mirror of https://github.com/vladmandic/human
219 lines
7.2 KiB
JavaScript
219 lines
7.2 KiB
JavaScript
/**
|
|
* Human demo for NodeJS
|
|
*/
|
|
|
|
const log = require('@vladmandic/pilogger');
|
|
const fs = require('fs');
|
|
const path = require('path');
|
|
const process = require('process');
|
|
|
|
let fetch; // fetch is dynamically imported later
|
|
|
|
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
|
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
|
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
|
|
|
// load specific version of Human library that matches TensorFlow mode
|
|
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
|
|
|
let human = null;
|
|
|
|
const myConfig = {
|
|
backend: 'tensorflow',
|
|
modelBasePath: 'file://models/',
|
|
debug: true,
|
|
async: false,
|
|
filter: {
|
|
enabled: true,
|
|
flip: true,
|
|
},
|
|
face: {
|
|
enabled: true,
|
|
detector: { enabled: true, rotation: false },
|
|
mesh: { enabled: true },
|
|
iris: { enabled: true },
|
|
description: { enabled: true },
|
|
emotion: { enabled: true },
|
|
},
|
|
hand: {
|
|
enabled: true,
|
|
},
|
|
// body: { modelPath: 'blazepose.json', enabled: true },
|
|
body: { enabled: true },
|
|
object: { enabled: true },
|
|
};
|
|
|
|
async function init() {
|
|
// create instance of human
|
|
human = new Human(myConfig);
|
|
// wait until tf is ready
|
|
await human.tf.ready();
|
|
// pre-load models
|
|
log.info('Human:', human.version);
|
|
// log.info('Active Configuration', human.config);
|
|
await human.load();
|
|
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
|
log.info('Loaded:', loaded);
|
|
log.info('Memory state:', human.tf.engine().memory());
|
|
}
|
|
|
|
async function detect(input) {
|
|
// read input image file and create tensor to be used for processing
|
|
let buffer;
|
|
log.info('Loading image:', input);
|
|
if (input.startsWith('http:') || input.startsWith('https:')) {
|
|
const res = await fetch(input);
|
|
if (res && res.ok) buffer = await res.buffer();
|
|
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
|
|
} else {
|
|
buffer = fs.readFileSync(input);
|
|
}
|
|
|
|
// decode image using tfjs-node so we don't need external depenencies
|
|
// can also be done using canvas.js or some other 3rd party image library
|
|
if (!buffer) return {};
|
|
const tensor = human.tf.tidy(() => {
|
|
const decode = human.tf.node.decodeImage(buffer, 3);
|
|
let expand;
|
|
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
|
|
const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
|
|
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
|
|
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
|
|
} else {
|
|
expand = human.tf.expandDims(decode, 0);
|
|
}
|
|
const cast = human.tf.cast(expand, 'float32');
|
|
return cast;
|
|
});
|
|
|
|
// image shape contains image dimensions and depth
|
|
log.state('Processing:', tensor['shape']);
|
|
|
|
// run actual detection
|
|
let result;
|
|
try {
|
|
result = await human.detect(tensor, myConfig);
|
|
} catch (err) {
|
|
log.error('caught');
|
|
}
|
|
|
|
// dispose image tensor as we no longer need it
|
|
human.tf.dispose(tensor);
|
|
|
|
// print data to console
|
|
log.data('Results:');
|
|
if (result && result.face && result.face.length > 0) {
|
|
for (let i = 0; i < result.face.length; i++) {
|
|
const face = result.face[i];
|
|
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
|
|
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
|
|
}
|
|
} else {
|
|
log.data(' Face: N/A');
|
|
}
|
|
if (result && result.body && result.body.length > 0) {
|
|
for (let i = 0; i < result.body.length; i++) {
|
|
const body = result.body[i];
|
|
log.data(` Body: #${i} score:${body.score} keypoints:${body.keypoints?.length}`);
|
|
}
|
|
} else {
|
|
log.data(' Body: N/A');
|
|
}
|
|
if (result && result.hand && result.hand.length > 0) {
|
|
for (let i = 0; i < result.hand.length; i++) {
|
|
const hand = result.hand[i];
|
|
log.data(` Hand: #${i} score:${hand.score} keypoints:${hand.keypoints?.length}`);
|
|
}
|
|
} else {
|
|
log.data(' Hand: N/A');
|
|
}
|
|
if (result && result.gesture && result.gesture.length > 0) {
|
|
for (let i = 0; i < result.gesture.length; i++) {
|
|
const [key, val] = Object.entries(result.gesture[i]);
|
|
log.data(` Gesture: ${key[0]}#${key[1]} gesture:${val[1]}`);
|
|
}
|
|
} else {
|
|
log.data(' Gesture: N/A');
|
|
}
|
|
|
|
if (result && result.object && result.object.length > 0) {
|
|
for (let i = 0; i < result.object.length; i++) {
|
|
const object = result.object[i];
|
|
log.data(` Object: #${i} score:${object.score} label:${object.label}`);
|
|
}
|
|
} else {
|
|
log.data(' Object: N/A');
|
|
}
|
|
|
|
// print data to console
|
|
if (result) {
|
|
// invoke persons getter
|
|
const persons = result.persons;
|
|
|
|
// write result objects to file
|
|
// fs.writeFileSync('result.json', JSON.stringify(result, null, 2));
|
|
|
|
log.data('Persons:');
|
|
for (let i = 0; i < persons.length; i++) {
|
|
const face = persons[i].face;
|
|
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
|
|
const body = persons[i].body;
|
|
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
|
|
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
async function test() {
|
|
process.on('unhandledRejection', (err) => {
|
|
// @ts-ignore // no idea if exception message is compelte
|
|
log.error(err?.message || err || 'no error message');
|
|
});
|
|
|
|
// test with embedded full body image
|
|
let result;
|
|
|
|
log.state('Processing embedded warmup image: face');
|
|
myConfig.warmup = 'face';
|
|
result = await human.warmup(myConfig);
|
|
|
|
log.state('Processing embedded warmup image: full');
|
|
myConfig.warmup = 'full';
|
|
result = await human.warmup(myConfig);
|
|
// no need to print results as they are printed to console during detection from within the library due to human.config.debug set
|
|
return result;
|
|
}
|
|
|
|
async function main() {
|
|
log.configure({ inspect: { breakLength: 265 } });
|
|
log.header();
|
|
log.info('Current folder:', process.env.PWD);
|
|
fetch = (await import('node-fetch')).default;
|
|
await init();
|
|
const f = process.argv[2];
|
|
if (process.argv.length !== 3) {
|
|
log.warn('Parameters: <input image | folder> missing');
|
|
await test();
|
|
} else if (!fs.existsSync(f) && !f.startsWith('http')) {
|
|
log.error(`File not found: ${process.argv[2]}`);
|
|
} else {
|
|
if (fs.existsSync(f)) {
|
|
const stat = fs.statSync(f);
|
|
if (stat.isDirectory()) {
|
|
const dir = fs.readdirSync(f);
|
|
for (const file of dir) {
|
|
await detect(path.join(f, file));
|
|
}
|
|
} else {
|
|
await detect(f);
|
|
}
|
|
} else {
|
|
await detect(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
main();
|