$d,.25);Hi.direction(Aa,U2e,.25);for(let e of[Kr.index,Kr.middle,Kr.ring,Kr.pinky])Hi.curl(e,ba,1),Hi.direction(e,i5,1),Hi.direction(e,V2e,1);var Yt=new $l("victory");Yt.curl(Aa,W2e,.5);Yt.curl(Aa,xa,.5);Yt.direction(Aa,Fd,1);Yt.direction(Aa,$d,1);Yt.curl(os,xa,1);Yt.direction(os,Fd,.75);Yt.direction(os,$d,1);Yt.curl(ls,xa,1);Yt.direction(ls,Fd,1);Yt.direction(ls,$d,.75);Yt.curl(Pl,ba,1);Yt.direction(Pl,Fd,.2);Yt.direction(Pl,$d,1);Yt.direction(Pl,i5,.2);Yt.curl(_l,ba,1);Yt.direction(_l,Fd,.2);Yt.direction(_l,$d,1);Yt.direction(_l,i5,.2);Yt.weight(os,2);Yt.weight(ls,2);var qi=new $l("point");qi.curl(Aa,ba,1);qi.curl(os,xa,.5);qi.curl(ls,ba,.5);qi.curl(Pl,ba,.5);qi.curl(_l,ba,.5);qi.weight(os,2);qi.weight(ls,2);var Ki=new $l("middle finger");Ki.curl(Aa,xa,1);Ki.curl(os,ba,.5);Ki.curl(ls,ba,.5);Ki.curl(Pl,ba,.5);Ki.curl(_l,ba,.5);Ki.weight(os,2);Ki.weight(ls,2);var Pd=new $l("open palm");Pd.curl(Aa,xa,.75);Pd.curl(os,xa,.75);Pd.curl(ls,xa,.75);Pd.curl(Pl,xa,.75);Pd.curl(_l,xa,.75);var SC=[Hi,Yt,qi,Ki,Pd];var G2e=.7,zl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function TC(e,t,r,n){let a=(t-n)/(e-r),s=Math.atan(a)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function CC(e,t){if(!e||!t)return[0,0];let r=TC(e[0],e[1],t[0],t[1]);if(e.length===2)return r;let n=TC(e[1],e[2],t[1],t[2]);return[r,n]}function NC(e,t=1){let r=0,n=0,a=0;return e>=75&&e<=105?r=1*t:e>=25&&e<=155?n=1*t:a=1*t,[r,n,a]}function j2e(e,t,r){let n=e[0]-t[0],a=e[0]-r[0],s=t[0]-r[0],i=e[1]-t[1],o=e[1]-r[1],l=t[1]-r[1],u=e[2]-t[2],d=e[2]-r[2],h=t[2]-r[2],p=Math.sqrt(n*n+i*i+u*u),c=Math.sqrt(a*a+o*o+d*d),f=Math.sqrt(s*s+l*l+h*h),m=(f*f+p*p-c*c)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>zl.NO_CURL_START_LIMIT?y=ji.none:g>zl.HALF_CURL_START_LIMIT?y=ji.half:y=ji.full,y}function EC(e,t,r,n){let a;return n===Math.abs(e)?e>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:n===Math.abs(t)?t>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:r>0?a=Dt.horizontalLeft:a=Dt.horizontalRight,a}function RC(e,t,r,n){let a;return n===Math.abs(e)?e<0?a=Dt.verticalDown:a=Dt.verticalUp:n===Math.abs(t)?t<0?a=Dt.verticalDown:a=Dt.verticalUp:r<0?a=Dt.verticalDown:a=Dt.verticalUp,a}function H2e(e,t,r,n,a,s,i,o){let l,u=RC(e,t,r,n),d=EC(a,s,i,o);return u===Dt.verticalUp?d===Dt.horizontalLeft?l=Dt.diagonalUpLeft:l=Dt.diagonalUpRight:d===Dt.horizontalLeft?l=Dt.diagonalDownLeft:l=Dt.diagonalDownRight,l}function q2e(e,t,r,n){let a=e[0]-t[0],s=e[0]-r[0],i=t[0]-r[0],o=e[1]-t[1],l=e[1]-r[1],u=t[1]-r[1],d=Math.max(Math.abs(a),Math.abs(s),Math.abs(i)),h=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),p=0,c=0,f=0,m=h/(d+1e-5);m>1.5?p+=zl.DISTANCE_VOTE_POWER:m>.66?c+=zl.DISTANCE_VOTE_POWER:f+=zl.DISTANCE_VOTE_POWER;let g=Math.sqrt(a*a+o*o),y=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),x=Math.max(g,y,A),b=e[0],w=e[1],T=r[0],S=r[1];x===g?(T=r[0],S=r[1]):x===A&&(b=t[0],w=t[1]);let _=CC([b,w],[T,S]),M=NC(_,zl.TOTAL_ANGLE_VOTE_POWER);p+=M[0],c+=M[1],f+=M[2];for(let O of n){let z=NC(O,zl.SINGLE_ANGLE_VOTE_POWER);p+=z[0],c+=z[1],f+=z[2]}let I;return p===Math.max(p,c,f)?I=RC(l,o,u,h):f===Math.max(c,f)?I=EC(s,a,i,d):I=H2e(l,o,u,h,s,a,i,d),I}function MC(e){let t=[],r=[],n=[],a=[];if(!e)return{curls:n,directions:a};for(let s of Kr.all){let i=Kr.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],h=e[u[1]],p=CC(d,h),c=p[0],f=p[1];o.push(c),l.push(f)}t.push(o),r.push(l)}for(let s of Kr.all){let i=s===Kr.thumb?1:0,o=Kr.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],h=j2e(l,u,d),p=q2e(l,u,d,t[s].slice(i));n[s]=h,a[s]=p}return{curls:n,directions:a}}function z0(e){if(!e||e.length===0)return null;let t=MC(e),r={};for(let n of Kr.all)r[Kr.getName(n)]={curl:ji.getName(t.curls[n]),direction:Dt.getName(t.directions[n])};return r}function FC(e){let t=[];if(!e||e.length===0)return t;let r=MC(e);for(let n of SC){let a=n.matchAgainst(r.curls,r.directions);a>=G2e&&t.push({name:n.name,confidence:a})}return t}var $C={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},_d,zd,PC;async function l5(e,t){let r=await PC.estimateHands(e,t);if(!r)return[];let n=[];for(let a=0;a<r.length;a++){let s={};if(r[a].landmarks)for(let d of Object.keys($C))s[d]=$C[d].map(h=>r[a].landmarks[h]);let i=r[a].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=r[a].box?[Math.trunc(Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.max(0,r[a].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,r[a].box.bottomRight[0])-Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,r[a].box.bottomRight[1])-Math.max(0,r[a].box.topLeft[1]))]:[0,0,0,0],l=[r[a].box.topLeft[0]/(e.shape[2]||0),r[a].box.topLeft[1]/(e.shape[1]||0),(r[a].box.bottomRight[0]-r[a].box.topLeft[0])/(e.shape[2]||0),(r[a].box.bottomRight[1]-r[a].box.topLeft[1])/(e.shape[1]||0)];let u=z0(i);n.push({id:a,score:Math.round(100*r[a].confidence)/100,boxScore:Math.round(100*r[a].boxConfidence)/100,fingerScore:Math.round(100*r[a].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function u5(e){var r,n;ce.initial&&(_d=null,zd=null),!_d||!zd?[_d,zd]=await Promise.all([e.hand.enabled?je((r=e.hand.detector)==null?void 0:r.modelPath):null,e.hand.landmarks?je((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&ie("cached model:",_d.modelUrl),e.debug&&ie("cached model:",zd.modelUrl));let t=new a5(_d);return PC=new s5(t,zd),[_d,zd]}var lr=[null,null],K2e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Xi=[[0,0],[0,0]],X2e=["hand","fist","pinch","point","face","tip","pinchtip"],zC=4,OC=1.6,Z2e=512,Y2e=1.4,O0=Number.MAX_SAFE_INTEGER,d5=0,us=[0,0],Gt={boxes:[],hands:[]},DC={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function LC(e){var t;if(ce.initial&&(lr[0]=null),lr[0])e.debug&&ie("cached model:",lr[0].modelUrl);else{D0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),lr[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let r=Object.values(lr[0].modelSignature.inputs);Xi[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Xi[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return lr[0]}async function BC(e){var t;if(ce.initial&&(lr[1]=null),lr[1])e.debug&&ie("cached model:",lr[1].modelUrl);else{lr[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let r=Object.values(lr[1].modelSignature.inputs);Xi[1][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Xi[1][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return lr[1]}async function J2e(e,t){let r=[];if(!e||!lr[0])return r;let n={},a=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,Z2e),i=Math.round(s*a/8)*8;n.resize=Ie.resizeBilinear(e,[s,i]),n.cast=me(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await lr[0].executeAsync(n.cast,K2e),n.boxes=et(n.rawBoxes,[0,2]),n.scores=et(n.rawScores,[0]);let o=en(n.scores,1);re(o[zC]),o.splice(zC,1),n.filtered=sr(o,1),re(o),n.max=fr(n.filtered,1),n.argmax=Nn(n.filtered,1);let l=0;n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),d=await n.max.data(),h=await n.argmax.data();for(let p of Array.from(u)){let c=Pe(n.boxes,p,1),f=await c.data();re(c);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=T0(m,Y2e),y=[Math.trunc(m[0]*us[0]),Math.trunc(m[1]*us[1]),Math.trunc(m[2]*us[0]),Math.trunc(m[3]*us[1])],A=d[p],x=X2e[h[p]],b={id:l++,score:A,box:y,boxRaw:g,label:x};r.push(b)}return Object.keys(n).forEach(p=>re(n[p])),r.sort((p,c)=>c.score-p.score),r.length>(t.hand.maxDetected||1)&&(r.length=t.hand.maxDetected||1),r}async function p5(e,t,r){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&lr[1]&&r.hand.landmarks&&t.score>(r.hand.minConfidence||0)){let a={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];a.crop=Ie.cropAndResize(e,[s],[0],[Xi[1][0],Xi[1][1]],"bilinear"),a.div=pe(a.crop,Qe.tf255),[a.score,a.keypoints]=lr[1].execute(a.div,["Identity_1","Identity"]);let i=(await a.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(r.hand.minConfidence||0)){n.fingerScore=o,a.reshaped=G(a.keypoints,[-1,3]);let d=(await a.reshaped.array()).map(h=>[h[0]/Xi[1][1],h[1]/Xi[1][0],h[2]||0]).map(h=>[h[0]*t.boxRaw[2],h[1]*t.boxRaw[3],h[2]||0]);n.keypoints=d.map(h=>[us[0]*(h[0]+t.boxRaw[0]),us[1]*(h[1]+t.boxRaw[1]),h[2]||0]),n.landmarks=z0(n.keypoints);for(let h of Object.keys(DC))n.annotations[h]=DC[h].map(p=>n.landmarks&&n.keypoints[p]?n.keypoints[p]:null)}Object.keys(a).forEach(l=>re(a[l]))}return n}async function h5(e,t){var a,s;if(!lr[0]||!lr[1]||!((a=lr[0])!=null&&a.inputs[0].shape)||!((s=lr[1])!=null&&s.inputs[0].shape))return[];us=[e.shape[2]||0,e.shape[1]||0],O0++;let r=(t.hand.skipTime||0)>oe()-d5,n=O0<(t.hand.skipFrames||0);return t.skipAllowed&&r&&n?Gt.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>oe()-d5,l=O0<3*(t.hand.skipFrames||0);t.skipAllowed&&Gt.hands.length===t.hand.maxDetected?Gt.hands=await Promise.all(Gt.boxes.map(d=>p5(e,d,t))):t.skipAllowed&&o&&l&&Gt.hands.length>0?Gt.hands=await Promise.all(Gt.boxes.map(d=>p5(e,d,t))):(Gt.boxes=await J2e(e,t),d5=oe(),Gt.hands=await Promise.all(Gt.boxes.map(d=>p5(e,d,t))),O0=0);let u=[...Gt.boxes];if(Gt.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d<Gt.hands.length;d++){let h=$N(Gt.hands[d].keypoints,us);if(h.box[2]/(e.shape[2]||1)>.05&&h.box[3]/(e.shape[1]||1)>.05&&Gt.hands[d].fingerScore&&Gt.hands[d].fingerScore>(t.hand.minConfidence||0)){let p=T0(h.box,OC),c=T0(h.boxRaw,OC);Gt.boxes.push({...u[d],box:p,boxRaw:c})}}for(let d=0;d<Gt.hands.length;d++){let h=ns(Gt.hands[d].keypoints,us);Gt.hands[d].box=h.box,Gt.hands[d].boxRaw=h.boxRaw}i(Gt.hands)})}var Mr,L0=[],c5=Number.MAX_SAFE_INTEGER,VC=0,UC=0;async function GC(e){var t;return ce.initial&&(Mr=null),Mr?e.debug&&ie("cached model:",Mr.modelUrl):Mr=await je((t=e.face.liveness)==null?void 0:t.modelPath),Mr}async function f5(e,t,r,n){var i,o;if(!Mr)return 0;let a=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>oe()-UC,s=c5<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&VC===n&&L0[r]?(c5++,L0[r]):(c5=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[2]:0,Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[1]:0],!1),d=Mr==null?void 0:Mr.execute(u),h=(await d.data())[0];L0[r]=Math.round(100*h)/100,VC=n,UC=oe(),re([u,d]),l(L0[r])}))}var Gh={};ep(Gh,{connected:()=>W0,horizontal:()=>m5,kpt:()=>B0,relative:()=>y5,vertical:()=>g5});var B0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],m5=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],g5=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],y5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],W0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var HC=.005,An={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function A5(e){for(let t of m5){let r=e.keypoints.findIndex(a=>a.part===t[0]),n=e.keypoints.findIndex(a=>a.part===t[1]);if(e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[0]<e.keypoints[n].position[0]){let a=e.keypoints[r];e.keypoints[r]=e.keypoints[n],e.keypoints[n]=a}}for(let t of g5){let r=e.keypoints.findIndex(a=>a&&a.part===t[0]),n=e.keypoints.findIndex(a=>a&&a.part===t[1]);e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(r,1)}for(let[t,r]of y5){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),a=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===r[0]),i=e.keypoints.findIndex(u=>u&&u.part===r[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[a]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[a].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[a].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[a],e.keypoints[a]=u}}}function qC(e){for(let t=0;t<e.length;t++)if(e[t]&&An.keypoints[t]){let r=[Math.abs(e[t].positionRaw[0]-An.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-An.keypoints[t].positionRaw[1])];r[0]<HC&&r[1]<HC?e[t]=An.keypoints[t]:An.keypoints[t]=e[t]}else An.keypoints[t]=e[t];return e}function KC(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;An.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],r.pad=Gn(e,An.padding),r.resize=Ie.resizeBilinear(r.pad,[t,t]);let n=me(r.resize,"int32");return Object.keys(r).forEach(a=>re(r[a])),n}function XC(e,t){e.keypoints=e.keypoints.filter(n=>n&&n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+An.padding[2][0]+An.padding[2][1])/t[0]-An.padding[2][0],n.position[1]*(t[1]+An.padding[1][0]+An.padding[1][1])/t[1]-An.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let r=ns(e.keypoints.map(n=>n.position),t);return e.box=r.box,e.boxRaw=r.boxRaw,e}var xn,V0=0,x5=Number.MAX_SAFE_INTEGER,Ol={boxes:[],bodies:[],last:0};async function ZC(e){return ce.initial&&(xn=null),xn?e.debug&&ie("cached model:",xn.modelUrl):(D0(["size"],e),xn=await je(e.body.modelPath)),V0=xn.inputs[0].shape?xn.inputs[0].shape[2]:0,V0<64&&(V0=256),xn}async function eAe(e,t,r){let n=e[0][0],a=[],s=0;for(let d=0;d<n.length;d++)if(s=n[d][2],s>t.body.minConfidence){let h=[n[d][1],n[d][0]];a.push({score:Math.round(100*s)/100,part:B0[d],positionRaw:h,position:[Math.round((r.shape[2]||0)*h[0]),Math.round((r.shape[1]||0)*h[1])]})}s=a.reduce((d,h)=>h.score>d?h.score:d,0);let i=[],o=ns(a.map(d=>d.position),[r.shape[2],r.shape[1]]),l={};for(let[d,h]of Object.entries(W0)){let p=[];for(let c=0;c<h.length-1;c++){let f=a.find(g=>g.part===h[c]),m=a.find(g=>g.part===h[c+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&p.push([f.position,m.position])}l[d]=p}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:a,annotations:l};return A5(u),i.push(u),i}async function tAe(e,t,r){let n=[];for(let a=0;a<e[0].length;a++){let s=e[0][a],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let h=0;h<17;h++){let p=s[3*h+2];if(p>t.body.minConfidence){let c=[s[3*h+1],s[3*h+0]];o.push({part:B0[h],score:Math.round(100*p)/100,positionRaw:c,position:[Math.round((r.shape[2]||0)*c[0]),Math.round((r.shape[1]||0)*c[1])]})}}let l=ns(o.map(h=>h.position),[r.shape[2],r.shape[1]]),u={};for(let[h,p]of Object.entries(W0)){let c=[];for(let f=0;f<p.length-1;f++){let m=o.find(y=>y.part===p[f]),g=o.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&c.push([m.position,g.position])}u[h]=c}let d={id:a,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};A5(d),n.push(d)}}return n.sort((a,s)=>s.score-a.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function b5(e,t){if(!xn||!(xn!=null&&xn.inputs[0].shape))return[];t.skipAllowed||(Ol.boxes.length=0),x5++;let r=(t.body.skipTime||0)>oe()-Ol.last,n=x5<(t.body.skipFrames||0);return t.skipAllowed&&r&&n?Ol.bodies:new Promise(async a=>{let s={};x5=0,s.input=KC(e,V0),s.res=xn==null?void 0:xn.execute(s.input),Ol.last=oe();let i=await s.res.array();Ol.bodies=s.res.shape[2]===17?await eAe(i,t,e):await tAe(i,t,e);for(let o of Ol.bodies)XC(o,[e.shape[2]||1,e.shape[1]||1]),qC(o.keypoints);Object.keys(s).forEach(o=>re(s[o])),a(Ol.bodies)})}var Od,U0=[],JC=0,v5=Number.MAX_SAFE_INTEGER,j0=0,G0=2.5;async function QC(e){if(!Od||ce.initial){Od=await je(e.object.modelPath);let t=Object.values(Od.modelSignature.inputs);j0=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&ie("cached model:",Od.modelUrl);return Od}async function rAe(e,t,r){let n=0,a=[];for(let l of[1,2,4])K(async()=>{let u=l*13,d=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===Cd.length)),h=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<Cd.length)),c=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),f=await d.array();for(let m=0;m<d.shape[0];m++)for(let g=0;g<d.shape[1];g++){let y=f[m][g];if(y>(r.object.minConfidence||0)&&g!==61){let A=(.5+Math.trunc(m%u))/u,x=(.5+Math.trunc(m/u))/u,b=c[m].map(I=>I*(u/l/j0)),[w,T]=[A-G0/l*b[0],x-G0/l*b[1]],[S,E]=[A+G0/l*b[2]-w,x+G0/l*b[3]-T],R=[w,T,S,E];R=R.map(I=>Math.max(0,Math.min(I,1)));let _=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],M={id:n++,score:Math.round(100*y)/100,class:g+1,label:Cd[g].label,box:_.map(I=>Math.trunc(I)),boxRaw:R};a.push(M)}}});e.forEach(l=>re(l));let s=a.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),i=a.map(l=>l.score),o=[];if(s&&s.length>0){let l=await Ie.nonMaxSuppressionAsync(s,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);o=await l.data(),re(l)}return a=a.filter((l,u)=>o.includes(u)).sort((l,u)=>u.score-l.score),a}async function w5(e,t){let r=(t.object.skipTime||0)>oe()-JC,n=v5<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&U0.length>0?(v5++,U0):(v5=0,!ce.kernels.includes("mod")||!ce.kernels.includes("sparsetodense")?U0:new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[j0,j0],!1),o=pe(i,Qe.tf255),l=o.transpose([0,3,1,2]);re(o),re(i);let u;t.object.enabled&&(u=Od.execute(l)),JC=oe(),re(l);let d=await rAe(u,s,t);U0=d,a(d)}))}var Hh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],nAe=Hh.length,jh=Hh.reduce((e,t,r)=>(e[t]=r,e),{}),aAe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],vbe=aAe.map(([e,t])=>[jh[e],jh[t]]),t9=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function r9(e){let t=e.reduce(({maxX:r,maxY:n,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(r,i),maxY:Math.max(n,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function n9(e,[t,r],[n,a]){let s=t/n,i=r/a,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/a,u.box[1]/n,u.box[2]/a,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/n,c.y/n]})),annotations:{}});return e.map((u,d)=>o(u,d))}var k5=class{constructor(t,r){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(r<this.numberOfElements&&this.less(r,r+1)&&r++,!this.less(t,r))break;this.exchange(t,r),t=r}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,r){return this.getValueAt(t)<this.getValueAt(r)}exchange(t,r){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[r],this.priorityQueue[r]=n}};function I5(e,t,r,n){return{y:n.get(e,t,r),x:n.get(e,t,r+nAe)}}function S5(e,t,r){let{heatmapY:n,heatmapX:a,id:s}=e,{y:i,x:o}=I5(n,a,s,r);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function T5(e,t,r){return e<t?t:e>r?r:e}function a9(e,t,r,n){let a=r-e,s=n-t;return a*a+s*s}function N5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var va,iAe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],H0=1,Dd=16,oAe=50**2;function s9(e,t,r,n,a,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:T5(Math.round(y.y/Dd),0,A-1),x:T5(Math.round(y.x/Dd),0,x-1)}),[u,d]=n.shape,h=l(t.position,u,d),p=o(h),f=N5(t.position,p);for(let y=0;y<i;y++){let A=l(f,u,d),x=I5(A.y,A.x,r,a);f=N5({x:A.x*Dd,y:A.y*Dd},{x:x.x,y:x.y})}let m=l(f,u,d),g=n.get(m.y,m.x,r);return{position:f,part:Hh[r],score:g}}function lAe(e,t,r,n,a){let s=t9.map(([p,c])=>[jh[p],jh[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=S5(e.part,Dd,r);d[e.part.id]={score:e.score,part:Hh[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],f=o[p];d[c]&&!d[f]&&(d[f]=s9(p,d[c],f,t,r,a))}for(let p=0;p<u;++p){let c=o[p],f=i[p];d[c]&&!d[f]&&(d[f]=s9(p,d[c],f,t,r,n))}return d}function uAe(e,t,r,n,a){let[s,i]=a.shape,o=!0,l=Math.max(r-H0,0),u=Math.min(r+H0+1,s);for(let d=l;d<u;++d){let h=Math.max(n-H0,0),p=Math.min(n+H0+1,i);for(let c=h;c<p;++c)if(a.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function dAe(e,t){let[r,n,a]=t.shape,s=new k5(r*n*a,({score:i})=>i);for(let i=0;i<r;++i)for(let o=0;o<n;++o)for(let l=0;l<a;++l){let u=t.get(i,o,l);u<e||uAe(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function i9(e,{x:t,y:r},n){return e.some(({keypoints:a})=>{var i;let s=(i=a[n])==null?void 0:i.position;return s?a9(r,t,s.y,s.x)<=oAe:!1})}function pAe(e,t){return t.reduce((n,{position:a,score:s},i)=>(i9(e,a,i)||(n+=s),n),0)/t.length}function hAe(e,t,r,n,a,s){let i=[],o=dAe(s,t);for(;i.length<a&&!o.empty();){let l=o.dequeue(),u=S5(l.part,Dd,e);if(i9(i,u,l.part.id))continue;let d=lAe(l,t,e,r,n);d=d.filter(c=>c.score>s);let h=pAe(i,d),p=r9(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}async function C5(e,t){let r=K(()=>{if(!va.inputs[0].shape)return[];let i=Ie.resizeBilinear(e,[va.inputs[0].shape[2],va.inputs[0].shape[1]]),o=he(pe(me(i,"float32"),127.5),1),u=va.execute(o,iAe).map(d=>et(d,[0]));return u[1]=Tr(u[1]),u}),n=await Promise.all(r.map(i=>i.buffer()));for(let i of r)re(i);let a=await hAe(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return va.inputs[0].shape?n9(a,[e.shape[1],e.shape[2]],[va.inputs[0].shape[2],va.inputs[0].shape[1]]):[]}async function o9(e){return!va||ce.initial?va=await je(e.body.modelPath):e.debug&&ie("cached model:",va.modelUrl),va}var Oa,E5=!1;async function R5(e){return!Oa||ce.initial?Oa=await je(e.segmentation.modelPath):e.debug&&ie("cached model:",Oa.modelUrl),Oa}async function u9(e,t,r){var m,g;if(E5)return{data:[],canvas:null,alpha:null};E5=!0,Oa||await R5(r);let n=await Sd(e,r),a=((m=n.tensor)==null?void 0:m.shape[2])||0,s=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let i={};i.resize=Ie.resizeBilinear(n.tensor,[Oa.inputs[0].shape?Oa.inputs[0].shape[1]:0,Oa.inputs[0].shape?Oa.inputs[0].shape[2]:0],!1),re(n.tensor),i.norm=pe(i.resize,Qe.tf255),i.res=Oa.execute(i.norm),i.squeeze=et(i.res,0),i.squeeze.shape[2]===2?(i.softmax=od(i.squeeze),[i.bg,i.fg]=en(i.softmax,2),i.expand=Ht(i.fg,2),i.pad=Ht(i.expand,0),i.crop=Ie.cropAndResize(i.pad,[[0,0,.5,.5]],[0],[a,s]),i.data=et(i.crop,0)):i.data=Ie.resizeBilinear(i.squeeze,[s,a]);let o=Array.from(await i.data.data());if(ce.node&&!ce.Canvas&&typeof ImageData=="undefined")return r.debug&&ie("canvas support missing"),Object.keys(i).forEach(y=>re(i[y])),{data:o,canvas:null,alpha:null};let l=Hr(a,s);$n&&await $n.toPixels(i.data,l);let u=l.getContext("2d");r.segmentation.blur&&r.segmentation.blur>0&&(u.filter=`blur(${r.segmentation.blur}px)`);let d=u.getImageData(0,0,a,s),h=Hr(a,s),p=h.getContext("2d");n.canvas&&p.drawImage(n.canvas,0,0),p.globalCompositeOperation="darken",r.segmentation.blur&&r.segmentation.blur>0&&(p.filter=`blur(${r.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let c=p.getImageData(0,0,a,s);for(let y=0;y<a*s;y++)c.data[4*y+3]=d.data[4*y+0];p.putImageData(c,0,0);let f=null;if(t&&h){f=Hr(a,s);let y=await Sd(t,r);re(y.tensor);let A=f.getContext("2d");A.drawImage(y.canvas,0,0,f.width,f.height),A.drawImage(h,0,0)}return Object.keys(i).forEach(y=>re(i[y])),E5=!1,{data:o,canvas:h,alpha:l}}var M5=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function F5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function p9(e){var t,r,n,a,s,i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z;ce.initial&&F5(e),e.config.hand.enabled&&(!e.models.handpose&&((r=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await u5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((a=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:a.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await u5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((i=(s=e.config.body)==null?void 0:s.modelPath)==null?void 0:i.includes("blazepose"))&&(e.models.blazepose=DN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=ON(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(o=e.config.body)==null?void 0:o.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=GN(e.config)),e.config.body.enabled&&!e.models.movenet&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(e.models.movenet=ZC(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=o9(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=CN(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=mN(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=GC(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=cC(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=KN(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!e.models.faceiris&&(e.models.faceiris=aC(e.config)),e.config.face.enabled&&((A=e.config.face.mesh)==null?void 0:A.enabled)&&!e.models.facemesh&&(e.models.facemesh=lC(e.config)),e.config.face.enabled&&((x=e.config.face.gear)==null?void 0:x.enabled)&&!e.models.gear&&(e.models.gear=rN(e.config)),e.config.face.enabled&&((b=e.config.face.ssrnet)==null?void 0:b.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=oN(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=pN(e.config)),e.config.face.enabled&&((T=e.config.face.mobilefacenet)==null?void 0:T.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=QN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((E=(S=e.config.hand.detector)==null?void 0:S.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handtrack=LC(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((_=(R=e.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:_.includes("handtrack"))&&(e.models.handskeleton=BC(e.config)),e.config.object.enabled&&!e.models.centernet&&((I=(M=e.config.object)==null?void 0:M.modelPath)==null?void 0:I.includes("centernet"))&&(e.models.centernet=WN(e.config)),e.config.object.enabled&&!e.models.nanodet&&((z=(O=e.config.object)==null?void 0:O.modelPath)==null?void 0:z.includes("nanodet"))&&(e.models.nanodet=QC(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=R5(e.config));for await(let j of Object.keys(e.models))e.models[j]&&typeof e.models[j]!="undefined"&&(e.models[j]=await e.models[j])}async function h9(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let r of Object.keys(e.models)){let n=e.models[r];if(!n)continue;let a=[],s=n==null?void 0:n.executor;if(s&&s.graph.nodes)for(let o of Object.values(s.graph.nodes)){let l=o.op.toLowerCase();a.includes(l)||a.push(l)}else!s&&e.config.debug&&ie("model signature not determined:",r);let i=[];for(let o of a)!t.includes(o)&&!e.env.kernels.includes(o)&&!e.env.kernels.includes(o.replace("_",""))&&!e.env.kernels.includes(o.replace("native",""))&&!e.env.kernels.includes(o.replace("v2",""))&&i.push(o);e.config.debug&&i.length>0&&ie("model validation failed:",r,i)}}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function cAe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}async function f9(e){var t;if(e.config.backend==="humangl"&&(Ct.name in Ar().registry&&(!Ct.gl||!Ct.gl.getParameter(Ct.gl.VERSION))&&(ie("error: humangl backend invalid context"),F5(e)),!m2(Ct.name))){try{Ct.canvas=await Hr(100,100)}catch(n){ie("error: cannot create canvas:",n);return}try{if(Ct.gl=(t=Ct.canvas)==null?void 0:t.getContext("webgl2",Ct.webGLattr),!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){ie("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",async a=>{throw ie("error: humangl:",a.type),ie("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",a=>{ie("error: humangl context restored:",a)}),Ct.canvas.addEventListener("webglcontextcreationerror",a=>{ie("error: humangl context create:",a)}))}catch(n){ie("error: cannot get WebGL context:",n);return}try{s0(2,Ct.gl)}catch(n){ie("error: cannot set WebGL context:",n);return}try{let n=new pu(Ct.gl);xl(Ct.name,()=>new Ch(n),Ct.priority)}catch(n){ie("error: cannot register WebGL backend:",n);return}try{Ca("webgl").forEach(a=>{let s={...a,backendName:Ct.name};Vn(s)})}catch(n){ie("error: cannot update WebGL backend registration:",n);return}let r=Un().getGPGPUContext?Un().getGPGPUContext().gl:null;if(r)ie(`humangl webgl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`);else{ie("error: no current gl context:",r,Ct.gl);return}try{ga.set("WEBGL_VERSION",2)}catch(n){ie("error: cannot set WebGL backend flags:",n);return}cAe(),ie("backend registered:",Ct.name)}}function fAe(){if(!ce.kernels.includes("mod")){let e={kernelName:"Mod",backendName:an(),kernelFunc:t=>K(()=>he(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};Vn(e),ce.kernels.push("mod")}if(!ce.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:an(),kernelFunc:t=>K(()=>ih(t.inputs.a/t.inputs.b)*t.inputs.b+sd(t.inputs.a,t.inputs.b))};Vn(e),ce.kernels.push("floormod")}}async function q0(e,t=!1){if(e.state="backend",t||ce.initial||e.config.backend&&e.config.backend.length>0&&an()!==e.config.backend){let r=oe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ie("running inside web worker"),ce.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ie("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ce.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ie(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ce.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ie("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();e.config.debug&&ie("enumerated webgpu adapter:",a)}e.config.backend==="humangl"&&await f9(e);let n=Object.keys(Ar().registryFactory);if(e.config.debug&&ie("available backends:",n),n.includes(e.config.backend)||(ie(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ce.node?"tensorflow":"webgl",e.config.debug&&ie(`override: setting backend ${e.config.backend}`)),e.config.debug&&ie("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ie("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await hb(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let a=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ie(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&ie("warning: wasm simd support is not enabled")}try{await f2(e.config.backend),await td(),aN()}catch(a){return ie("error: cannot set backend:",e.config.backend,a),!1}}if(an()==="humangl"&&(ga.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ga.set("WEBGL_CPU_FORWARD",!0),ga.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ga.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ie("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ga.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Un().getGPGPUContext)){let n=await Un().getGPGPUContext().gl;e.config.debug&&ie(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}an(),h2(),await td(),e.performance.initBackend=Math.trunc(oe()-r),e.config.backend=an(),await ce.updateBackend(),fAe()}return!0}function D0(e,t){for(let r of e){let n={kernelName:r,backendName:t.backend,kernelFunc:()=>{t.debug&&ie("kernelFunc",r,t.backend)}};Vn(n)}ce.kernels=Ca(an()).map(r=>r.kernelName.toLowerCase())}var ds={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},$5=0,Dl=e=>{if(!e)ie("draw error: invalid canvas");else if(!e.getContext)ie("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ie("draw error: cannot get canvas context");else return t}return null},Ld=e=>Math.round(e*180/Math.PI);function P5(e,t,r,n,a){n=n||0,e.fillStyle=a.useDepth&&n?`rgba(${127.5+2*n}, ${127.5-2*n}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,r,a.pointSize,0,2*Math.PI),e.fill()}function qh(e,t,r,n,a,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(r+r+a)/2;e.ellipse(i,o,n/2,a/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,r),e.lineTo(t+n-s.roundRect,r),e.quadraticCurveTo(t+n,r,t+n,r+s.roundRect),e.lineTo(t+n,r+a-s.roundRect),e.quadraticCurveTo(t+n,r+a,t+n-s.roundRect,r+a),e.lineTo(t+s.roundRect,r+a),e.quadraticCurveTo(t,r+a,t,r+a-s.roundRect),e.lineTo(t,r+s.roundRect),e.quadraticCurveTo(t,r,t+s.roundRect,r),e.closePath();e.stroke()}function y9(e,t,r){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t){let a=n[2]||0;e.strokeStyle=r.useDepth&&a!==0?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.fillStyle=r.useDepth&&a!==0?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.lineTo(n[0],Math.round(n[1]))}e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function gAe(e,t,r){if(!(t.length<2)){if(e.lineWidth=r.lineWidth,!r.useCurves||t.length<=2){y9(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let a=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function g9(e,t,r,n=5){let a,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(r[0],r[1]),a=Math.atan2(r[1]-t[1],r[0]-t[0]),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.moveTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}async function _5(e,t,r){let n=kr(ds,r);if(!(!t||!e)&&n.drawGestures){let a=Dl(e);if(!a)return;a.font=n.font,a.fillStyle=n.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(d,8,2+s*n.lineHeight)),a.fillStyle=n.labelColor,a.fillText(d,6,0+s*n.lineHeight),s+=1}}}}async function z5(e,t,r){var s,i,o,l,u;let n=kr(ds,r);if(!t||!e)return;let a=Dl(e);if(!!a)for(let d of t){if(a.font=n.font,a.strokeStyle=n.color,a.fillStyle=n.color,n.drawBoxes&&qh(a,d.box[0],d.box[1],d.box[2],d.box[3],n),n.drawLabels){let h=[];if(h.push(`face: ${Math.trunc(100*d.score)}%`),d.genderScore&&h.push(`${d.gender||""} ${Math.trunc(100*d.genderScore)}%`),d.age&&h.push(`age: ${d.age||""}`),d.iris&&h.push(`distance: ${d.iris}`),d.real&&h.push(`real: ${Math.trunc(100*d.real)}%`),d.live&&h.push(`live: ${Math.trunc(100*d.live)}%`),d.emotion&&d.emotion.length>0){let p=d.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),h.push(p.join(" "))}d.rotation&&d.rotation.angle&&d.rotation.gaze&&(d.rotation.angle.roll&&h.push(`roll: ${Ld(d.rotation.angle.roll)}\xB0 yaw:${Ld(d.rotation.angle.yaw)}\xB0 pitch:${Ld(d.rotation.angle.pitch)}\xB0`),d.rotation.gaze.bearing&&h.push(`gaze: ${Ld(d.rotation.gaze.bearing)}\xB0`)),h.length===0&&h.push("face"),a.fillStyle=n.color;for(let p=h.length-1;p>=0;p--){let c=Math.max(d.box[0],0),f=p*n.lineHeight+d.box[1];n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(h[p],c+5,f+16)),a.fillStyle=n.labelColor,a.fillText(h[p],c+4,f+15)}}if(a.lineWidth=2,d.mesh&&d.mesh.length>0){if(n.drawPoints)for(let h of d.mesh)P5(a,h[0],h[1],h[2],n);if(n.drawPolygons){if(d.mesh.length>450)for(let h=0;h<Rl.length/3;h++){let p=[Rl[h*3+0],Rl[h*3+1],Rl[h*3+2]].map(c=>d.mesh[c]);y9(a,p,n)}if(d.annotations&&d.annotations.leftEyeIris&&d.annotations.leftEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.leftEyeIris[3][0]-d.annotations.leftEyeIris[1][0])/2,p=Math.abs(d.annotations.leftEyeIris[4][1]-d.annotations.leftEyeIris[2][1])/2;a.ellipse(d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(d.annotations&&d.annotations.rightEyeIris&&d.annotations.rightEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.rightEyeIris[3][0]-d.annotations.rightEyeIris[1][0])/2,p=Math.abs(d.annotations.rightEyeIris[4][1]-d.annotations.rightEyeIris[2][1])/2;a.ellipse(d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(n.drawGaze&&((s=d.rotation)==null?void 0:s.angle)&&typeof Path2D!="undefined"){a.strokeStyle="pink";let h=d.box[0]+d.box[2]/2-d.box[3]*Ld(d.rotation.angle.yaw)/90,p=d.box[1]+d.box[3]/2+d.box[2]*Ld(d.rotation.angle.pitch)/90,c=new Path2D(`
|
|
M ${d.box[0]+d.box[2]/2} ${d.box[1]}
|
|
C
|
|
${h} ${d.box[1]},
|
|
${h} ${d.box[1]+d.box[3]},
|
|
${d.box[0]+d.box[2]/2} ${d.box[1]+d.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${d.box[0]} ${d.box[1]+d.box[3]/2}
|
|
C
|
|
${d.box[0]} ${p},
|
|
${d.box[0]+d.box[2]} ${p},
|
|
${d.box[0]+d.box[2]} ${d.box[1]+d.box[3]/2}
|
|
`);a.stroke(f),a.stroke(c)}if(n.drawGaze&&((o=(i=d.rotation)==null?void 0:i.gaze)==null?void 0:o.strength)&&((u=(l=d.rotation)==null?void 0:l.gaze)==null?void 0:u.bearing)&&d.annotations.leftEyeIris&&d.annotations.rightEyeIris&&d.annotations.leftEyeIris[0]&&d.annotations.rightEyeIris[0]){a.strokeStyle="pink",a.fillStyle="pink";let h=[d.annotations.leftEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.leftEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];g9(a,[d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1]],[h[0],h[1]],4);let p=[d.annotations.rightEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.rightEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];g9(a,[d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function O5(e,t,r){var s;let n=kr(ds,r);if(!t||!e)return;let a=Dl(e);if(!!a){a.lineJoin="round";for(let i=0;i<t.length;i++){if(a.strokeStyle=n.color,a.fillStyle=n.color,a.lineWidth=n.lineWidth,a.font=n.font,n.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(qh(a,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+n.lineHeight,t[i].box[2])),a.fillStyle=n.labelColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+n.lineHeight,t[i].box[2]))),n.drawPoints&&t[i].keypoints)for(let o=0;o<t[i].keypoints.length;o++)!t[i].keypoints[o].score||t[i].keypoints[o].score===0||(a.fillStyle=n.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:n.color,P5(a,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,n));if(n.drawLabels&&t[i].keypoints){a.font=n.font;for(let o of t[i].keypoints)!o.score||o.score===0||(a.fillStyle=n.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:n.color,a.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(n.drawPolygons&&t[i].keypoints&&t[i].annotations)for(let o of Object.values(t[i].annotations))for(let l of o)gAe(a,l,n)}}}async function D5(e,t,r){let n=kr(ds,r);if(!t||!e)return;let a=Dl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t){if(n.drawBoxes&&(a.strokeStyle=n.color,a.fillStyle=n.color,qh(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])),a.stroke()),n.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)a.fillStyle=n.useDepth?`rgba(${127.5+2*(i[2]||0)}, ${127.5-2*(i[2]||0)}, 255, 0.5)`:n.color,P5(a,i[0],i[1],0,n);if(n.drawLabels&&s.annotations){let i=(o,l)=>{if(!o||o.length===0||!o[0])return;let u=o[o.length-1][2]||0;a.fillStyle=n.useDepth?`rgba(${127.5+2*u}, ${127.5-2*u}, 255, 0.5)`:n.color,a.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};a.font=n.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let i=o=>{if(!(!o||o.length===0||!o[0]))for(let l=0;l<o.length;l++){a.beginPath();let u=o[l][2]||0;a.strokeStyle=n.useDepth?`rgba(${127.5+l*u}, ${127.5-l*u}, 255, 0.5)`:n.color,a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()}};a.lineWidth=n.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function L5(e,t,r){let n=kr(ds,r);if(!t||!e)return;let a=Dl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,qh(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}a.stroke()}}}async function A9(e,t,r){let n=kr(ds,r);if(!t||!e)return;let a=Dl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,qh(a,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),a.fillStyle=n.labelColor,a.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}a.stroke()}}}async function x9(e,t){if(!e||!t)return;let r=Dl(t);!r||r.drawImage(e,0,0)}async function b9(e,t,r){if(!t||!t.performance||!t||!e)return null;let n=oe(),a=kr(ds,r),s=Promise.all([z5(e,t.face,a),O5(e,t.body,a),D5(e,t.hand,a),L5(e,t.object,a),_5(e,t.gesture,a)]);return $5=ce.perfadd?$5+Math.round(oe()-n):Math.round(oe()-n),t.performance.draw=$5,s}var Bd=.1,B5=.5;function AAe(e,t,r){let n=!1,a=r.length-1;for(let s=0;s<r.length;a=s++)r[s].y>t!=r[a].y>t&&e<(r[a].x-r[s].x)*(t-r[s].y)/(r[a].y-r[s].y)+r[s].x&&(n=!n);return n}async function v9(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,r=e.tensor.shape[1]||0,n=await e.tensor.buffer(),a=[];for(let i of Zn.silhouette)a.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});Bd&&Bd>0&&(a=a.map(i=>({x:i.x>.5?i.x+Bd:i.x-Bd,y:i.y>.5?i.y+Bd:i.y-Bd})));for(let i=0;i<t;i++)for(let o=0;o<r;o++)AAe(i/t,o/t,a)||(n.set(B5*n.get(0,o,i,0),0,o,i,0),n.set(B5*n.get(0,o,i,1),0,o,i,1),n.set(B5*n.get(0,o,i,2),0,o,i,2));let s=n.toTensor();return re(n),s}var bAe=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let r=[0,-.1],n=1,a=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=a?e.mesh[473]:e.mesh[468],i=a?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=a?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-r[0],n*(s[1]-i[1])/o[1]-r[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},w9=(e,t)=>{let r=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},n=(m,g)=>{let y=m[0]-g[0],A=m[1]-g[1],x=m[2]-g[2];return[y,A,x]},a=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],A=m[2]*g[0]-m[0]*g[2],x=m[0]*g[1]-m[1]*g[0];return[y,A,x]},s=m=>{let[g,y,A,x,b,w,T,S,E]=m,R,_,M;return x<1?x>-1?(M=Math.asin(x),_=Math.atan2(-T,g),R=Math.atan2(-w,b)):(M=-Math.PI/2,_=-Math.atan2(S,E),R=0):(M=Math.PI/2,_=Math.atan2(S,E),R=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),isNaN(M)&&(M=0),{pitch:2*-R,yaw:2*-_,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(m=>[m[0]*t[0]/o,m[1]*t[1]/o,m[2]]),u=r(n(l[1],l[0])),d=r(n(l[3],l[2])),h=r(a(d,u));d=a(u,h);let p=[d[0],d[1],d[2],u[0],u[1],u[2],h[0],h[1],h[2]],c=s(p),f=i.length===478?bAe(e):{bearing:0,strength:0};return{angle:c,matrix:p,gaze:f}};var W5=async(e,t)=>{var c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X,D,Q;let r=oe(),n,a,s,i,o,l,u,d,h=[];e.state="run:face";let p=await oC(t,e.config);if(e.performance.face=ce.perfadd?(e.performance.face||0)+Math.trunc(oe()-r):Math.trunc(oe()-r),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let V=0;V<p.length;V++){if(e.analyze("Get Face"),!p[V].tensor||p[V].tensor.isDisposedInternal){ie("Face object is disposed:",p[V].tensor);continue}if((c=e.config.face.detector)!=null&&c.mask){let ae=await v9(p[V]);re(p[V].tensor),p[V].tensor=ae}let ee=p[V].mesh&&p[V].mesh.length>200?w9(p[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(f=e.config.face.emotion)!=null&&f.enabled?Hb(p[V].tensor||ct([]),e.config,V,p.length):[]:(e.state="run:emotion",r=oe(),i=(m=e.config.face.emotion)!=null&&m.enabled?await Hb(p[V].tensor||ct([]),e.config,V,p.length):[],e.performance.emotion=ce.perfadd?(e.performance.emotion||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Sb(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:antispoof",r=oe(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Sb(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.antispoof=ce.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(A=e.config.face.liveness)!=null&&A.enabled?f5(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:liveness",r=oe(),u=(x=e.config.face.liveness)!=null&&x.enabled?await f5(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.liveness=ce.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?a=(b=e.config.face.gear)!=null&&b.enabled?Ab(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:gear",r=oe(),a=(w=e.config.face.gear)!=null&&w.enabled?await Ab(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.gear=Math.trunc(oe()-r)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(T=e.config.face.ssrnet)!=null&&T.enabled?bb(p[V].tensor||ct([]),e.config,V,p.length):null,s=(S=e.config.face.ssrnet)!=null&&S.enabled?kb(p[V].tensor||ct([]),e.config,V,p.length):null):(e.state="run:ssrnet",r=oe(),n=(E=e.config.face.ssrnet)!=null&&E.enabled?await bb(p[V].tensor||ct([]),e.config,V,p.length):null,s=(R=e.config.face.ssrnet)!=null&&R.enabled?await kb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.ssrnet=Math.trunc(oe()-r)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(_=e.config.face.mobilefacenet)!=null&&_.enabled?Kb(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:mobilefacenet",r=oe(),o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?await Kb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.mobilefacenet=Math.trunc(oe()-r)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?d=(I=e.config.face.description)!=null&&I.enabled?e5(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:description",r=oe(),d=(O=e.config.face.description)!=null&&O.enabled?await e5(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.description=ce.perfadd?(e.performance.description||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,d,a,l,u]=await Promise.all([n,s,i,o,d,a,l,u])),e.analyze("Finish Face:"),((z=e.config.face.ssrnet)==null?void 0:z.enabled)&&n&&s&&(d={...d,age:n.age,gender:s.gender,genderScore:s.genderScore}),((j=e.config.face.gear)==null?void 0:j.enabled)&&a&&(d={...d,age:a.age,gender:a.gender,genderScore:a.genderScore,race:a.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&o&&(d.descriptor=o),(D=e.config.face.iris)!=null&&D.enabled;let J=p[V].annotations&&p[V].annotations.leftEyeIris&&p[V].annotations.leftEyeIris[0]&&p[V].annotations.rightEyeIris&&p[V].annotations.rightEyeIris[0]&&p[V].annotations.leftEyeIris.length>0&&p[V].annotations.rightEyeIris.length>0&&p[V].annotations.leftEyeIris[0]!==null&&p[V].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[V].annotations.leftEyeIris[3][0]-p[V].annotations.leftEyeIris[1][0]),Math.abs(p[V].annotations.rightEyeIris[4][1]-p[V].annotations.rightEyeIris[2][1]))/t.shape[2]:0,se=(Q=e.config.face.detector)!=null&&Q.return?et(p[V].tensor):null;re(p[V].tensor),p[V].tensor&&delete p[V].tensor;let Z={...p[V],id:V};d!=null&&d.age&&(Z.age=d.age),d!=null&&d.gender&&(Z.gender=d.gender),d!=null&&d.genderScore&&(Z.genderScore=d==null?void 0:d.genderScore),d!=null&&d.descriptor&&(Z.embedding=d==null?void 0:d.descriptor),d!=null&&d.race&&(Z.race=d==null?void 0:d.race),i&&(Z.emotion=i),l&&(Z.real=l),u&&(Z.live=u),J&&J!==0&&(Z.iris=Math.trunc(500/J/11.7)/100),ee&&(Z.rotation=ee),se&&(Z.tensor=se),h.push(Z),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),h};var k9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=e[r].keypoints.find(l=>l.part==="leftWrist"),a=e[r].keypoints.find(l=>l.part==="rightWrist"),s=e[r].keypoints.find(l=>l.part==="nose");s&&n&&a&&n.position[1]<s.position[1]&&a.position[1]<s.position[1]?t.push({body:r,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:r,gesture:"raise left hand"}):s&&a&&a.position[1]<s.position[1]&&t.push({body:r,gesture:"raise right hand"});let i=e[r].keypoints.find(l=>l.part==="leftShoulder"),o=e[r].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:r,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},I9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++)if(e[r].mesh&&e[r].mesh.length>450){let n=(e[r].mesh[33][2]||0)-(e[r].mesh[263][2]||0),a=e[r].mesh[33][0]-e[r].mesh[263][0];Math.abs(n/a)<=.15?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));o>10&&t.push({face:r,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[r].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:r,gesture:`head ${l<0?"up":"down"}`})}return t},S9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){if(!e[r].annotations||!e[r].annotations.leftEyeIris||!e[r].annotations.leftEyeIris[0]||!e[r].annotations.rightEyeIris||!e[r].annotations.rightEyeIris[0])continue;let n=e[r].annotations.leftEyeIris[3][0]-e[r].annotations.leftEyeIris[1][0],a=e[r].annotations.leftEyeIris[4][1]-e[r].annotations.leftEyeIris[2][1],s=Math.abs(n*a),i=e[r].annotations.rightEyeIris[3][0]-e[r].annotations.rightEyeIris[1][0],o=e[r].annotations.rightEyeIris[4][1]-e[r].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:r,gesture:"facing center"}));let h=Math.abs(e[r].mesh[263][0]-e[r].annotations.leftEyeIris[0][0])/e[r].box[2],p=Math.abs(e[r].mesh[33][0]-e[r].annotations.rightEyeIris[0][0])/e[r].box[2];(h>.06||p>.06)&&(u=!1),h>p?h>.05&&t.push({iris:r,gesture:"looking right"}):p>.05&&t.push({iris:r,gesture:"looking left"});let c=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].box[3],f=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].box[3];(f<.01||c<.01||f>.022||c>.022)&&(u=!1),(f<.01||c<.01)&&t.push({iris:r,gesture:"looking down"}),(f>.022||c>.022)&&t.push({iris:r,gesture:"looking up"}),u&&t.push({iris:r,gesture:"looking center"})}return t},T9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=[];if(e[r].annotations)for(let[a,s]of Object.entries(e[r].annotations))a!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:a.toLowerCase(),position:s[0]});if(n&&n.length>0){let a=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:r,gesture:`${a.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:r,gesture:`${s.name} up`})}if(e[r].keypoints){let a=FC(e[r].keypoints);for(let s of a)t.push({hand:r,gesture:s.name})}}return t};var Ce={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},V5=0;function N9(e,t){var i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X;let r=oe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let n=Date.now()-e.timestamp,a=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(Ce.canvas=e.canvas),e.error&&(Ce.error=e.error),!Ce.body||e.body.length!==Ce.body.length)Ce.body=JSON.parse(JSON.stringify(e.body));else for(let D=0;D<e.body.length;D++){let Q=e.body[D].box.map((Z,ae)=>((a-1)*Ce.body[D].box[ae]+Z)/a),V=e.body[D].boxRaw.map((Z,ae)=>((a-1)*Ce.body[D].boxRaw[ae]+Z)/a),ee=e.body[D].keypoints.map((Z,ae)=>{var de,Ae,be,Ee,Me,De,Be,Ze,ot;return{score:Z.score,part:Z.part,position:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[0]||0)+(Z.position[0]||0))/a:Z.position[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[1]||0)+(Z.position[1]||0))/a:Z.position[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[2]||0)+(Z.position[2]||0))/a:Z.position[2]],positionRaw:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[0]||0)+(Z.positionRaw[0]||0))/a:Z.positionRaw[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[1]||0)+(Z.positionRaw[1]||0))/a:Z.positionRaw[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[2]||0)+(Z.positionRaw[2]||0))/a:Z.positionRaw[2]],distance:[Ce.body[D].keypoints[ae]?((a-1)*(((de=Ce.body[D].keypoints[ae].distance)==null?void 0:de[0])||0)+(((Ae=Z.distance)==null?void 0:Ae[0])||0))/a:(be=Z.distance)==null?void 0:be[0],Ce.body[D].keypoints[ae]?((a-1)*(((Ee=Ce.body[D].keypoints[ae].distance)==null?void 0:Ee[1])||0)+(((Me=Z.distance)==null?void 0:Me[1])||0))/a:(De=Z.distance)==null?void 0:De[1],Ce.body[D].keypoints[ae]?((a-1)*(((Be=Ce.body[D].keypoints[ae].distance)==null?void 0:Be[2])||0)+(((Ze=Z.distance)==null?void 0:Ze[2])||0))/a:(ot=Z.distance)==null?void 0:ot[2]]}}),J={},se={connected:{}};(o=(i=t.body)==null?void 0:i.modelPath)!=null&&o.includes("efficientpose")?se=E0:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?se=I0:(h=(d=t.body)==null?void 0:d.modelPath)!=null&&h.includes("movenet")&&(se=Gh);for(let[Z,ae]of Object.entries(se.connected)){let de=[];for(let Ae=0;Ae<ae.length-1;Ae++){let be=ee.find(Me=>Me.part===ae[Ae]),Ee=ee.find(Me=>Me.part===ae[Ae+1]);be&&Ee&&de.push([be.position,Ee.position])}J[Z]=de}Ce.body[D]={...e.body[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.hand||e.hand.length!==Ce.hand.length)Ce.hand=JSON.parse(JSON.stringify(e.hand));else for(let D=0;D<e.hand.length;D++){let Q=e.hand[D].box.map((se,Z)=>((a-1)*Ce.hand[D].box[Z]+se)/a),V=e.hand[D].boxRaw.map((se,Z)=>((a-1)*Ce.hand[D].boxRaw[Z]+se)/a);Ce.hand[D].keypoints.length!==e.hand[D].keypoints.length&&(Ce.hand[D].keypoints=e.hand[D].keypoints);let ee=e.hand[D].keypoints&&e.hand[D].keypoints.length>0?e.hand[D].keypoints.map((se,Z)=>se.map((ae,de)=>((a-1)*(Ce.hand[D].keypoints[Z][de]||1)+(ae||0))/a)):[],J={};if(Object.keys(Ce.hand[D].annotations).length!==Object.keys(e.hand[D].annotations).length)Ce.hand[D].annotations=e.hand[D].annotations,J=Ce.hand[D].annotations;else if(e.hand[D].annotations)for(let se of Object.keys(e.hand[D].annotations))J[se]=e.hand[D].annotations[se]&&e.hand[D].annotations[se][0]?e.hand[D].annotations[se].map((Z,ae)=>Z.map((de,Ae)=>((a-1)*Ce.hand[D].annotations[se][ae][Ae]+de)/a)):null;Ce.hand[D]={...e.hand[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.face||e.face.length!==Ce.face.length)Ce.face=JSON.parse(JSON.stringify(e.face));else for(let D=0;D<e.face.length;D++){let Q=e.face[D].box.map((ee,J)=>((a-1)*Ce.face[D].box[J]+ee)/a),V=e.face[D].boxRaw.map((ee,J)=>((a-1)*Ce.face[D].boxRaw[J]+ee)/a);if(e.face[D].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(p=e.face[D].rotation)==null?void 0:p.matrix,ee.angle={roll:((a-1)*(((f=(c=Ce.face[D].rotation)==null?void 0:c.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[D].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/a,yaw:((a-1)*(((A=(y=Ce.face[D].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[D].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/a,pitch:((a-1)*(((T=(w=Ce.face[D].rotation)==null?void 0:w.angle)==null?void 0:T.pitch)||0)+(((E=(S=e.face[D].rotation)==null?void 0:S.angle)==null?void 0:E.pitch)||0))/a},ee.gaze={bearing:((a-1)*(((_=(R=Ce.face[D].rotation)==null?void 0:R.gaze)==null?void 0:_.bearing)||0)+(((I=(M=e.face[D].rotation)==null?void 0:M.gaze)==null?void 0:I.bearing)||0))/a,strength:((a-1)*(((z=(O=Ce.face[D].rotation)==null?void 0:O.gaze)==null?void 0:z.strength)||0)+(((X=(j=e.face[D].rotation)==null?void 0:j.gaze)==null?void 0:X.strength)||0))/a},Ce.face[D]={...e.face[D],rotation:ee,box:Q,boxRaw:V}}Ce.face[D]={...e.face[D],box:Q,boxRaw:V}}if(!Ce.object||e.object.length!==Ce.object.length)Ce.object=JSON.parse(JSON.stringify(e.object));else for(let D=0;D<e.object.length;D++){let Q=e.object[D].box.map((ee,J)=>((a-1)*Ce.object[D].box[J]+ee)/a),V=e.object[D].boxRaw.map((ee,J)=>((a-1)*Ce.object[D].boxRaw[J]+ee)/a);Ce.object[D]={...e.object[D],box:Q,boxRaw:V}}if(e.persons){let D=e.persons;if(!Ce.persons||D.length!==Ce.persons.length)Ce.persons=JSON.parse(JSON.stringify(D));else for(let Q=0;Q<D.length;Q++)Ce.persons[Q].box=D[Q].box.map((V,ee)=>((a-1)*Ce.persons[Q].box[ee]+V)/a)}e.gesture&&(Ce.gesture=e.gesture);let s=oe();return V5=ce.perfadd?V5+Math.round(s-r):Math.round(s-r),e.performance&&(Ce.performance={...e.performance,interpolate:V5}),Ce}function K0(e,t,r={order:2,multiplier:25}){let n=0;for(let a=0;a<e.length;a++){let s=!r.order||r.order===2?e[a]-t[a]:Math.abs(e[a]-t[a]);n+=!r.order||r.order===2?s*s:s**r.order}return(r.multiplier||20)*n}var C9=(e,t,r,n)=>{if(e===0)return 1;let a=t===2?Math.sqrt(e):e**(1/t),s=(1-a/100-r)/(n-r);return Math.max(Math.min(s,1),0)};function E9(e,t,r={order:2,multiplier:25,min:.2,max:.8}){let n=K0(e,t,r);return C9(n,r.order||2,r.min||0,r.max||1)}function R9(e,t,r={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,a=-1;for(let i=0;i<t.length;i++){let o=K0(e,t[i],r);if(o<n&&(n=o,a=i),n<(r.threshold||0))break}let s=C9(n,r.order||2,r.min||0,r.max||1);return{index:a,distance:n,similarity:s}}function M9(e,t,r,n,a){var o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T;let s=0,i=[];for(let S of e){let E={id:s++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let z of t)S.box[0]>z.box[0]&&S.box[0]<z.box[0]+z.box[2]&&S.box[1]+S.box[3]>z.box[1]&&S.box[1]+S.box[3]<z.box[1]+z.box[3]&&(E.body=z);if(E.body)for(let z of r)z.box[0]+z.box[2]>E.body.box[0]&&z.box[0]+z.box[2]<E.body.box[0]+E.body.box[2]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=z),z.box[0]<E.body.box[0]+E.body.box[2]&&z.box[0]>E.body.box[0]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=z);for(let z of n)z.face!==void 0&&z.face===S.id?(o=E.gestures)==null||o.push(z):z.iris!==void 0&&z.iris===S.id?(l=E.gestures)==null||l.push(z):z.body!==void 0&&z.body===((u=E.body)==null?void 0:u.id)?(d=E.gestures)==null||d.push(z):z.hand!==void 0&&z.hand===((p=(h=E.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=E.gestures)==null||c.push(z):z.hand!==void 0&&z.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(z));let R=[],_=[],M=z=>{z&&z.length===4&&(R.push(z[0],z[0]+z[2]),_.push(z[1],z[1]+z[3]))};M((y=E.face)==null?void 0:y.box),M((A=E.body)==null?void 0:A.box),M((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),M((T=(w=E.hands)==null?void 0:w.right)==null?void 0:T.box);let I=Math.min(...R),O=Math.min(..._);E.box=[I,O,Math.max(...R)-I,Math.max(..._)-O],a&&a[1]&&a[2]&&(E.boxRaw=[E.box[0]/a[2],E.box[1]/a[1],E.box[2]/a[2],E.box[3]/a[1]]),i.push(E)}return i}var X0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Z0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function NAe(e){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),r,n;switch(e.config.warmup){case"face":r=await t(X0);break;case"body":case"full":r=await t(Z0);break;default:r=null}if(r){let a=await createImageBitmap(r);n=await e.detect(a,e.config),a.close()}return n}async function CAe(e){return new Promise(t=>{let r;switch(e.config.warmup){case"face":r="data:image/jpeg;base64,"+X0;break;case"full":case"body":r="data:image/jpeg;base64,"+Z0;break;default:r=null}let n;if(typeof Image!="undefined")n=new Image;else if(ce.Image)n=new ce.Image;else return;n.onload=async()=>{let a=Hr(n.naturalWidth,n.naturalHeight);if(!a)ie("Warmup: Canvas not found"),t(void 0);else{let s=a.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(a),o=await e.detect(i.tensor,e.config);t(o)}},r?n.src=r:t(void 0)})}async function EAe(e){let t=a=>Buffer.from(a,"base64"),r;e.config.warmup==="face"?r=t(X0):r=t(Z0);let n;if("node"in Ue){let a=(void 0).decodeJpeg(r),s=a.expandDims(0);e.tf.dispose(a),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&ie("Warmup tfjs-node not loaded");return n}async function RAe(e){let t;return typeof createImageBitmap=="function"?t=await NAe(e):typeof Image!="undefined"||ce.Canvas!==void 0?t=await CAe(e):t=await EAe(e),t}async function F9(e,t){let r=oe();return e.state="warmup",t&&(e.config=kr(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:oe(),persons:[],error:null}:new Promise(async n=>{let a=await RAe(e),s=oe();e.config.debug&&ie("warmup",e.config.warmup,Math.round(s-r),"ms"),e.emit("warmup"),n(a)})}var Wd,Kh,Xh,Y0,$9=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");rp(this,Wd,void 0);rp(this,Kh,void 0);rp(this,Xh,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!tp(this,Kh))return;let r=this.tf.engine().state.numTensors,n=tp(this,Wd);np(this,Wd,r);let a=r-n;a!==0&&ie(...t,a)});rp(this,Y0,t=>{if(!tp(this,Xh))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof rt))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});fe(this,"similarity",E9);fe(this,"distance",K0);fe(this,"match",R9);fe(this,"emit",t=>{var r;this.events&&this.events.dispatchEvent&&((r=this.events)==null||r.dispatchEvent(new Event(t)))});this.env=ce,gs.wasmPath=Oh["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${p2}/dist/`,gs.modelBasePath=ce.browser?"../models/":"file://models/",gs.backend=ce.browser?"humangl":"tensorflow",this.version=mb,Object.defineProperty(this,"version",{value:mb}),this.config=JSON.parse(JSON.stringify(gs)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=kr(this.config,t)),QT(this.config),this.tf=Ue,this.state="idle",np(this,Wd,0),np(this,Kh,!1),np(this,Xh,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new M5,this.draw={options:ds,canvas:(r,n)=>x9(r,n),face:(r,n,a)=>z5(r,n,a),body:(r,n,a)=>O5(r,n,a),hand:(r,n,a)=>D5(r,n,a),gesture:(r,n,a)=>_5(r,n,a),object:(r,n,a)=>L5(r,n,a),person:(r,n,a)=>A9(r,n,a),all:(r,n,a)=>b9(r,n,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=uC,this.faceUVMap=dC,this.gl=Ct,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(gs)),this.config.backend=t}validate(t){return Ey(gs,t||this.config)}now(){return oe()}image(t,r=!0){return Sd(t,this.config,r)}async segmentation(t,r){return u9(t,r,this.config)}enhance(t){return Qb(t)}compare(t,r){return YT(this.config,t,r)}async init(){await q0(this,!0),await this.tf.ready()}async load(t){this.state="load";let r=oe(),n=Object.values(this.models).filter(i=>i).length;t&&(this.config=kr(this.config,t)),this.env.initial&&(this.config.debug&&ie(`version: ${this.version}`),this.config.debug&&ie(`tfjs version: ${this.tf.version["tfjs-core"]}`),await q0(this)||ie("error: backend check failed"),await td(),this.env.browser&&(this.config.debug&&ie("configuration:",this.config),this.config.debug&&ie("environment:",this.env),this.config.debug&&ie("tf flags:",this.tf.ENV.flags))),await p9(this),this.env.initial&&this.config.debug&&ie("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(i=>i).length!==n&&(await h9(this),this.emit("load"));let s=Math.trunc(oe()-r);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return N9(t,this.config)}async warmup(t){let r=oe(),n=await F9(this,t),a=oe();return this.performance.warmup=Math.trunc(a-r),n}async profile(t,r){let n=await this.tf.profile(()=>this.detect(t,r)),a={};for(let o of n.kernels)a[o.name]?a[o.name]+=o.kernelTimeMs:a[o.name]=o.kernelTimeMs;let s=[];Object.entries(a).forEach(o=>s.push({name:o[0],ms:o[1]})),s.sort((o,l)=>l.ms-o.ms),s.length=20;let i={};for(let o of s)i[o.name]=o.ms;return i}async detect(t,r){return this.state="detect",new Promise(async n=>{var g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X,D,Q,V,ee,J;this.state="config";let a;this.config=kr(this.config,r),this.state="check";let s=tp(this,Y0).call(this,t);s&&(ie(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:s}));let i=oe();await q0(this),await this.load(),a=oe(),this.state="image";let o=await Sd(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Get Image:"),!o.tensor){this.config.debug&&ie("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),a=oe(),this.config.skipAllowed=await ZT(this.config,o.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Check Changed:");let l=[],u=[],d=[],h=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?W5(this,o.tensor):[],this.performance.face&&delete this.performance.face):(a=oe(),l=this.config.face.enabled?await W5(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?kr(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?C5(o.tensor,p):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Ob(o.tensor,p):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?Gb(o.tensor,p):[]:(x=this.config.body.modelPath)!=null&&x.includes("movenet")&&(u=this.config.body.enabled?b5(o.tensor,p):[]),this.performance.body&&delete this.performance.body):(a=oe(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await C5(o.tensor,p):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Ob(o.tensor,p):[]:(T=this.config.body.modelPath)!=null&&T.includes("efficientpose")?u=this.config.body.enabled?await Gb(o.tensor,p):[]:(S=this.config.body.modelPath)!=null&&S.includes("movenet")&&(u=this.config.body.enabled?await b5(o.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let c=this.config.hand.maxDetected===-1?kr(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?d=this.config.hand.enabled?l5(o.tensor,c):[]:(M=(_=this.config.hand.detector)==null?void 0:_.modelPath)!=null&&M.includes("handtrack")&&(d=this.config.hand.enabled?h5(o.tensor,c):[]),this.performance.hand&&delete this.performance.hand):(a=oe(),(O=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&O.includes("handdetect")?d=this.config.hand.enabled?await l5(o.tensor,c):[]:(j=(z=this.config.hand.detector)==null?void 0:z.modelPath)!=null&&j.includes("handtrack")&&(d=this.config.hand.enabled?await h5(o.tensor,c):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((X=this.config.object.modelPath)!=null&&X.includes("nanodet")?h=this.config.object.enabled?w5(o.tensor,this.config):[]:(D=this.config.object.modelPath)!=null&&D.includes("centernet")&&(h=this.config.object.enabled?Bb(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(a=oe(),(Q=this.config.object.modelPath)!=null&&Q.includes("nanodet")?h=this.config.object.enabled?await w5(o.tensor,this.config):[]:(V=this.config.object.modelPath)!=null&&V.includes("centernet")&&(h=this.config.object.enabled?await Bb(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,d,h]=await Promise.all([l,u,d,h])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(a=oe(),f=[...I9(l),...k9(u),...T9(d),...S9(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(oe()-i):Math.trunc(oe()-i);let m=((J=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:J.shape)||[];this.result={face:l,body:u,hand:d,gesture:f,object:h,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return M9(l,u,d,f,m)}},re(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};Wd=new WeakMap,Kh=new WeakMap,Xh=new WeakMap,Y0=new WeakMap;return FE(FAe);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|