mirror of https://github.com/vladmandic/human
5038 lines
1.3 MiB
5038 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var E4=Object.create,sh=Object.defineProperty,C4=Object.getPrototypeOf,R4=Object.prototype.hasOwnProperty,F4=Object.getOwnPropertyNames,M4=Object.getOwnPropertyDescriptor,Nf=e=>sh(e,"__esModule",{value:!0}),B2=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),er=(e,t)=>{for(var n in t)sh(e,n,{get:t[n],enumerable:!0})},$4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of F4(t))!R4.call(e,r)&&r!=="default"&&sh(e,r,{get:()=>t[r],enumerable:!(n=M4(t,r))||n.enumerable});return e},ih=e=>$4(Nf(sh(e!=null?E4(C4(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),z4=B2(e=>{Nf(e),er(e,{MediaPipeFaceMesh:()=>t,load:()=>r});var t=class{constructor(a,s,i,o){this.facePipeline=new O4(a,s,i,o),this.config=o}async estimateFaces(a,s){let i=await this.facePipeline.predict(a,s),o=[];for(let l of i||[]){if(l.isDisposedInternal)continue;let u=l.coords?l.coords.arraySync():null,c=l.rawCoords,h={};if(u&&u.length>0)for(let f of Object.keys(ga))h[f]=ga[f].map(m=>u[m]);let d=s.face.mesh.returnRawData&&l.box?{topLeft:l.box.startPoint,bottomRight:l.box.endPoint}:null,p=l.box?[Math.max(0,l.box.startPoint[0]),Math.max(0,l.box.startPoint[1]),Math.min(a.shape[2],l.box.endPoint[0])-l.box.startPoint[0],Math.min(a.shape[1],l.box.endPoint[1])-l.box.startPoint[1]]:0;o.push({confidence:l.faceConfidence||l.boxConfidence||0,boxConfidence:l.boxConfidence,faceConfidence:l.faceConfidence,box:p,mesh:u,boxRaw:d,meshRaw:c,annotations:h,image:l.image?Tr(l.image):null}),l.coords&&l.coords.dispose(),l.image&&l.image.dispose()}return o}},n=[null,null,null];async function r(a){n=await Promise.all([!n[0]&&a.face.enabled?D4(a):null,!n[1]&&a.face.mesh.enabled?Hn(a.face.mesh.modelPath,{fromTFHub:a.face.mesh.modelPath.includes("tfhub.dev")}):null,!n[2]&&a.face.iris.enabled?Hn(a.face.iris.modelPath,{fromTFHub:a.face.iris.modelPath.includes("tfhub.dev")}):null]);let s=new t(n[0],n[1],n[2],a);return a.face.mesh.enabled&&a.debug&&Le(`load model: ${a.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),a.face.iris.enabled&&a.debug&&Le(`load model: ${a.face.iris.modelPath.match(/\/(.*)\./)[1]}`),s}e.triangulation=ql}),Sf=B2(e=>{Nf(e),er(e,{NUM_KEYPOINTS:()=>n,connectedPartIndices:()=>s,partChannels:()=>o,partIds:()=>r,partNames:()=>t,poseChain:()=>i});var t=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],n=e.partNames.length,r=e.partNames.reduce((l,u,c)=>(l[u]=c,l),{}),a=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],s=a.map(([l,u])=>[r[l],r[u]]),i=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],o=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Le(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function L4(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);n&&n[0]&&(e=n[0].match(/\(([^()]+)\)/g)[0].replace(/\(|\)/g,""),t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," "))}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var V2={};er(V2,{Abs:()=>Wi,Acos:()=>Bi,Acosh:()=>Vi,AdadeltaOptimizer:()=>yd,AdagradOptimizer:()=>gd,AdamOptimizer:()=>xd,AdamaxOptimizer:()=>wd,Add:()=>xa,AddN:()=>Za,All:()=>lh,Any:()=>uh,ArgMax:()=>Ya,ArgMin:()=>Zl,Asin:()=>Ui,Asinh:()=>Hi,Atan:()=>ji,Atan2:()=>qi,Atanh:()=>Gi,AvgPool:()=>Ja,AvgPool3D:()=>Yl,AvgPool3DGrad:()=>hh,AvgPoolGrad:()=>ch,BackendWasm:()=>R0,BatchMatMul:()=>Qa,BatchToSpaceND:()=>Jl,Bincount:()=>dh,BroadcastTo:()=>H2,Callback:()=>H0,CallbackList:()=>z0,Cast:()=>es,Ceil:()=>ts,ClipByValue:()=>wa,Complex:()=>ph,ComplexAbs:()=>Ql,Concat:()=>Xi,Conv2D:()=>ns,Conv2DBackpropFilter:()=>fh,Conv2DBackpropInput:()=>rs,Conv3D:()=>eu,Conv3DBackpropFilterV2:()=>mh,Conv3DBackpropInputV2:()=>Ah,Cos:()=>as,Cosh:()=>Ki,CropAndResize:()=>Zi,Cumsum:()=>ss,CustomCallback:()=>P0,DataStorage:()=>oh,DenseBincount:()=>yh,DepthToSpace:()=>Yi,DepthwiseConv2dNative:()=>is,DepthwiseConv2dNativeBackpropFilter:()=>gh,DepthwiseConv2dNativeBackpropInput:()=>xh,Diag:()=>wh,Dilation2D:()=>tu,Dilation2DBackpropFilter:()=>_h,Dilation2DBackpropInput:()=>bh,ENV:()=>Kl,EarlyStopping:()=>j0,Elu:()=>Ji,EluGrad:()=>vh,Environment:()=>U2,Equal:()=>eo,Erf:()=>Qi,Exp:()=>ls,ExpandDims:()=>to,Expm1:()=>no,FFT:()=>kh,Fill:()=>nu,FlipLeftRight:()=>ro,Floor:()=>us,FloorDiv:()=>cs,FromPixels:()=>Lh,FusedBatchNorm:()=>hs,FusedConv2D:()=>Us,FusedDepthwiseConv2D:()=>Hs,GPGPUContext:()=>Am,GatherNd:()=>so,GatherV2:()=>ao,GraphModel:()=>G0,Greater:()=>io,GreaterEqual:()=>ds,History:()=>L0,IFFT:()=>Ih,Identity:()=>ps,Imag:()=>Nh,InputSpec:()=>jt,IsFinite:()=>oo,IsInf:()=>lo,IsNan:()=>uo,KernelBackend:()=>Xl,LRN:()=>su,LRNGrad:()=>Th,LayerVariable:()=>O0,LayersModel:()=>ta,LeakyRelu:()=>fs,Less:()=>co,LessEqual:()=>ho,LinSpace:()=>Sh,Log:()=>ms,Log1p:()=>po,LogSoftmax:()=>j2,LogicalAnd:()=>fo,LogicalNot:()=>ru,LogicalOr:()=>au,MathBackendCPU:()=>kd,MathBackendWebGL:()=>Du,Max:()=>As,MaxPool:()=>gs,MaxPool3D:()=>iu,MaxPool3DGrad:()=>Ch,MaxPoolGrad:()=>Eh,MaxPoolWithArgmax:()=>Rh,Maximum:()=>ys,Mean:()=>xs,Min:()=>ws,Minimum:()=>bs,MirrorPad:()=>ou,Mod:()=>mo,MomentumOptimizer:()=>bd,Multinomial:()=>Fh,Multiply:()=>_s,Neg:()=>Ao,NonMaxSuppressionV3:()=>go,NonMaxSuppressionV4:()=>xo,NonMaxSuppressionV5:()=>wo,NotEqual:()=>yo,OP_SCOPE_SUFFIX:()=>q2,OneHot:()=>vs,OnesLike:()=>bo,Optimizer:()=>ea,Pack:()=>_o,PadV2:()=>ks,Pool:()=>P4,Pow:()=>Is,Prelu:()=>Ns,Prod:()=>vo,RMSPropOptimizer:()=>_d,RNN:()=>Dr,Range:()=>lu,Rank:()=>Ef,Real:()=>Mh,RealDiv:()=>os,Reciprocal:()=>ko,Reduction:()=>cn,Relu:()=>Ss,Relu6:()=>Es,Reshape:()=>Io,ResizeBilinear:()=>Ts,ResizeBilinearGrad:()=>Dh,ResizeNearestNeighbor:()=>uu,ResizeNearestNeighborGrad:()=>$h,Reverse:()=>Cs,RotateWithOffset:()=>Po,Round:()=>Rs,Rsqrt:()=>Fs,SGDOptimizer:()=>$u,ScatterNd:()=>No,Select:()=>So,Selu:()=>To,Sequential:()=>Jo,Sigmoid:()=>$s,Sign:()=>Ro,Sin:()=>Ms,Sinh:()=>Co,Slice:()=>Eo,Softmax:()=>zs,Softplus:()=>Fo,SpaceToBatchND:()=>cu,SparseToDense:()=>Oh,SplitV:()=>Mo,Sqrt:()=>Ds,Square:()=>hu,SquaredDifference:()=>Ls,Step:()=>_a,StridedSlice:()=>$o,Sub:()=>Ps,Sum:()=>Os,SymbolicTensor:()=>gr,Tan:()=>Do,Tanh:()=>Ws,Tensor:()=>Je,TensorBuffer:()=>Ot,Tile:()=>ba,TopK:()=>Oo,Transpose:()=>Bs,Unique:()=>zh,Unpack:()=>zo,UnsortedSegmentSum:()=>du,Variable:()=>fu,ZerosLike:()=>Lo,_FusedMatMul:()=>Vs,abs:()=>zt,acos:()=>$f,acosh:()=>Df,add:()=>ie,addN:()=>Hh,all:()=>jh,any:()=>yu,argMax:()=>gu,argMin:()=>Of,asin:()=>zf,asinh:()=>Lf,atan:()=>Pf,atan2:()=>Wf,atanh:()=>Bf,avgPool:()=>xu,avgPool3d:()=>Vf,backend:()=>J2,backend_util:()=>C,basicLSTMCell:()=>t8,batchNorm:()=>Gs,batchNorm2d:()=>Q2,batchNorm3d:()=>e0,batchNorm4d:()=>t0,batchToSpaceND:()=>wu,bincount:()=>n0,booleanMaskAsync:()=>v8,broadcastTo:()=>bu,browser:()=>mu,buffer:()=>Ve,callbacks:()=>O8,cast:()=>ye,ceil:()=>Uf,clipByValue:()=>wn,clone:()=>Tr,complex:()=>va,concat:()=>lt,concat1d:()=>r0,concat2d:()=>Gh,concat3d:()=>a0,concat4d:()=>s0,constraints:()=>M0,conv1d:()=>qh,conv2d:()=>Yr,conv2dTranspose:()=>Xh,conv3d:()=>Hf,conv3dTranspose:()=>n8,copyRegisteredKernels:()=>V4,cos:()=>_u,cosh:()=>Kh,cosineWindow:()=>pm,cumsum:()=>Zh,customGrad:()=>Cr,data:()=>q0,denseBincount:()=>i0,deprecationWarn:()=>Mf,depthToSpace:()=>jf,depthwiseConv2d:()=>Uo,deregisterOp:()=>L8,device_util:()=>Bh,diag:()=>r8,dilation2d:()=>Gf,disableDeprecationWarnings:()=>G4,dispose:()=>Fe,disposeVariables:()=>q4,div:()=>ke,divNoNan:()=>qf,dot:()=>o0,dropout:()=>v0,elu:()=>Ho,enableDebugMode:()=>j4,enableProdMode:()=>H4,enclosingPowerOfTwo:()=>k0,engine:()=>Er,env:()=>Y,equal:()=>ka,erf:()=>Xf,exp:()=>jn,expandDims:()=>Tn,expm1:()=>Kf,eye:()=>Zf,fft:()=>Fu,fill:()=>vu,findBackend:()=>Y2,findBackendFactory:()=>Q4,floor:()=>jo,floorDiv:()=>Uh,forceHalfFloat:()=>C0,fused:()=>Ta,gather:()=>qs,gatherND:()=>_0,gather_util:()=>Rf,getBackend:()=>Y4,getGradient:()=>Tf,getKernel:()=>Ph,getKernelsForBackend:()=>pu,gpgpu_util:()=>T0,grad:()=>a8,grads:()=>s8,greater:()=>rr,greaterEqual:()=>Na,ifft:()=>Zo,imag:()=>Yh,image:()=>Tt,inTopKAsync:()=>I8,initializers:()=>$0,input:()=>W0,io:()=>xn,irfft:()=>dd,isFinite:()=>l0,isInf:()=>u0,isNaN:()=>c0,keep:()=>Ht,kernel_impls:()=>$r,layers:()=>D0,leakyRelu:()=>ku,less:()=>Jh,lessEqual:()=>Xs,linalg:()=>I0,linspace:()=>h0,loadGraphModel:()=>Hn,loadLayersModel:()=>$8,localResponseNormalization:()=>Yf,log:()=>En,log1p:()=>Qh,logSigmoid:()=>p0,logSoftmax:()=>ed,logSumExp:()=>Jf,logicalAnd:()=>ar,logicalNot:()=>Iu,logicalOr:()=>td,logicalXor:()=>f0,losses:()=>T8,matMul:()=>qe,math:()=>K2,max:()=>Gn,maxPool:()=>Nu,maxPool3d:()=>Qf,maxPoolWithArgmax:()=>m0,maximum:()=>Rr,mean:()=>vt,memory:()=>Vh,metrics:()=>B0,min:()=>qo,minimum:()=>Xo,mirrorPad:()=>em,mod:()=>tm,model:()=>F8,models:()=>V0,moments:()=>nd,movingAverage:()=>k8,mul:()=>W,multiRNNCell:()=>l8,multinomial:()=>A0,neg:()=>_t,nextFrame:()=>vd,norm:()=>Ad,notEqual:()=>Ks,oneHot:()=>Bo,ones:()=>Fr,onesLike:()=>Cn,op:()=>O,outerProduct:()=>u8,pad:()=>Jr,pad1d:()=>c8,pad2d:()=>h8,pad3d:()=>d8,pad4d:()=>p8,pool:()=>y0,pow:()=>Qr,prelu:()=>Tu,print:()=>X2,prod:()=>rd,profile:()=>js,rand:()=>f8,randomGamma:()=>m8,randomNormal:()=>g0,randomUniform:()=>Ko,range:()=>ad,ready:()=>Z4,real:()=>Eu,reciprocal:()=>nm,registerBackend:()=>Au,registerCallbackConstructor:()=>D8,registerGradient:()=>G2,registerKernel:()=>Wo,registerOp:()=>z8,regularizers:()=>U0,relu:()=>Mr,relu6:()=>sd,removeBackend:()=>J4,reshape:()=>j,reverse:()=>Rn,reverse1d:()=>A8,reverse2d:()=>y8,reverse3d:()=>g8,reverse4d:()=>x8,rfft:()=>Mu,round:()=>rm,rsqrt:()=>id,scalar:()=>Ie,scatterND:()=>b0,scatter_util:()=>Ff,selu:()=>od,separableConv2d:()=>am,sequential:()=>M8,serialization:()=>ae,setBackend:()=>K4,setPlatform:()=>e8,setWasmPath:()=>C8,setWasmPaths:()=>R8,setWebGLContext:()=>mm,setdiff1dAsync:()=>x0,shared:()=>fm,sigmoid:()=>nr,sign:()=>sm,signal:()=>S8,sin:()=>ld,sinh:()=>ud,slice:()=>Me,slice1d:()=>cd,slice2d:()=>im,slice3d:()=>hd,slice4d:()=>Cu,slice_util:()=>ln,softmax:()=>Ru,softplus:()=>Go,spaceToBatchND:()=>Su,sparseToDense:()=>dm,spectral:()=>N8,split:()=>un,sqrt:()=>Qt,square:()=>ot,squaredDifference:()=>pd,squeeze:()=>Sa,stack:()=>Fn,step:()=>Yo,stridedSlice:()=>om,sub:()=>we,sum:()=>Ce,sumOutType:()=>Wh,tan:()=>lm,tanh:()=>Vo,tensor:()=>Ar,tensor1d:()=>rn,tensor2d:()=>yr,tensor3d:()=>Cf,tensor4d:()=>w8,tensor5d:()=>b8,tensor6d:()=>_8,tensor_util:()=>mr,test_util:()=>Z2,tidy:()=>V,tile:()=>Ia,time:()=>X4,topk:()=>um,train:()=>Zs,transpose:()=>at,truncatedNormal:()=>fd,unique:()=>md,unregisterGradient:()=>B4,unregisterKernel:()=>W4,unsortedSegmentSum:()=>cm,unstack:()=>sr,upcastType:()=>tr,util:()=>v,valueAndGrad:()=>i8,valueAndGrads:()=>o8,variable:()=>w0,variableGrads:()=>d0,version:()=>W8,version_converter:()=>P8,version_core:()=>U4,version_cpu:()=>N0,version_layers:()=>ym,version_wasm:()=>F0,version_webgl:()=>E0,webgl:()=>E8,webgl_util:()=>S0,where:()=>bn,whereAsync:()=>hm,zeros:()=>Ft,zerosLike:()=>je});var B8=Object.create,Id=Object.defineProperty,V8=Object.getPrototypeOf,U8=Object.prototype.hasOwnProperty,H8=Object.getOwnPropertyNames,j8=Object.getOwnPropertyDescriptor,G8=e=>Id(e,"__esModule",{value:!0}),et=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Pe=(e,t)=>{for(var n in t)Id(e,n,{get:t[n],enumerable:!0})},q8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of H8(t))!U8.call(e,r)&&r!=="default"&&Id(e,r,{get:()=>t[r],enumerable:!(n=j8(t,r))||n.enumerable});return e},Qo=e=>q8(G8(Id(e!=null?B8(V8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),X8=et(()=>{}),K8=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Z8=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Y8=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J8=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q8=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ek=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gm=et(()=>{}),tk=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,w(n)]:_==null?b():_,3),T),M=new m(T),D=function(){for(var L=M.g(i),P=u,U=0;L<c;)L=(L+U)*s,P*=s,U=M.g(1);for(;L>=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(w(M.S),n),(x.pass||N||function(L,P,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,P):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+_[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var P,U=0,H=T.i,X=T.j,G=T.S;L--;)P=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+P])+(G[X]=P)];return T.i=H,T.j=X,U})(s)}function A(_,x){return x.i=_.i,x.j=_.j,x.S=_.S.slice(),x}function y(_,x){var N=[],T=typeof _,E;if(x&&T=="object")for(E in _)try{N.push(y(_[E],x-1))}catch(M){}return N.length?N:T=="string"?_:_+"\0"}function g(_,x){for(var N=_+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return w(x)}function b(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(_)),w(_)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,w(n)]}}function w(_){return String.fromCharCode.apply(0,_)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=gm()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),nk=et((e,t)=>{var n=K8(),r=Z8(),a=Y8(),s=J8(),i=Q8(),o=ek(),l=tk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),rk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ak=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ik=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ok=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uk=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,w(n)]:_==null?b():_,3),T),M=new m(T),D=function(){for(var L=M.g(i),P=u,U=0;L<c;)L=(L+U)*s,P*=s,U=M.g(1);for(;L>=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(w(M.S),n),(x.pass||N||function(L,P,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,P):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+_[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var P,U=0,H=T.i,X=T.j,G=T.S;L--;)P=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+P])+(G[X]=P)];return T.i=H,T.j=X,U})(s)}function A(_,x){return x.i=_.i,x.j=_.j,x.S=_.S.slice(),x}function y(_,x){var N=[],T=typeof _,E;if(x&&T=="object")for(E in _)try{N.push(y(_[E],x-1))}catch(M){}return N.length?N:T=="string"?_:_+"\0"}function g(_,x){for(var N=_+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return w(x)}function b(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(_)),w(_)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,w(n)]}}function w(_){return String.fromCharCode.apply(0,_)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=gm()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),ck=et((e,t)=>{var n=rk(),r=ak(),a=sk(),s=ik(),i=ok(),o=lk(),l=uk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Ou=et(()=>{}),hk=et(()=>{}),dk=et(()=>{}),pk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=Ue&&Yt(Q.buffer),fn}function i(){return Q.buffer!=Ue&&Yt(Q.buffer),bt}function o(){return Q.buffer!=Ue&&Yt(Q.buffer),mn}function l(){return Q.buffer!=Ue&&Yt(Q.buffer),Vn}function u(){return Q.buffer!=Ue&&Yt(Q.buffer),on}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],A="./this.program",y=function(I,S){throw S},g=!1,b=!1,w=!1,_=!1;g=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!g&&!w&&!b;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(Ue=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,D,L,P,U;if(w){b?N=Ou().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return P||(P=require("fs")),U||(U=Ou()),I=U.normalize(I),P.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Gl))throw I}),process.on("unhandledRejection",Xr),y=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var H;try{H=hk()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=H.Worker}else _?(typeof read!="undefined"&&(E=function(I){return read(I)}),D=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),me(typeof S=="object"),S)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(E=function(I,S){return P||(P=require("fs")),U||(U=Ou()),I=U.normalize(I),P.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},b&&(D=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,z){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(I){document.title=I});w&&typeof performance=="undefined"&&(global.performance=dk().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(y=c.quit);var ee=Atomics.load,J=Atomics.store,se=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var oe=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Xr("no native wasm support detected");var Q,pe,le=!1,Ae;function me(I,S){I||Xr("Assertion failed: "+S)}function Ne(I){var S=c["_"+I];return me(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Te(I,S,z,q,fe){var ue={string:function(gn){var Pi=0;if(gn!=null&&gn!==0){var W2=(gn.length<<2)+1;Pi=Oi(W2),nt(gn,Pi,W2)}return Pi},array:function(gn){var Pi=Oi(gn.length);return Ze(gn,Pi),Pi}};function de(gn){return S==="string"?De(gn):S==="boolean"?Boolean(gn):gn}var _e=Ne(I),rt=[],Ut=0;if(q)for(var Dt=0;Dt<q.length;Dt++){var ya=ue[z[Dt]];ya?(Ut===0&&(Ut=jl()),rt[Dt]=ya(q[Dt])):rt[Dt]=q[Dt]}var Li=_e.apply(null,rt);return Li=de(Li),Ut!==0&&Di(Ut),Li}function $e(I,S,z,q){z=z||[];var fe=z.every(function(de){return de==="number"}),ue=S!=="string";return ue&&fe&&!q?Ne(I):function(){return Te(I,S,z,arguments,q)}}function ze(I,S,z){for(var q=S+z,fe="";!(S>=q);){var ue=I[S++];if(!ue)return fe;if(!(ue&128)){fe+=String.fromCharCode(ue);continue}var de=I[S++]&63;if((ue&224)==192){fe+=String.fromCharCode((ue&31)<<6|de);continue}var _e=I[S++]&63;if((ue&240)==224?ue=(ue&15)<<12|de<<6|_e:ue=(ue&7)<<18|de<<12|_e<<6|I[S++]&63,ue<65536)fe+=String.fromCharCode(ue);else{var rt=ue-65536;fe+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return fe}function De(I,S){return I?ze(i(),I,S):""}function tt(I,S,z,q){if(!(q>0))return 0;for(var fe=z,ue=z+q-1,de=0;de<I.length;++de){var _e=I.charCodeAt(de);if(_e>=55296&&_e<=57343){var rt=I.charCodeAt(++de);_e=65536+((_e&1023)<<10)|rt&1023}if(_e<=127){if(z>=ue)break;S[z++]=_e}else if(_e<=2047){if(z+1>=ue)break;S[z++]=192|_e>>6,S[z++]=128|_e&63}else if(_e<=65535){if(z+2>=ue)break;S[z++]=224|_e>>12,S[z++]=128|_e>>6&63,S[z++]=128|_e&63}else{if(z+3>=ue)break;S[z++]=240|_e>>18,S[z++]=128|_e>>12&63,S[z++]=128|_e>>6&63,S[z++]=128|_e&63}}return S[z]=0,z-fe}function nt(I,S,z){return tt(I,i(),S,z)}function it(I){for(var S=0,z=0;z<I.length;++z){var q=I.charCodeAt(z);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++z)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function Ze(I,S){s().set(I,S)}function pt(I,S){return I%S>0&&(I+=S-I%S),I}var Ue,fn,bt,Bn,Zt,mn,Vn,Sn,on;function Yt(I){Ue=I,c.HEAP8=fn=new Int8Array(I),c.HEAP16=Bn=new Int16Array(I),c.HEAP32=mn=new Int32Array(I),c.HEAPU8=bt=new Uint8Array(I),c.HEAPU16=Zt=new Uint16Array(I),c.HEAPU32=Vn=new Uint32Array(I),c.HEAPF32=Sn=new Float32Array(I),c.HEAPF64=on=new Float64Array(I)}var Sr=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,Ue=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Sr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ue=Q.buffer),Sr=Ue.byteLength,Yt(Ue);var Jn,Qn=[],ha=[],Gr=[],da=[],Ti=[],fr=!1,Oc=!1;x||ha.push({func:function(){Jc()}}),x&&(fr=!0);function c1(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Pc(c.preRun.shift());Ci(Qn)}}function zc(){fr=!0,Ci(ha)}function h1(){x||Ci(Gr)}function Lc(){x||(Oc=!0)}function An(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)d1(c.postRun.shift());Ci(Ti)}}function Pc(I){Qn.unshift(I)}function d1(I){Ti.unshift(I)}var qr=0,pa=null,qa=null;function p1(I){me(!x,"addRunDependency cannot be used in a pthread worker"),qr++,c.monitorRunDependencies&&c.monitorRunDependencies(qr)}function f1(I){if(qr--,c.monitorRunDependencies&&c.monitorRunDependencies(qr),qr==0&&(pa!==null&&(clearInterval(pa),pa=null),qa)){var S=qa;qa=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Xr(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),le=!0,Ae=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function Wc(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Ei="data:application/octet-stream;base64,";function Bc(I){return Wc(I,Ei)}var m1="file://";function Vc(I){return Wc(I,m1)}var yn="tfjs-backend-wasm-threaded-simd.wasm";Bc(yn)||(yn=T(yn));function A1(I){try{if(I==yn&&te)return new Uint8Array(te);if(D)return D(I);throw"both async and sync fetching of the wasm failed"}catch(S){Xr(S)}}function Uc(){if(!te&&(g||b)){if(typeof fetch=="function"&&!Vc(yn))return fetch(yn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+yn+"'";return I.arrayBuffer()}).catch(function(){return A1(yn)});if(M)return new Promise(function(I,S){M(yn,function(z){I(new Uint8Array(z))},S)})}return Promise.resolve().then(function(){return A1(yn)})}function y1(){var I={a:lf};function S(de,_e){var rt=de.exports;if(c.asm=rt,Jn=c.asm.F,pe=_e,!x){var Ut=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Dt){Se.loadWasmModuleToWorker(Dt,function(){--Ut||f1("wasm-instantiate")})})}}x||p1("wasm-instantiate");function z(de){S(de.instance,de.module)}function q(de){return Uc().then(function(_e){return WebAssembly.instantiate(_e,I)}).then(de,function(_e){G("failed to asynchronously prepare wasm: "+_e),Xr(_e)})}function fe(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!Bc(yn)&&!Vc(yn)&&typeof fetch=="function"?fetch(yn,{credentials:"same-origin"}).then(function(de){var _e=WebAssembly.instantiateStreaming(de,I);return _e.then(z,function(rt){return G("wasm streaming compile failed: "+rt),G("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var ue=c.instantiateWasm(I,S);return ue}catch(de){return G("Module.instantiateWasm callback failed with error: "+de),!1}return fe().catch(d),{}}var Hc={8991:function(I,S){setTimeout(function(){$2(I,S)},0)}};function g1(){Se.initRuntime()}function Ci(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var z=S.func;typeof z=="number"?S.arg===void 0?Jn.get(z)():Jn.get(z)(S.arg):z(S.arg===void 0?null:S.arg)}}function Ri(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var z=Atomics.load(o(),zi>>2),q=0;if(z==I){var fe=Atomics.compareExchange(o(),zi>>2,z,0);if(fe==z&&(--S,q=1,S<=0))return 1}var ue=Atomics.notify(o(),I>>2,S);if(ue>=0)return ue+q;throw"Atomics.notify returned an unexpected value "+ue}c._emscripten_futex_wake=Ri;function x1(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=Se.pthreads[I];S.worker.terminate(),Se.freeThreadData(S),Se.runningWorkers.splice(Se.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function w1(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=Se.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function b1(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=Se.pthreads[I];if(S){var z=S.worker;Se.returnWorkerToPool(z)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S<I;++S)Se.allocateUnusedWorker()},initRuntime:function(){for(var I=Ka(228),S=0;S<228/4;++S)l()[I/4+S]=0;o()[I+12>>2]=I;var z=I+152;o()[z>>2]=z;for(var q=Ka(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),rh(I,!b,1),M2(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();x&&$i()&&F2()},threadExit:function(I){var S=$i();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),Se.runExitHandlers(),Ri(S+0,2147483647),rh(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlers();var I=$i();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),Ri(I+0,2147483647),rh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Se.pthreads){var S=Se.pthreads[I];S&&S.worker&&Se.returnWorkerToPool(S.worker)}Se.pthreads={};for(var z=0;z<Se.unusedWorkers.length;++z){var q=Se.unusedWorkers[z];q.terminate()}Se.unusedWorkers=[];for(var z=0;z<Se.runningWorkers.length;++z){var q=Se.runningWorkers[z],S=q.pthread;Se.freeThreadData(S),q.terminate()}Se.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var S=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,Hl(S),Hl(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Hl(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[I.pthread.threadInfoStruct],Se.unusedWorkers.push(I),Se.runningWorkers.splice(Se.runningWorkers.indexOf(I),1),Se.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[P2>>2]=0;try{I()}finally{o()[P2>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(z){var q=z.data,fe=q.cmd;if(I.pthread&&(Se.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=$i()){var ue=Se.pthreads[q.targetThread];ue?ue.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+fe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(fe==="processQueuedMainThreadWork")vf();else if(fe==="spawnThread")Zc(z.data);else if(fe==="cleanupThread")b1(q.thread);else if(fe==="killThread")x1(q.thread);else if(fe==="cancelThread")w1(q.thread);else if(fe==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(fe==="print")X("Thread "+q.threadId+": "+q.text);else if(fe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(fe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(fe==="exit"){var de=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);de&&Se.returnWorkerToPool(I)}else if(fe==="exitProcess")try{T4(q.returnCode)}catch(_e){if(_e instanceof Gl)return;throw _e}else fe==="cancelDone"?Se.returnWorkerToPool(I):fe==="objectTransfer"?Se.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):G("worker sent an unknown command "+fe);Se.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){G("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},w&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:pe})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()<S;);}};function _1(I,S){z2(I,S),Di(I)}c.establishStackSpace=_1;function v1(){return oe}c.getNoExitRuntime=v1;function k1(I,S){return Jn.get(I)(S)}c.invokeEntryPoint=k1;function I1(I,S,z,q){Xr("Assertion failed: "+De(I)+", at: "+[S?De(S):"unknown filename",z,q?De(q):"unknown function"])}function N1(I,S){var z=_main(I,S)}var Xa;w?Xa=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?Xa=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?Xa=dateNow:Xa=function(){return performance.now()};function S1(I){return o()[C2()>>2]=I,I}function T1(I,S){if(x)return fa(1,1,I,S)}function E1(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=Se.pthreads[I],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function C1(){Xr()}function R1(I,S,z){var q=O1(S,z);return Hc[I].apply(null,q)}function F1(I,S){}function M1(I,S,z){if(I<=0||I>s().length||I&!0)return-28;if(g){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),fe=q+z,ue=Atomics.exchange(o(),zi>>2,I);;){if(q=performance.now(),q>fe)return ue=Atomics.exchange(o(),zi>>2,0),-73;if(ue=Atomics.exchange(o(),zi>>2,0),ue==0)break;if(vf(),Atomics.load(o(),I>>2)!=S)return-6;ue=Atomics.exchange(o(),zi>>2,I)}return 0}else{var de=Atomics.wait(o(),I>>2,S,z);if(de==="timed-out")return-73;if(de==="not-equal")return-6;if(de==="ok")return 0;throw"Atomics.wait returned an unexpected value "+de}}function $1(I,S,z){i().copyWithin(I,S,S+z)}function D1(){return w?require("os").cpus().length:navigator.hardwareConcurrency}function fa(I,S){for(var z=arguments.length-2,q=jl(),fe=z,ue=Oi(fe*8),de=ue>>3,_e=0;_e<z;_e++){var rt=arguments[2+_e];u()[de+_e]=rt}var Ut=O2(I,fe,ue,S);return Di(q),Ut}var Ll=[],Pl=[];function O1(I,S){Pl.length=0;var z;for(S>>=2;z=i()[I++];){var q=z<105;q&&S&1&&S++,Pl.push(q?u()[S++>>1]:o()[S]),++S}return Pl}function z1(I,S,z){Ll.length=S;for(var q=z>>3,fe=0;fe<S;fe++)Ll[fe]=u()[q+fe];var ue=I<0,de=ue?Hc[-I-1]:of[I];return de.apply(null,Ll)}function L1(){return i().length}function P1(I){try{return Q.grow(I-Ue.byteLength+65535>>>16),Yt(Q.buffer),1}catch(S){}}function W1(I){var S=L1();if(I<=S)return!1;var z=2147483648;if(I>z)return!1;for(var q=1;q<=4;q*=2){var fe=S*(1+.2/q);fe=Math.min(fe,I+100663296);var ue=Math.min(z,pt(Math.max(I,fe),65536)),de=P1(ue);if(de)return!0}return!1}var Be={inEventHandler:0,removeAllEventListeners:function(){for(var I=Be.eventHandlers.length-1;I>=0;--I)Be._removeHandler(I);Be.eventHandlers=[],Be.deferredCalls=[]},registerRemoveEventListeners:function(){Be.removeEventListenersRegistered||(da.push(Be.removeAllEventListeners),Be.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,z){function q(de,_e){if(de.length!=_e.length)return!1;for(var rt in de)if(de[rt]!=_e[rt])return!1;return!0}for(var fe in Be.deferredCalls){var ue=Be.deferredCalls[fe];if(ue.targetFunction==I&&q(ue.argsList,z))return}Be.deferredCalls.push({targetFunction:I,precedence:S,argsList:z}),Be.deferredCalls.sort(function(de,_e){return de.precedence<_e.precedence})},removeDeferredCalls:function(I){for(var S=0;S<Be.deferredCalls.length;++S)Be.deferredCalls[S].targetFunction==I&&(Be.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Be.inEventHandler&&Be.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Be.canPerformEventHandlerRequests())for(var I=0;I<Be.deferredCalls.length;++I){var S=Be.deferredCalls[I];Be.deferredCalls.splice(I,1),--I,S.targetFunction.apply(null,S.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,S){for(var z=0;z<Be.eventHandlers.length;++z)Be.eventHandlers[z].target==I&&(!S||S==Be.eventHandlers[z].eventTypeString)&&Be._removeHandler(z--)},_removeHandler:function(I){var S=Be.eventHandlers[I];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Be.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var S=function(q){++Be.inEventHandler,Be.currentEventHandler=I,Be.runDeferredCalls(),I.handlerFunc(q),Be.runDeferredCalls(),--Be.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=S,I.target.addEventListener(I.eventTypeString,S,I.useCapture),Be.eventHandlers.push(I),Be.registerRemoveEventListeners();else for(var z=0;z<Be.eventHandlers.length;++z)Be.eventHandlers[z].target==I.target&&Be.eventHandlers[z].eventTypeString==I.eventTypeString&&Be._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,S,z,q,fe){var ue=jl(),de=Oi(12);o()[de>>2]=z,o()[de+4>>2]=q,o()[de+8>>2]=fe,kf(0,I,637534208,S,q,de),Di(ue)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function B1(I){var S=it(I)+1,z=Ka(S);return nt(I,z,S),z}function V1(I,S,z,q){var fe=jl(),ue=Oi(12),de=0;S&&(de=B1(S)),o()[ue>>2]=de,o()[ue+4>>2]=z,o()[ue+8>>2]=q,kf(0,I,657457152,0,de,ue),Di(fe)}function U1(I,S,z,q){S=S?De(S):"",V1(I,S,z,q)}function H1(I){return I>2?De(I):I}var j1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function G1(I){I=H1(I);var S=j1[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function Wl(I){return G1(I)}function jc(I,S,z){var q=Wl(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var fe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ue=q.GLctxObject.GLctx.getParameter(2978);fe=ue[0]===0&&ue[1]===0&&ue[2]===q.width&&ue[3]===q.height}q.width=S,q.height=z,fe&&q.GLctxObject.GLctx.viewport(0,0,S,z)}else if(q.canvasSharedPtr){var de=o()[q.canvasSharedPtr+8>>2];return U1(de,I,S,z),1}else return-4;return 0}function Gc(I,S,z){return x?fa(2,1,I,S,z):jc(I,S,z)}function q1(I,S,z){var q=Wl(I);return q?jc(I,S,z):Gc(I,S,z)}function X1(I){}function K1(I,S){}function Z1(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(z,q){S.vertexAttribDivisorANGLE(z,q)},I.drawArraysInstanced=function(z,q,fe,ue){S.drawArraysInstancedANGLE(z,q,fe,ue)},I.drawElementsInstanced=function(z,q,fe,ue,de){S.drawElementsInstancedANGLE(z,q,fe,ue,de)},1}function Y1(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(z){S.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){S.bindVertexArrayOES(z)},I.isVertexArray=function(z){return S.isVertexArrayOES(z)},1}function J1(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(z,q){S.drawBuffersWEBGL(z,q)},1}function Q1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){Qe.lastError||(Qe.lastError=I)},getNewId:function(I){for(var S=Qe.counter++,z=I.length;z<S;z++)I[z]=null;return S},getSource:function(I,S,z,q){for(var fe="",ue=0;ue<S;++ue){var de=q?o()[q+ue*4>>2]:-1;fe+=De(o()[z+ue*4>>2],de<0?void 0:de)}return fe},createContext:function(I,S){var z=I.getContext("webgl",S);if(!z)return 0;var q=Qe.registerContext(z,S);return q},registerContext:function(I,S){var z=Ka(8);o()[z+4>>2]=$i();var q={handle:z,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),Qe.contexts[z]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Qe.initExtensions(q),z},makeContextCurrent:function(I){return Qe.currentContext=Qe.contexts[I],c.ctx=ma=Qe.currentContext&&Qe.currentContext.GLctx,!(I&&!ma)},getContext:function(I){return Qe.contexts[I]},deleteContext:function(I){Qe.currentContext===Qe.contexts[I]&&(Qe.currentContext=null),typeof Be=="object"&&Be.removeAllHandlersOnTarget(Qe.contexts[I].GLctx.canvas),Qe.contexts[I]&&Qe.contexts[I].GLctx.canvas&&(Qe.contexts[I].GLctx.canvas.GLctxObject=void 0),Hl(Qe.contexts[I].handle),Qe.contexts[I]=null},initExtensions:function(I){if(I||(I=Qe.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;Z1(S),Y1(S),J1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),Q1(S);var z=S.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=Qe.programs[I],z=Qe.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,fe=ma.getProgramParameter(S,35718),ue=0;ue<fe;++ue){var de=ma.getActiveUniform(S,ue),_e=de.name;z.maxUniformLength=Math.max(z.maxUniformLength,_e.length+1),_e.slice(-1)=="]"&&(_e=_e.slice(0,_e.lastIndexOf("[")));var rt=ma.getUniformLocation(S,_e);if(rt){var Ut=Qe.getNewId(Qe.uniforms);q[_e]=[de.size,Ut],Qe.uniforms[Ut]=rt;for(var Dt=1;Dt<de.size;++Dt){var ya=_e+"["+Dt+"]";rt=ma.getUniformLocation(S,ya),Ut=Qe.getNewId(Qe.uniforms),Qe.uniforms[Ut]=rt}}}}},ef=["default","low-power","high-performance"];function tf(I,S){var z=S>>2,q=o()[z+(24>>2)],fe={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:ef[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},ue=Wl(I);if(!ue||fe.explicitSwapControl)return 0;var de=Qe.createContext(ue,fe);return de}function nf(I,S){return tf(I,S)}var Fi={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var z=Fi.buffers[I];S===0||S===10?((I===1?X:G)(ze(z,0)),z.length=0):z.push(S)},varargs:void 0,get:function(){Fi.varargs+=4;var I=o()[Fi.varargs-4>>2];return I},getStr:function(I){var S=De(I);return S},get64:function(I,S){return I}};function qc(I){return x?fa(3,1,I):0}function Xc(I,S,z,q,fe){if(x)return fa(4,1,I,S,z,q,fe)}function Kc(I,S,z,q){if(x)return fa(5,1,I,S,z,q);for(var fe=0,ue=0;ue<z;ue++){for(var de=o()[S+ue*8>>2],_e=o()[S+(ue*8+4)>>2],rt=0;rt<_e;rt++)Fi.printChar(I,i()[de+rt]);fe+=_e}return o()[q>>2]=fe,0}function rf(I){var S=Se.threadExitHandlers.pop();I&&S()}function af(I,S){Se.threadExitHandlers.push(function(){Jn.get(I)(S)})}function Zc(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=Se.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(S);for(var z=Ka(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var fe=I.stackBase+I.stackSize,ue=Se.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},de=ue.threadInfoStruct>>2;Atomics.store(l(),de+(64>>2),I.detached),Atomics.store(l(),de+(100>>2),z),Atomics.store(l(),de+(40>>2),ue.threadInfoStruct),Atomics.store(l(),de+(80>>2),I.stackSize),Atomics.store(l(),de+(76>>2),fe),Atomics.store(l(),de+(104>>2),I.stackSize),Atomics.store(l(),de+(104+8>>2),fe),Atomics.store(l(),de+(104+12>>2),I.detached);var _e=R2(),rt=_e+40;Atomics.store(l(),de+(172>>2),rt),S.pthread=ue;var Ut={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Ut.time=performance.now(),S.postMessage(Ut,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function sf(I,S,z,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var fe=[],ue=0;if(x&&(fe.length===0||ue))return D2(687865856,I,S,z,q);if(ue)return ue;var de=0,_e=0,rt=0;S&&S!=-1?(de=o()[S>>2],de+=81920,_e=o()[S+8>>2],rt=o()[S+12>>2]!==0):de=2097152;var Ut=_e==0;Ut?_e=L2(16,de):(_e-=de,me(_e>0));for(var Dt=Ka(228),ya=0;ya<228>>2;++ya)l()[(Dt>>2)+ya]=0;o()[I>>2]=Dt,o()[Dt+12>>2]=Dt;var Li=Dt+152;o()[Li>>2]=Li;var gn={stackBase:_e,stackSize:de,allocatedOwnStack:Ut,detached:rt,startRoutine:z,pthread_ptr:Dt,arg:q,transferList:fe};return x?(gn.cmd="spawnThread",postMessage(gn,fe)):Zc(gn),0}function Yc(I){if(x)return fa(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return S1(28),-1}x||Se.initMainThreadBlock();var ma,of=[null,T1,Gc,qc,Xc,Kc,Yc],lf={e:I1,r:N1,x:E1,b:C1,y:R1,j:F1,c:M1,d:Ri,f:Xa,p:$1,z:D1,u:z1,q:W1,v:q1,i:X1,t:K1,w:nf,m:qc,n:Xc,g:Kc,o:g1,a:Q||c.wasmMemory,k:rf,l:af,h:sf,s:Yc},E2=y1(),Jc=c.___wasm_call_ctors=function(){return(Jc=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},uf=c._init=function(){return(uf=c._init=c.asm.B).apply(null,arguments)},cf=c._register_tensor=function(){return(cf=c._register_tensor=c.asm.C).apply(null,arguments)},hf=c._dispose_data=function(){return(hf=c._dispose_data=c.asm.D).apply(null,arguments)},df=c._dispose=function(){return(df=c._dispose=c.asm.E).apply(null,arguments)},pf=c._Abs=function(){return(pf=c._Abs=c.asm.G).apply(null,arguments)},ff=c._Add=function(){return(ff=c._Add=c.asm.H).apply(null,arguments)},mf=c._AddN=function(){return(mf=c._AddN=c.asm.I).apply(null,arguments)},Af=c._ArgMax=function(){return(Af=c._ArgMax=c.asm.J).apply(null,arguments)},yf=c._AvgPool=function(){return(yf=c._AvgPool=c.asm.K).apply(null,arguments)},gf=c._BatchMatMul=function(){return(gf=c._BatchMatMul=c.asm.L).apply(null,arguments)},xf=c._Ceil=function(){return(xf=c._Ceil=c.asm.M).apply(null,arguments)},wf=c._ClipByValue=function(){return(wf=c._ClipByValue=c.asm.N).apply(null,arguments)},bf=c._Conv2D=function(){return(bf=c._Conv2D=c.asm.O).apply(null,arguments)},Qc=c._Conv2DBackpropInput=function(){return(Qc=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},eh=c._Cos=function(){return(eh=c._Cos=c.asm.Q).apply(null,arguments)},Bl=c._CropAndResize=function(){return(Bl=c._CropAndResize=c.asm.R).apply(null,arguments)},Mi=c._Cumsum=function(){return(Mi=c._Cumsum=c.asm.S).apply(null,arguments)},_f=c._DepthToSpace=function(){return(_f=c._DepthToSpace=c.asm.T).apply(null,arguments)},Vl=c._DepthwiseConv2dNative=function(){return(Vl=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ne=c._Exp=function(){return(ne=c._Exp=c.asm.W).apply(null,arguments)},Ee=c._FlipLeftRight=function(){return(Ee=c._FlipLeftRight=c.asm.X).apply(null,arguments)},Ye=c._Floor=function(){return(Ye=c._Floor=c.asm.Y).apply(null,arguments)},St=c._FloorDiv=function(){return(St=c._FloorDiv=c.asm.Z).apply(null,arguments)},mt=c._FusedBatchNorm=function(){return(mt=c._FusedBatchNorm=c.asm._).apply(null,arguments)},He=c._FusedConv2D=function(){return(He=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ge=c._FusedDepthwiseConv2D=function(){return(Ge=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},Jt=c._Gather=function(){return(Jt=c._Gather=c.asm.ba).apply(null,arguments)},Kr=c._GatherNd=function(){return(Kr=c._GatherNd=c.asm.ca).apply(null,arguments)},Zr=c._Greater=function(){return(Zr=c._Greater=c.asm.da).apply(null,arguments)},th=c._GreaterEqual=function(){return(th=c._GreaterEqual=c.asm.ea).apply(null,arguments)},Ul=c._LeakyRelu=function(){return(Ul=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Un=c._Less=function(){return(Un=c._Less=c.asm.ga).apply(null,arguments)},Aa=c._LessEqual=function(){return(Aa=c._LessEqual=c.asm.ha).apply(null,arguments)},nh=c._Log=function(){return(nh=c._Log=c.asm.ia).apply(null,arguments)},z6=c._LogicalAnd=function(){return(z6=c._LogicalAnd=c.asm.ja).apply(null,arguments)},L6=c._Max=function(){return(L6=c._Max=c.asm.ka).apply(null,arguments)},P6=c._MaxPool=function(){return(P6=c._MaxPool=c.asm.la).apply(null,arguments)},W6=c._Maximum=function(){return(W6=c._Maximum=c.asm.ma).apply(null,arguments)},B6=c._Mean=function(){return(B6=c._Mean=c.asm.na).apply(null,arguments)},V6=c._Min=function(){return(V6=c._Min=c.asm.oa).apply(null,arguments)},U6=c._Minimum=function(){return(U6=c._Minimum=c.asm.pa).apply(null,arguments)},H6=c._Multiply=function(){return(H6=c._Multiply=c.asm.qa).apply(null,arguments)},j6=c._Neg=function(){return(j6=c._Neg=c.asm.ra).apply(null,arguments)},G6=c._NonMaxSuppressionV3=function(){return(G6=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},q6=c._NonMaxSuppressionV4=function(){return(q6=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},X6=c._NonMaxSuppressionV5=function(){return(X6=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},K6=c._NotEqual=function(){return(K6=c._NotEqual=c.asm.va).apply(null,arguments)},Z6=c._OneHot=function(){return(Z6=c._OneHot=c.asm.wa).apply(null,arguments)},Y6=c._PadV2=function(){return(Y6=c._PadV2=c.asm.xa).apply(null,arguments)},J6=c._Pow=function(){return(J6=c._Pow=c.asm.ya).apply(null,arguments)},Q6=c._Prelu=function(){return(Q6=c._Prelu=c.asm.za).apply(null,arguments)},e4=c._Prod=function(){return(e4=c._Prod=c.asm.Aa).apply(null,arguments)},t4=c._RealDiv=function(){return(t4=c._RealDiv=c.asm.Ba).apply(null,arguments)},n4=c._Relu=function(){return(n4=c._Relu=c.asm.Ca).apply(null,arguments)},r4=c._Relu6=function(){return(r4=c._Relu6=c.asm.Da).apply(null,arguments)},a4=c._ResizeBilinear=function(){return(a4=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},s4=c._Reverse=function(){return(s4=c._Reverse=c.asm.Fa).apply(null,arguments)},i4=c._RotateWithOffset=function(){return(i4=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},o4=c._Round=function(){return(o4=c._Round=c.asm.Ha).apply(null,arguments)},l4=c._Rsqrt=function(){return(l4=c._Rsqrt=c.asm.Ia).apply(null,arguments)},u4=c._ScatterNd=function(){return(u4=c._ScatterNd=c.asm.Ja).apply(null,arguments)},c4=c._SelectV2=function(){return(c4=c._SelectV2=c.asm.Ka).apply(null,arguments)},h4=c._Sigmoid=function(){return(h4=c._Sigmoid=c.asm.La).apply(null,arguments)},d4=c._Sin=function(){return(d4=c._Sin=c.asm.Ma).apply(null,arguments)},p4=c._Softmax=function(){return(p4=c._Softmax=c.asm.Na).apply(null,arguments)},f4=c._Sqrt=function(){return(f4=c._Sqrt=c.asm.Oa).apply(null,arguments)},m4=c._Square=function(){return(m4=c._Square=c.asm.Pa).apply(null,arguments)},A4=c._SquaredDifference=function(){return(A4=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},y4=c._Step=function(){return(y4=c._Step=c.asm.Ra).apply(null,arguments)},g4=c._StridedSlice=function(){return(g4=c._StridedSlice=c.asm.Sa).apply(null,arguments)},x4=c._Sub=function(){return(x4=c._Sub=c.asm.Ta).apply(null,arguments)},w4=c._Sum=function(){return(w4=c._Sum=c.asm.Ua).apply(null,arguments)},b4=c._Tanh=function(){return(b4=c._Tanh=c.asm.Va).apply(null,arguments)},_4=c._Tile=function(){return(_4=c._Tile=c.asm.Wa).apply(null,arguments)},v4=c._TopK=function(){return(v4=c._TopK=c.asm.Xa).apply(null,arguments)},k4=c._Transpose=function(){return(k4=c._Transpose=c.asm.Ya).apply(null,arguments)},I4=c.__FusedMatMul=function(){return(I4=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},Ka=c._malloc=function(){return(Ka=c._malloc=c.asm._a).apply(null,arguments)},Hl=c._free=function(){return(Hl=c._free=c.asm.$a).apply(null,arguments)},C2=c.___errno_location=function(){return(C2=c.___errno_location=c.asm.ab).apply(null,arguments)},R2=c._emscripten_get_global_libc=function(){return(R2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},$i=c._pthread_self=function(){return($i=c._pthread_self=c.asm.cb).apply(null,arguments)},F2=c.___pthread_tsd_run_dtors=function(){return(F2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},vf=c._emscripten_main_thread_process_queued_calls=function(){return(vf=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},N4=c._emscripten_current_thread_process_queued_calls=function(){return(N4=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},M2=c._emscripten_register_main_browser_thread_id=function(){return(M2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},$2=c.__emscripten_do_dispatch_to_thread=function(){return($2=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},D2=c._emscripten_sync_run_in_main_thread_4=function(){return(D2=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},O2=c._emscripten_run_in_main_runtime_thread_js=function(){return(O2=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},kf=c.__emscripten_call_on_thread=function(){return(kf=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},S4=c._emscripten_tls_init=function(){return(S4=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},rh=c.__emscripten_thread_init=function(){return(rh=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},jl=c.stackSave=function(){return(jl=c.stackSave=c.asm.nb).apply(null,arguments)},Di=c.stackRestore=function(){return(Di=c.stackRestore=c.asm.ob).apply(null,arguments)},Oi=c.stackAlloc=function(){return(Oi=c.stackAlloc=c.asm.pb).apply(null,arguments)},z2=c._emscripten_stack_set_limits=function(){return(z2=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},L2=c._memalign=function(){return(L2=c._memalign=c.asm.rb).apply(null,arguments)},P2=c.__emscripten_allow_main_runtime_queued_calls=9880,zi=c.__emscripten_main_thread_futex=11368;c.cwrap=$e,c.PThread=Se,c.PThread=Se,c.wasmMemory=Q,c.ExitStatus=Gl;var ah;function Gl(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}qa=function I(){ah||If(),ah||(qa=I)};function If(I){if(I=I||m,qr>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(c1(),qr>0)return;function S(){ah||(ah=!0,c.calledRun=!0,!le&&(zc(),h1(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),An()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=If;function T4(I,S){if(!(S&&oe&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new Gl(I);oe||(Se.terminateAllThreads(),Ae=I,Lc(),c.onExit&&c.onExit(I),le=!0),y(I,new Gl(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(oe=!1,Se.initWorker()),If(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),fk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,ne){throw ne},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var b,w,_,x,N,T;m?(f?y=Ou().dirname(y)+"/":y=__dirname+"/",b=function(K,ne){return N||(N=require("fs")),T||(T=Ou()),K=T.normalize(K),N.readFileSync(K,ne?null:"utf8")},_=function(K){var ne=b(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof _f))throw K}),process.on("unhandledRejection",fr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(b=function(K){return read(K)}),_=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",b=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},f&&(_=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),w=function(K,ne,Ee){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ne(Ye.response);return}Ee()},Ye.onerror=Ee,Ye.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var D;s.wasmBinary&&(D=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&fr("no native wasm support detected");var P,U=!1,H;function X(K,ne){K||fr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ee,Ye,St){var mt={string:function(Un){var Aa=0;if(Un!=null&&Un!==0){var nh=(Un.length<<2)+1;Aa=Bl(nh),pe(Un,Aa,nh)}return Aa},array:function(Un){var Aa=Bl(Un.length);return le(Un,Aa),Aa}};function He(Un){return ne==="string"?oe(Un):ne==="boolean"?Boolean(Un):Un}var Ge=G(K),Jt=[],Kr=0;if(Ye)for(var Zr=0;Zr<Ye.length;Zr++){var th=mt[Ee[Zr]];th?(Kr===0&&(Kr=Qc()),Jt[Zr]=th(Ye[Zr])):Jt[Zr]=Ye[Zr]}var Ul=Ge.apply(null,Jt);return Ul=He(Ul),Kr!==0&&eh(Kr),Ul}function J(K,ne,Ee,Ye){Ee=Ee||[];var St=Ee.every(function(He){return He==="number"}),mt=ne!=="string";return mt&&St&&!Ye?G(K):function(){return ee(K,ne,Ee,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ee){for(var Ye=ne+Ee,St=ne;K[St]&&!(St>=Ye);)++St;if(St-ne>16&&K.subarray&&se)return se.decode(K.subarray(ne,St));for(var mt="";ne<St;){var He=K[ne++];if(!(He&128)){mt+=String.fromCharCode(He);continue}var Ge=K[ne++]&63;if((He&224)==192){mt+=String.fromCharCode((He&31)<<6|Ge);continue}var Jt=K[ne++]&63;if((He&240)==224?He=(He&15)<<12|Ge<<6|Jt:He=(He&7)<<18|Ge<<12|Jt<<6|K[ne++]&63,He<65536)mt+=String.fromCharCode(He);else{var Kr=He-65536;mt+=String.fromCharCode(55296|Kr>>10,56320|Kr&1023)}}return mt}function oe(K,ne){return K?te(Te,K,ne):""}function Q(K,ne,Ee,Ye){if(!(Ye>0))return 0;for(var St=Ee,mt=Ee+Ye-1,He=0;He<K.length;++He){var Ge=K.charCodeAt(He);if(Ge>=55296&&Ge<=57343){var Jt=K.charCodeAt(++He);Ge=65536+((Ge&1023)<<10)|Jt&1023}if(Ge<=127){if(Ee>=mt)break;ne[Ee++]=Ge}else if(Ge<=2047){if(Ee+1>=mt)break;ne[Ee++]=192|Ge>>6,ne[Ee++]=128|Ge&63}else if(Ge<=65535){if(Ee+2>=mt)break;ne[Ee++]=224|Ge>>12,ne[Ee++]=128|Ge>>6&63,ne[Ee++]=128|Ge&63}else{if(Ee+3>=mt)break;ne[Ee++]=240|Ge>>18,ne[Ee++]=128|Ge>>12&63,ne[Ee++]=128|Ge>>6&63,ne[Ee++]=128|Ge&63}}return ne[Ee]=0,Ee-St}function pe(K,ne,Ee){return Q(K,Te,ne,Ee)}function le(K,ne){Ne.set(K,ne)}function Ae(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var me,Ne,Te,$e,ze,De,tt,nt,it;function Ze(K){me=K,s.HEAP8=Ne=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=ze=new Uint16Array(K),s.HEAPU32=tt=new Uint32Array(K),s.HEAPF32=nt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var pt=s.INITIAL_MEMORY||16777216,Ue,fn=[],bt=[],Bn=[],Zt=[],mn=!1;bt.push({func:function(){Uc()}});function Vn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Sr(s.preRun.shift());pa(fn)}function Sn(){mn=!0,pa(bt)}function on(){pa(Bn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Jn(s.postRun.shift());pa(Zt)}function Sr(K){fn.unshift(K)}function Jn(K){Zt.unshift(K)}var Qn=0,ha=null,Gr=null;function da(K){Qn++,s.monitorRunDependencies&&s.monitorRunDependencies(Qn)}function Ti(K){if(Qn--,s.monitorRunDependencies&&s.monitorRunDependencies(Qn),Qn==0&&(ha!==null&&(clearInterval(ha),ha=null),Gr)){var ne=Gr;Gr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function fr(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function Oc(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var c1="data:application/octet-stream;base64,";function zc(K){return Oc(K,c1)}var h1="file://";function Lc(K){return Oc(K,h1)}var An="tfjs-backend-wasm.wasm";zc(An)||(An=g(An));function Pc(K){try{if(K==An&&D)return new Uint8Array(D);if(_)return _(K);throw"both async and sync fetching of the wasm failed"}catch(ne){fr(ne)}}function d1(){if(!D&&(p||f)){if(typeof fetch=="function"&&!Lc(An))return fetch(An,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+An+"'";return K.arrayBuffer()}).catch(function(){return Pc(An)});if(w)return new Promise(function(K,ne){w(An,function(Ee){K(new Uint8Array(Ee))},ne)})}return Promise.resolve().then(function(){return Pc(An)})}function qr(){var K={a:yn};function ne(He,Ge){var Jt=He.exports;s.asm=Jt,P=s.asm.g,Ze(P.buffer),Ue=s.asm.m,Ti("wasm-instantiate")}da("wasm-instantiate");function Ee(He){ne(He.instance)}function Ye(He){return d1().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(He,function(Ge){M("failed to asynchronously prepare wasm: "+Ge),fr(Ge)})}function St(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!zc(An)&&!Lc(An)&&typeof fetch=="function"?fetch(An,{credentials:"same-origin"}).then(function(He){var Ge=WebAssembly.instantiateStreaming(He,K);return Ge.then(Ee,function(Jt){return M("wasm streaming compile failed: "+Jt),M("falling back to ArrayBuffer instantiation"),Ye(Ee)})}):Ye(Ee)}if(s.instantiateWasm)try{var mt=s.instantiateWasm(K,ne);return mt}catch(He){return M("Module.instantiateWasm callback failed with error: "+He),!1}return St().catch(o),{}}function pa(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ee=ne.func;typeof Ee=="number"?ne.arg===void 0?Ue.get(Ee)():Ue.get(Ee)(ne.arg):Ee(ne.arg===void 0?null:ne.arg)}}function qa(){fr()}function p1(K,ne,Ee){Te.copyWithin(K,ne,ne+Ee)}function f1(){return Te.length}function Xr(K){try{return P.grow(K-me.byteLength+65535>>>16),Ze(P.buffer),1}catch(ne){}}function Wc(K){var ne=f1(),Ee=2147483648;if(K>Ee)return!1;for(var Ye=1;Ye<=4;Ye*=2){var St=ne*(1+.2/Ye);St=Math.min(St,K+100663296);var mt=Math.min(Ee,Ae(Math.max(K,St),65536)),He=Xr(mt);if(He)return!0}return!1}var Ei={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ee=Ei.buffers[K];ne===0||ne===10?((K===1?E:M)(te(Ee,0)),Ee.length=0):Ee.push(ne)},varargs:void 0,get:function(){Ei.varargs+=4;var K=De[Ei.varargs-4>>2];return K},getStr:function(K){var ne=oe(K);return ne},get64:function(K,ne){return K}};function Bc(K){return 0}function m1(K,ne,Ee,Ye,St){}function Vc(K,ne,Ee,Ye){for(var St=0,mt=0;mt<Ee;mt++){for(var He=De[ne+mt*8>>2],Ge=De[ne+(mt*8+4)>>2],Jt=0;Jt<Ge;Jt++)Ei.printChar(K,Te[He+Jt]);St+=Ge}return De[Ye>>2]=St,0}var yn={a:qa,d:p1,e:Wc,f:Bc,c:m1,b:Vc},A1=qr(),Uc=s.___wasm_call_ctors=function(){return(Uc=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},y1=s._init=function(){return(y1=s._init=s.asm.i).apply(null,arguments)},Hc=s._register_tensor=function(){return(Hc=s._register_tensor=s.asm.j).apply(null,arguments)},g1=s._dispose_data=function(){return(g1=s._dispose_data=s.asm.k).apply(null,arguments)},Ci=s._dispose=function(){return(Ci=s._dispose=s.asm.l).apply(null,arguments)},Ri=s._Abs=function(){return(Ri=s._Abs=s.asm.n).apply(null,arguments)},x1=s._Add=function(){return(x1=s._Add=s.asm.o).apply(null,arguments)},w1=s._AddN=function(){return(w1=s._AddN=s.asm.p).apply(null,arguments)},b1=s._ArgMax=function(){return(b1=s._ArgMax=s.asm.q).apply(null,arguments)},Se=s._AvgPool=function(){return(Se=s._AvgPool=s.asm.r).apply(null,arguments)},_1=s._BatchMatMul=function(){return(_1=s._BatchMatMul=s.asm.s).apply(null,arguments)},v1=s._Ceil=function(){return(v1=s._Ceil=s.asm.t).apply(null,arguments)},k1=s._ClipByValue=function(){return(k1=s._ClipByValue=s.asm.u).apply(null,arguments)},I1=s._Conv2D=function(){return(I1=s._Conv2D=s.asm.v).apply(null,arguments)},N1=s._Conv2DBackpropInput=function(){return(N1=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},Xa=s._Cos=function(){return(Xa=s._Cos=s.asm.x).apply(null,arguments)},S1=s._CropAndResize=function(){return(S1=s._CropAndResize=s.asm.y).apply(null,arguments)},T1=s._Cumsum=function(){return(T1=s._Cumsum=s.asm.z).apply(null,arguments)},E1=s._DepthToSpace=function(){return(E1=s._DepthToSpace=s.asm.A).apply(null,arguments)},C1=s._DepthwiseConv2dNative=function(){return(C1=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},R1=s._Equal=function(){return(R1=s._Equal=s.asm.C).apply(null,arguments)},F1=s._Exp=function(){return(F1=s._Exp=s.asm.D).apply(null,arguments)},M1=s._FlipLeftRight=function(){return(M1=s._FlipLeftRight=s.asm.E).apply(null,arguments)},$1=s._Floor=function(){return($1=s._Floor=s.asm.F).apply(null,arguments)},D1=s._FloorDiv=function(){return(D1=s._FloorDiv=s.asm.G).apply(null,arguments)},fa=s._FusedBatchNorm=function(){return(fa=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Ll=s._FusedConv2D=function(){return(Ll=s._FusedConv2D=s.asm.I).apply(null,arguments)},Pl=s._FusedDepthwiseConv2D=function(){return(Pl=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},O1=s._Gather=function(){return(O1=s._Gather=s.asm.K).apply(null,arguments)},z1=s._GatherNd=function(){return(z1=s._GatherNd=s.asm.L).apply(null,arguments)},L1=s._Greater=function(){return(L1=s._Greater=s.asm.M).apply(null,arguments)},P1=s._GreaterEqual=function(){return(P1=s._GreaterEqual=s.asm.N).apply(null,arguments)},W1=s._LeakyRelu=function(){return(W1=s._LeakyRelu=s.asm.O).apply(null,arguments)},Be=s._Less=function(){return(Be=s._Less=s.asm.P).apply(null,arguments)},B1=s._LessEqual=function(){return(B1=s._LessEqual=s.asm.Q).apply(null,arguments)},V1=s._Log=function(){return(V1=s._Log=s.asm.R).apply(null,arguments)},U1=s._LogicalAnd=function(){return(U1=s._LogicalAnd=s.asm.S).apply(null,arguments)},H1=s._Max=function(){return(H1=s._Max=s.asm.T).apply(null,arguments)},j1=s._MaxPool=function(){return(j1=s._MaxPool=s.asm.U).apply(null,arguments)},G1=s._Maximum=function(){return(G1=s._Maximum=s.asm.V).apply(null,arguments)},Wl=s._Mean=function(){return(Wl=s._Mean=s.asm.W).apply(null,arguments)},jc=s._Min=function(){return(jc=s._Min=s.asm.X).apply(null,arguments)},Gc=s._Minimum=function(){return(Gc=s._Minimum=s.asm.Y).apply(null,arguments)},q1=s._Multiply=function(){return(q1=s._Multiply=s.asm.Z).apply(null,arguments)},X1=s._Neg=function(){return(X1=s._Neg=s.asm._).apply(null,arguments)},K1=s._NonMaxSuppressionV3=function(){return(K1=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},Z1=s._NonMaxSuppressionV4=function(){return(Z1=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},Y1=s._NonMaxSuppressionV5=function(){return(Y1=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},J1=s._NotEqual=function(){return(J1=s._NotEqual=s.asm.ca).apply(null,arguments)},Q1=s._OneHot=function(){return(Q1=s._OneHot=s.asm.da).apply(null,arguments)},Qe=s._PadV2=function(){return(Qe=s._PadV2=s.asm.ea).apply(null,arguments)},ef=s._Pow=function(){return(ef=s._Pow=s.asm.fa).apply(null,arguments)},tf=s._Prelu=function(){return(tf=s._Prelu=s.asm.ga).apply(null,arguments)},nf=s._Prod=function(){return(nf=s._Prod=s.asm.ha).apply(null,arguments)},Fi=s._RealDiv=function(){return(Fi=s._RealDiv=s.asm.ia).apply(null,arguments)},qc=s._Relu=function(){return(qc=s._Relu=s.asm.ja).apply(null,arguments)},Xc=s._Relu6=function(){return(Xc=s._Relu6=s.asm.ka).apply(null,arguments)},Kc=s._ResizeBilinear=function(){return(Kc=s._ResizeBilinear=s.asm.la).apply(null,arguments)},rf=s._Reverse=function(){return(rf=s._Reverse=s.asm.ma).apply(null,arguments)},af=s._RotateWithOffset=function(){return(af=s._RotateWithOffset=s.asm.na).apply(null,arguments)},Zc=s._Round=function(){return(Zc=s._Round=s.asm.oa).apply(null,arguments)},sf=s._Rsqrt=function(){return(sf=s._Rsqrt=s.asm.pa).apply(null,arguments)},Yc=s._ScatterNd=function(){return(Yc=s._ScatterNd=s.asm.qa).apply(null,arguments)},ma=s._SelectV2=function(){return(ma=s._SelectV2=s.asm.ra).apply(null,arguments)},of=s._Sigmoid=function(){return(of=s._Sigmoid=s.asm.sa).apply(null,arguments)},lf=s._Sin=function(){return(lf=s._Sin=s.asm.ta).apply(null,arguments)},E2=s._Softmax=function(){return(E2=s._Softmax=s.asm.ua).apply(null,arguments)},Jc=s._Sqrt=function(){return(Jc=s._Sqrt=s.asm.va).apply(null,arguments)},uf=s._Square=function(){return(uf=s._Square=s.asm.wa).apply(null,arguments)},cf=s._SquaredDifference=function(){return(cf=s._SquaredDifference=s.asm.xa).apply(null,arguments)},hf=s._Step=function(){return(hf=s._Step=s.asm.ya).apply(null,arguments)},df=s._StridedSlice=function(){return(df=s._StridedSlice=s.asm.za).apply(null,arguments)},pf=s._Sub=function(){return(pf=s._Sub=s.asm.Aa).apply(null,arguments)},ff=s._Sum=function(){return(ff=s._Sum=s.asm.Ba).apply(null,arguments)},mf=s._Tanh=function(){return(mf=s._Tanh=s.asm.Ca).apply(null,arguments)},Af=s._Tile=function(){return(Af=s._Tile=s.asm.Da).apply(null,arguments)},yf=s._TopK=function(){return(yf=s._TopK=s.asm.Ea).apply(null,arguments)},gf=s._Transpose=function(){return(gf=s._Transpose=s.asm.Fa).apply(null,arguments)},xf=s.__FusedMatMul=function(){return(xf=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},wf=s._malloc=function(){return(wf=s._malloc=s.asm.Ha).apply(null,arguments)},bf=s._free=function(){return(bf=s._free=s.asm.Ia).apply(null,arguments)},Qc=s.stackSave=function(){return(Qc=s.stackSave=s.asm.Ja).apply(null,arguments)},eh=s.stackRestore=function(){return(eh=s.stackRestore=s.asm.Ka).apply(null,arguments)},Bl=s.stackAlloc=function(){return(Bl=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=J;var Mi;function _f(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Gr=function K(){Mi||Vl(),Mi||(Gr=K)};function Vl(K){if(K=K||c,Qn>0||(Vn(),Qn>0))return;function ne(){Mi||(Mi=!0,s.calledRun=!0,!U&&(Sn(),on(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=Vl,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Vl(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),mk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ak=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),wk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bk=et((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,w(r)]:_==null?b():_,3),T),M=new m(T),D=function(){for(var L=M.g(i),P=u,U=0;L<c;)L=(L+U)*s,P*=s,U=M.g(1);for(;L>=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(w(M.S),r),(x.pass||N||function(L,P,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(a[l]=L,P):L})(D,E,"global"in x?x.global:this==a,x.state)}function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+_[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var P,U=0,H=T.i,X=T.j,G=T.S;L--;)P=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+P])+(G[X]=P)];return T.i=H,T.j=X,U})(s)}function A(_,x){return x.i=_.i,x.j=_.j,x.S=_.S.slice(),x}function y(_,x){var N=[],T=typeof _,E;if(x&&T=="object")for(E in _)try{N.push(y(_[E],x-1))}catch(M){}return N.length?N:T=="string"?_:_+"\0"}function g(_,x){for(var N=_+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return w(x)}function b(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(_)),w(_)}catch(T){var x=n.navigator,N=x&&x.plugins;return[+new Date,n,N,n.screen,w(r)]}}function w(_){return String.fromCharCode.apply(0,_)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=gm()}catch(_){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),X0=et((e,t)=>{var n=mk(),r=Ak(),a=yk(),s=gk(),i=xk(),o=wk(),l=bk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),_k=et(()=>{}),vk="3.2.0",kk="3.2.0",Ik="3.2.0",Nk="3.2.0",Sk="3.2.0",Tk=1e-7,Ek=1e-4,oh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Xl=class{refCount(e){return ir("refCount")}incRef(e){return ir("incRef")}timerAvailable(){return!0}time(e){return ir("time")}read(e){return ir("read")}readSync(e){return ir("readSync")}numDataIds(){return ir("numDataIds")}disposeData(e,t){return ir("disposeData")}write(e,t,n){return ir("write")}move(e,t,n,r,a){return ir("move")}memory(){return ir("memory")}floatPrecision(){return ir("floatPrecision")}epsilon(){return this.floatPrecision()===32?Tk:Ek}dispose(){return ir("dispose")}};function ir(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function K0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function Ck(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function zu(e,t,n){return Math.max(e,Math.min(t,n))}function Rk(e){return e%2==0?e:e+1}function Fk(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Mk(e,t){let n=Math.random();return t*n+(1-n)*e}function $k(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function an(e,t,n=""){F(na(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ys(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Js(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||sn(e)&&!n)for(let r=0;r<e.length;++r)Js(e[r],t,n);else t.push(e);return t}function Lt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Dk(e){return e.length===0}function na(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Gt(e){return e%1==0}function Ok(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function zk(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Lk(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return K0(t),t}function Lu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function Pk(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function Wk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function or(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Gt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Z0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:or(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Y0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function J0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Q0(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function e5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function Bk(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function sn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function xm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function t5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ea(e){return typeof e=="string"||e instanceof String}function n5(e){return typeof e=="boolean"}function r5(e){return typeof e=="number"}function Nd(e){return Array.isArray(e)?Nd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":r5(e)?"float32":Ea(e)?"string":n5(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Sd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function el(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function a5(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=a5(e+o*i,s,n)}return r}function tl(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return a5(0,e,t)}function wm(e,t){let n=Td(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Td(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function Vk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return tl(e,new Float32Array(n));if(t==="int32")return tl(e,new Int32Array(n));if(t==="bool")return tl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function bm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Uk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function Hk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function _m(e){return e&&e.then&&typeof e.then=="function"}var s5="tfjsflags",U2=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(_m(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=jk(this.global.location.search);s5 in e&&e[s5].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=Gk(n,r)})}};function jk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(qk(t,r[0],r[1]),r.join("="))),t}function qk(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Gk(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Kl}var Kl=null;function Xk(e){Kl=e}var vm;function i5(){if(vm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");vm=e}return vm}function Kk(){let e=i5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function km(e,t){let n=Kk();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Wi="Abs",Bi="Acos",Vi="Acosh",xa="Add",Za="AddN",lh="All",uh="Any",Ya="ArgMax",Zl="ArgMin",Ui="Asin",Hi="Asinh",ji="Atan",Gi="Atanh",qi="Atan2",Ja="AvgPool",ch="AvgPoolGrad",Yl="AvgPool3D",hh="AvgPool3DGrad",Qa="BatchMatMul",Jl="BatchToSpaceND",dh="Bincount",H2="BroadcastTo",es="Cast",ts="Ceil",wa="ClipByValue",ph="Complex",Ql="ComplexAbs",Xi="Concat",ns="Conv2D",fh="Conv2DBackpropFilter",rs="Conv2DBackpropInput",eu="Conv3D",mh="Conv3DBackpropFilterV2",Ah="Conv3DBackpropInputV2",as="Cos",Ki="Cosh",ss="Cumsum",Zi="CropAndResize",yh="DenseBincount",Yi="DepthToSpace",is="DepthwiseConv2dNative",gh="DepthwiseConv2dNativeBackpropFilter",xh="DepthwiseConv2dNativeBackpropInput",wh="Diag",tu="Dilation2D",bh="Dilation2DBackpropInput",_h="Dilation2DBackpropFilter",os="RealDiv",Ji="Elu",vh="EluGrad",Qi="Erf",eo="Equal",ls="Exp",to="ExpandDims",no="Expm1",kh="FFT",nu="Fill",ro="FlipLeftRight",us="Floor",cs="FloorDiv",hs="FusedBatchNorm",ao="GatherV2",so="GatherNd",io="Greater",ds="GreaterEqual",ps="Identity",Ih="IFFT",Nh="Imag",oo="IsFinite",lo="IsInf",uo="IsNan",fs="LeakyRelu",co="Less",ho="LessEqual",Sh="LinSpace",ms="Log",po="Log1p",fo="LogicalAnd",ru="LogicalNot",au="LogicalOr",j2="LogSoftmax",su="LRN",Th="LRNGrad",As="Max",ys="Maximum",gs="MaxPool",Eh="MaxPoolGrad",iu="MaxPool3D",Ch="MaxPool3DGrad",Rh="MaxPoolWithArgmax",xs="Mean",ws="Min",bs="Minimum",ou="MirrorPad",mo="Mod",Fh="Multinomial",_s="Multiply",Ao="Neg",yo="NotEqual",go="NonMaxSuppressionV3",xo="NonMaxSuppressionV4",wo="NonMaxSuppressionV5",bo="OnesLike",vs="OneHot",_o="Pack",ks="PadV2",P4="Pool",Is="Pow",Ns="Prelu",vo="Prod",lu="Range",Mh="Real",ko="Reciprocal",Ss="Relu",Io="Reshape",uu="ResizeNearestNeighbor",$h="ResizeNearestNeighborGrad",Ts="ResizeBilinear",Dh="ResizeBilinearGrad",Es="Relu6",Cs="Reverse",Rs="Round",Fs="Rsqrt",No="ScatterNd",So="Select",To="Selu",Eo="Slice",Ms="Sin",Co="Sinh",Ro="Sign",$s="Sigmoid",Fo="Softplus",Ds="Sqrt",Os="Sum",cu="SpaceToBatchND",Mo="SplitV",zs="Softmax",Ls="SquaredDifference",hu="Square",Ps="Sub",Oh="SparseToDense",$o="StridedSlice",Do="Tan",Ws="Tanh",ba="Tile",Oo="TopK",Bs="Transpose",zh="Unique",zo="Unpack",du="UnsortedSegmentSum",Lo="ZerosLike",_a="Step",Lh="FromPixels",Po="RotateWithOffset",Vs="_FusedMatMul",Us="FusedConv2D",Hs="FusedDepthwiseConv2D",nl=km("kernelRegistry",()=>new Map),Pu=km("gradRegistry",()=>new Map);function Ph(e,t){let n=Im(e,t);return nl.get(n)}function Tf(e){return Pu.get(e)}function pu(e){let t=nl.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Wo(e){let{kernelName:t,backendName:n}=e,r=Im(t,n);nl.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),nl.set(r,e)}function G2(e){let{kernelName:t}=e;Pu.has(t)&&Y().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Pu.set(t,e)}function W4(e,t){let n=Im(e,t);if(!nl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);nl.delete(n)}function B4(e){if(!Pu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Pu.delete(e)}function V4(e,t){pu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Wo(r)})}function Im(e,t){return`${t}_${e}`}var v={};Pe(v,{arraysEqual:()=>na,assert:()=>F,assertNonNegativeIntegerDimensions:()=>bm,assertNonNull:()=>Ys,assertShapesMatch:()=>an,bytesFromStringArray:()=>t5,bytesPerElement:()=>xm,checkConversionForErrors:()=>Q0,clamp:()=>zu,computeStrides:()=>el,createScalarValue:()=>Zk,createShuffledIndices:()=>Lk,decodeString:()=>Cd,distSquared:()=>$k,encodeString:()=>Bu,fetch:()=>Yk,flatten:()=>Js,getArrayFromDType:()=>J0,getTypedArrayFromDType:()=>Y0,hasEncodingLoss:()=>Bk,indexToLoc:()=>Hk,inferDtype:()=>Nd,inferFromImplicitShape:()=>Wk,isBoolean:()=>n5,isFunction:()=>Ca,isInt:()=>Gt,isNumber:()=>r5,isPromise:()=>_m,isScalarShape:()=>Dk,isString:()=>Ea,isTypedArray:()=>sn,isValidDtype:()=>e5,locToIndex:()=>Uk,makeOnesTypedArray:()=>wm,makeZerosNestedTypedArray:()=>Vk,makeZerosTypedArray:()=>Td,nearestDivisor:()=>Sd,nearestLargerEven:()=>Rk,now:()=>Wu,parseAxisParam:()=>or,randUniform:()=>Mk,repeatedTry:()=>Pk,rightPad:()=>Lu,shuffle:()=>K0,shuffleCombo:()=>Ck,sizeFromShape:()=>Lt,sizeToSquarishShape:()=>zk,squeezeShape:()=>Z0,sum:()=>Fk,tanh:()=>Ok,toNestedArray:()=>tl,toTypedArray:()=>Ed});function Zk(e,t){return t==="string"?Bu(e):Ed([e],t)}function Jk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ed(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Js(e)),Y().getBool("DEBUG")&&Q0(e,t),Jk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Wu(){return Y().platform.now()}function Yk(e,t){return Y().platform.fetch(e,t)}function Bu(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function Cd(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var t9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new e9)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=Wu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Wu()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(u=>{Qk(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function Qk(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var e9=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?Lu(`${r}ms`,9):r.error,o=Lu(e,25),l=t.rank,u=t.size,c=Lu(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function n9(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){u.outputs.forEach(m=>r[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function r9(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!na(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var o5=20,Vu=3,Nm=7;function s9(e,t,n,r){let a=el(t),s=a9(e,t,n,a),i=t.length,o=Rd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function a9(e,t,n,r){let a=Lt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Hu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Uu(l[c+h],0,n).length)}return i}function Uu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(Nm))} + ${parseFloat(e[1].toFixed(Nm))}j`:Ea(e)?r=`'${e}'`:n==="bool"?r=l5(e):r=parseFloat(e.toFixed(Nm)).toString(),Lu(r,t)}function l5(e){return e===0?"false":"true"}function Rd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Hu(e);return[Uu(m[0],0,n)]}return n==="bool"?[l5(e[0])]:[e[0].toString()]}if(l===1){if(o>o5){let A=Vu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Vu)*i,o*i));return n==="complex64"&&(y=Hu(y),g=Hu(g)),["["+y.map((b,w)=>Uu(b,a[w],n)).join(", ")+", ..., "+g.map((b,w)=>Uu(b,a[o-Vu+w],n)).join(", ")+"]"]}let m=n==="complex64"?Hu(e):Array.from(e);return["["+m.map((A,y)=>Uu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>o5){for(let m=0;m<Vu;m++){let A=m*h,y=A+h;d.push(...Rd(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let m=o-Vu;m<o;m++){let A=m*h,y=A+h;d.push(...Rd(e.slice(A,y),u,n,c,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...Rd(e.slice(A,y),u,n,c,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Hu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ot=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Lt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||J0(t,this.size),this.strides=el(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Or().makeTensor(this.values,this.shape,this.dtype)}},Or=null,rl=null,i9=null;function o9(e){Or=e}function l9(e){rl=e}function u9(e){i9=e}var Je=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Lt(e),this.strides=el(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return rl.buffer(this.shape,this.dtype,e)}bufferSync(){return rl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return tl(this.shape,e)}arraySync(){return tl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Or().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Cd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Or().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Cd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Or().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Or().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return rl.print(this,e)}clone(){return this.throwIfDisposed(),rl.clone(this)}toString(e=!1){let t=this.dataSync();return s9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),rl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Or().makeVariable(this,e,t,n)}};Object.defineProperty(Je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return km("Tensor",()=>Je)}Z();var fu=class extends Je{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!na(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Or().disposeTensor(this),this.dataId=e.dataId,Or().incRef(this,null)}dispose(){Or().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(fu,Symbol.hasInstance,{value:e=>e instanceof Je&&e.assign!=null&&e.assign instanceof Function});var mr={};Pe(mr,{assertTypesMatch:()=>u5,getTensorsInContainer:()=>Sm,isTensorInList:()=>c9,makeTypesMatch:()=>kt});var Ef;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ef||(Ef={}));var Tm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Tm||(Tm={}));var Em;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Em||(Em={}));var Cm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Cm||(Cm={}));var Rm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Rm||(Rm={}));var h9={float32:Cm,int32:Tm,bool:Em,complex64:Rm};function tr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return h9[e][t]}function Wh(e){return tr(e,"int32")}function kt(e,t){if(e.dtype===t.dtype)return[e,t];let n=tr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function u5(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function c9(e,t){return t.some(n=>n.id===e.id)}function Sm(e){let t=[],n=new Set;return c5(e,t,n),t}function c5(e,t,n){if(e==null)return;if(e instanceof Je){t.push(e);return}if(!d9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),c5(s,t,n))}}function d9(e){return Array.isArray(e)||typeof e=="object"}function Fm(e){return e.kernelName!=null}var h5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},ju=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new h5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new t9(this.backendInstance),!0}setupRegisteredKernels(){pu(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){pu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Xl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return ju.nextTensorId++}nextVariableId(){return ju.nextVariableId++}clone(e){let t=$.runKernel(ps,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(es,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Ph(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Fm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Fm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Ph(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let b=g.map(w=>{if(w.rank!=null)return w;let{dataId:_,shape:x,dtype:N}=w;return this.makeTensorFromDataId(_,x,N)});if(r){let w=this.getTensorsForGradient(p,f,b);n=this.saveTensorsForBackwardMode(w)}return b}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,h=Fm(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Tf(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>Bu(o)));let s=r.write(a,t,n),i=new Je(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=t5(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Je(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new fu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*xm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof fu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*xm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Tf(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Td(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Sm(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Je,()=>"The result y returned by f() must be a tensor.");let s=n9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?p9(a.shape):n,r9(i,s,l=>this.tidy(l),f9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Wu(),n=await this.backend.time(e);return n.wallMs=Wu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new h5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ju.nextTensorId=0;ju.nextVariableId=0;function p9(e){let t=wm(Lt(e),"float32");return $.makeTensor(t,e,"float32")}function d5(){let e=i5();if(e._tfengine==null){let t=new U2(e);e._tfengine=new ju(t)}return Xk(e._tfengine.ENV),o9(()=>e._tfengine),e._tfengine}var $=d5();function f9(e,t){let n={a:e,b:t};return $.runKernel(xa,n)}var Bh={};Pe(Bh,{isBrowser:()=>p5,isMobile:()=>m9});function A9(){return typeof navigator!="undefined"&&navigator!=null}function m9(){if(A9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function p5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var zr=Y();zr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});zr.registerFlag("IS_BROWSER",()=>p5());zr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");zr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));zr.registerFlag("PROD",()=>!1);zr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>zr.getBool("DEBUG"));zr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);zr.registerFlag("IS_TEST",()=>!1);zr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Lr(e,t){let n=e;if(sn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||sn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&f5(e,r,[]),r}function f5(e,t,n){if(n=n||[],!Array.isArray(e)&&!sn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)f5(e[a],r,n.concat(a))}function m5(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Je)return m5(r,e.dtype,t,n),e;let a=Nd(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),m5(r,a,t,n),e==null||!sn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Lr(e,a);!sn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Ed(e,a):Js(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var q2="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+q2;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return _m(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function y9(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");an(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(ph,a)}var va=O({complex_:y9});function Ra(e,t,n,r){if(r==null&&(r=Nd(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!sn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){bm(t);let a=Lt(t),s=Lt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Lt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!sn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Ed(e,r):Js(e,[],!0),$.makeTensor(e,t,r)}function Ar(e,t,n){let r=Lr(e,n);return Ra(e,t,r,n)}var Mm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Fd=4;async function x9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Fd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=Fd,f.set(y,m),m+=y.length}h(f)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:g9(s),specs:n}}function A5(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Lt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=Mm[h.dtype],p=e.slice(a,a+u*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=w9()),c=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Lt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+Fd))[0];a+=Fd;let f=new Uint8Array(e.slice(a,a+p));c.push(f),a+=p}}else{let h=Mm[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],f[y]=c[y*2+1];let m=Ar(p,l,"float32"),A=Ar(f,l,"float32");n[i]=va(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=Ar(c,l,o))}return n}function g9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var $m=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function y5(e){return $m?Buffer.byteLength(e):new Blob([e]).size}function b9(e){if($m)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function _9(e){if($m){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function Dm(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function g5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:y5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:y5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function v9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function k9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function I9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function w9(){let e=v9(),t=k9(),n=I9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},N9=e=>Et.registerSaveRouter(e),S9=e=>Et.registerLoadRouter(e),T9=e=>Et.getSaveHandlers(e),E9=(e,t)=>Et.getLoadHandlers(e,t),Om="tensorflowjs",zm=1,Qs="models_store",Fa="model_info_store";function x5(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Lm(e){let t=e.result;t.createObjectStore(Qs,{keyPath:"modelPath"}),t.createObjectStore(Fa,{keyPath:"modelPath"})}var ei=class{constructor(e){if(this.indexedDB=x5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Om,zm);a.onupgradeneeded=()=>Lm(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Qs,"readonly"),o=i.objectStore(Qs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(Fa,"readwrite"),l=o.objectStore(Fa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(Qs,"readwrite");let h=c.objectStore(Qs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Fa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};ei.URL_SCHEME="indexeddb://";var w5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?C9(e.slice(ei.URL_SCHEME.length)):null;Et.registerSaveRouter(w5);Et.registerLoadRouter(w5);function C9(e){return new ei(e)}function R9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var F9=class{constructor(){this.indexedDB=x5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Om,zm);n.onupgradeneeded=()=>Lm(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Fa,"readonly"),s=a.objectStore(Fa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=R9(e),new Promise((t,n)=>{let r=this.indexedDB.open(Om,zm);r.onupgradeneeded=()=>Lm(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Fa,"readwrite"),i=s.objectStore(Fa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(Qs,"readwrite");let h=l.objectStore(Qs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ra="/",al="tensorflowjs_models",b5="info",M9="model_topology",$9="weight_specs",D9="weight_data",O9="model_metadata";function _5(e){return{info:[al,e,b5].join(ra),topology:[al,e,M9].join(ra),weightSpecs:[al,e,$9].join(ra),weightData:[al,e,D9].join(ra),modelMetadata:[al,e,O9].join(ra)}}function z9(e){let t=e.split(ra);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ra)}function L9(e){return e.startsWith(ti.URL_SCHEME)?e.slice(ti.URL_SCHEME.length):e}var ti=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=_5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,b9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=_9(s),t}};ti.URL_SCHEME="localstorage://";var v5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ti.URL_SCHEME)?P9(e.slice(ti.URL_SCHEME.length)):null;Et.registerSaveRouter(v5);Et.registerLoadRouter(v5);function P9(e){return new ti(e)}var W9=class{constructor(){F(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=al+ra,n=ra+b5;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=z9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=L9(e);let t=_5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},sl="://",qn=class{constructor(){this.managers={}}static getInstance(){return qn.instance==null&&(qn.instance=new qn),qn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(sl)&&(e=e.slice(0,e.indexOf(sl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=qn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Md(e){if(e.indexOf(sl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${qn.getSchemes().join(",")}`);return{scheme:e.split(sl)[0],path:e.split(sl)[1]}}async function k5(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Et.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Et.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Md(e).scheme,l=Md(e).path,u=o===Md(e).scheme,c=await a.load();n&&u&&await qn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function B9(){let e=qn.getSchemes(),t={};for(let n of e){let r=await qn.getManager(n).listModels();for(let a in r){let s=n+sl+a;t[s]=r[a]}}return t}async function V9(e){let t=Md(e);return qn.getManager(t.scheme).removeModel(t.path)}async function U9(e,t){return k5(e,t,!1)}async function H9(e,t){return k5(e,t,!0)}var j9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new j9);try{qn.registerManager(ti.URL_SCHEME,new W9)}catch(e){}try{qn.registerManager(ei.URL_SCHEME,new F9)}catch(e){}}var G9={importFetch:()=>X8()},Pm,q9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Pm==null&&(Pm=G9.importFetch()),Pm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new q9);function Ve(e,t="float32",n){return t=t||"float32",bm(e),new Ot(e,t,n)}function X9(e,t){let n=R(e,"x","cast");if(!e5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(es,r,a)}var ye=O({cast_:X9});function K9(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(ps,t)}var Tr=O({clone_:K9});function X2(e,t=!1){console.log(e.toString(t))}d5();var Z9={buffer:Ve,cast:ye,clone:Tr,print:X2};l9(Z9);var xn={};Pe(xn,{browserFiles:()=>Y9,browserHTTPRequest:()=>Q9,concatenateArrayBuffers:()=>Dm,copyModel:()=>U9,decodeWeights:()=>A5,encodeWeights:()=>x9,fromMemory:()=>eI,getLoadHandlers:()=>E9,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>T9,http:()=>Bm,isHTTPScheme:()=>Wm,listModels:()=>B9,loadWeights:()=>J9,moveModel:()=>H9,registerLoadRouter:()=>S9,registerSaveRouter:()=>N9,removeModel:()=>V9,weightsLoaderFactory:()=>I5,withSaveHandler:()=>tI});var nI="model",rI=".json",aI=".weights.bin";function N5(e){return new Promise(t=>setTimeout(t)).then(e)}var il=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(il.URL_SCHEME)&&(e=e.slice(il.URL_SCHEME.length)),(e==null||e.length===0)&&(e=nI),this.modelTopologyFileName=e+rI,this.weightDataFileName=e+aI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await N5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await N5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};il.URL_SCHEME="downloads://";var sI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let b={modelTopology:o,weightSpecs:c,weightData:Dm(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(b.signature=i.signature),i.userDefinedMetadata!=null&&(b.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(b.modelInitializer=i.modelInitializer),n(b)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>g5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=g5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},oI=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(il.URL_SCHEME)?iI(e.slice(il.URL_SCHEME.length)):null;Et.registerSaveRouter(oI);function iI(e="model"){return new il(e)}function Y9(e){return new sI(e)}function S5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function T5(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await S5(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await S5(i,t.onProgress,o,l)}async function J9(e,t="",n,r){return I5(a=>T5(a,{requestInit:r}))(e,t,n)}function I5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Mm[y]*Lt(A.shape),b=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((w,_)=>{w===A.name&&(b(),i[_]=!0)}):b(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,g),g+=w.byteLength}s[p].forEach(b=>{let w=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),_=A5(w,[b.manifestEntry]);for(let x in _)h[x]=_[x]}),d+=f}),h}}var lI="application/octet-stream",uI="application/json",Vm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:uI}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:lI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=cI(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await T5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Dm(l)]}};Vm.URL_SCHEME_REGEX=/^https?:\/\//;function cI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Wm(e){return e.match(Vm.URL_SCHEME_REGEX)!=null}var E5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Wm(r)):n=Wm(e),n)return Bm(e,t)}return null};Et.registerSaveRouter(E5);Et.registerLoadRouter(E5);function Bm(e,t){return new Vm(e,t)}function Q9(e,t){return Bm(e,t)}var Um=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},hI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function eI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Um(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function tI(e){return new hI(e)}var K2={};Pe(K2,{confusionMatrix:()=>dI});function pI(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=kt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(Qa,i,o)}var qe=O({matMul_:pI});function fI(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(vs,a,s)}var Bo=O({oneHot_:fI});function mI(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Bs,r,a)}var at=O({transpose_:mI});function AI(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Bo(ye(r,"int32"),n),i=Bo(ye(a,"int32"),n),o=at(s),l=qe(o,i);return ye(l,"int32")}var dI=O({confusionMatrix_:AI}),mu={};Pe(mu,{fromPixels:()=>gI,toPixels:()=>yI});function Cf(e,t,n){if(Ys(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Lr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}var ol;function xI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ph(Lh,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Lh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(ol==null&&(ol=document.createElement("canvas").getContext("2d")),ol.canvas.width=l,ol.canvas.height=u,ol.drawImage(e,0,0,l,u),c=ol.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=c[p*4+f]}return Cf(h,[u,l,t],"int32")}async function yI(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Je)){let u=n;n=ye(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var gI=O({fromPixels_:xI}),Rf={};Pe(Rf,{prepareAndValidate:()=>C5});function C5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Lt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...el(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var Ff={};Pe(Ff,{calculateShapes:()=>R5,validateInput:()=>jm,validateUpdateShape:()=>Hm});function Hm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function jm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Hm(n,t,e)}function R5(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Lt(t.shape)/o,u=[...el(n.slice(0,a)),1],c=Lt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var ln={};Pe(ln,{assertParamsValid:()=>wI,computeFlatOffset:()=>_I,computeOutShape:()=>F5,getNormalizedAxes:()=>$5,isSliceContinous:()=>bI,maskToAxes:()=>$d,parseSliceParams:()=>W5,sliceInfo:()=>vI,startForAxis:()=>L5,startIndicesWithElidedDims:()=>D5,stopForAxis:()=>P5,stopIndicesWithElidedDims:()=>O5,stridesForAxis:()=>z5,stridesWithElidedDims:()=>M5});function wI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function $d(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function F5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function M5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function B5(e,t,n){return n<=e?n:n-(t-1)}function V5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function $5(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=D5(i,p,f,r,e),h=O5(o,p,f,a,e),d=M5(s,p,f,e)}else for(let p=0;p<u;p++)c[p]=L5(i,r,s,e,p,l),h[p]=P5(o,a,s,e,p,l),d[p]=z5(s,p,l);return{begin:c,end:h,strides:d}}function D5(e,t,n,r,a){let s=[...a],i=V5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=B5(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function O5(e,t,n,r,a){let s=[...a],i=V5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=B5(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=zu(0,s[o],a[o])}return s}function z5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function L5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=zu(0,i,l-1),i}function P5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=zu(0,i,l):i=zu(-1,i,l-1),i}function bI(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function _I(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function W5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function vI(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=$d(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=$d(o),m=e.slice();f.forEach(x=>{u[x]=0,c[x]=1,m.splice(x,0,1)});let{begin:A,end:y,strides:g}=$5(m,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let b=$d(l);b.forEach(x=>{c[x]=u[x]+1,h[x]=1});let w=F5(u,c,h),_=w.filter((x,N)=>b.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:w,newShape:m,outShape:_}}var ae={};Pe(ae,{Serializable:()=>U5,SerializationMap:()=>ni,registerClass:()=>Ma});var U5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ni=class{constructor(){this.classNameMap={}}static getMap(){return ni.instance==null&&(ni.instance=new ni),ni.instance}static register(e){ni.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ma(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ni.register(e)}var Z2={};Pe(Z2,{TEST_EPSILON_FLOAT16:()=>H5,encodeStrings:()=>j5,expectArrayBuffersEqual:()=>EI,expectArraysClose:()=>kI,expectArraysEqual:()=>NI,expectNumbersClose:()=>SI,expectPromiseToFail:()=>II,expectValuesInRange:()=>TI,testEpsilon:()=>Gm});var CI=.001,H5=.1;function kI(e,t,n){return n==null&&(n=Gm()),qm(e,t,(r,a)=>Xm(r,a,n))}function Gm(){return $.backend.floatPrecision()===32?CI:H5}function qm(e,t,n){let r=!0;if((sn(e)||sn(t))&&(r=!1),sn(e)&&sn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Lr(e),o=Lr(t);if(!na(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=sn(e)?e:Js(e),s=sn(t)?t:Js(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function II(e,t){e().then(()=>t.fail(),()=>t())}function NI(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?qm(e,n,(r,a)=>r==a):qm(e,t,(r,a)=>Xm(r,a,0))}function SI(e,t,n){if(n==null&&(n=Gm()),!Xm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Xm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function TI(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function EI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function j5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?j5(n):e[t]=Bu(n)}return e}var U4="3.2.0";function H4(){Y().set("PROD",!0)}function j4(){Y().set("DEBUG",!0)}function G4(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Mf(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}u9(Mf);function q4(){$.disposeVariables()}function Er(){return $}function Vh(){return $.memory()}function js(e){return $.profile(e)}function V(e,t){return $.tidy(e,t)}function Fe(e){Sm(e).forEach(t=>t.dispose())}function Ht(e){return $.keep(e)}function X4(e){return $.time(e)}function K4(e){return $.setBackend(e)}function Z4(){return $.ready()}function Y4(){return $.backendName}function J4(e){$.removeBackend(e)}function Y2(e){return $.findBackend(e)}function Q4(e){return $.findBackendFactory(e)}function Au(e,t,n=1){return $.registerBackend(e,t,n)}function J2(){return $.backend}function e8(e,t){Y().setPlatform(e,t)}function RI(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(xa,a)}var ie=O({add_:RI});function FI(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(cs,a)}var Uh=O({floorDiv_:FI});function MI(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=kt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Uh(n,r);let a={a:n,b:r},s={};return $.runKernel(os,a,s)}var ke=O({div_:MI});function $I(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(_s,a)}var W=O({mul_:$I});function DI(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Ql,n)}else{let n={x:t};return $.runKernel(Wi,n)}}var zt=O({abs_:DI});function OI(e){let t={x:R(e,"x","acos")};return $.runKernel(Bi,t)}var $f=O({acos_:OI});function zI(e){let t={x:R(e,"x","acosh")};return $.runKernel(Vi,t)}var Df=O({acosh_:zI});function LI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!na(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Za,r)}var Hh=O({addN_:LI});function PI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(lh,r,a)}var jh=O({all_:PI});function WI(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(uh,r,a)}var yu=O({any_:WI});function BI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Ya,n,r)}var gu=O({argMax_:BI});function VI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(Zl,n,r)}var Of=O({argMin_:VI});function UI(e){let t={x:R(e,"x","asin")};return $.runKernel(Ui,t)}var zf=O({asin_:UI});function HI(e){let t={x:R(e,"x","asinh")};return $.runKernel(Hi,t)}var Lf=O({asinh_:HI});function jI(e){let t={x:R(e,"x","atan")};return $.runKernel(ji,t)}var Pf=O({atan_:jI});function GI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(qi,a)}var Wf=O({atan2_:GI});function qI(e){let t={x:R(e,"x","atanh")};return $.runKernel(Gi,t)}var Bf=O({atanh_:qI});function XI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=G5(a);return Xu(e,o,n,s,r,null,null,l)}function q5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Dd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Xu(e,u,n,r,a,s,!1,i)}function KI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=Km(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return X5(e,c,n,r,a,!1,h,s)}function Xu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Dd(n),[y,g]=Dd(r),b=ll(d,y),w=ll(p,g),{padInfo:_,outHeight:x,outWidth:N}=ZI(a,u,c,m,A,b,w,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:b,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function X5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,b]=Km(n),[w,_,x]=Km(r),N=ll(p,w),T=ll(f,_),E=ll(m,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:P}=YI(a,u,c,h,y,g,b,N,T,E,o),U=s?A*d:A,H;return i==="channelsFirst"?H=[l,U,D,L,P]:i==="channelsLast"&&(H=[l,D,L,P,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:P,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:b,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:w,dilationHeight:_,dilationWidth:x,inShape:e,outShape:H,filterShape:t}}function JI(e,t,n,r,a){r==null&&(r=Zm(e,t,n));let s=e[0],i=e[1],o=ri((s-t+2*r)/n+1,a),l=ri((i-t+2*r)/n+1,a);return[o,l]}function QI(e,t,n,r,a,s){a==null&&(a=Zm(e,t,r));let i=e[0],o=e[1],l=e[2],u=ri((i-t+2*a)/r+1,s),c=ri((o-t+2*a)/r+1,s),h=ri((l-t+2*a)/r+1,s);return[u,c,h,n]}function Zm(e,t,n,r=1){let a=ll(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Dd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Km(e){return typeof e=="number"?[e,e,e]:e}function ll(e,t){return t<=1?e:e+(e-1)*(t-1)}function ZI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=JI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;u={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=ri((t-s+d+p)/r+1,o),h=ri((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function YI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=QI([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+u-r,g=Math.floor(m/2),b=m-g,w=Math.floor(A/2),_=A-w,x=Math.floor(y/2),N=y-x;h={top:w,bottom:_,left:x,right:N,front:g,back:b,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function ri(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function $a(e){let[t,n,r]=Dd(e);return t===1&&n===1&&r===1}function Pr(e,t){return $a(e)||$a(t)}function G5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function eN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Io,n,r)}var j=O({reshape_:eN});function tN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Pr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Gt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ja,u,c);return h=ye(h,s.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var xu=O({avgPool_:tN});function nN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Gt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Yl,u,c);return h=ye(h,o.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Vf=O({avgPool3d_:nN});function rN(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Tr(n[0]);let r=n,a={axis:t};return $.runKernel(Xi,r,a)}var lt=O({concat_:rN});function aN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel($s,t)}var nr=O({sigmoid_:aN});function sN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Eo,a,s)}var Me=O({slice_:sN});function iN(e){let t={x:R(e,"x","tanh")};return $.runKernel(Ws,t)}var Vo=O({tanh_:iN});function oN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=lt([u,h],1),p=qe(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Me(f,[0,0],y),b=Me(f,[0,A],y),w=Me(f,[0,A*2],y),_=Me(f,[0,A*3],y),x=ie(W(nr(g),Vo(b)),W(c,nr(ie(i,w)))),N=W(Vo(x),nr(_));return[x,N]}var t8=O({basicLSTMCell_:oN});function lN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Jl,s,i)}var wu=O({batchToSpaceND_:lN});function uN(e){let t;return e.rank===0||e.rank===1?t=j(e,[1,1,1,e.size]):e.rank===2?t=j(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function cN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:uN(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(hs,h,d);return j(p,i.shape)}var Gs=O({batchNorm_:cN});function hN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Gs(i,o,l,c,u,s)}var Q2=O({batchNorm2d_:hN});function dN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Gs(i,o,l,c,u,s)}var e0=O({batchNorm3d_:dN});function pN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Gs(i,o,l,c,u,s)}var t0=O({batchNorm4d_:pN});function fN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(dh,s,i)}var n0=O({bincount_:fN});function mN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=j(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Tr(n);let i={x:n},o={reps:s};return $.runKernel(ba,i,o)}var bu=O({broadcastTo_:mN});function AN(e){let t={x:R(e,"x","ceil")};return $.runKernel(ts,t)}var Uf=O({ceil_:AN});function yN(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(wa,a,s)}var wn=O({clipByValue_:yN});function gN(e){return lt(e,0)}var r0=O({concat1d_:gN});function xN(e,t){return lt(e,t)}var Gh=O({concat2d_:xN});function wN(e,t){return lt(e,t)}var a0=O({concat3d_:wN});function bN(e,t){return lt(e,t)}var s0=O({concat4d_:bN});function _N(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Gt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Pr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(ns,d,p);return c?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Yr=O({conv2d_:_N});function vN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Gt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Pr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=j(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=j(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Yr(d,h,[1,n],r,"NHWC",[1,s],i);return c?j(p,[p.shape[2],p.shape[3]]):j(p,[p.shape[0],p.shape[2],p.shape[3]])}var qh=O({conv1d_:vN});function kN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Gt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(rs,d,p);return u?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ym=O({conv2DBackpropInput_:kN});function IN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Ym(n,i,o,r,a,"NHWC",s)}var Xh=O({conv2dTranspose_:IN});function NN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Pr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(eu,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Hf=O({conv3d_:NN});function SN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Ah,c,h);return o?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var K5=O({conv3DBackpropInput_:SN});function TN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return K5(n,s,i,r,a)}var n8=O({conv3dTranspose_:TN});function EN(e){let t={x:R(e,"x","cos")};return $.runKernel(as,t)}var _u=O({cos_:EN});function CN(e){let t={x:R(e,"x","cosh")};return $.runKernel(Ki,t)}var Kh=O({cosh_:CN});function RN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(ss,a,s)}var Zh=O({cumsum_:RN});function FN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(yh,i,o)}var i0=O({denseBincount_:FN});function MN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(Yi,o,l)}var jf=O({depthToSpace_:MN});function $N(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Gt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(is,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Uo=O({depthwiseConv2d_:$N});function DN(e){let t={x:R(e,"x","diag")};return $.runKernel(wh,t)}var r8=O({diag_:DN});function ON(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(tu,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Gf=O({dilation2d_:ON});function zN(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function At(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function LN(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(eo,a)}var ka=O({equal_:LN});function PN(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=At(r.shape,a.shape),o=bu(r,i),l=bu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&an(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(So,u)}var bn=O({where_:PN});function WN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel(Lo,t)}var je=O({zerosLike_:WN});function BN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=kt(n,r);let a=ke(n,r),s=je(a),i=ka(r,s);return bn(i,s,a)}var qf=O({divNoNan_:BN});function VN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=j(n,[1,-1]),o=j(r,[-1,1]),l=qe(i,o);return j(l,[])}else if(n.rank===1&&r.rank===2){let i=j(n,[1,-1]),o=j(r,[r.shape[0],r.shape[1]]),l=qe(i,o);return j(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=j(r,[-1,1]),o=qe(n,i);return j(o,[o.size])}else{let i=j(r,[r.shape[0],r.shape[1]]);return qe(n,i)}}var o0=O({dot_:VN});function UN(e){let t={x:R(e,"x","elu")};return $.runKernel(Ji,t)}var Ho=O({elu_:UN});function HN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return $.runKernel(Qi,n)}var Xf=O({erf_:HN});function jN(e){let t={x:R(e,"x","exp")};return $.runKernel(ls,t)}var jn=O({exp_:jN});function GN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(to,r,a)}var Tn=O({expandDims_:GN});function qN(e){let t={x:R(e,"x","expm1")};return $.runKernel(no,t)}var Kf=O({expm1_:qN});function XN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(ba,r,a)}var Ia=O({tile_:XN});function KN(e,t,n,r="float32"){t==null&&(t=e);let a=Ve([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=j(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ia(Tn(i,0),[n[0],1,1]);if(n.length===2)return Ia(Tn(Tn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ia(Tn(Tn(Tn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Zf=O({eye_:KN});function vu(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(nu,{},r)}function ZN(e){let t={x:R(e,"x","floor")};return $.runKernel(us,t)}var jo=O({floor_:ZN});function YN(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(ao,i,o)}var qs=O({gather_:YN});function JN(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(io,a)}var rr=O({greater_:JN});function QN(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ds,a)}var Na=O({greaterEqual_:QN});function eS(e){let t={input:R(e,"input","imag")};return $.runKernel(Nh,t)}var Yh=O({imag_:eS});function tS(e){let t={x:R(e,"x","isFinite")};return $.runKernel(oo,t)}var l0=O({isFinite_:tS});function nS(e){let t={x:R(e,"x","isInf")};return $.runKernel(lo,t)}var u0=O({isInf_:nS});function rS(e){let t={x:R(e,"x","isNaN")};return $.runKernel(uo,t)}var c0=O({isNaN_:rS});function aS(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(fs,n,r)}var ku=O({leakyRelu_:aS});function sS(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(co,a)}var Jh=O({less_:sS});function iS(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ho,a)}var Xs=O({lessEqual_:iS});function h0(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Sh,{},r)}function oS(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=j(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(su,l,u);return o?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Yf=O({localResponseNormalization_:oS});function lS(e){let t={x:R(e,"x","log")};return $.runKernel(ms,t)}var En=O({log_:lS});function uS(e){let t={x:R(e,"x","log1p")};return $.runKernel(po,t)}var Qh=O({log1p_:uS});function a8(e){return F(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Od(i),i[0]})}}function s8(e){return F(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Od(i),i})}}function i8(e){return F(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Od(r),{grad:r[0],value:a}}}function o8(e){return F(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&an(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Od(r.grads),r}}function d0(e,t){F(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof fu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Cr(e){return $.customGrad(e)}function Od(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function cS(e){let t={x:R(e,"x","neg")};return $.runKernel(Ao,t)}var _t=O({neg_:cS});function hS(e){let t={x:R(e,"x","softplus")};return $.runKernel(Fo,t)}var Go=O({softplus_:hS});function dS(e){let t=R(e,"x","logSigmoid");return Cr(n=>({value:_t(Go(_t(n))),gradFunc:r=>W(r,nr(_t(n)))}))(t)}var p0=O({logSigmoid_:dS});function pS(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(As,r,a)}var Gn=O({max_:pS});function fS(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(Ps,a)}var we=O({sub_:fS});function mS(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Os,a,s)}var Ce=O({sum_:mS});function AS(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Cr((r,a)=>{let s=!0,i=Gn(r,t,!0),o=we(r,i),l=we(ye(o,"float32"),En(Ce(jn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=jn(h);return we(u,W(Ce(u,t,d),p))}}})(n)}var ed=O({logSoftmax_:AS});function Jm(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Z5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function Y5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function ai(e,t){let n=t.map(r=>1);return Z5(e,n,t)}function yS(e,t,n){F(Jm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function J5(e,t){if(Jm(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Qm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function gS(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function xS(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=or(t,r.shape),s=Gn(r,a,!0),i=we(r,s),o=jn(i),l=Ce(o,a),u=En(l),c=ie(j(s,u.shape),u);if(n){let h=ai(c.shape,a);return j(c,h)}return c}var Jf=O({logSumExp_:xS});function wS(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(fo,a)}var ar=O({logicalAnd_:wS});function bS(e){let t={x:R(e,"x","logicalNot","bool")};return $.runKernel(ru,t)}var Iu=O({logicalNot_:bS});function _S(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(au,a)}var td=O({logicalOr_:_S});function vS(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return At(n.shape,r.shape),ar(td(e,t),Iu(ar(e,t)))}var f0=O({logicalXor_:vS});function kS(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Pr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Gt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(gs,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Nu=O({maxPool_:kS});function IS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Gt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(iu,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Qf=O({maxPool3d_:IS});function NS(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Rh,s,i);return{result:o[0],indexes:o[1]}}var m0=O({maxPoolWithArgmax_:NS});function SS(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=kt(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ys,a)}var Rr=O({maximum_:SS});function TS(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(xs,r,a)}var vt=O({mean_:TS});function ES(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(ws,r,a)}var qo=O({min_:ES});function CS(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=kt(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(bs,a)}var Xo=O({minimum_:CS});function RS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(ou,i,s)}var em=O({mirrorPad_:RS});function FS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(mo,a)}var tm=O({mod_:FS});function MS(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ot=O({square_:MS});function $S(e,t=null,n=!1){e=R(e,"x","moments");let r=or(t,e.shape),a=vt(e,r,n),s=a.shape;n||(s=ai(a.shape,r));let i=ot(we(ye(e,"float32"),j(a,s))),o=vt(i,r,n);return{mean:a,variance:o}}var nd=O({moments_:$S});function DS(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var l8=O({multiRNNCell_:DS});function OS(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?j(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Fh,o,l);return i===1?j(u,[u.size]):u}var A0=O({multinomial_:OS});function zS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(yo,a)}var Ks=O({notEqual_:zS});function Ft(e,t="float32"){if(t==="complex64"){let r=Ft(e,"float32"),a=Ft(e,"float32");return va(r,a)}let n=Td(Lt(e),t);return $.makeTensor(n,e,t)}function Fr(e,t="float32"){if(t==="complex64"){let r=Fr(e,"float32"),a=Ft(e,"float32");return va(r,a)}let n=wm(Lt(e),t);return $.makeTensor(n,e,t)}function LS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(bo,t)}var Cn=O({onesLike_:LS});function PS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=j(n,[-1,1]),s=j(r,[1,-1]);return qe(a,s)}var u8=O({outerProduct_:PS});function WS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(ks,s,a)}var Jr=O({pad_:WS});function BS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jr(e,[t],n)}var c8=O({pad1d_:BS});function VS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var h8=O({pad2d_:VS});function US(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var d8=O({pad3d_:US});function HS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var p8=O({pad4d_:HS});function jS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(cu,a,s)}var Su=O({spaceToBatchND_:jS});function XS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Pr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=q5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=qS([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=GS([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:Su(o,c,p),y=(n==="avg"?()=>xu(A,t,s,m):()=>Nu(A,t,s,m))(),g=d?y:wu(y,c,f);return l?j(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function GS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function qS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var y0=O({pool_:XS});function KS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=kt(n,r);let a={a:n,b:r};return $.runKernel(Is,a)}var Qr=O({pow_:KS});function ZS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Ns,a)}var Tu=O({prelu_:ZS});function YS(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(vo,a,s)}var rd=O({prod_:YS});function JS(e,t,n){let r=Lt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var f8=O({rand_:JS}),eA=Qo(nk()),tA=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=eA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},QS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=eA.alea(a.toString()),this.randn=new tA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},eT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=eA.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function tT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new QS(t,n,r,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var m8=O({randomGamma_:tT});function nT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new tA(t,n,r,!1,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var g0=O({randomNormal_:nT});function rT(e,t=0,n=1,r="float32",a){let s=Ve(e,r),i=new eT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Ko=O({randomUniform_:rT});function ad(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(lu,{},a)}function aT(e){let t={input:R(e,"input","real")};return $.runKernel(Mh,t)}var Eu=O({real_:aT});function sT(e){let t={x:R(e,"x","reciprocal")};return $.runKernel(ko,t)}var nm=O({reciprocal_:sT});function iT(e){let t={x:R(e,"x","relu")};return $.runKernel(Ss,t)}var Mr=O({relu_:iT});function oT(e){let t={x:R(e,"x","relu6")};return $.runKernel(Es,t)}var sd=O({relu6_:oT});function lT(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return $.runKernel(Cs,n,r)}var Rn=O({reverse_:lT});function uT(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Rn(t,0)}var A8=O({reverse1d_:uT});function cT(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Rn(n,t)}var y8=O({reverse2d_:cT});function hT(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Rn(n,t)}var g8=O({reverse3d_:hT});function dT(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Rn(n,t)}var x8=O({reverse4d_:dT});function pT(e){let t={x:R(e,"x","round")};return $.runKernel(Rs,t)}var rm=O({round_:pT});function fT(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Fs,t)}var id=O({rsqrt_:fT});function Ie(e,t){if((sn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&sn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ra(e,[],[],t)}function mT(e){let t={x:R(e,"x","selu")};return $.runKernel(To,t)}var od=O({selu_:mT});function AT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=Uo(c,l,r,a,i,s),m=Yr(f,u,1,"valid",i);return h?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var am=O({separableConv2d_:AT});async function yT(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new Ot([o],n.dtype),u=new Ot([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var x0=yT;function gT(e){let t={x:R(e,"x","sign")};return $.runKernel(Ro,t)}var sm=O({sign_:gT});function xT(e){let t={x:R(e,"x","sin")};return $.runKernel(Ms,t)}var ld=O({sin_:xT});function wT(e){let t={x:R(e,"x","sinh")};return $.runKernel(Co,t)}var ud=O({sinh_:wT});function bT(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Me(r,[t],[n])}var cd=O({slice1d_:bT});function _T(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var im=O({slice2d_:_T});function vT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var hd=O({slice3d_:vT});function kT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var Cu=O({slice4d_:kT});function IT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(zs,r,a)}var Ru=O({softmax_:IT});function NT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(kh,t)}var Fu=O({fft_:NT});function ST(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Ih,t)}var Zo=O({ifft_:ST});function TT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=j(e,[n,t]);r=Zo(a)}else{let a=[n,2*(t-1)],s=j(Eu(e),[n,t]),i=j(Yh(e),[n,t]),o=Rn(Me(s,[0,1],[n,t-2]),1),l=W(Rn(Me(i,[0,1],[n,t-2]),1),Ie(-1)),u=lt([s,o],1),c=lt([i,l],1),h=j(va(u,c),[a[0],a[1]]);r=Zo(h)}if(r=Eu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=j(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var dd=O({irfft_:TT});function ET(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Mo,r,a)}var un=O({split_:ET});function CT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Me(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=lt([e,Ft(f)],e.shape.length-1),n=t}else a=e;let s=je(a),i=j(va(a,s),[r,n]),o=Fu(i),l=Math.floor(n/2)+1,u=Eu(o),c=Yh(o),h=un(u,[l,n-l],u.shape.length-1),d=un(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,j(va(h[0],d[0]),p)}var Mu=O({rfft_:CT});function RT(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Ds,t)}var Qt=O({sqrt_:RT});function FT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=kt(n,r),At(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ls,a,s)}var pd=O({squaredDifference_:FT});function MT(e,t){let n=R(e,"x","squeeze");return j(n,Z0(n.shape,t).newShape)}var Sa=O({squeeze_:MT});function $T(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(_o,r,a)}var Fn=O({stack_:$T});function DT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(_a,n,r)}var Yo=O({step_:DT});function OT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel($o,u,c)}var om=O({stridedSlice_:OT});function zT(e){let t={x:R(e,"x","tan")};return $.runKernel(Do,t)}var lm=O({tan_:zT});function rn(e,t){Ys(e);let n=Lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ra(e,null,n,t)}function yr(e,t,n){if(Ys(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Lr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ra(e,t,r,n)}function w8(e,t,n){if(Ys(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Lr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function b8(e,t,n){if(Ys(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Lr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function _8(e,t,n){if(Ys(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Lr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ra(e,t,r,n)}function LT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Oo,s,i);return{values:o,indices:l}}var um=O({topk_:LT});function PT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new tA(t,n,r,!0,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var fd=O({truncatedNormal_:PT});function WT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(zh,r,a);return{values:s,indices:i}}var md=O({unique_:WT});function BT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Gt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(du,s,i)}var cm=O({unsortedSegmentSum_:BT});function VT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(zo,r,a)}var sr=O({unstack_:VT});function w0(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Q5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Ve(e,"int32"),a=Ve([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function UT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=Q5(t.shape,n);return e!==t&&t.dispose(),r}var hm=UT;async function HT(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),an(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=j(r,u),h=j(a,[-1]),d=await hm(h),p=Sa(d,[1]),f=qs(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),f}var v8=HT;function jT(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=ex(e,t,n),s=a.shape;if(r){let i=or(n,e.shape);s=ai(a.shape,i)}return j(a,s)}function ex(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return ex(j(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ce(zt(e),n);if(t===Infinity)return Gn(zt(e),n);if(t===-Infinity)return qo(zt(e),n);if(t==="euclidean"||t===2)return Qt(Ce(Qr(zt(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Gn(Ce(zt(e),n[0]),n[1]-1);if(t===Infinity)return Gn(Ce(zt(e),n[1]),n[0]);if(t===-Infinity)return qo(Ce(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Qt(Ce(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Ad=O({norm_:jT});function GT(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");u5(s,i),F(na(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Ie(1),u=we(l,o),c=W(we(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=ke(c,we(l,Qr(o,h)))}return ie(s,c)}var k8=O({movingAverage_:GT});function qT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");jm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(No,s,i)}var b0=O({scatterND_:qT});function XT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function KT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);XT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(Oh,o,l)}var dm=O({sparseToDense_:KT});function ZT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(so,r)}var _0=O({gatherND_:ZT});function YT(e,t){if(t==null)return e.shape.slice();if(na(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function JT(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Je?a.clone():a;let s=YT(a,n),i=1-t,o=ke(jo(ie(Ko(s,0,1,"float32",r),i)),i);return W(a,o)}var v0=O({dropout_:JT});function k0(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function pm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return rn(a,"float32")}async function QT(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),an(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=Y0("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),c[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),Ar(c,a.shape,"bool")}var I8=QT,Ta={};Pe(Ta,{conv2d:()=>eE,depthwiseConv2d:()=>tE,matMul:()=>nE});function rE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Gt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(fh,h,d)}var nA=O({conv2DBackpropFilter_:rE});function zd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Yo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ld(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Ce(n,r)),j(n,e.shape)}function Pd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Mr(e);if(t==="elu")return Ho(e);if(t==="relu6")return sd(e);if(t==="prelu")return Tu(e,n);if(t==="leakyrelu")return ku(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Wd=(e,t)=>!(e>0)||t==="linear";function aE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Wd($.state.gradientDepth,l)===!1){let _=Yr(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Pd(_,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Gt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Pr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Xu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=kt(A,h),At(m.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(_,x)=>{let[N,T,E,M]=x,D=zd(_,E,l);F($a(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Ym(T.shape,D,N,n,r),P=nA(T,D,N.shape,n,r),U=[L,P];if(M!=null){let H=Ld(M,D);U.push(H)}return U},b={x:p,filter:d,bias:A,preluActivationWeights:y},w={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Cr((_,x,N)=>{let T=$.runKernel(Us,b,w);return N([x,_,T]),f&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Cr((_,x,N,T)=>{let E=$.runKernel(Us,b,w);return T([x,_,E,N]),f&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var eE=O({fusedConv2d_:aE});function sE(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(gh,u,c)}var tx=O({depthwiseConv2dNativeBackpropFilter_:sE});function iE(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(xh,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nx=O({depthwiseConv2dNativeBackpropInput_:iE});function oE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Wd($.state.gradientDepth,l)===!1){let _=Uo(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Pd(_,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Pr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Gt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Xu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=kt(A,h),At(m.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(_,x)=>{F($a(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=zd(_,E,l),L=nx(T.shape,D,N,n,r,s,i),P=tx(T,D,N.shape,n,r,s,i);if(M!=null){let U=Ld(A,D);return[L,P,U]}return[L,P]},b={x:p,filter:d,bias:A,preluActivationWeights:y},w={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Cr((_,x,N)=>{let T=$.runKernel(Hs,b,w);return N([x,_,T]),f&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Cr((_,x,N,T)=>{let E=$.runKernel(Hs,b,w);return T([x,_,E,N]),f&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var tE=O({fusedDepthwiseConv2d_:oE});function lE({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Wd($.state.gradientDepth,s)===!1){let M=qe(e,t,n,r);return a!=null&&(M=ie(M,a)),Pd(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=kt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Lt(f),y=Lt(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(na(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),b=n?j(l,[A,c,d]):j(l,[A,d,c]),w=r?j(u,[y,p,h]):j(u,[y,h,p]),_;a!=null&&(_=R(a,"bias","fused matMul"),[_]=kt(_,l),At(g,_.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,P,U,H]=D,X=zd(j(M,U.shape),U,s),G,ee;if(!n&&!r?(G=qe(X,P,!1,!0),ee=qe(L,X,!0,!1)):!n&&r?(G=qe(X,P,!1,!1),ee=qe(X,L,!0,!1)):n&&!r?(G=qe(P,X,!1,!0),ee=qe(L,X,!1,!1)):(G=qe(P,X,!0,!0),ee=qe(X,L,!0,!0)),a!=null){let J=Ld(H,X);return[G,ee,J]}else return[G,ee]},T={a:b,b:w,bias:_,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Cr((M,D,L)=>{let P=$.runKernel(Vs,T,E);return L([M,D,P]),{value:j(P,g),gradFunc:N}})(b,w):Cr((M,D,L,P)=>{let U=$.runKernel(Vs,T,E);return P([M,D,U,L]),{value:j(U,g),gradFunc:N}})(b,w,_)}var nE=O({fusedMatMul_:lE});function uE(e){return pm(e,.54,.46)}var cE=O({hammingWindow_:uE});function hE(e){return pm(e,.5,.5)}var rx=O({hannWindow_:hE});function dE(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Me(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=lt([Me(e,s,t-o),vu([o],a)]);i.push(l),s+=n}return i.length===0?yr([],[0,t]):j(lt(i),[i.length,t])}var ax=O({frame_:dE});function pE(e,t,n,r,a=rx){r==null&&(r=k0(t));let s=ax(e,t,n),i=W(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Mu(Me(i,[l,0],[1,t]),r));return lt(o)}var fE=O({stft_:pE});function mE(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Zi,c,h)}var AE=O({cropAndResize_:mE});function yE(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(ro,n,{})}var gE=O({flipLeftRight_:yE});function xE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Po,s,i)}var wE=O({rotateWithOffset_:xE});function ul(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function bE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=ul(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(go,{boxes:s,scores:i},l)}var _E=O({nonMaxSuppression_:bE});function kE(e,t,n){let r=vE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function vE(e,t,n){return NE(e,t,n||IE)}function IE(e,t){return e>t?1:e<t?-1:0}function NE(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function sx(e,t,n,r,a){return rA(e,t,n,r,a,0)}function ix(e,t,n,r,a,s){return rA(e,t,n,r,a,0,!1,s,!0)}function ox(e,t,n,r,a,s){return rA(e,t,n,r,a,s,!0)}function rA(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(lx);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:b}=A;if(y<a)break;let w=!1;for(let _=h.length-1;_>=b;--_){let x=SE(e,g,h[_]);if(x>=r){w=!0;break}if(A.score=A.score*TE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,w||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&kE(u,A,lx))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function SE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),b=Math.max(y-m,0)*Math.max(g-A,0);return b/(p+f-b)}function TE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function lx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function EE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=ul(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=sx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),rn(h,"int32")}var CE=EE;function RE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=ul(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(wo,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var FE=O({nonMaxSuppressionWithScore_:RE});async function ME(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=ul(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=ox(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:rn(d,"int32"),selectedScores:rn(p)}}var $E=ME;function DE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=ul(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(xo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var OE=O({nonMaxSuppressionPadded_:DE});async function zE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=ul(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=ix(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:rn(f,"int32"),validOutputs:Ie(m,"int32")}}var LE=zE;function PE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ts,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ux=O({resizeBilinear_:PE});function WE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(uu,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var cx=O({resizeNearestNeighbor_:WE});function BE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=j(ad(0,s,1,"int32"),[-1,1]),l=ad(0,i,1,"int32"),u=we(o,l),c=ar(Xs(u,Ie(+t,"int32")),Na(u,Ie(-n,"int32"))),h=Ft([s,i],r.dtype);return j(Fn(sr(j(r,[-1,s,i])).map(d=>bn(c,d,h))),a)}var VE=O({bandPart_:BE});function UE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=un(e,e.shape[0],0).map(a=>Sa(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=W(Ce(W(n[i],s)),n[i]);s=we(s,o)}return ke(s,Ad(s,"euclidean"))}));return t?Fn(n,0):n}var HE=O({gramSchmidt_:UE});function jE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return hx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=sr(j(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=hx(l,t);a.push(u),s.push(c)});let i=j(Fn(a,0),e.shape),o=j(Fn(s,0),e.shape);return[i,o]}}function hx(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Zf(n),s=Tr(e),i=yr([[1]],[1,1]),o=Tr(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Me(s,[u,u],[n-u,1]),f=Ad(p),m=Me(s,[u,u],[1,1]),A=bn(rr(m,0),yr([[-1]]),yr([[1]])),y=we(m,W(A,f)),g=ke(p,y);g.shape[0]===1?o=Tr(i):o=lt([i,Me(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let b=_t(ke(qe(A,y),f)),w=Me(s,[u,0],[n-u,r]),_=W(b,o),x=at(o);if(u===0)s=we(w,qe(_,qe(x,w)));else{let E=we(w,qe(_,qe(x,w)));s=lt([Me(s,[0,0],[u,r]),E],0)}let N=at(_),T=Me(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=we(T,qe(qe(T,o),N));else{let E=we(T,qe(qe(T,o),N));a=lt([Me(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Fe([c,h,d])}return!t&&n>r&&(a=Me(a,[0,0],[n,r]),s=Me(s,[0,0],[r,r])),[a,s]})}var GE=O({qr_:jE}),cn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(cn||(cn={}));function qE(e,t,n=cn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:W(r,a);if(n===cn.NONE)return s;if(n===cn.SUM)return Ce(s);if(n===cn.MEAN){if(a==null)return vt(s);{let i=r.size/a.size,o=ke(Ce(s),Ce(a));return i>1?ke(o,Ie(i)):o}}if(n===cn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ke(Ce(s),Ie(r.size));{let i=W(a,Fr(r.shape)),o=ye(Ce(Ks(i,Ie(0))),"float32");return ke(Ce(s),o)}}throw Error(`Unknown reduction: ${n}`)}var aa=O({computeWeightedLoss_:qE});function XE(e,t,n,r=cn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),an(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(we(a,s));return aa(o,i,r)}var KE=O({absoluteDifference_:XE});function ZE(e,t,n,r,a=cn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),an(s.shape,i.shape,"Error in cosineDistance: ");let l=Ie(1),u=we(l,Ce(W(s,i),n,!0));return aa(u,o,a)}var YE=O({cosineDistance_:ZE});function JE(e,t,n,r=cn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),an(a.shape,s.shape,"Error in hingeLoss: ");let o=Ie(1);a=we(W(Ie(2),a),o);let l=Mr(we(o,W(a,s)));return aa(l,i,r)}var QE=O({hingeLoss_:JE});function eC(e,t,n,r=1,a=cn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),an(s.shape,i.shape,"Error in huberLoss: ");let l=Ie(r),u=zt(we(i,s)),c=Xo(u,l),h=we(u,c),d=ie(W(Ie(.5),ot(c)),W(l,h));return aa(d,o,a)}var tC=O({huberLoss_:eC});function nC(e,t,n,r=1e-7,a=cn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),an(s.shape,i.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(r),c=_t(W(s,En(ie(i,u)))),h=W(we(l,s),En(ie(we(l,i),u))),d=we(c,h);return aa(d,o,a)}var rC=O({logLoss_:nC});function aC(e,t,n,r=cn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),an(a.shape,s.shape,"Error in meanSquaredError: ");let o=pd(a,s);return aa(o,i,r)}var sC=O({meanSquaredError_:aC});function iC(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");an(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Mr(r),s=W(r,n),i=Qh(jn(_t(zt(r))));return ie(we(a,s),i)}function oC(e,t,n,r=0,a=cn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),an(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=Ie(r),c=Ie(1),h=Ie(.5);s=ie(W(s,we(c,u)),W(h,u))}let l=iC(s,i);return aa(l,o,a)}var lC=O({sigmoidCrossEntropy_:oC});function uC(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Cr((r,a,s)=>{let i=Jf(a,[n],!0),o=we(ye(a,"float32"),i);s([r,o]);let l=_t(W(o,r));return{value:Ce(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=ai(u.shape,[n]);return[W(j(u,p),we(ye(h,"float32"),jn(d))),W(j(u,p),we(jn(d),ye(h,"float32")))]}}})(e,t)}function cC(e,t,n,r=0,a=cn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),an(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=Ie(r),c=Ie(1),h=Ie(s.shape[1]);s=ie(W(s,we(c,u)),ke(u,h))}let l=uC(s,i);return aa(l,o,a)}var hC=O({softmaxCrossEntropy_:cC}),N8={fft:Fu,ifft:Zo,rfft:Mu,irfft:dd},S8={hammingWindow:cE,hannWindow:rx,frame:ax,stft:fE},Tt={flipLeftRight:gE,resizeNearestNeighbor:cx,resizeBilinear:ux,rotateWithOffset:wE,cropAndResize:AE,nonMaxSuppression:_E,nonMaxSuppressionAsync:CE,nonMaxSuppressionWithScore:FE,nonMaxSuppressionWithScoreAsync:$E,nonMaxSuppressionPadded:OE,nonMaxSuppressionPaddedAsync:LE},I0={bandPart:VE,gramSchmidt:HE,qr:GE},T8={absoluteDifference:KE,computeWeightedLoss:aa,cosineDistance:YE,hingeLoss:QE,huberLoss:tC,logLoss:rC,meanSquaredError:sC,sigmoidCrossEntropy:lC,softmaxCrossEntropy:hC},ea=class extends U5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Fe(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return d0(e,t)}dispose(){this.iterations_!=null&&Fe(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ea,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var yd=class extends ea{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:V(()=>je(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:V(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;V(()=>{let l=ie(W(i,this.rho),W(ot(s),1-this.rho)),u=W(ke(Qt(ie(o,this.epsilon)),Qt(ie(i,this.epsilon))),s),c=ie(W(o,this.rho),W(ot(u),1-this.rho));i.assign(l),o.assign(c);let h=ie(W(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Fe(this.accumulatedGrads.map(e=>e.variable)),Fe(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};yd.className="Adadelta";Ma(yd);var gd=class extends ea{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:V(()=>vu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;V(()=>{let i=ie(s,ot(a));s.assign(i);let o=ie(W(ke(a,Qt(ie(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Fe(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};gd.className="Adagrad";Ma(gd);var xd=class extends ea{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=we(1,this.accBeta1),r=we(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:V(()=>je(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:V(()=>je(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=ie(W(u,this.beta1),W(l,1-this.beta1)),d=ie(W(c,this.beta2),W(ot(l),1-this.beta2)),p=ke(h,n),f=ke(d,r);u.assign(h),c.assign(d);let m=ie(W(ke(p,ie(Qt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Fe(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Qr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};xd.className="Adam";Ma(xd);var wd=class extends ea{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=we(1,this.accBeta1),r=ke(-this.learningRate,ie(W(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:je(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=ie(W(u,this.beta1),W(l,1-this.beta1)),d=W(c,this.beta2),p=zt(l),f=Rr(d,p);u.assign(h),c.assign(f);let m=ie(W(ke(r,n),ke(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Fe(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};wd.className="Adamax";Ma(wd);var $u=class extends ea{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];V(()=>{let s=ie(W(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};$u.className="SGD";Ma($u);var bd=class extends $u{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:V(()=>je(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&V(()=>{let i,o=ie(W(this.m,a),s);this.useNesterov?i=ie(W(this.c,ie(s,W(o,this.m))),r):i=ie(W(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Fe(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};bd.className="Momentum";Ma(bd);var _d=class extends ea{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:V(()=>je(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:V(()=>je(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:V(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;V(()=>{let l=ie(W(i,this.decay),W(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=ie(W(u,this.decay),W(s,1-this.decay)),h=ke(W(s,this.learningRate),Qt(we(l,ie(ot(c),this.epsilon)))),d=ie(W(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=we(r,d);r.assign(p)}else{let u=ie(W(i,this.decay),W(ot(s),1-this.decay)),c=ie(W(o,this.momentum),ke(W(s,this.learningRate),Qt(ie(u,this.epsilon))));i.assign(u),o.assign(c);let h=we(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Fe(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Fe(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Fe(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};_d.className="RMSProp";Ma(_d);var si=class{static sgd(e){return new $u(e)}static momentum(e,t,n=!1){return new bd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new _d(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new xd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new yd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new wd(e,t,n,r,a)}static adagrad(e,t=.1){return new gd(e,t)}},Zs={sgd:si.sgd,momentum:si.momentum,adadelta:si.adadelta,adagrad:si.adagrad,rmsprop:si.rmsprop,adamax:si.adamax,adam:si.adam},dC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function vd(){return new Promise(e=>dC(()=>e()))}var C={};Pe(C,{ERF_A1:()=>vC,ERF_A2:()=>kC,ERF_A3:()=>IC,ERF_A4:()=>NC,ERF_A5:()=>SC,ERF_P:()=>_C,PARALLELIZE_THRESHOLD:()=>aA,SELU_SCALE:()=>px,SELU_SCALEALPHA:()=>dx,applyActivation:()=>Pd,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>yS,assertParamsConsistent:()=>pC,assignToTypedArray:()=>DC,axesAreInnerMostDims:()=>Jm,calculateShapes:()=>R5,combineLocations:()=>Z5,complexWithEvenIndex:()=>FC,complexWithOddIndex:()=>MC,computeConv2DInfo:()=>Xu,computeConv3DInfo:()=>X5,computeDefaultPad:()=>Zm,computeDilation2DInfo:()=>XI,computeOptimalWindowSize:()=>mC,computeOutAndReduceShapes:()=>Y5,computeOutShape:()=>fC,computePool2DInfo:()=>q5,computePool3DInfo:()=>KI,convertConv2DDataFormat:()=>G5,eitherStridesOrDilationsAreOne:()=>Pr,expandShapeToKeepDim:()=>ai,exponent:()=>zC,exponents:()=>OC,fromStringArrayToUint8:()=>WC,fromUint8ToStringArray:()=>PC,getAxesPermutation:()=>J5,getBroadcastDims:()=>zN,getComplexWithIndex:()=>$C,getFusedBiasGradient:()=>Ld,getFusedDyActivation:()=>zd,getImageCenter:()=>AC,getInnerMostAxes:()=>gS,getPermuted:()=>gC,getReductionAxes:()=>Pt,getReshaped:()=>yC,getReshapedPermuted:()=>xC,getSliceBeginCoords:()=>wC,getSliceSize:()=>bC,getUndoAxesPermutation:()=>Qm,log:()=>EC,mergeRealAndImagArrays:()=>CC,prepareAndValidate:()=>C5,prepareSplitSize:()=>LC,segment_util:()=>fx,shouldFuse:()=>Wd,slice_util:()=>ln,splitRealAndImagArrays:()=>RC,tupleValuesAreOne:()=>$a,upcastType:()=>tr,validateInput:()=>jm,validateUpdateShape:()=>Hm,warn:()=>TC});function pC(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function fC(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var aA=30;function mC(e){return e<=aA?e:Sd(e,Math.floor(Math.sqrt(e)))}function AC(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function yC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function gC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function xC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function wC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function bC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var dx=1.7580993408473768,px=1.0507009873554805,_C=.3275911,vC=.254829592,kC=-.284496736,IC=1.421413741,NC=-1.453152027,SC=1.061405429;function TC(...e){Y().getBool("IS_TEST")||console.warn(...e)}function EC(...e){Y().getBool("IS_TEST")||console.log(...e)}function CC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function RC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function FC(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function MC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function $C(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function DC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function OC(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function zC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function LC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var fx={};Pe(fx,{collectGatherOpShapeInfo:()=>UC,computeOutShape:()=>VC,segOpComputeOptimalWindowSize:()=>BC});function BC(e,t){let n=!1,r;for(e<=aA?(r=e,n=!0):r=Sd(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Sd(e,r+1);return r}function VC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function UC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function PC(e){try{return e.map(t=>Cd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function WC(e){return e.map(t=>Bu(t))}var $r={};Pe($r,{nonMaxSuppressionV3Impl:()=>sx,nonMaxSuppressionV4Impl:()=>ix,nonMaxSuppressionV5Impl:()=>ox,whereImpl:()=>Q5});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var HC=$r.whereImpl,kd=class extends Xl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new oh(this,Er())}nextDataId(){return kd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Er().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return HC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};kd.nextDataId=0;var fm={};Pe(fm,{addImpl:()=>Ax,bincountImpl:()=>sA,bincountReduceImpl:()=>yx,ceilImpl:()=>gx,concatImpl:()=>iA,expImpl:()=>xx,expm1Impl:()=>wx,floorImpl:()=>bx,gatherV2Impl:()=>_x,greaterImpl:()=>vx,lessImpl:()=>kx,linSpaceImpl:()=>Ix,logImpl:()=>Nx,maxImpl:()=>Sx,maximumImpl:()=>Tx,minimumImpl:()=>Ex,multiplyImpl:()=>oA,negImpl:()=>Cx,notEqualImpl:()=>Rx,prodImpl:()=>Fx,rangeImpl:()=>uA,rsqrtImpl:()=>Mx,simpleAbsImpl:()=>mx,sliceImpl:()=>Bd,squaredDifferenceImpl:()=>$x,stridedSliceImpl:()=>Dx,subImpl:()=>Ox,tileImpl:()=>zx,topKImpl:()=>Lx,transposeImpl:()=>lA,uniqueImpl:()=>Px});function mx(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var jC=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=mx(a),n.makeOutput(r,t.shape,"float32")},GC={kernelName:Wi,backendName:"cpu",kernelFunc:jC};function Mt(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=v.indexToLoc(y,o,l),b=g.slice(-h);m.forEach(N=>b[N]=0);let w=v.locToIndex(b,h,p),_=g.slice(-d);A.forEach(N=>_[N]=0);let x=v.locToIndex(_,d,f);c[y]=e(r[w],a[x])}return[c,i]}}function Mn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var qC={kernelName:ph,backendName:"cpu",kernelFunc:Mn};function Vd(e,t,n="float32"){if(n==="complex64"){let a=Vd(e,t,"float32"),s=Vd(e,t,"float32");return Mn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Wr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var XC={kernelName:ps,backendName:"cpu",kernelFunc:Wr};function ii(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var KC={kernelName:Mh,backendName:"cpu",kernelFunc:ii};function Da(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Wr({inputs:{x:a},backend:n});let i=Vd(n,a.shape,a.dtype),o=Da({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Mn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ii({inputs:{input:a},backend:n}),o=Da({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Wr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Mt((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ZC={kernelName:es,backendName:"cpu",kernelFunc:Da};function qt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Da({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Da({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,b=l.data.get(y.dataId).values,w=l.data.get(g.dataId).values,[_,x,N]=n(i.shape,o.shape,p,f,b,w),T=l.makeTensorInfo(N,"float32",_),E=l.makeTensorInfo(N,"float32",x),M=Mn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function cA(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),b=n.length,w=v.computeStrides(n);if(p.length+f.length===0)for(let _=0;_<h.length;_++){let x=_%m.length,N=_%A.length,T=e(m[x*2],m[x*2+1],A[N*2],A[N*2+1]);h[_]=T.real,d[_]=T.imag}else for(let _=0;_<h.length;_++){let x=v.indexToLoc(_,u,c),N=x.slice(-y);p.forEach(L=>N[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-b);f.forEach(L=>E[L]=0);let M=v.locToIndex(E,b,w),D=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[_]=D.real,d[_]=D.imag}return[h,d,o]}}var Ax=Mt((e,t)=>e+t),YC=cA((e,t,n,r)=>({real:e+n,imag:t+r})),Ku=qt(xa,Ax,YC),JC={kernelName:xa,backendName:"cpu",kernelFunc:Ku};function sA(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function yx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ve([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function cl(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function st(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function hl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var gx=cl(e=>Math.ceil(e)),QC=hl(ts,gx),eR={kernelName:ts,backendName:"cpu",kernelFunc:QC};function iA(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var xx=cl(e=>Math.exp(e)),Wx=hl(ls,xx),tR={kernelName:ls,backendName:"cpu",kernelFunc:Wx},wx=cl(e=>Math.expm1(e)),nR=hl(no,wx),rR={kernelName:no,backendName:"cpu",kernelFunc:nR},bx=cl(e=>Math.floor(e)),aR=hl(us,bx),sR={kernelName:us,backendName:"cpu",kernelFunc:aR};function _x(e,t,n){let r=Ve(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var vx=Mt((e,t)=>e>t?1:0),iR=qt(io,vx,null,"bool"),oR={kernelName:io,backendName:"cpu",kernelFunc:iR},kx=Mt((e,t)=>e<t?1:0),lR=qt(co,kx,null,"bool"),uR={kernelName:co,backendName:"cpu",kernelFunc:lR};function Ix(e,t,n){let r=(t-e)/(n-1),a=v.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var Nx=cl(e=>Math.log(e)),cR=hl(ms,Nx),hR={kernelName:ms,backendName:"cpu",kernelFunc:cR};function Sx(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var Tx=Mt((e,t)=>Math.max(e,t)),dR=qt(ys,Tx),pR={kernelName:ys,backendName:"cpu",kernelFunc:dR},Ex=Mt((e,t)=>Math.min(e,t)),fR=qt(bs,Ex),mR={kernelName:bs,backendName:"cpu",kernelFunc:fR},oA=Mt((e,t)=>e*t),AR=cA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),hA=qt(_s,oA,AR),yR={kernelName:_s,backendName:"cpu",kernelFunc:hA};function Cx(e,t,n){let r=v.createScalarValue(-1,n);return oA([],t,r,e,n)}function gR(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Cx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var xR={kernelName:Ao,backendName:"cpu",kernelFunc:gR},Rx=Mt((e,t)=>e!==t?1:0),wR=qt(yo,Rx,null,"bool"),bR={kernelName:yo,backendName:"cpu",kernelFunc:wR};function lA(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;c<i;++c){let h=v.indexToLoc(c,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=v.locToIndex(d,s,l);u[p]=e[c]}return u}function lr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;ve(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=lA(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var _R={kernelName:Bs,backendName:"cpu",kernelFunc:lr};function Fx(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=tr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function vR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=lr({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=C.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=Fx(h.shape,h.dtype,p,c),y=m;return i&&(y=C.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var kR={kernelName:vo,backendName:"cpu",kernelFunc:vR};function uA(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Mx=cl(e=>1/Math.sqrt(e)),IR=hl(Fs,Mx),NR={kernelName:Fs,backendName:"cpu",kernelFunc:IR};function Bd(e,t,n,r,a){let s=ln.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=ln.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Ve(r,a,l),c=Ve(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((f,m)=>f+t[m]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function oi(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=ln.parseSliceParams(a,s,i);ln.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Bd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var SR={kernelName:Eo,backendName:"cpu",kernelFunc:oi},$x=Mt((e,t)=>{let n=e-t;return n*n}),TR=qt(Ls,$x),ER={kernelName:Ls,backendName:"cpu",kernelFunc:TR};function Dx(e,t,n,r){let a=Ve(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Ox=Mt((e,t)=>e-t),CR=cA((e,t,n,r)=>({real:e-n,imag:t-r})),dA=qt(Ps,Ox,CR),RR={kernelName:Ps,backendName:"cpu",kernelFunc:dA};function zx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Ve(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function Lx(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*r),u=v.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,b)=>b.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let c=t.slice();return c[c.length-1]=r,[Ve(c,n,l),Ve(c,"int32",u)]}function Px(e,t,n,r){let a=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Ot(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(c)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Ot(h,r);u.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var N0="3.2.0";Au("cpu",()=>new kd,1);var Bx=st(Ji,e=>e>=0?e:Math.exp(e)-1),FR={kernelName:Ji,backendName:"cpu",kernelFunc:Bx};function Vx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var MR={kernelName:fs,backendName:"cpu",kernelFunc:Vx},$R=Mt((e,t)=>e<0?t*e:e);function Ux(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=$R(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var DR={kernelName:Ns,backendName:"cpu",kernelFunc:Ux},Hx=st(Ss,e=>Math.max(0,e)),OR={kernelName:Ss,backendName:"cpu",kernelFunc:Hx},jx=st(Es,e=>Math.min(Math.max(0,e),6)),zR={kernelName:Es,backendName:"cpu",kernelFunc:jx};function pA(e,t,n,r,a){if(n==="linear")return Wr({inputs:{x:t},backend:e});if(n==="relu")return Hx({inputs:{x:t},backend:e});if(n==="elu")return Bx({inputs:{x:t},backend:e});if(n==="relu6")return jx({inputs:{x:t},backend:e});if(n==="prelu")return Ux({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Vx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function yt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var LR={kernelName:Io,backendName:"cpu",kernelFunc:yt};function Gx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),y=v.sizeFromShape(m),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,c,d]:[A,d,c],_=o?[y,p,h]:[y,h,p],x=yt({inputs:{x:a},backend:n,attrs:{shape:w}}),N=yt({inputs:{x:s},backend:n,attrs:{shape:_}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,P=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),H=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[J,se,te]=o?[1,H[1],H[0]]:[H[1],1,H[0]],oe=E*M,Q=Ve([D,E,M],x.dtype),pe=Q.values,le=n.blockSize;for(let Ae=0;Ae<D;Ae++)for(let me=0;me<E;me+=le)for(let Ne=0;Ne<M;Ne+=le)for(let Te=0;Te<T;Te+=le){let $e=Math.min(me+le,E),ze=Math.min(Ne+le,M),De=Math.min(Te+le,T);for(let tt=me;tt<$e;tt++)for(let nt=Ne;nt<ze;nt++){let it=0;for(let Ze=Te;Ze<De;Ze++){let pt=Math.min(Ae,A-1)*X,Ue=Math.min(Ae,y-1)*te,fn=L[pt+tt*G+Ze*ee],bt=P[Ze*J+nt*se+Ue];it+=fn*bt}pe[Ae*oe+(tt*M+nt)]+=it}}return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,Q.dtype,Q.values)}var PR={kernelName:Qa,backendName:"cpu",kernelFunc:Gx};function WR(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,f,m=[];d=Gx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=Ku({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),c&&(f=pA(n,d,c,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var BR={kernelName:Vs,backendName:"cpu",kernelFunc:WR},VR=st(Bi,e=>Math.acos(e)),UR={kernelName:Bi,backendName:"cpu",kernelFunc:VR},HR=st(Vi,e=>Math.acosh(e)),jR={kernelName:Vi,backendName:"cpu",kernelFunc:HR};function GR(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ve(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var qR={kernelName:Za,backendName:"cpu",kernelFunc:GR};function XR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=lr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let w=0;w<p;++w){let _=m[g+w];b=b&&_}f[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var KR={kernelName:lh,backendName:"cpu",kernelFunc:XR};function ZR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=lr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let w=0;w<p;++w){let _=m[g+w];b=b||_}f[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var YR={kernelName:uh,backendName:"cpu",kernelFunc:ZR};function JR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=lr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],b=0;for(let w=0;w<f;++w){let _=m[y+w];_>g&&(g=_,b=w)}p[A]=b}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var QR={kernelName:Ya,backendName:"cpu",kernelFunc:JR};function eF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=lr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],b=0;for(let w=0;w<f;++w){let _=m[y+w];_<g&&(g=_,b=w)}p[A]=b}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var tF={kernelName:Zl,backendName:"cpu",kernelFunc:eF},nF=st(Ui,e=>Math.asin(e)),rF={kernelName:Ui,backendName:"cpu",kernelFunc:nF},aF=st(Hi,e=>Math.asinh(e)),sF={kernelName:Hi,backendName:"cpu",kernelFunc:aF},iF=st(ji,e=>Math.atan(e)),oF={kernelName:ji,backendName:"cpu",kernelFunc:iF},lF=Mt((e,t)=>Math.atan2(e,t)),uF=qt(qi,lF),cF={kernelName:qi,backendName:"cpu",kernelFunc:uF},hF=st(Gi,e=>Math.atanh(e)),dF={kernelName:Gi,backendName:"cpu",kernelFunc:hF};function fA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ve(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],b=a.outShape[3];for(let w=0;w<a.batchSize;++w){let _=w*y,x=w*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),D=Math.min(a.inHeight,c+E),L=_+T*g;for(let P=0;P<a.outWidth;++P){let U=P*o-p,H=Math.max(0,U),X=Math.min(a.inWidth,h+U),G=f,ee=0,J=0;for(let te=M;te<D;te+=l){let oe=x+te*r[1];for(let Q=H;Q<X;Q+=u){let pe=oe+Q*r[2],le=e[pe+N];s==="max"&&le>G?G=le:s==="avg"&&(ee+=le,J++)}if(isNaN(G))break}let se=L+P*b+N;A[se]=s==="avg"?ee/J:G}}}return m}function qx(e,t,n,r,a=!1,s=!1){let i=Ve(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ve(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let b=g*o-p,w=b;for(;w<0;)w+=u;let _=Math.min(r.inHeight,h+b);for(let x=0;x<r.outWidth;++x){let N=x*l-f,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,D=-1;for(let L=w;L<_;L+=u){let P=L-b;for(let U=T;U<E;U+=c){let H=U-N,X=m.get(A,L,U,y);X>M&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=P*d+H)}}i.set(D,A,g,x,y)}}return i}function Xx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,b=Ve(a.outShape,n),w=b.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*_,D=E*r[0];for(let L=0;L<a.inChannels;++L)for(let P=0;P<a.outDepth;++P){let U=P*i-m,H=U;for(;H<0;)H+=u;let X=Math.min(a.inDepth,d+U),G=M+P*x;for(let ee=0;ee<a.outHeight;++ee){let J=ee*o-A,se=J;for(;se<0;)se+=c;let te=Math.min(a.inHeight,p+J),oe=G+ee*N;for(let Q=0;Q<a.outWidth;++Q){let pe=Q*l-y,le=pe;for(;le<0;)le+=h;let Ae=Math.min(a.inWidth,f+pe),me=oe+Q*T,Ne=g,Te=0,$e=0;for(let De=H;De<X;De+=u){let tt=D+De*r[1];for(let nt=se;nt<te;nt+=c){let it=tt+nt*r[2];for(let Ze=le;Ze<Ae;Ze+=h){let pt=it+Ze*r[3],Ue=e[pt+L];if(s==="max"&&Ue>Ne?Ne=Ue:s==="avg"&&(Te+=Ue,$e++),isNaN(Ne))break}if(isNaN(Ne))break}if(isNaN(Ne))break}let ze=me+L;w[ze]=s==="avg"?Te/$e:Ne}}}}return b}function pF(e,t){let n=Ve(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,b=g;for(;b<0;)b+=i;let w=Math.min(t.inDepth,u+g);for(let _=0;_<t.outHeight;++_){let x=_*a-p,N=x;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+x);for(let E=0;E<t.outWidth;++E){let M=E*s-f,D=M;for(;D<0;)D+=l;let L=Math.min(t.inWidth,h+M),P=Number.NEGATIVE_INFINITY,U=-1;for(let H=b;H<w;H+=i){let X=H-g;for(let G=N;G<T;G+=o){let ee=G-x;for(let J=D;J<L;J+=l){let se=J-M,te=e.get(m,H,G,J,A);te>=P&&(P=te,U=X*c*h+ee*c+se)}}}n.set(U,m,y,_,E,A)}}}return n}function fF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Wr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=fA(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var mF={kernelName:Ja,backendName:"cpu",kernelFunc:fF};function AF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;ve(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Xx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var yF={kernelName:Yl,backendName:"cpu",kernelFunc:AF};function gF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;ve([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=w-1-c.padInfo.front,T=x-1-c.padInfo.left,E=_-1-c.padInfo.top,M=Ve(s.shape,"float32"),D=1/(f*m*A),L=n.bufferSync(a);for(let P=0;P<c.batchSize;++P)for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.inDepth;++H)for(let X=0;X<c.inHeight;++X)for(let G=0;G<c.inWidth;++G){let ee=H-N,J=X-E,se=G-T,te=0;for(let oe=0;oe<w;oe+=y){let Q=(ee+oe)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=g){let le=(J+pe)/d;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let Ae=0;Ae<x;Ae+=b){let me=(se+Ae)/p;me<0||me>=c.outWidth||Math.floor(me)!==me||(te+=L.get(P,Q,le,me,U))}}}M.set(te*D,P,H,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var xF={kernelName:hh,backendName:"cpu",kernelFunc:gF};function wF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,b=g-1-c.padInfo.left,w=y-1-c.padInfo.top,_=Ve(i.shape,"float32"),x=1/(p*f),N=n.data.get(a.dataId).values,T=Ve(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let D=0;D<c.inHeight;++D)for(let L=0;L<c.inWidth;++L){let P=D-w,U=L-b,H=0;for(let X=0;X<y;X+=m){let G=(P+X)/h;if(!(G<0||G>=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let J=(U+ee)/d;J<0||J>=c.outWidth||Math.floor(J)!==J||(H+=T.get(E,G,J,M))}}_.set(H*x,E,D,L,M)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var bF={kernelName:ch,backendName:"cpu",kernelFunc:wF};function _F(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,y=p.length,g=d.length,b=h.length,w=0,_=0,x=0,N=0;for(let T=0;T<c.length;++T)m[T]=f[w++]+(c[T]-h[_++])*p[x++]/Math.sqrt(d[N++]+u),w>=A&&(w=0),_>=b&&(_=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var vF={kernelName:hs,backendName:"cpu",kernelFunc:_F};function kF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=yt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=lr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=oi({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var IF={kernelName:Jl,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=sA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var SF={kernelName:dh,backendName:"cpu",kernelFunc:NF},TF=st(wa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),EF={kernelName:wa,backendName:"cpu",kernelFunc:TF},CF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},RF={kernelName:Ql,backendName:"cpu",kernelFunc:CF};function dl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var FF={kernelName:Nh,backendName:"cpu",kernelFunc:dl};function pl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return Wr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(w=>ii({inputs:{input:w},backend:n})),A=o.map(w=>dl({inputs:{input:w},backend:n})),y=pl({inputs:m,backend:n,attrs:{axis:s}}),g=pl({inputs:A,backend:n,attrs:{axis:s}}),b=Mn({inputs:{real:y,imag:g},backend:n});return m.forEach(w=>n.disposeIntermediateTensorInfo(w)),A.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),b}let u=o.map(m=>{let A=v.sizeFromShape(m.shape.slice(s));return yt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=iA(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var MF={kernelName:Xi,backendName:"cpu",kernelFunc:pl};function Kx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;ve([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,b=d.dataFormat==="channelsLast",w=new Ot(d.outShape,a.dtype),_=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=_[0],T=b?_[1]:_[2],E=b?_[2]:1,M=b?1:_[1],D=w.strides[0],L=b?w.strides[1]:w.strides[2],P=b?w.strides[2]:1,U=b?1:w.strides[1],H=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<d.batchSize;++ee){let J=ee*N,se=ee*D;for(let te=0;te<d.outHeight;++te){let oe=se+te*L,Q=te*d.strideHeight-g;for(let pe=0;pe<p;++pe){let le=Q+pe*m;if(le<0||le>=d.inHeight)continue;let Ae=pe*x[0],me=J+le*T;for(let Ne=0;Ne<d.outWidth;++Ne){let Te=oe+Ne*P,$e=Ne*d.strideWidth-y;for(let ze=0;ze<f;++ze){let De=$e+ze*A;if(De<0||De>=d.inWidth)continue;let tt=Ae+ze*x[1],nt=me+De*E,it=tt;for(let Ze=0;Ze<d.inChannels;++Ze){let pt=H[nt+Ze*M];for(let Ue=0;Ue<d.outChannels;++Ue)G[Te+Ue*U]+=pt*X[it+Ue];it+=d.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var $F={kernelName:ns,backendName:"cpu",kernelFunc:Kx};function DF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;ve([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new Ot(d.filterShape,"float32"),b=d.padInfo.left,w=d.padInfo.top,_=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=new Ot(a.shape,a.dtype,_),T=new Ot(s.shape,s.dtype,x);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((w-E)/p)),D=Math.min(d.outHeight,(d.inHeight+w-E)/p);for(let L=0;L<A;++L){let P=Math.max(0,Math.ceil((b-L)/f)),U=Math.min(d.outWidth,(d.inWidth+b-L)/f);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let J=M;J<D;++J){let se=E+J*p-w;for(let te=P;te<U;++te){let oe=L+te*f-b;y?G+=N.get(ee,se,oe,H)*T.get(ee,J,te,X):G+=N.get(ee,H,se,oe)*T.get(ee,X,J,te)}}g.set(G,E,L,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var OF={kernelName:fh,backendName:"cpu",kernelFunc:DF};function zF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;ve([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),d=v.computeStrides(a.shape),p=C.convertConv2DDataFormat(u),f=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),m=new Ot(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[b,w,_]=h,{batchSize:x,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:D,outChannels:L,outHeight:P,outWidth:U,strideHeight:H,strideWidth:X}=f;p=f.dataFormat;let G=N-1-f.padInfo.top,ee=T-1-f.padInfo.left,J=p==="channelsLast",se=m.strides[0],te=J?m.strides[1]:m.strides[2],oe=J?m.strides[2]:1,Q=J?1:m.strides[1],pe=d[0],le=J?d[1]:d[2],Ae=J?d[2]:1,me=J?1:d[1];for(let Ne=0;Ne<x;++Ne)for(let Te=0;Te<E;++Te)for(let $e=0;$e<M;++$e){let ze=$e-G,De=Math.max(0,Math.ceil(ze/H)),tt=Math.min(P,(N+ze)/H);for(let nt=0;nt<D;++nt){let it=nt-ee,Ze=Math.max(0,Math.ceil(it/X)),pt=Math.min(U,(T+it)/X),Ue=0;for(let bt=De;bt<tt;++bt){let Bn=bt*H-ze;for(let Zt=Ze;Zt<pt;++Zt){let mn=Zt*X-it,Vn=pe*Ne+le*bt+Ae*Zt,Sn=b*(N-1-Bn)+w*(T-1-mn)+_*Te;for(let on=0;on<L;++on){let Yt=y[Vn+me*on],Sr=g[Sn+on];Ue+=Yt*Sr}}}let fn=se*Ne+te*$e+oe*nt+Q*Te;A[fn]=Ue}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var LF={kernelName:rs,backendName:"cpu",kernelFunc:zF};function PF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;ve([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=u,y=A.front,g=A.left,b=A.top,w=new Ot(u.outShape,a.dtype),_=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=w.values,T=v.computeStrides(a.shape),E=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let D=M*T[0],L=M*w.strides[0];for(let P=0;P<u.outDepth;++P){let U=L+P*w.strides[1],H=P*u.strideDepth-y;for(let X=0;X<c;++X){let G=H+X*p;if(G<0||G>=u.inDepth)continue;let ee=X*E[0],J=D+G*T[1];for(let se=0;se<u.outHeight;++se){let te=U+se*w.strides[2],oe=se*u.strideHeight-b;for(let Q=0;Q<h;++Q){let pe=oe+Q*f;if(pe<0||pe>=u.inHeight)continue;let le=ee+Q*E[1],Ae=J+pe*T[2];for(let me=0;me<u.outWidth;++me){let Ne=te+me*u.outChannels,Te=me*u.strideWidth-g;for(let $e=0;$e<d;++$e){let ze=Te+$e*m;if(ze<0||ze>=u.inWidth)continue;let De=le+$e*E[2],tt=Ae+ze*u.inChannels,nt=De;for(let it=0;it<u.inChannels;++it){let Ze=_[tt+it];for(let pt=0;pt<u.outChannels;++pt)N[Ne+pt]+=Ze*x[nt+pt];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var WF={kernelName:eu,backendName:"cpu",kernelFunc:PF};function BF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;ve([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Ot(h.filterShape,"float32"),b=g.values,[w,_,x,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,D,L]=c,P=n.data.get(a.dataId).values,[U,H,X,G]=u,ee=h.padInfo.front,J=h.padInfo.left,se=h.padInfo.top;for(let te=0;te<m;++te){let oe=Math.max(0,Math.ceil((ee-te)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-te)/d),pe=te*w;for(let le=0;le<A;++le){let Ae=Math.max(0,Math.ceil((se-le)/p)),me=Math.min(h.outHeight,(h.inHeight+se-le)/p),Ne=le*_+pe;for(let Te=0;Te<y;++Te){let $e=Math.max(0,Math.ceil((J-Te)/f)),ze=Math.min(h.outWidth,(h.inWidth+J-Te)/f),De=Te*x+Ne;for(let tt=0;tt<h.inChannels;++tt){let nt=tt*N+De;for(let it=0;it<h.outChannels;++it){let Ze=0;for(let pt=0;pt<h.batchSize;++pt){let Ue=pt*U,fn=pt*E;for(let bt=oe;bt<Q;++bt){let Bn=(te+bt*d-ee)*H+Ue,Zt=bt*M+fn;for(let mn=Ae;mn<me;++mn){let Vn=(le+mn*p-se)*X+Bn,Sn=mn*D+Zt;for(let on=$e;on<ze;++on){let Yt=(Te+on*f-J)*G+Vn,Sr=on*L+Sn;Ze+=P[Yt+tt]*T[Sr+it]}}}}b[nt+it]=Ze}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var VF={kernelName:mh,backendName:"cpu",kernelFunc:BF};function UF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;ve([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),d=new Ot(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[b,w,_,x]=u,N=n.data.get(s.dataId).values,[T,E,M,D]=c,{batchSize:L,filterDepth:P,filterHeight:U,filterWidth:H,inChannels:X,inDepth:G,inHeight:ee,inWidth:J,outChannels:se,outDepth:te,outHeight:oe,outWidth:Q,strideDepth:pe,strideHeight:le,strideWidth:Ae}=h,me=P-1-h.padInfo.front,Ne=U-1-h.padInfo.top,Te=H-1-h.padInfo.left;for(let $e=0;$e<L;++$e)for(let ze=0;ze<X;++ze)for(let De=0;De<G;++De){let tt=De-me,nt=Math.max(0,Math.ceil(tt/pe)),it=Math.min(te,(P+tt)/pe);for(let Ze=0;Ze<ee;++Ze){let pt=Ze-Ne,Ue=Math.max(0,Math.ceil(pt/le)),fn=Math.min(oe,(U+pt)/le);for(let bt=0;bt<J;++bt){let Bn=bt-Te,Zt=Math.max(0,Math.ceil(Bn/Ae)),mn=Math.min(Q,(H+Bn)/Ae),Vn=0;for(let Sn=nt;Sn<it;++Sn){let on=Sn*pe-tt;for(let Yt=Ue;Yt<fn;++Yt){let Sr=Yt*le-pt;for(let Jn=Zt;Jn<mn;++Jn){let Qn=Jn*Ae-Bn,ha=b*$e+w*Sn+_*Yt+x*Jn,Gr=T*(P-1-on)+E*(U-1-Sr)+M*(H-1-Qn)+D*ze;for(let da=0;da<se;++da){let Ti=g[ha+da],fr=N[Gr+da];Vn+=Ti*fr}}}}p[f*$e+m*De+A*Ze+y*bt+ze]=Vn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var HF={kernelName:Ah,backendName:"cpu",kernelFunc:UF},jF=st(as,e=>Math.cos(e)),GF={kernelName:as,backendName:"cpu",kernelFunc:jF},qF=st(Ki,e=>Math.cosh(e)),XF={kernelName:Ki,backendName:"cpu",kernelFunc:qF};function KF(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Ve([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,b=n.data.get(i.dataId).values,w=n.data.get(a.dataId).values,_=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N<f;N++){let T=N*4,E=g[T],M=g[T+1],D=g[T+2],L=g[T+3],P=b[N];if(P>=c)continue;let U=m>1?(D-E)*(h-1)/(m-1):0,H=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X<m;X++){let G=m>1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let J=0;J<p;J++){let se=J+ee*x[2]+X*x[1]+N*x[0];y.values[se]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),J=Math.ceil(G),se=G-ee;for(let te=0;te<A;te++){let oe=A>1?M*(d-1)+te*H:.5*(M+L)*(d-1);if(oe<0||oe>d-1){for(let Ae=0;Ae<p;Ae++){let me=Ae+te*x[2]+X*x[1]+N*x[0];y.values[me]=u}continue}let Q=Math.floor(oe),pe=Math.ceil(oe),le=oe-Q;for(let Ae=0;Ae<p;Ae++){let me=Ae+Q*_[2]+ee*_[1]+P*_[0],Ne=w[me];me=Ae+pe*_[2]+ee*_[1]+P*_[0];let Te=w[me];me=Ae+Q*_[2]+J*_[1]+P*_[0];let $e=w[me];me=Ae+pe*_[2]+J*_[1]+P*_[0];let ze=w[me],De=Ne+(Te-Ne)*le,tt=$e+(ze-$e)*le;me=Ae+te*x[2]+X*x[1]+N*x[0],y.values[me]=De+(tt-De)*se}}}else for(let ee=0;ee<A;++ee){let J=A>1?M*(d-1)+ee*H:.5*(M+L)*(d-1);if(J<0||J>d-1){for(let oe=0;oe<p;oe++){let Q=oe+ee*x[2]+X*x[1]+N*x[0];y.values[Q]=u}continue}let se=Math.round(J),te=Math.round(G);for(let oe=0;oe<p;oe++){let Q=oe+se*_[2]+te*_[1]+P*_[0],pe=oe+ee*x[2]+X*x[1]+N*x[0];y.values[pe]=w[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var ZF={kernelName:Zi,backendName:"cpu",kernelFunc:KF};function YF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;ve(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=lr({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=tr(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let b=m(y,g);if(g===0)d[b]=i?0:p[b];else{let w=m(y,g-1);d[b]=i?p[w]+d[w]:p[b]+d[w]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=C.getUndoAxesPermutation(l),g=lr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var JF={kernelName:ss,backendName:"cpu",kernelFunc:YF};function QF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=sA(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=yx(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var eM={kernelName:yh,backendName:"cpu",kernelFunc:QF};function tM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let b=Math.floor(g/s),w=g%s;for(let _=0;_<d;++_){let x=Math.floor(_/s),N=_%s,T=(w*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(x+u*(b+l*y));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var nM={kernelName:Yi,backendName:"cpu",kernelFunc:tM};function Zx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;ve([a,s],"depthwiseConv2DNative");let c=v.computeStrides(a.shape),h=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,b=g.left,w=g.top,_=p.outChannels/p.inChannels,x=new Ot(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M<p.batchSize;++M){let D=M*c[0],L=M*x.strides[0];for(let P=0;P<p.outHeight;++P){let U=L+P*x.strides[1],H=P*p.strideHeight-b;for(let X=0;X<f;++X){let G=H+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],J=D+G*c[1];for(let se=0;se<p.outWidth;++se){let te=U+se*x.strides[2],oe=se*p.strideWidth-w;for(let Q=0;Q<m;++Q){let pe=oe+Q*y;if(pe<0||pe>=p.inWidth)continue;let le=ee+Q*h[1],Ae=J+pe*p.inChannels,me=te,Ne=le;for(let Te=0;Te<p.inChannels;++Te){let $e=N[Ae+Te];for(let ze=0;ze<_;++ze)E[me+ze]+=$e*T[Ne+ze];me+=_,Ne+=_}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var rM={kernelName:is,backendName:"cpu",kernelFunc:Zx};function aM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;ve([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new Ot(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,b=h.outChannels/h.inChannels,w=n.data.get(a.dataId).values,_=new Ot(a.shape,a.dtype,w),x=n.data.get(s.dataId).values,N=new Ot(s.shape,s.dtype,x);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let D=0;D<m;++D){let L=Math.max(0,Math.ceil((y-D)/p)),P=Math.min(h.outWidth,(h.inWidth+y-D)/p);for(let U=0;U<h.outChannels;++U){let H=Math.trunc(U/b),X=U%b,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let J=E;J<M;++J){let se=T+J*d-g;for(let te=L;te<P;++te){let oe=D+te*p-y;G+=_.get(ee,se,oe,H)*N.get(ee,J,te,U)}}A.set(G,T,D,H,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var sM={kernelName:gh,backendName:"cpu",kernelFunc:aM};function iM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;ve([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),d=v.computeStrides(s.shape),p=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),f=new Ot(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,b=n.data.get(a.dataId).values,[w,_,x]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:D,filterHeight:L,filterWidth:P,inChannels:U,inHeight:H,inWidth:X,outChannels:G,outHeight:ee,outWidth:J,strideHeight:se,strideWidth:te}=p,oe=L-1-p.padInfo.top,Q=P-1-p.padInfo.left,pe=G/U;for(let le=0;le<D;++le)for(let Ae=0;Ae<U;++Ae)for(let me=0;me<H;++me){let Ne=me-oe,Te=Math.max(0,Math.ceil(Ne/se)),$e=Math.min(ee,(L+Ne)/se);for(let ze=0;ze<X;++ze){let De=ze-Q,tt=Math.max(0,Math.ceil(De/te)),nt=Math.min(J,(P+De)/te),it=0;for(let Ze=Te;Ze<$e;++Ze){let pt=Ze*se-Ne;for(let Ue=tt;Ue<nt;++Ue){let fn=Ue*te-De,bt=w*le+_*Ze+x*Ue,Bn=T*(L-1-pt)+E*(P-1-fn)+M*Ae;for(let Zt=0;Zt<pe;++Zt){let mn=Ae*pe+Zt,Vn=b[bt+mn],Sn=N[Bn+Zt];it+=Vn*Sn}}}m[A*le+y*me+g*ze+Ae]=it}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var oM={kernelName:xh,backendName:"cpu",kernelFunc:iM};function lM(e){let{inputs:t,backend:n}=e,{x:r}=t,a=v.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Ve([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var uM={kernelName:wh,backendName:"cpu",kernelFunc:lM},cM={kernelName:tu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,P=v.getArrayFromDType(r.dtype,D);for(let U=0;U<p;++U)for(let H=0;H<y;++H){let X=H*w-b.top;for(let G=0;G<g;++G){let ee=G*_-b.left;for(let J=0;J<A;++J){let se=Number.MIN_SAFE_INTEGER;for(let oe=0;oe<x;++oe){let Q=X+oe*T;if(Q>=0&&Q<f)for(let pe=0;pe<N;++pe){let le=ee+pe*E;if(le>=0&&le<m){let Ae=v.locToIndex([U,Q,le,J],c,v.computeStrides(r.shape)),me=v.locToIndex([oe,pe,J],d,v.computeStrides(a.shape)),Ne=u[Ae]+h[me];Ne>se&&(se=Ne)}}}let te=v.locToIndex([U,H,G,J],L,v.computeStrides(M));P[te]=se}}}return{dataId:l.write(v.toTypedArray(P,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},hM={kernelName:_h,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:w,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${_h}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let P=0;P<A;++P){let U=P*b-g.top;for(let H=0;H<y;++H){let X=H*w-g.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,J=0,se=0;for(let te=0;te<_;++te){let oe=U+te*N;if(oe>=0&&oe<p)for(let Q=0;Q<x;++Q){let pe=X+Q*T;if(pe>=0&&pe<f){let le=c[L][oe][pe][G]+h[te][Q][G];le>ee&&(ee=le,J=te,se=Q)}}}D[J][se][G]+=M[L][P][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},dM={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:w,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${bh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let P=0;P<A;++P){let U=P*b-g.top;for(let H=0;H<y;++H){let X=H*w-g.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,J=U<0?0:U,se=X<0?0:X;for(let te=0;te<_;++te){let oe=U+te*N;if(oe>=0&&oe<p)for(let Q=0;Q<x;++Q){let pe=X+Q*T;if(pe>=0&&pe<f){let le=c[L][oe][pe][G]+h[te][Q][G];le>ee&&(ee=le,J=oe,se=pe)}}}D[L][J][se][G]+=M[L][P][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function pM(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var fM={kernelName:vh,backendName:"cpu",kernelFunc:pM},mM=Mt((e,t)=>e===t?1:0),Yx=qt(eo,mM,null,"bool"),AM={kernelName:eo,backendName:"cpu",kernelFunc:Yx},yM=C.ERF_P,gM=C.ERF_A1,xM=C.ERF_A2,wM=C.ERF_A3,bM=C.ERF_A4,_M=C.ERF_A5,vM=st(Qi,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+yM*n);return t*(1-((((_M*r+bM)*r+wM)*r+xM)*r+gM)*r*Math.exp(-n*n))}),kM={kernelName:Qi,backendName:"cpu",kernelFunc:vM};function Ud(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yt({inputs:{x:a},backend:n,attrs:{shape:o}})}var IM={kernelName:to,backendName:"cpu",kernelFunc:Ud},NM=Mt((e,t)=>e/t),mA=qt(os,NM),AA={kernelName:os,backendName:"cpu",kernelFunc:mA};function Jx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=oi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=oi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),b=Mn({inputs:{real:y,imag:g},backend:n}),{real:w,imag:_}=SM(b,t,n),x=C.mergeRealAndImagArrays(w,_);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(x,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(b)}let p=n.makeTensorInfo(u,"float32",h),f=n.makeTensorInfo(u,"float32",d),m=Mn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function SM(e,t,n){let r=v.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(TM(r)){let o=yA(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",v.createScalarValue(r,"float32")),d=Wr({inputs:{x:h},backend:n}),p=AA.kernelFunc({inputs:{a:u,b:h},backend:n}),f=AA.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=EM(o,r,t);return C.splitRealAndImagArrays(l)}}function TM(e){return(e&e-1)==0}function yA(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Mn({inputs:{real:h,imag:d},backend:a}),f=C.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),b=a.makeTensorInfo(y,"float32",A),w=Mn({inputs:{real:g,imag:b},backend:a}),_=yA(l,u,i,r,a),x=_.real,N=_.imag,T=[x.length],E=a.makeTensorInfo(T,"float32",x),M=a.makeTensorInfo(T,"float32",N),D=Mn({inputs:{real:E,imag:M},backend:a}),L=yA(m,A,i,r,a),P=L.real,U=L.imag,H=[P.length],X=a.makeTensorInfo(H,"float32",P),G=a.makeTensorInfo(H,"float32",U),ee=Mn({inputs:{real:X,imag:G},backend:a}),J=C.exponents(n,r),se=[J.real.length],te=a.makeTensorInfo(se,"float32",J.real),oe=a.makeTensorInfo(se,"float32",J.imag),Q=Mn({inputs:{real:te,imag:oe},backend:a}),pe=hA({inputs:{a:Q,b:ee},backend:a}),le=Ku({inputs:{a:D,b:pe},backend:a}),Ae=dA({inputs:{a:D,b:pe},backend:a}),me=ii({inputs:{input:le},backend:a}),Ne=ii({inputs:{input:Ae},backend:a}),Te=dl({inputs:{input:le},backend:a}),$e=dl({inputs:{input:Ae},backend:a}),ze=pl({inputs:[me,Ne],backend:a,attrs:{axis:0}}),De=pl({inputs:[Te,$e],backend:a,attrs:{axis:0}}),tt=a.data.get(ze.dataId).values,nt=a.data.get(De.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(w),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(le),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Te),a.disposeIntermediateTensorInfo(Ne),a.disposeIntermediateTensorInfo($e),a.disposeIntermediateTensorInfo(ze),a.disposeIntermediateTensorInfo(De),{real:tt,imag:nt}}function EM(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function CM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Jx(o,!1,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var RM={kernelName:kh,backendName:"cpu",kernelFunc:CM};function gA(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(r));return FM(o,a,i),t.makeTensorInfo(r,i,o)}var MM={kernelName:nu,backendName:"cpu",kernelFunc:gA};function FM(e,t,n){e.fill(t)}var $M={kernelName:ro,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let f=p*(l*u);for(let m=0;m<l;m++){let A=m*u;for(let y=0;y<u;y++){let g=[i,p,m,y][2],b=Math.round(l-g),w=d+f+A+y,_=c[w];if(b>=0&&b<l){let x=b*u,N=d+f+x+y;_=c[N]}s[w]=_}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},DM=Mt((e,t)=>Math.floor(e/t)),OM=qt(cs,DM,null,"int32"),zM={kernelName:cs,backendName:"cpu",kernelFunc:OM};function LM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Kx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Ku({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=pA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var PM={kernelName:Us,backendName:"cpu",kernelFunc:LM};function WM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Zx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Ku({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=pA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var BM={kernelName:Hs,backendName:"cpu",kernelFunc:WM};function VM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ve([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<u;m++){let A=[],y=0;for(let g=0;g<o;g++){let b=p[m*o+g];y+=b*h[g],A.push(b)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[m*c+g]=f[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var UM={kernelName:so,backendName:"cpu",kernelFunc:VM};function HM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;ve([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=v.sizeFromShape(s.shape),c=v.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=yt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=yt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),f=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=_x(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var jM={kernelName:ao,backendName:"cpu",kernelFunc:HM},GM=Mt((e,t)=>e>=t?1:0),qM=qt(ds,GM,null,"bool"),XM={kernelName:ds,backendName:"cpu",kernelFunc:qM};function KM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Jx(o,!0,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var ZM={kernelName:Ih,backendName:"cpu",kernelFunc:KM},YM=st(oo,e=>Number.isFinite(e)?1:0,"bool"),JM={kernelName:oo,backendName:"cpu",kernelFunc:YM},QM=st(lo,e=>Math.abs(e)===Infinity?1:0,"bool"),e$={kernelName:lo,backendName:"cpu",kernelFunc:QM},t$=st(uo,e=>Number.isNaN(e)?1:0,"bool"),n$={kernelName:uo,backendName:"cpu",kernelFunc:t$},r$=Mt((e,t)=>e<=t?1:0),a$=qt(ho,r$,null,"bool"),s$={kernelName:ho,backendName:"cpu",kernelFunc:a$};function i$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Ix(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var o$={kernelName:Sh,backendName:"cpu",kernelFunc:i$},l$=st(po,e=>Math.log1p(e)),u$={kernelName:po,backendName:"cpu",kernelFunc:l$},c$=Mt((e,t)=>e&&t),h$=qt(fo,c$,null,"bool"),d$={kernelName:fo,backendName:"cpu",kernelFunc:h$},p$=st(ru,e=>e?0:1,"bool"),f$={kernelName:ru,backendName:"cpu",kernelFunc:p$},m$=Mt((e,t)=>e||t),A$=qt(au,m$,null,"bool"),y$={kernelName:au,backendName:"cpu",kernelFunc:A$};function g$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,c),b=0;for(;y<=g;y++){let w=h[y];b+=w*w}return b}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var x$={kernelName:su,backendName:"cpu",kernelFunc:g$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;ve(i,"LRNGrad");let h=v.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let b=g%d,w=g-b+Math.max(0,b-o),_=g-b+Math.min(d,b+o+1),x=0;for(let N=w;N<_;N++)x+=Math.pow(f[N],2);x=u*x+l;for(let N=w;N<_;N++){let T=-2*u*c*f[N]*m[g]/x;g===N&&(T+=Math.pow(x,-c)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var b$={kernelName:Th,backendName:"cpu",kernelFunc:w$};function Qx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=v.parseAxisParam(s,l),h=c,d=C.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let w=new Array(u);for(let _=0;_<w.length;_++)w[_]=l[d[_]];p=lA(p,l,a.dtype,d,w),h=C.getInnerMostAxes(h.length,u),l=w}ve(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[f,m]=C.computeOutAndReduceShapes(l,h),A=v.sizeFromShape(m),y=Sx(p,A,f,a.dtype),g=o.write(y,f,a.dtype),b=f;return i&&(b=C.expandShapeToKeepDim(f,c)),{dataId:g,shape:b,dtype:a.dtype}}var _$={kernelName:As,backendName:"cpu",kernelFunc:Qx};function v$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Wr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=fA(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var k$={kernelName:gs,backendName:"cpu",kernelFunc:v$};function I$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;ve(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Xx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var N$={kernelName:iu,backendName:"cpu",kernelFunc:I$};function S$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;ve([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=pF(h,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,_=c.effectiveFilterWidth,x=b-1-c.padInfo.front,N=_-1-c.padInfo.left,T=w-1-c.padInfo.top,E=Ve(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D<c.batchSize;++D)for(let L=0;L<c.inChannels;++L)for(let P=0;P<c.inDepth;++P)for(let U=0;U<c.inHeight;++U)for(let H=0;H<c.inWidth;++H){let X=P-x,G=U-T,ee=H-N,J=0;for(let se=0;se<b;se+=A){let te=(X+se)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let oe=0;oe<w;oe+=y){let Q=(G+oe)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=g){let le=(ee+pe)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let Ae=b*w*_-1-d.get(D,te,Q,le,L),me=se*w*_+oe*_+pe,Ne=Ae===me?1:0;Ne!==0&&(J+=M.get(D,te,Q,le,L)*Ne)}}}E.set(J,D,P,U,H,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var T$={kernelName:Ch,backendName:"cpu",kernelFunc:S$};function E$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=Ve(d.outShape,o.dtype,qx(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,_=w-1-d.padInfo.left,x=b-1-d.padInfo.top,N=Ve(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Ve(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let D=0;D<d.inChannels;++D)for(let L=0;L<d.inHeight;++L)for(let P=0;P<d.inWidth;++P){let U=L-x,H=P-_,X=0;for(let G=0;G<b;G+=y){let ee=(U+G)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let J=0;J<w;J+=g){let se=(H+J)/A;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let te=b*w-1-f.get(M,ee,se,D),oe=G*w+J,Q=te===oe?1:0;Q!==0&&(X+=E.get(M,ee,se,D)*Q)}}N.set(X,M,L,P,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var C$={kernelName:Eh,backendName:"cpu",kernelFunc:E$};function R$(e,t,n,r,a){let s=v.computeStrides(t),i=fA(e,t,n,s,a,"max"),o=qx(e,t,n,a,!0,r);return[i.values,o.values]}var F$={kernelName:Rh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=R$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function Hd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=Da({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Wr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=lr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=C.computeOutAndReduceShapes(d.shape,h),m=C.upcastType(d.dtype,"int32"),A=Vd(n,p,m),y=v.sizeFromShape(f),g=n.data.get(A.dataId).values,b=n.data.get(d.dataId).values;for(let w=0;w<g.length;++w){let _=w*y,x=0;for(let N=0;N<y;++N)x+=b[_+N];g[w]=x}if(i){let w=C.expandShapeToKeepDim(A.shape,u),_=A;A=yt({inputs:{x:A},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(_)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var M$={kernelName:Os,backendName:"cpu",kernelFunc:Hd};function $$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=Da({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=mA({inputs:{a:d,b:h},backend:n});c.push(p);let f=Hd({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var D$={kernelName:xs,backendName:"cpu",kernelFunc:$$};function O$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=lr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let w=0;w<p;++w){let _=m[g+w];_<b&&(b=_)}f[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var z$={kernelName:ws,backendName:"cpu",kernelFunc:O$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;ve(a,"mirrorPad");let o=s.map((g,b)=>g[0]+a.shape[b]+g[1]),l=s.map(g=>g[0]),u=s.map((g,b)=>g[0]+a.shape[b]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let b=v.indexToLoc(g,m,A);for(let _=0;_<m;_++)b[_]<l[_]?b[_]=l[_]*2-b[_]-c:b[_]>=u[_]&&(b[_]=(u[_]-1)*2-b[_]+c);b=b.map((_,x)=>_-l[x]);let w=v.locToIndex(b,d,p);y[g]=h[w]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var P$={kernelName:ou,backendName:"cpu",kernelFunc:L$},W$=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),B$=qt(mo,W$),V$={kernelName:mo,backendName:"cpu",kernelFunc:B$},U$=Qo(ck());function ew(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Qx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=yt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=dA({inputs:{a,b:h},backend:n}),p=Wx({inputs:{x:d},backend:n}),f=Hd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=mA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var H$={kernelName:zs,backendName:"cpu",kernelFunc:ew};function j$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:ew({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,A=new Float32Array(c-1);A[0]=h[m];for(let b=1;b<A.length;++b)A[b]=A[b-1]+h[m+b];let y=U$.alea(i.toString()),g=f*s;for(let b=0;b<s;++b){let w=y();p[g+b]=A.length;for(let _=0;_<A.length;_++)if(w<A[_]){p[g+b]=_;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var G$={kernelName:Fh,backendName:"cpu",kernelFunc:j$},q$=$r.nonMaxSuppressionV3Impl;function X$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;ve(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=q$(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var K$={kernelName:go,backendName:"cpu",kernelFunc:X$},Z$=$r.nonMaxSuppressionV4Impl;function Y$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;ve(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=Z$(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var J$={kernelName:xo,backendName:"cpu",kernelFunc:Y$},Q$=$r.nonMaxSuppressionV5Impl;function eD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;ve(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=Q$(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var tD={kernelName:wo,backendName:"cpu",kernelFunc:eD};function nD(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;ve(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var rD={kernelName:vs,backendName:"cpu",kernelFunc:nD};function jd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=jd({inputs:{x:a},backend:n}),i=dl({inputs:{input:r},backend:n}),o=jd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return gA({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var aD={kernelName:Lo,backendName:"cpu",kernelFunc:jd};function tw(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=tw({inputs:{x:a},backend:n}),i=dl({inputs:{input:r},backend:n}),o=jd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return gA({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var sD={kernelName:bo,backendName:"cpu",kernelFunc:tw};function nw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Ud({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Ud({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=pl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var iD={kernelName:_o,backendName:"cpu",kernelFunc:nw};function oD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=v.indexToLoc(y,h,d).map((w,_)=>w+l[_]),b=v.locToIndex(g,f,m);A[b]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var rw={kernelName:ks,backendName:"cpu",kernelFunc:oD},lD=Mt((e,t)=>Math.pow(e,t)),uD=qt(Is,lD),cD={kernelName:Is,backendName:"cpu",kernelFunc:uD};function hD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=uA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var dD={kernelName:lu,backendName:"cpu",kernelFunc:hD},pD=st(ko,e=>1/e),fD={kernelName:ko,backendName:"cpu",kernelFunc:pD};function mD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,f])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=0,w=y[0]/g[0],_=y[1]/g[1];for(let x=0;x<h;x++)for(let N=0;N<u;N++){let T;i?T=w*(N+.5)-.5:T=w*N;let E=Math.max(0,Math.floor(T)),M=T-E,D=Math.min(d-1,Math.ceil(T)),L=x*l[0]+E*l[1],P=x*l[0]+D*l[1];for(let U=0;U<c;U++){let H;i?H=_*(U+.5)-.5:H=_*U;let X=Math.max(0,Math.floor(H)),G=H-X,ee=Math.min(p-1,Math.ceil(H)),J=L+X*l[2],se=P+X*l[2],te=L+ee*l[2],oe=P+ee*l[2];for(let Q=0;Q<f;Q++){let pe=m[J+Q],le=m[se+Q],Ae=m[te+Q],me=m[oe+Q],Ne=pe+(Ae-pe)*G,Te=le+(me-le)*G,$e=Ne+(Te-Ne)*M;A[b++]=$e}}}return n.makeTensorInfo([h,u,c,f],"float32",A)}var AD={kernelName:Ts,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*u*c*h),m=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],b=n.data.get(s.dataId).values,w=0;for(let _=0;_<l;_++){let x=_*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),D=x+E*o[1],L=x+M*o[1],P=T-E,U=1-P;for(let H=0;H<p;H++){let X=H*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),J=X-G,se=1-J,te=D+G*o[2],oe=D+ee*o[2],Q=L+G*o[2],pe=L+ee*o[2],le=U*se,Ae=U*J,me=P*se,Ne=P*J;for(let Te=0;Te<h;Te++){let $e=b[w++];f[te+Te]+=$e*le,f[oe+Te]+=$e*Ae,f[Q+Te]+=$e*me,f[pe+Te]+=$e*Ne}}}}return n.makeTensorInfo([l,c,u,h],"float32",f)}var gD={kernelName:Dh,backendName:"cpu",kernelFunc:yD};function xD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*f),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=y[0]/g[0],w=y[1]/g[1],_=0;for(let x=0;x<h;x++){let N=x*l[0];for(let T=0;T<u;T++){let E=i?b*(T+.5):b*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let D=N+M*l[1];for(let L=0;L<c;L++){let P=i?w*(L+.5):w*L,U=Math.min(p-1,s?Math.round(P):Math.floor(P));i&&(U=Math.max(0,U));let H=D+U*l[2];for(let X=0;X<f;X++){let G=m[H+X];A[_++]=G}}}}return n.makeTensorInfo([h,u,c,f],a.dtype,A)}var wD={kernelName:uu,backendName:"cpu",kernelFunc:xD};function bD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],b=y[0]/g[0],w=y[1]/g[1],_=1/b,x=1/w,N=Math.ceil(_)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let D=0;D<c;D++){let L=M+D*o[1],P=Math.floor(D*_),U=Math.floor(P-N/2);for(let H=0;H<h;H++){let X=L+H*o[2],G=Math.floor(H*x),ee=Math.floor(G-T/2);for(let J=0;J<d;J++){let se=0;for(let te=0;te<N;te++){let oe=te+U;if(oe<0||oe>=p)continue;let Q=M+oe*l[1],pe=oe*b,le=Math.min(c-1,i?Math.round(pe):Math.floor(pe));if(D===le)for(let Ae=0;Ae<T;Ae++){let me=Ae+ee;if(me<0||me>=f)continue;let Ne=Q+me*l[2],Te=me*w,$e=Math.min(h-1,i?Math.round(Te):Math.floor(Te));H===$e&&(se+=A[Ne+J])}}m[X+J]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var _D={kernelName:$h,backendName:"cpu",kernelFunc:bD};function vD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Wr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var kD={kernelName:Cs,backendName:"cpu",kernelFunc:vD},ID={kernelName:Po,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=C.getImageCenter(i,c,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let b=0;b<u;b++){let w=b*h*c*d;for(let _=0;_<c;_++){let x=_*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,_,N,E],D=M[2],L=M[1],P=(D-p)*y-(L-f)*A,U=(D-p)*A+(L-f)*y;P=Math.round(P+p),U=Math.round(U+f);let H=s;if(typeof s!="number"&&(E===3?H=m:H=s[E]),P>=0&&P<h&&U>=0&&U<c){let G=U*(h*d),ee=P*d,J=w+G+ee+E;H=g[J]}let X=w+x+T+E;l[X]=H}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},ND=st(Rs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),SD={kernelName:Rs,backendName:"cpu",kernelFunc:ND};function aw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Ve(n,t.dtype);let p=Ve(c,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function TD(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=aw(p,f,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var ED={kernelName:No,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;ve([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=tr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=u[f];return n.makeTensorInfo(a.shape,c,h)}var RD={kernelName:So,backendName:"cpu",kernelFunc:CD},FD=C.SELU_SCALEALPHA,MD=C.SELU_SCALE,$D=st(To,e=>e>=0?MD*e:FD*(Math.exp(e)-1)),DD={kernelName:To,backendName:"cpu",kernelFunc:$D},OD=st($s,e=>1/(1+Math.exp(-e))),zD={kernelName:$s,backendName:"cpu",kernelFunc:OD},LD=st(Ro,e=>e<0?-1:e>0?1:0),PD={kernelName:Ro,backendName:"cpu",kernelFunc:LD},WD=st(Ms,e=>Math.sin(e)),BD={kernelName:Ms,backendName:"cpu",kernelFunc:WD},VD=st(Co,e=>Math.sinh(e)),UD={kernelName:Co,backendName:"cpu",kernelFunc:VD},HD=11920928955078125e-23,sw=Math.log(HD)+2,jD=st(Fo,e=>{let t=e>-sw,n=e<sw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),GD={kernelName:Fo,backendName:"cpu",kernelFunc:jD};function qD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;ve([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=rw.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(c.length,s.length,!1),d=C.getReshapedPermuted(u.shape,s,o,!1),p=yt({inputs:{x:u},backend:n,attrs:{shape:c}}),f=lr({inputs:{x:p},backend:n,attrs:{perm:h}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var XD={kernelName:cu,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=C.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=aw(f,m,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var ZD={kernelName:Oh,backendName:"cpu",kernelFunc:KD};function YD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=oi({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var JD={kernelName:Mo,backendName:"cpu",kernelFunc:YD},QD=st(Ds,e=>Math.sqrt(e)),eO={kernelName:Ds,backendName:"cpu",kernelFunc:QD},tO={kernelName:hu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},nO=st(_a,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),rO={kernelName:_a,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=ln.sliceInfo(a.shape,s,i,o,l,u,c,h,d),b=yt({inputs:{x:a},backend:n,attrs:{shape:y}}),w;if(p){let x=oi({inputs:{x:b},backend:n,attrs:{begin:f,size:A}});w=yt({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))w=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(b),N=Dx(g,x,m,f);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let _=yt({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),_}var sO={kernelName:$o,backendName:"cpu",kernelFunc:aO},iO=st(Do,e=>Math.tan(e)),oO={kernelName:Do,backendName:"cpu",kernelFunc:iO},lO=st(Ws,e=>Math.tanh(e)),uO={kernelName:Ws,backendName:"cpu",kernelFunc:lO};function cO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=zx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var hO={kernelName:ba,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Lx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var pO={kernelName:Oo,backendName:"cpu",kernelFunc:dO};function fO(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ve(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=Px(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var mO={kernelName:zh,backendName:"cpu",kernelFunc:fO};function AO(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let f=oi({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=yt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var yO={kernelName:zo,backendName:"cpu",kernelFunc:AO};function gO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;ve(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=Ud({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=Yx({inputs:{a:A,b:d},backend:n}),g=Da({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),b=hA({inputs:{a:g,b:a},backend:n}),w=Hd({inputs:{x:b},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),c.push(A),c.push(y),c.push(g),c.push(b),c.push(w)}let p=nw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var xO={kernelName:du,backendName:"cpu",kernelFunc:gO},wO=[BR,GC,UR,jR,JC,qR,KR,YR,QR,tF,rF,sF,oF,cF,dF,mF,yF,xF,bF,PR,vF,IF,SF,ZC,eR,EF,qC,RF,MF,OF,LF,$F,VF,HF,WF,GF,XF,ZF,JF,eM,nM,rM,sM,oM,uM,cM,dM,hM,AA,FR,fM,AM,kM,tR,IM,rR,RM,MM,$M,sR,zM,PM,BM,UM,jM,oR,XM,XC,ZM,FF,JM,e$,n$,MR,uR,s$,o$,hR,u$,d$,f$,y$,x$,b$,pR,k$,N$,T$,C$,F$,_$,D$,z$,mR,P$,V$,G$,yR,xR,K$,J$,tD,bR,rD,sD,iD,rw,cD,DR,kR,dD,KC,fD,OR,zR,LR,AD,gD,wD,_D,kD,ID,SD,NR,ED,RD,DD,zD,PD,BD,UD,SR,H$,GD,XD,ZD,JD,eO,tO,ER,rO,sO,RR,M$,oO,uO,hO,pO,_R,mO,yO,xO,aD];for(let e of wO)Wo(e);var S0={};Pe(S0,{assertNotComplex:()=>fl,bindCanvasToFramebuffer:()=>vO,bindColorTextureToFramebuffer:()=>qd,bindTextureToProgramUniformSampler:()=>ww,bindTextureUnit:()=>yw,bindVertexBufferToProgramAttribute:()=>xA,callAndCheck:()=>be,canBeRepresented:()=>iw,createFragmentShader:()=>uw,createFramebuffer:()=>Aw,createProgram:()=>cw,createStaticIndexBuffer:()=>pw,createStaticVertexBuffer:()=>dw,createTexture:()=>fw,createVertexShader:()=>lw,getBatchDim:()=>li,getExtensionOrThrow:()=>Zu,getFramebufferErrorMessage:()=>bw,getMaxTexturesInShader:()=>kw,getNumChannels:()=>bO,getProgramUniformLocation:()=>xw,getProgramUniformLocationOrThrow:()=>gw,getRowsCols:()=>ui,getShapeAs3D:()=>Xd,getTextureShapeFromLogicalShape:()=>_w,getWebGLDisjointQueryTimerVersion:()=>Iw,getWebGLErrorMessage:()=>ow,getWebGLMaxTextureSize:()=>vw,hasExtension:()=>Xn,isCapableOfRenderingToFloatTexture:()=>Nw,isDownloadFloatTextureEnabled:()=>Sw,isReshapeFree:()=>Ju,isWebGLFenceEnabled:()=>Tw,isWebGLVersionEnabled:()=>bA,linkProgram:()=>hw,resetMaxTextureSize:()=>kO,resetMaxTexturesInShader:()=>IO,unbindColorTextureFromFramebuffer:()=>wA,unbindTextureUnit:()=>_O,validateFramebuffer:()=>Yu,validateProgram:()=>Gd,validateTextureSize:()=>mw});var ci={},_A={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function mm(e,t){ci[e]=t}function Br(e){if(!(e in ci)){let n=NO(e);if(n!==null)ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ci[e];return t.isContextLost()?(delete ci[e],Br(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ci[e])}function SO(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function NO(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=SO(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ci[e]},!1),e===1?t.getContext("webgl",_A)||t.getContext("experimental-webgl",_A):t.getContext("webgl2",_A)}var Qu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Qu||(Qu={}));var Kn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Kn||(Kn={}));var en;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(en||(en={}));function ec(e,t){return[t,e]}function TO(e,t){return e*t}function tc(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function ml(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function EO(e,t){let[n,r]=ml(e,t);return n*r*4}function vA(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return Y().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function be(e,t){let n=t();return Y().getBool("DEBUG")&&CO(e),n}function CO(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+ow(e,t))}var RO=596e-10,FO=65504;function iw(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||RO<Math.abs(e)&&Math.abs(e)<FO)}function ow(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Zu(e,t){return sa(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function lw(e,t){let n=sa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function uw(e,t){let n=sa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw MO(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var $O=/ERROR: [0-9]+:([0-9]+):/g;function MO(e,t){let n=$O.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function cw(e){return sa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function hw(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Gd(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function dw(e,t){let n=sa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function pw(e,t){let n=sa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function bO(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function fw(e){return sa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function mw(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Aw(e){return sa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function xA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),be(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),be(e,()=>e.enableVertexAttribArray(o)),!0)}function yw(e,t,n){Ew(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _O(e,t){Ew(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function gw(e,t,n){return sa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function xw(e,t,n){return e.getUniformLocation(t,n)}function ww(e,t,n,r){be(e,()=>yw(e,t,r)),be(e,()=>e.uniform1i(n,r))}function vO(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function qd(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function wA(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Yu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+bw(e,t))}function bw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function sa(e,t,n){let r=be(e,()=>t());if(r==null)throw new Error(n);return r}function Ew(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function li(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ui(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Xd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[li(e),...ui(e)]),t}function _w(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=li(e),s=2,i=2;return e.length&&([s,i]=ui(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Kd(e){return e%2==0}function Ju(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Kd(n)&&Kd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Kd(e[0])&&Kd(t[0])}var Zd,Yd;function vw(e){if(Zd==null){let t=Br(e);Zd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Zd}function kO(){Zd=null}function IO(){Yd=null}function kw(e){if(Yd==null){let t=Br(e);Yd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Yd)}function Iw(e){if(e===0)return 0;let t,n=Br(e);return Xn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Xn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Xn(e,t){return e.getExtension(t)!=null}function bA(e){try{if(Br(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Nw(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Xn(t,"OES_texture_float"))return!1}else if(!Xn(t,"EXT_color_buffer_float"))return!1;return kA(t)}function Sw(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Xn(t,"OES_texture_float")||!Xn(t,"WEBGL_color_buffer_float"))return!1}else{if(Xn(t,"EXT_color_buffer_float"))return kA(t);let n="EXT_color_buffer_half_float";if(Xn(t,n)){let r=t.getExtension(n);return DO(t,r)}return!1}return kA(t)}function kA(e){let t=vA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function DO(e,t){let n=vA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Tw(e){return e!==2?!1:Br(e).fenceSync!=null}function fl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Re=Y();Re.registerFlag("HAS_WEBGL",()=>Re.getNumber("WEBGL_VERSION")>0);Re.registerFlag("WEBGL_VERSION",()=>bA(2)?2:bA(1)?1:0);Re.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Re.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Re.get("WEBGL_VERSION")===2);Re.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Re.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Re.registerFlag("WEBGL_PACK",()=>Re.getBool("HAS_WEBGL"));Re.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_CLIP",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Re.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_REDUCE",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_LAZILY_UNPACK",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_CONV_IM2COL",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>vw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>kw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Re.getNumber("WEBGL_VERSION");return e===0?0:Iw(e)});Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Re.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Bh.isMobile());Re.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Nw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Re.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Re.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Re.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Sw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Tw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Re.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Re.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Re.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function hn(){let e,t,n,r,a,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function hi(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function IA(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Cw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,OO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Qu.DENSE;let t=tc(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},zO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Qu.DENSE;let t=tc(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},LO=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Kn.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${Cw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},PO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Kn.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${Cw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},WO=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=hn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${IA(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},BO=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=hn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${IA(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},T0={};Pe(T0,{bindVertexProgramAttributeStreams:()=>Pw,createBufferFromOutputTexture:()=>Vw,createFloat16MatrixTexture:()=>Dw,createFloat16PackedMatrixTexture:()=>Lw,createFloat32MatrixTexture:()=>$w,createIndexBuffer:()=>Mw,createPackedMatrixTexture:()=>zw,createUnsignedBytesMatrixTexture:()=>Ow,createVertexBuffer:()=>Fw,createVertexShader:()=>Rw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Hw,downloadFloat32MatrixFromBuffer:()=>Uw,downloadMatrixFromPackedOutputTexture:()=>Gw,downloadPackedMatrixFromBuffer:()=>jw,getInternalFormatForFloat16MatrixTexture:()=>SA,getInternalFormatForFloat16PackedMatrixTexture:()=>CA,getInternalFormatForFloat32MatrixTexture:()=>NA,getInternalFormatForPackedMatrixTexture:()=>EA,getInternalFormatForUnsignedBytesMatrixTexture:()=>TA,uploadDenseMatrixToTexture:()=>Ww,uploadPixelDataToTexture:()=>Bw});function Rw(e){let t=hn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return lw(e,n)}function Fw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return dw(e,t)}function Mw(e){let t=new Uint16Array([0,1,2,2,1,3]);return pw(e,t)}function nc(e,t,n,r,a,s){mw(t,n);let i=fw(e),o=e.TEXTURE_2D;return be(e,()=>e.bindTexture(o,i)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function NA(e){return e.internalFormatFloat}function $w(e,t,n,r){let[a,s]=ec(t,n);return nc(e,a,s,NA(r),r.textureFormatFloat,e.FLOAT)}function SA(e){return e.internalFormatHalfFloat}function Dw(e,t,n,r){let[a,s]=ec(t,n);return nc(e,a,s,SA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function TA(e){return e.downloadTextureFormat}function Ow(e,t,n,r){let[a,s]=ec(t,n);return nc(e,a,s,TA(r),e.RGBA,e.UNSIGNED_BYTE)}function EA(e){return e.internalFormatPackedFloat}function zw(e,t,n,r){let[a,s]=ml(t,n);return nc(e,a,s,EA(r),e.RGBA,e.FLOAT)}function CA(e){return e.internalFormatPackedHalfFloat}function Lw(e,t,n,r){let[a,s]=ml(t,n);return nc(e,a,s,CA(r),e.RGBA,r.textureTypeHalfFloat)}function Pw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xA(e,t,"clipSpacePos",n,3,s,r)&&xA(e,t,"uv",n,2,s,a)}function Ww(e,t,n,r,a,s){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Bw(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Vw(e,t,n,r){let a=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Uw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Hw(e,t,n,r){let[a,s]=ec(t,n),i=4,o=new Uint8Array(TO(t*n,i));return be(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function jw(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(EO(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Gw(e,t,n){let r=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Am=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,mm(t,e)):this.gl=Br(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Zu(this.gl,a),Xn(this.gl,s))this.textureHalfFloatExtension=Zu(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Xn(this.gl,r))this.colorBufferHalfFloatExtension=Zu(this.gl,r);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Xn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Xn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Fw(this.gl),this.indexBuffer=Mw(this.gl),this.framebuffer=Aw(this.gl),this.textureConfig=vA(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),$w(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Dw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Ow(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Bw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Ww(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Lw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),zw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(wA(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Hw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return jw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Uw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Vw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Gw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=uw(t,e),r=Rw(t),a=cw(t);return be(t,()=>t.attachShader(a,r)),be(t,()=>t.attachShader(a,n)),hw(t,a),this.debug&&Gd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Pw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Gd(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?gw(this.gl,e,t):xw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ww(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=ml(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Gd(this.gl,this.program),Yu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Zu(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=VO(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),qd(this.gl,e,this.framebuffer),this.debug&&Yu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(qd(this.gl,this.outputTexture,this.framebuffer),this.debug&&Yu(this.gl)):wA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;qd(r,e,this.framebuffer),this.debug&&Yu(r),this.outputTexture=e,be(r,()=>r.viewport(0,0,t,n)),be(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function VO(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:qw}=C;function YO(e,t,n,r){let a=[];e.forEach(p=>{let f=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
|
|
`),i=e.map(p=>UO(p,t,r)).join(`
|
|
`),o=t.texShape,l=hn(),u=GO(l),c,h,d=KO(l);return t.isPacked?(c=HO(t.logicalShape,o),h=XO(l)):(c=jO(t.logicalShape,o),h=qO(l)),r&&(d+=ZO),[d,u,h,s,c,i,n].join(`
|
|
`)}function Al(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return JO(e);case 1:return QO(e);case 2:return ez(e);case 3:return tz(e);case 4:return nz(e);case 5:return rz(e);case 6:return az(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Xw(e){switch(e.shapeInfo.logicalShape.length){case 0:return sz(e);case 1:return iz(e);case 2:return oz(e);case 3:return lz(e);default:return uz(e)}}function UO(e,t,n=!1){let r="";n?r+=Xw(e):r+=Al(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=cz(e,t):r+=hz(e,t)),r}function HO(e,t){switch(e.length){case 0:return Kw();case 1:return dz(e,t);case 2:return mz(e,t);case 3:return pz(e,t);default:return fz(e,t)}}function jO(e,t){switch(e.length){case 0:return Kw();case 1:return Az(e,t);case 2:return bz(e,t);case 3:return yz(e,t);case 4:return gz(e,t);case 5:return xz(e,t);case 6:return wz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function GO(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function qO(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function XO(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function KO(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${_z}
|
|
${vz}
|
|
${kz}
|
|
`}var _z=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,vz=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,kz=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,ZO=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function Kw(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function dz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function Az(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function pz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function yz(e,t){let n=hi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function fz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function gz(e,t){let n=hi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function xz(e,t){let n=hi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function wz(e,t){let n=hi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function mz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function bz(e,t){return v.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function di(e){return`offset${e}`}function sz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=hn();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function JO(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=di(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function iz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=hn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function QO(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${yl(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=di(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function oz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=hn();if(a!=null&&v.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function ez(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(t,a)){let h=a[0],d=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=v.squeezeShape(t),o=s;if(o.length<t.length){let h=gl(e,o),d=["row","col"];return`
|
|
${Al(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${xl(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${yl(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],c=di(n);return u===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function lz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=gl(e,h),f=["b","row","col"];return`
|
|
${Xw(p)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${xl(f,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=hn();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function tz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=v.squeezeShape(t),l=i;if(l.length<t.length){let f=gl(e,l),m=["row","col","depth"];return`
|
|
${Al(f)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${xl(m,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${yl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${p};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function uz(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,c*=t[n-f-1],d=`b${f} * ${c} + `+d;let p=hn();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${p.texture2D}(${r}, uv);
|
|
}
|
|
`}function nz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=v.squeezeShape(t);if(o.length<t.length){let f=gl(e,o),m=["row","col","depth","depth2"];return`
|
|
${Al(f)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${xl(m,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${yl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function rz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=gl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${Al(m)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${xl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${yl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function az(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let A=gl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Al(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${xl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${yl(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===c&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=di(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function yl(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function cz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=qw(e.shapeInfo.logicalShape,t.logicalShape),l=ut(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${r}(${d});
|
|
${p}
|
|
}
|
|
`}function hz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ut(l),c=qw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${p[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${r}(${f});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function gl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function xl(e,t){return t.map(n=>e[n]).join(", ")}function Iz(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=YO(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(u,f,m),d[`offset${f}`]=e.getUniformLocation(u,`offset${f}`,m)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function Zw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Nz(e,t,n,r,a){Zw(t.inShapeInfos,n),Zw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function Sz(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:Tz,bincountImpl:Yw,bincountReduceImpl:Ez,ceilImpl:Cz,concatImpl:Rz,expImpl:Fz,expm1Impl:Mz,floorImpl:$z,gatherV2Impl:Dz,greaterImpl:Oz,lessImpl:zz,linSpaceImpl:Lz,logImpl:Pz,maxImpl:Wz,maximumImpl:Bz,minimumImpl:Vz,multiplyImpl:Uz,negImpl:Hz,prodImpl:jz,rangeImpl:Gz,rsqrtImpl:qz,simpleAbsImpl:Jw,sliceImpl:Xz,stridedSliceImpl:Kz,subImpl:Zz,tileImpl:Yz,topKImpl:Jz,transposeImpl:RA,uniqueImpl:Qz}=fm;function Qw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function dn(e,t){return t===1?[e]:Qw(e,t)}function eL(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var aL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=dn("rc",t),r=ut(t),a=tL(t,e,n),s=nL(t,e[e.length-1],e[e.length-2],n),i=rL(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function sL(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function tL(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function nL(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function rL(e,t){let n=e.length,r=sL(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var eb=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${iL(t)}
|
|
${IA(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function iL(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var oL=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=nb(t,n),a=rb(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=tb(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===en.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===en.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===en.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=nb(n,r),s=rb(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=tb(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function lL(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function tb(e,t,n,r,a){let s=uL(t,r),i;if(a){let[l,u]=ml(e[0],e[1]);i=l*u}else{let[l,u]=ec(e[0],e[1]);i=l*u}let o=lL(n,s);return i*o}function uL(e,t){switch(e){case en.PACKED_2X2_FLOAT32:return EA(t);case en.PACKED_2X2_FLOAT16:return CA(t);case en.UNPACKED_FLOAT32:return NA(t);case en.UNPACKED_FLOAT16:return SA(t);case en.PACKED_4X1_UNSIGNED_BYTE:return TA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function cL(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?en.PACKED_2X2_FLOAT32:en.UNPACKED_FLOAT32:e?en.PACKED_2X2_FLOAT16:en.UNPACKED_FLOAT16}function nb(e,t){if(e===Kn.UPLOAD)return en.PACKED_2X2_FLOAT32;if(e===Kn.RENDER||e==null)return cL(t);if(e===Kn.DOWNLOAD||e===Kn.PIXELS)return en.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function rb(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Oa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},xr="if (isnan(x)) return x;",hL="return x;",ab="return abs(x);",dL="return (x >= 0.0) ? x : (exp(x) - 1.0);",pL=xr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,fL=xr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Jd="return x;",mL="return x;",AL=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,yL=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gL=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},xL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=dn("rc",t),r=ut(t),a=eL(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},wL=$r.whereImpl,bL=1e-7,_L=1e-4,FA={};function vL(e){return e in FA||(FA[e]={}),FA[e]}var kL=128,IL=600;function NL(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*IL/1024/1024}var Du=class extends Xl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Br(Y().getNumber("WEBGL_VERSION"));this.binaryCache=vL(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new Am(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new oL(this.gpgpu),this.numMBBeforeWarning=NL(),this.texData=new oh(this,Er())}nextDataId(){return Du.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Kn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Kn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new wl(i,Jd):h=new Oa(i,Jd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=C.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new wl(r,Jd):p=new Oa(r,Jd);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...tc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];c=C.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Er().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!iw(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=v.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...tc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=Y().getBool("WEBGL_PACK")&&r===!0,i=s?Xd(t):t,o=s?new PO(i):new LO(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Y().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Er().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=kL){let n=this.getCPUBackend();return!Y().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return wL(e.shape,t)}packedUnaryOp(e,t,n){let r=new wl(e.shape,t),a=this.compileAndRun(r,[e],n);return Er().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=Jw(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,ab,e.dtype);let t=new Oa(e.shape,ab),n=this.compileAndRun(t,[e]);return Er().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Er().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new xL(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new aL(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[li(e.shape),...ui(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[li(t),...ui(t)],s=new eb(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Xd(r),i;n?i=new zO(s):i=new OO(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Qu.DENSE){let m=tc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!Ju(A.shape,m.shape)){let y=m,g=m.shape;m.shape=A.shape,m=this.packedReshape(m,g),o.push(m),A=this.texData.get(m.dataId),y.shape=g}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=Sz(e,l,u),h=this.getAndSaveBinary(c,()=>Iz(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),Nz(this.gpgpu,h,l,u,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?bL:_L}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=_w(n,o),t.texShape=c),a!=null){let h=Xd(n),d,p=c[1],f=c[0],m=a instanceof Uint8Array;o?([p,f]=ml(c[0],c[1]),d=new BO(h,[f,p],m)):d=new WO(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Kn.PIXELS:this.texData.get(A.dataId).usage=Kn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),b=this.texData.get(g.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=SL(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};Du.nextDataId=0;function SL(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var E0="3.2.0";function C0(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}Bh.isBrowser()&&Au("webgl",()=>new Du,2);var E8={forceHalfFloat:C0},sb=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,bl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Qd=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,rc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=dn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function $n(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var TL={kernelName:ps,backendName:"webgl",kernelFunc:$n};function za(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=$n({inputs:{x:r},backend:n}),l=$n({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var EL={kernelName:ph,backendName:"webgl",kernelFunc:za},ib="return (a < 0.) ? b * a : a;",ob=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function CL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rc(ob,a.shape,i.shape):new bl(ib,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var RL={kernelName:fs,backendName:"webgl",kernelFunc:CL},lb="return (a < 0.) ? b * a : a;",ub=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function FL(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rc(ub,r.shape,a.shape):new bl(lb,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var ML={kernelName:Ns,backendName:"webgl",kernelFunc:FL},cb="if (isnan(x)) return x;",$L=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,DL=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new wl(i.shape,t):c=new Oa(i.shape,e),o.runWebGLProgram(c,[i],l)}}function tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(b=>{let[w,_]=b,x={dataId:w.dataId,dtype:w.dtype,shape:l.shape},N={dataId:_.dataId,dtype:_.dtype,shape:u.shape},T=new bl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],tr(w.dtype,_.dtype))}),g=za({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||tr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,f.values,m.values,h),g=c.makeTensorInfo(y,h),b=c.texData.get(g.dataId);return b.values=A,g}let d=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new rc(t,l.shape,u.shape,n):p=new bl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function ep(e,t=!1){if(e==="linear")return t?mL:hL;if(e==="relu")return t?yL:pL;if(e==="elu")return t?AL:dL;if(e==="relu6")return t?gL:fL;if(e==="prelu")return t?ub:lb;if(e==="leakyrelu")return t?ob:ib;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var hb=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",b="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(b=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${b};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${f[0]});
|
|
result += (${p[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},db={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},pb=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},fb="return a * b;";function mb(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new pb(db.REAL,r.shape,a.shape),c=new pb(db.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=za({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=Uz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new rc(fb,r.shape,a.shape):i=new bl(fb,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var OL={kernelName:_s,backendName:"webgl",kernelFunc:mb};function zL(e,t,n){let r=[li(e.shape),...ui(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[li(t),...ui(t)],i=new eb(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!Ju(a.shape,l)&&!(c.texture!==null&&Ju(c.shape,l))?zL(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var LL={kernelName:Io,backendName:"webgl",kernelFunc:ge},Ab=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},PL=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function WL(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function pi(e,t,n,r){let a=WL(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new Ab({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Ab({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new PL({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var VL=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ut(this.rank),a=BL(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function BL(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var UL=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ut(this.rank),a=Qw("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function tp(e,t,n){let r=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UL(e.shape,t):new VL(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function HL(e,t,n,r){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=tp(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=C.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=C.expandShapeToKeepDim(h,i));let f=v.sizeFromShape(d),m=v.sizeFromShape(e.shape)/f,A=ge({inputs:{x:c},attrs:{shape:[m,f]},backend:r}),y=Wh(e.dtype),g=pi(A,y,"sum",r),b=ge({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),b}function MA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return HL(a,s,i,n)}var jL={kernelName:Os,backendName:"webgl",kernelFunc:MA};function _n(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=RA(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=tp(a,s,i);return u}var GL={kernelName:Bs,backendName:"webgl",kernelFunc:_n},yb=1e3;function np({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=v.sizeFromShape(m),g=v.sizeFromShape(A),b=y===g||y===1||g===1;v.assert(u>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let w=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[y,h,p]:[y,p,h],x=r?[g,f,d]:[g,d,f],N=ge({inputs:{x:e},backend:a,attrs:{shape:_}}),T=ge({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(y,g),D=n?N.shape[1]:N.shape[2],L=s!=null,P=i!=null,U=l==="leakyrelu",H=l!=null?ep(l,!0):null,X=L||P||U||H!=null,G;if((p===1||f===1)&&D>yb&&X===!1){let J=N,se=T;n&&(J=_n({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(J)),r&&(se=_n({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(se));let te=f!==1,oe=f===1,Q=J;te&&(Q=ge({inputs:{x:J},backend:a,attrs:{shape:[M,D,1]}}),E.push(Q));let pe=f===1?2:1,le=se;oe&&(le=ge({inputs:{x:se},backend:a,attrs:{shape:[M,1,D]}}),E.push(le));let Ae=mb({inputs:{a:Q,b:le},backend:a});G=MA({inputs:{x:Ae},backend:a,attrs:{axis:pe,keepDims:!0}}),E.push(Ae)}else{let J=tr(e.dtype,t.dtype),se=new hb(_,x,[M,p,f],n,r,L,H,P,U),te=[N,T];if(s!=null&&te.push(s),P&&te.push(i),U){let oe=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));te.push(oe),E.push(oe)}G=a.runWebGLProgram(se,te,J)}let ee=ge({inputs:{x:G},backend:a,attrs:{shape:w}});E.push(G);for(let J of E)a.disposeIntermediateTensorInfo(J);return ee}function qL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return np({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var XL={kernelName:Vs,backendName:"webgl",kernelFunc:qL},gb="return abs(x);";function KL(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Jw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new wl(r.shape,gb):a=new Oa(r.shape,gb),n.runWebGLProgram(a,[r],r.dtype)}var ZL={kernelName:Wi,backendName:"webgl",kernelFunc:KL},YL=xr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,JL=Ke({opSnippet:YL}),QL={kernelName:Bi,backendName:"webgl",kernelFunc:JL},eP=xr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,tP=Ke({opSnippet:eP}),nP={kernelName:Vi,backendName:"webgl",kernelFunc:tP},xb="return a + b;",rP=tn({opSnippet:xb,packedOpSnippet:xb,supportsComplex:!0,cpuKernelImpl:Tz}),aP={kernelName:xa,backendName:"webgl",kernelFunc:rP},sP=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},iP=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function rp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return $n({inputs:{x:r[0]},backend:n});if(r.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=rp({inputs:r.slice(0,o),backend:n}),u=rp({inputs:r.slice(o),backend:n});return rp({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>tr(o,l)),s=r.map(o=>o.shape),i=Y().getBool("WEBGL_PACK")?new iP(r[0].shape,s):new sP(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var oP={kernelName:Za,backendName:"webgl",kernelFunc:rp};function lP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=pi(m,m.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var uP={kernelName:lh,backendName:"webgl",kernelFunc:lP};function cP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=pi(m,m.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var hP={kernelName:uh,backendName:"webgl",kernelFunc:cP},dP=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},pP=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ut(o),u=dn("coords",o),c,h;if(s===1){h=o+1;let N=ut(h);c=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(N=>"int "+N),m=dn("sourceLocR",h-1).concat("inIdx.r"),A=dn("sourceLocG",h-1).concat("inIdx.g"),y=dn("sourceLocB",h-1).concat("inIdx.b"),g=dn("sourceLocA",h-1).concat("inIdx.a"),b=n==="max"?"greaterThan":"lessThan",w=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,_=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,x=r?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${x}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${_};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${_};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${b}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function wb(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new dP(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=wb(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function bb(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new pP(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=bb(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function _b(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=wb(e,u,r);s.push(c);let h=ge({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return bb(e,t,r)}function fP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=_b(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var mP={kernelName:Ya,backendName:"webgl",kernelFunc:fP};function AP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=_b(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var yP={kernelName:Zl,backendName:"webgl",kernelFunc:AP},gP=xr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,xP=Ke({opSnippet:gP}),wP={kernelName:Ui,backendName:"webgl",kernelFunc:xP},bP=xr+"return log(x + sqrt(x * x + 1.0));",_P=Ke({opSnippet:bP}),vP={kernelName:Hi,backendName:"webgl",kernelFunc:_P},kP=xr+`
|
|
return atan(x);
|
|
`,IP=Ke({opSnippet:kP}),NP={kernelName:ji,backendName:"webgl",kernelFunc:IP},SP=$L+`
|
|
return atan(a, b);
|
|
`,TP=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+DL+`
|
|
return result;
|
|
`,EP=tn({opSnippet:SP,packedOpSnippet:TP}),CP={kernelName:qi,backendName:"webgl",kernelFunc:EP},RP=xr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,FP=Ke({opSnippet:RP}),MP={kernelName:Gi,backendName:"webgl",kernelFunc:FP},ac=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,_=s%4,x=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${x}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${_===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${_===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${_===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
`}},$A=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",b="0.0";if(g||(b="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
}
|
|
`}};function $P(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;fl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new ac(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var DP={kernelName:Ja,backendName:"webgl",kernelFunc:$P};function OP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new $A(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var zP={kernelName:Yl,backendName:"webgl",kernelFunc:OP},LP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},PP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${f}, ${m});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function WP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new PP(d);return n.runWebGLProgram(p,[a],i.dtype)}var BP={kernelName:hh,backendName:"webgl",kernelFunc:WP};function VP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;fl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=new LP(c);return n.runWebGLProgram(h,[a],i.dtype)}var UP={kernelName:ch,backendName:"webgl",kernelFunc:VP};function HP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return np({a,b:s,transposeA:i,transposeB:o,backend:n})}var jP={kernelName:Qa,backendName:"webgl",kernelFunc:HP},GP=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},qP=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},XP=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=Y().getBool("WEBGL_PACK_NORMALIZATION")?new qP(r.shape,a.shape,s.shape,c,h,l):new GP(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},KP={kernelName:hs,backendName:"webgl",kernelFunc:XP},YP=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=`uniform int start[${this.rank}];`,r=ZP(this.rank),a,s=e.map((i,o)=>`sourceLoc.${DA[o]} = start[${o}] + coords.${DA[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},DA=["x","y","z","w","u","v"];function ZP(e){if(e===1)return"sourceLoc";if(e<=6)return DA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var JP=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=dn("coords",this.rank),r=dn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function QP(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=ln.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function sc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=ln.parseSliceParams(a,s,i);if(ln.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=Xz(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=ln.isSliceContinous(a.shape,o,l);if(u||!c){let h=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new JP(l):new YP(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),QP(a,o,l,n)}var eW={kernelName:Eo,backendName:"webgl",kernelFunc:sc},tW=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,b)=>g*b),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=[],f=ge({inputs:{x:a},backend:n,attrs:{shape:l}}),m=_n({inputs:{x:f},backend:n,attrs:{perm:u}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:c}}),y=sc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},nW={kernelName:Jl,backendName:"webgl",kernelFunc:tW};function rW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=Yw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var aW={kernelName:dh,backendName:"webgl",kernelFunc:rW},sW="return float(a != b);",vb=tn({opSnippet:sW,dtype:"bool"}),iW={kernelName:yo,backendName:"webgl",kernelFunc:vb};function ic(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.real},backend:n})}var oW={kernelName:Mh,backendName:"webgl",kernelFunc:ic},lW="return float(int(x));";function uW(e,t){let n=new Oa(e.shape,lW),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function OA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return $n({inputs:{x:a},backend:n});let i=Ft(a.shape),o=OA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=za({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ic({inputs:{input:a},backend:n}),o=OA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=$n({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return uW(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=vb({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var cW={kernelName:es,backendName:"webgl",kernelFunc:OA},kb="return ceil(x);",hW=Ke({opSnippet:kb,packedOpSnippet:kb,cpuKernelImpl:Cz}),dW={kernelName:ts,backendName:"webgl",kernelFunc:hW},pW=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},fW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function mW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Y().getBool("WEBGL_PACK_CLIP")?o=new fW(a.shape):o=new pW(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var AW={kernelName:wa,backendName:"webgl",kernelFunc:mW},yW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Ib(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function gW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new yW(r.shape),i=[Ib(r,a.complexTensorInfos.real),Ib(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var xW={kernelName:Ql,backendName:"webgl",kernelFunc:gW},wW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},bW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ut(r),s=dn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${ap(i,l,m)}),
|
|
vec2(${ap(u,l,m)}));
|
|
}`}let d=o.length,p=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${d}(${ap(i,l,p)}),
|
|
vec2(${ap(u,l,p)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function ap(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function sp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.imag},backend:n})}var _W={kernelName:Nh,backendName:"webgl",kernelFunc:sp};function _l(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>ic({inputs:{input:f},backend:n})),c=e.map(f=>sp({inputs:{input:f},backend:n})),h=_l(u,t,n),d=_l(c,t,n),p=za({inputs:{real:h,imag:d},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),c.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=Nb(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=Rz(h,c,r,d),f=C.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=_l(e.slice(0,u),t,n),h=_l(e.slice(u),t,n),d=_l([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new bW(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=Nb(e,t,n),i=new wW(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function Nb(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function Sb(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return $n({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),_l(o,s,n)}var vW={kernelName:Xi,backendName:"webgl",kernelFunc:Sb},Tb=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,b="",w="";n&&(r?b=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?b=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:b=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${b}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${_}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},kW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},IW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=hn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,b="";for(let w=0;w<=1;w++)for(let _=0;_<=1;_++)b+=`
|
|
blockIndex = rc.y + ${_};
|
|
pos = rc.x + ${w};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${f});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${a}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${w*2+_}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${w*2+_}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${b}
|
|
|
|
${m.output} = result;
|
|
}
|
|
`}};function Eb({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&c>yb,b=l[2]%2!=0&&!!u.isPacked;if(g||!Y().getBool("WEBGL_LAZILY_UNPACK")||!Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!b){let w=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=ge({inputs:{x:e},backend:r,attrs:{shape:[1,w,n.inChannels]}}),x=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=np({a:_,b:x,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ge({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(_),y.push(x),y.push(N)}else{let w=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Ju(u.shape,_.shape),()=>`packed reshape ${u.shape} to ${_.shape} isn't free`);let N=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=np({a:_,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=$n({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let w of y)r.disposeIntermediateTensorInfo(w);return A}function Cb({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=d*h,y=[m,A],g=!0,b=!1,w=[],_=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});w.push(_),w.push(x);let N=new IW(y,_.shape,n),T=r.runWebGLProgram(N,[_],"float32"),E=ge({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});w.push(T),w.push(E);let M=a!=null,D=s!=null,L=o==="leakyrelu",P=o?ep(o,!0):null,U=new hb(E.shape,x.shape,[1,A,n.outChannels],g,b,M,P,D,L),H=[E,x];if(a&&H.push(a),D&&H.push(s),L){let J=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));H.push(J),w.push(J)}let X=r.runWebGLProgram(U,H,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ge({inputs:{x:X},backend:r,attrs:{shape:G}});w.push(X);for(let J of w)r.disposeIntermediateTensorInfo(J);return ee}function NW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=Eb({x:a,filter:s,convInfo:d,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=Cb({x:a,filter:s,convInfo:d,backend:n});else{let m=new Tb(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=ge({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var SW={kernelName:ns,backendName:"webgl",kernelFunc:NW},TW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},CW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function FW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new TW(d);return n.runWebGLProgram(p,[a,s],"float32")}var MW={kernelName:fh,backendName:"webgl",kernelFunc:FW};function $W(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new EW(d);return n.runWebGLProgram(p,[a,s],"float32")}var DW={kernelName:rs,backendName:"webgl",kernelFunc:$W};function OW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new kW(u);return n.runWebGLProgram(c,[a,s],"float32")}var zW={kernelName:eu,backendName:"webgl",kernelFunc:OW};function LW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=C.computeConv3DInfo(a.shape,l,i,1,o),c=new CW(u);return n.runWebGLProgram(c,[a,s],"float32")}var PW={kernelName:mh,backendName:"webgl",kernelFunc:LW};function WW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=C.computeConv3DInfo(l,s.shape,o,1,i),c=new RW(u);return n.runWebGLProgram(c,[a,s],"float32")}var BW={kernelName:Ah,backendName:"webgl",kernelFunc:WW},VW=cb+`
|
|
return cos(x);
|
|
`,UW=Ke({opSnippet:VW}),HW={kernelName:as,backendName:"webgl",kernelFunc:UW},jW=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,GW=Ke({opSnippet:jW}),qW={kernelName:Ki,backendName:"webgl",kernelFunc:GW},XW=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,b,w]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${b};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},KW=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new XW(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},ZW={kernelName:Zi,backendName:"webgl",kernelFunc:KW},Mb=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${Rb(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ut(r)} coords = getOutputCoords();
|
|
int end = ${Fb(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Fb(r,"coords")} = idx;
|
|
val += getX(${Rb(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Rb(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Fb(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function YW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=C.getAxesPermutation([s],l),c=a;u!=null&&(c=_n({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=$n({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new Mb(c.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new Mb(c.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=C.getUndoAxesPermutation(u),m=_n({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var JW={kernelName:ss,backendName:"webgl",kernelFunc:YW};function QW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=Yw(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=Ez(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var eB={kernelName:yh,backendName:"webgl",kernelFunc:QW},tB=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function nB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new tB(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var rB={kernelName:Yi,backendName:"webgl",kernelFunc:nB},$b=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${m};
|
|
int q = d2 - d1 * ${m};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},Db=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let w=0;w<p;w++)for(let _=0;_<f;_++)A+=`
|
|
vec4 xTexelR${w}C${_*2} = vec4(0.);
|
|
vec4 wR${w}C${_} = vec4(0.);
|
|
vec4 xR${w}C${_} = vec4(0.);`;for(let w=0;w<p;w++)for(let _=0;_<m;_++){let x=_*2;if(A+=`
|
|
xR = xRCorner + ${w*h};
|
|
xC = xCCorner + ${x*d};
|
|
`,c===1){if(x<f&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${w}C${x}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${w}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${w}C${x} = vec4(previous.zw, xTexelR${w}C${x}.xy);
|
|
} else {
|
|
xR${w}C${x} = vec4(0, 0, xTexelR${w}C${x}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${w}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${w}C${x} = vec4(0.);
|
|
}
|
|
|
|
xR${w}C${x} = xTexelR${w}C${x};
|
|
`,x+1<f)){let N=l%2==0?v.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${w}C${x} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${w}C${x+1} = vec4(
|
|
xTexelR${w}C${x}.zw, xTexelR${w}C${x+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${w}C${x+1} = xTexelR${w}C${x+2};
|
|
`}}else x<f&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${w}C${x} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${w}C${x+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${w}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${w}C${x} = vec4(
|
|
xTexelR${w}C${x}.zw, xTexelR${w}C${x+2}.zw);
|
|
`,x+1<f&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${w}C${x+1} = vec4(xTexelR${w}C${x+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${w}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${w}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${w}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${w}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${w}C${x} = vec4(
|
|
xTexelR${w}C${x}.xy, xTexelR${w}C${x+2}.xy);
|
|
`,x+1<f&&(A+=`
|
|
xR${w}C${x+1} = vec4(
|
|
xTexelR${w}C${x}.zw, xTexelR${w}C${x+2}.zw);
|
|
`)),A+="}");x<f&&(A+=`
|
|
vec4 wTexelR${w}C${x} = getW(${w}, ${x}, d1, q);
|
|
wR${w}C${x} = vec4(wTexelR${w}C${x}.xz, wTexelR${w}C${x}.xz);
|
|
`,x+1<f&&(A+=`
|
|
vec4 wTexelR${w}C${x+1} = getW(${w}, ${x+1}, d1, q);
|
|
wR${w}C${x+1} =
|
|
vec4(wTexelR${w}C${x+1}.xz, wTexelR${w}C${x+1}.xz);`))}for(let w=0;w<p;w++)for(let _=0;_<f;_++)A+=`dotProd += xR${w}C${_} * wR${w}C${_};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,g="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${b}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}};function aB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new Db(h):d=new $b(h),n.runWebGLProgram(d,[a,s],"float32")}var sB={kernelName:is,backendName:"webgl",kernelFunc:aB},iB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},oB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function lB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new iB(h);return n.runWebGLProgram(d,[a,s],"float32")}var uB={kernelName:gh,backendName:"webgl",kernelFunc:lB};function cB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new oB(h);return n.runWebGLProgram(d,[a,s],"float32")}var hB={kernelName:xh,backendName:"webgl",kernelFunc:cB},dB=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function pB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=ge({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new dB(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ge({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var fB={kernelName:wh,backendName:"webgl",kernelFunc:pB},mB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function AB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new mB(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=ge({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var yB={kernelName:tu,backendName:"webgl",kernelFunc:AB},gB="return (x >= 0.0) ? x : (exp(x) - 1.0);",xB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,wB=Ke({opSnippet:gB,packedOpSnippet:xB}),bB={kernelName:Ji,backendName:"webgl",kernelFunc:wB},_B="return (b >= 1.0) ? a : a * (b + 1.0);",vB=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,kB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rc(vB,r.shape,a.shape):new bl(_B,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},IB={kernelName:vh,backendName:"webgl",kernelFunc:kB},NB=`
|
|
return vec4(equal(a, b));
|
|
`,SB="return float(a == b);",TB=tn({opSnippet:SB,packedOpSnippet:NB,dtype:"bool"}),EB={kernelName:eo,backendName:"webgl",kernelFunc:TB},CB=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,RB=Ke({opSnippet:CB}),FB={kernelName:Qi,backendName:"webgl",kernelFunc:RB},Ob="return exp(x);",zb=Ke({opSnippet:Ob,packedOpSnippet:Ob,cpuKernelImpl:Fz}),MB={kernelName:ls,backendName:"webgl",kernelFunc:zb};function zA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ge({inputs:{x:s},backend:r,attrs:{shape:o}})}var $B={kernelName:to,backendName:"webgl",kernelFunc:zA},Lb="return exp(x) - 1.0;",DB=Ke({opSnippet:Lb,packedOpSnippet:Lb,cpuKernelImpl:Mz}),OB={kernelName:no,backendName:"webgl",kernelFunc:DB},Pb=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Wb(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new Pb("real",l,t),c=new Pb("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=za({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=ge({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function zB(e){let{inputs:t,backend:n}=e,{input:r}=t;return Wb(r,!1,n)}var LB={kernelName:kh,backendName:"webgl",kernelFunc:zB},PB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function LA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new PB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var WB={kernelName:nu,backendName:"webgl",kernelFunc:LA},BB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},VB={kernelName:ro,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new BB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},Bb="return floor(x);",UB=Ke({opSnippet:Bb,packedOpSnippet:Bb,cpuKernelImpl:$z}),HB={kernelName:us,backendName:"webgl",kernelFunc:UB},jB=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,GB=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,qB=tn({opSnippet:jB,packedOpSnippet:GB,dtype:"int32"}),XB={kernelName:cs,backendName:"webgl",kernelFunc:qB},KB=class{constructor(e){this.variableNames=["A"];let t=hn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},ZB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=hn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JB={kernelName:Lh,backendName:"webgl",kernelFunc:YB},vl;function YB(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(vl==null&&(vl=document.createElement("canvas").getContext("2d")),vl.canvas.width=u,vl.canvas.height=c,vl.drawImage(a,0,0,u,c),a=vl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Kn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=Y().getBool("WEBGL_PACK")?new ZB(d):new KB(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function QB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=C.convertConv2DDataFormat(c),A=C.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Eb({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=Cb({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let w=i!=null,_=o!=null,x=p==="leakyrelu",N=p?ep(p,!1):null,T=new Tb(A,w,N,_,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let b=ge({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),b}var eV={kernelName:Us,backendName:"webgl",kernelFunc:QB};function tV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?ep(d,y):null,b=[a,s],w=i!=null,_=o!=null,x=d==="leakyrelu";if(w&&b.push(i),_&&b.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));b.push(E),f.push(E)}let N;y?N=new Db(A,w,g,_,x):N=new $b(A,w,g,_,x);let T=n.runWebGLProgram(N,b,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var nV={kernelName:Hs,backendName:"webgl",kernelFunc:tV},rV=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ut(t.length),a=ut(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function aV(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=C.prepareAndValidate(r,a),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new rV(i,c,[l,u]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var sV={kernelName:so,backendName:"webgl",kernelFunc:aV},oV=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),r=iV(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function iV(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function lV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=v.sizeFromShape(s.shape),h=[],d=ge({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ge({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),b=n.bufferSync(d),w=Dz(b,g,f);return h.forEach(_=>n.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let m=new oV(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=ge({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var uV={kernelName:ao,backendName:"webgl",kernelFunc:lV},cV="return float(a > b);",hV=`
|
|
return vec4(greaterThan(a, b));
|
|
`,dV=tn({opSnippet:cV,packedOpSnippet:hV,cpuKernelImpl:Oz,dtype:"bool"}),pV={kernelName:io,backendName:"webgl",kernelFunc:dV},fV="return float(a >= b);",mV=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,AV=tn({opSnippet:fV,packedOpSnippet:mV,dtype:"bool"}),yV={kernelName:ds,backendName:"webgl",kernelFunc:AV};function gV(e){let{inputs:t,backend:n}=e,{input:r}=t;return Wb(r,!0,n)}var xV={kernelName:Ih,backendName:"webgl",kernelFunc:gV},wV="return float(!isnan(x) && !isinf(x));",bV=Ke({opSnippet:wV,dtype:"bool"}),_V={kernelName:oo,backendName:"webgl",kernelFunc:bV},vV="return float(isinf(x));",kV=Ke({opSnippet:vV,dtype:"bool"}),IV={kernelName:lo,backendName:"webgl",kernelFunc:kV},NV="return float(isnan(x));",SV=Ke({opSnippet:NV,dtype:"bool"}),TV={kernelName:uo,backendName:"webgl",kernelFunc:SV},EV="return float(a < b);",CV=`
|
|
return vec4(lessThan(a, b));
|
|
`,RV=tn({opSnippet:EV,packedOpSnippet:CV,cpuKernelImpl:zz,dtype:"bool"}),FV={kernelName:co,backendName:"webgl",kernelFunc:RV},MV="return float(a <= b);",$V=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,DV=tn({opSnippet:MV,packedOpSnippet:$V,dtype:"bool"}),OV={kernelName:ho,backendName:"webgl",kernelFunc:DV};function zV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Lz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var LV={kernelName:Sh,backendName:"webgl",kernelFunc:zV},PV=`if (x < 0.0) return NAN;
|
|
return log(x);`,WV=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,BV=Ke({opSnippet:PV,packedOpSnippet:WV,cpuKernelImpl:Pz}),VV={kernelName:ms,backendName:"webgl",kernelFunc:BV},UV="return log(1.0 + x);",HV=Ke({opSnippet:UV}),jV={kernelName:po,backendName:"webgl",kernelFunc:HV},GV="return float(a >= 1.0 && b >= 1.0);",qV=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,XV=tn({opSnippet:GV,packedOpSnippet:qV,dtype:"bool"}),KV={kernelName:fo,backendName:"webgl",kernelFunc:XV},ZV="return float(!(x >= 1.0));",YV=Ke({opSnippet:ZV}),JV={kernelName:ru,backendName:"webgl",kernelFunc:YV},QV="return float(a >= 1.0 || b >= 1.0);",eU=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,tU=tn({opSnippet:QV,packedOpSnippet:eU,dtype:"bool"}),nU={kernelName:au,backendName:"webgl",kernelFunc:tU},rU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},aU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},sU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new aU(a.shape,s,i,o,l):new rU(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},iU={kernelName:su,backendName:"webgl",kernelFunc:sU},oU=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},lU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new oU(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},uU={kernelName:Th,backendName:"webgl",kernelFunc:lU};function cU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,e.dtype,"max",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function Vb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,b=new Array(o);for(let x=0;x<b.length;x++)b[x]=a.shape[c[x]];let w=RA(g,a.shape,a.dtype,c,b);p=n.makeTensorInfo(b,a.dtype);let _=n.texData.get(p.dataId);_.values=w}else p=tp(a,c,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[f,m]=C.computeOutAndReduceShapes(p.shape,u),A=f;i&&(A=C.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,b=Wz(g,v.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=cU(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var hU={kernelName:As,backendName:"webgl",kernelFunc:Vb},dU=sb+`
|
|
return max(a, b);
|
|
`,pU=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Qd+`
|
|
return result;
|
|
`,fU=tn({opSnippet:dU,packedOpSnippet:pU,cpuKernelImpl:Bz}),mU={kernelName:ys,backendName:"webgl",kernelFunc:fU};function AU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;fl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new ac(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var yU={kernelName:gs,backendName:"webgl",kernelFunc:AU};function gU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new $A(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var xU={kernelName:iu,backendName:"webgl",kernelFunc:gU},wU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function _U(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new $A(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new bU(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var vU={kernelName:Ch,backendName:"webgl",kernelFunc:_U};function kU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;fl([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,f=new ac(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new wU(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var IU={kernelName:Eh,backendName:"webgl",kernelFunc:kU};function NU(e,t,n,r){let a=new ac(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new ac(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var SU={kernelName:Rh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,s,u,i),[h,d]=NU(r,o,c,l);return[h,d]}};function TU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,"float32","mean",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var EU={kernelName:xs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let b=i.texData.get(f.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=r.shape[c[N]];let _=RA(b,r.shape,r.dtype,c,w);f=i.makeTensorInfo(w,r.dtype);let x=i.texData.get(f.dataId);x.values=_}else f=tp(r,c,i);p.push(f),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[m,A]=C.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=C.expandShapeToKeepDim(m,l));let g=TU(f,A,y,i);for(let b of p)i.disposeIntermediateTensorInfo(b);return g}};function CU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=pi(m,m.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var RU={kernelName:ws,backendName:"webgl",kernelFunc:CU},FU=sb+`
|
|
return min(a, b);
|
|
`,MU=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Qd+`
|
|
return result;
|
|
`,$U=tn({opSnippet:FU,packedOpSnippet:MU,cpuKernelImpl:Vz}),DU={kernelName:bs,backendName:"webgl",kernelFunc:$U},OU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=ut(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},zU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=ut(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=dn("rc",r),l=dn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},LU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zU(r.shape,a,s):new OU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},PU={kernelName:ou,backendName:"webgl",kernelFunc:LU},WU=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,BU=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Qd+`
|
|
return result;
|
|
`,VU=tn({opSnippet:WU,packedOpSnippet:BU}),UU={kernelName:mo,backendName:"webgl",kernelFunc:VU},HU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},jU=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,GU=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Ub=tn({opSnippet:jU,packedOpSnippet:GU,checkOutOfBounds:!0}),qU={kernelName:os,backendName:"webgl",kernelFunc:Ub},Hb="return a - b;",jb=tn({opSnippet:Hb,packedOpSnippet:Hb,supportsComplex:!0,cpuKernelImpl:Zz}),XU={kernelName:Ps,backendName:"webgl",kernelFunc:jb};function Gb(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=Vb({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),c=jb({inputs:{a,b:u},backend:n}),h=zb({inputs:{x:c},backend:n}),d=MA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),f=Ub({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var KU={kernelName:zs,backendName:"webgl",kernelFunc:Gb};function ZU(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:Gb({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new HU(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var YU={kernelName:Fh,backendName:"webgl",kernelFunc:ZU},qb="return -x;";function JU(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Hz(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new wl(r.shape,qb):a=new Oa(r.shape,qb),n.runWebGLProgram(a,[r],r.dtype)}var QU={kernelName:Ao,backendName:"webgl",kernelFunc:JU},eH=$r.nonMaxSuppressionV3Impl;function tH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=eH(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var nH={kernelName:go,backendName:"webgl",kernelFunc:tH},rH=$r.nonMaxSuppressionV4Impl;function aH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=rH(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var sH={kernelName:xo,backendName:"webgl",kernelFunc:aH},iH=$r.nonMaxSuppressionV5Impl;function oH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=iH(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var lH={kernelName:wo,backendName:"webgl",kernelFunc:oH},uH=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},cH=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new uH(l,s,i,o),c=ge({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=ge({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},hH={kernelName:vs,backendName:"webgl",kernelFunc:cH};function ip(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=ic({inputs:{input:r},backend:n}),s=ip({inputs:{x:a},backend:n}),i=sp({inputs:{input:r},backend:n}),o=ip({inputs:{x:i},backend:n}),l=za({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return LA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var dH={kernelName:Lo,backendName:"webgl",kernelFunc:ip};function Xb(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=ic({inputs:{input:r},backend:n}),s=Xb({inputs:{x:a},backend:n}),i=sp({inputs:{input:r},backend:n}),o=ip({inputs:{x:i},backend:n}),l=za({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return LA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var pH={kernelName:bo,backendName:"webgl",kernelFunc:Xb};function fH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return zA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=zA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Sb({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var mH={kernelName:_o,backendName:"webgl",kernelFunc:fH},AH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=ut(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},yH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=ut(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=dn("rc",r),l=dn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${u}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
|
|
${h[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(${n});
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},Kb=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yH(a.shape,s,i):new AH(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},gH={kernelName:ks,backendName:"webgl",kernelFunc:Kb},xH=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,wH=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Qd+`
|
|
return result;
|
|
`,bH=tn({opSnippet:xH,packedOpSnippet:wH}),_H={kernelName:Is,backendName:"webgl",kernelFunc:bH};function vH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=C.getAxesPermutation(c,o),d=a;h!=null&&(d=_n({inputs:{x:a},backend:n,attrs:{perm:h}}),c=C.getInnerMostAxes(c.length,o),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=jz(d.shape,d.dtype,f,c);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(m),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Wh(a.dtype),b=pi(y,g,"prod",n);p=ge({inputs:{x:b},backend:n,attrs:{shape:f}}),l.push(y),l.push(b)}if(i){l.push(p);let f=C.expandShapeToKeepDim(p.shape,u);p=ge({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var kH={kernelName:vo,backendName:"webgl",kernelFunc:vH},Zb=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Gz(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},IH={kernelName:lu,backendName:"webgl",kernelFunc:Zb},NH="return 1.0 / x;",SH=Ke({opSnippet:NH}),TH={kernelName:ko,backendName:"webgl",kernelFunc:SH},EH=xr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,CH=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,RH=Ke({opSnippet:EH,packedOpSnippet:CH}),FH={kernelName:Ss,backendName:"webgl",kernelFunc:RH},MH=xr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,$H=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,DH=Ke({opSnippet:MH,packedOpSnippet:$H}),OH={kernelName:Es,backendName:"webgl",kernelFunc:DH},zH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},LH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function PH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new LH(a.shape,l,u,s,i):new zH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var WH={kernelName:Ts,backendName:"webgl",kernelFunc:PH},BH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function VH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new BH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var UH={kernelName:Dh,backendName:"webgl",kernelFunc:VH},HH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function jH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new HH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var GH={kernelName:uu,backendName:"webgl",kernelFunc:jH},qH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new qH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var KH={kernelName:$h,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},YH=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=dn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${c(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function JH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return $n({inputs:{x:a},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new YH(a.shape,o):new ZH(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var QH={kernelName:Cs,backendName:"webgl",kernelFunc:JH},ej=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=C.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
|
|
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${c}));
|
|
int coordY = int(round(coordYFloat + ${h}));
|
|
${d}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},tj={kernelName:Po,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new ej(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},nj=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,rj=Ke({opSnippet:nj}),aj={kernelName:Rs,backendName:"webgl",kernelFunc:rj},sj="return inversesqrt(x);",ij=Ke({opSnippet:sj,cpuKernelImpl:qz}),oj={kernelName:Fs,backendName:"webgl",kernelFunc:ij},Yb=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(a.length),l=ut(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function lj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ge({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ge({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new Yb(l,o,p.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var uj={kernelName:No,backendName:"webgl",kernelFunc:lj},cj=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function hj(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new cj(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],tr(a.dtype,s.dtype))}var dj={kernelName:So,backendName:"webgl",kernelFunc:hj},pj=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,fj=Ke({opSnippet:pj}),mj={kernelName:To,backendName:"webgl",kernelFunc:fj},Aj="return 1.0 / (1.0 + exp(-1.0 * x));",yj=Ke({opSnippet:Aj}),gj={kernelName:$s,backendName:"webgl",kernelFunc:yj},xj=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,wj=Ke({opSnippet:xj}),bj={kernelName:Ro,backendName:"webgl",kernelFunc:wj},_j=cb+`
|
|
return sin(x);
|
|
`,vj=Ke({opSnippet:_j}),kj={kernelName:Ms,backendName:"webgl",kernelFunc:vj},Ij=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Nj=Ke({opSnippet:Ij}),Sj={kernelName:Co,backendName:"webgl",kernelFunc:Nj},Tj=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Ej=Ke({opSnippet:Tj}),Cj={kernelName:Fo,backendName:"webgl",kernelFunc:Ej},Rj=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=Kb({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(c.shape,s,o,!1),d=C.getPermuted(h.length,s.length,!1),p=C.getReshapedPermuted(c.shape,s,o,!1),f=ge({inputs:{x:c},backend:n,attrs:{shape:h}}),m=_n({inputs:{x:f},backend:n,attrs:{perm:d}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},Fj={kernelName:cu,backendName:"webgl",kernelFunc:Rj};function Mj(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=C.calculateShapes(s,a,o),d=!1,p=new Yb(u,l,a.shape.length,s.shape.length,c,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var $j={kernelName:Oh,backendName:"webgl",kernelFunc:Mj};function Dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=sc({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,f})}var Oj={kernelName:Mo,backendName:"webgl",kernelFunc:Dj},zj="return sqrt(x);",Lj=Ke({opSnippet:zj}),Pj={kernelName:Ds,backendName:"webgl",kernelFunc:Lj},Wj="return x * x;",Bj=Ke({opSnippet:Wj}),Vj={kernelName:hu,backendName:"webgl",kernelFunc:Bj},Jb="return (a - b) * (a - b);",Uj=tn({opSnippet:Jb,packedOpSnippet:Jb}),Hj={kernelName:Ls,backendName:"webgl",kernelFunc:Uj};function jj({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=xr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Oa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var Gj={kernelName:_a,backendName:"webgl",kernelFunc:jj},qj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ut(n.length),s=ut(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Xj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=ln.sliceInfo(a.shape,s,i,o,l,u,c,h,d),b=ge({inputs:{x:a},backend:n,attrs:{shape:y}}),w;if(p){let x=sc({inputs:{x:b},backend:n,attrs:{begin:f,size:A}});w=ge({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))w=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([b])){let x=n.texData.get(b.dataId).values,N=Ve(b.shape,b.dtype,x),T=Kz(g,N,m,f);w=n.makeTensorInfo(g,b.dtype,T.values)}else{let x=new qj(f,m,g);w=n.runWebGLProgram(x,[b],b.dtype)}let _=ge({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),_}var Kj={kernelName:$o,backendName:"webgl",kernelFunc:Xj},Zj="return tan(x);",Yj=Ke({opSnippet:Zj}),Jj={kernelName:Do,backendName:"webgl",kernelFunc:Yj},Qj=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,eG=Ke({opSnippet:Qj}),tG={kernelName:Ws,backendName:"webgl",kernelFunc:eG},rG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ut(this.rank),a=nG(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function nG(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function Qb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>v.decodeString(c)),l=Ve(a.shape,a.dtype,o),u=Yz(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new rG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var aG={kernelName:ba,backendName:"webgl",kernelFunc:Qb};function sG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=Jz(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var iG={kernelName:Oo,backendName:"webgl",kernelFunc:sG};function oG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;fl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Qz(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var lG={kernelName:zh,backendName:"webgl",kernelFunc:oG};function uG(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==s&&(u[c++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=sc({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ge({inputs:{x:A},backend:n,attrs:{shape:u}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var cG={kernelName:zo,backendName:"webgl",kernelFunc:uG},hG=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function dG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=C.getAxesPermutation([u],o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),f=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Wh(a.dtype),A=(w,_,x,N,T)=>{let E=w.shape[0],M=w.shape[1],D=C.segment_util.segOpComputeOptimalWindowSize(M,T),L={windowSize:D,inSize:M,batchSize:E,numSegments:T},P=new hG(L,_),U=n.compileAndRun(P,[w,x],N);if(l.push(U),U.shape[1]===T)return U;let H=Zb({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=Qb({inputs:{x:H},backend:n,attrs:{reps:[M/D]}});return l.push(H),l.push(X),A(U,_,X,N,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),b=g;if(c!=null){l.push(g);let w=C.getUndoAxesPermutation(c);b=_n({inputs:{x:b},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),b}var pG={kernelName:du,backendName:"webgl",kernelFunc:dG},fG=[iU,uU,XL,ZL,QL,nP,aP,oP,uP,hP,mP,yP,wP,vP,CP,NP,MP,zP,DP,BP,UP,jP,KP,nW,aW,cW,dW,AW,xW,EL,vW,MW,DW,SW,PW,BW,zW,HW,qW,ZW,JW,eB,rB,uB,hB,sB,fB,yB,bB,IB,EB,FB,MB,$B,OB,LB,WB,VB,HB,XB,JB,eV,nV,sV,uV,pV,yV,TL,xV,_W,_V,IV,TV,RL,FV,OV,LV,jV,VV,KV,JV,nU,hU,xU,yU,vU,IU,SU,mU,EU,RU,DU,PU,UU,YU,OL,QU,nH,sH,lH,iW,hH,pH,mH,gH,_H,ML,kH,IH,oW,qU,TH,OH,FH,LL,WH,UH,GH,KH,QH,tj,aj,oj,uj,dj,mj,gj,bj,kj,Sj,eW,KU,Cj,Fj,$j,Oj,Pj,Vj,Hj,Gj,Kj,XU,jL,Jj,tG,aG,iG,GL,lG,cG,pG,dH];for(let e of fG)Wo(e);var Dn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Dn||(Dn={}));var oc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(oc||(oc={}));var e_;function mG(e){e_=e.wasm.cwrap(Vs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function AG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=oc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],b=a.shape[0],w=n.makeOutput([b,y,g],a.dtype),_=n.dataIdMap.get(w.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return e_(d,x,a.shape.length,p,N,s.shape.length,l,u,A,f,m,h||0,_),w}var yG={kernelName:Vs,backendName:"wasm",setupFunc:mG,kernelFunc:AG};function vn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var gG=vn(Wi);function pn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=C.assertAndGetBroadcastShape(u.shape,c.shape),m=o.makeOutput(f,p);if(v.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(m.dataId).id,b=()=>r(h,A,u.shape.length,d,y,c.shape.length,Dn[u.dtype],g);if(t&&u.dtype==="float32")return b(),m;let w=C.getBroadcastDims(u.shape,f),_=C.getBroadcastDims(c.shape,f),x=w.every((T,E)=>T===E),N=_.every((T,E)=>T===E);if(x&&N)return b(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var xG=!0,wG=pn(xa,xG),t_;function bG(e){t_=e.wasm.cwrap(Za,null,["array","number","number","number"])}function _G(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return t_(s,a.length,Dn[r.dtype],i),r}var vG={kernelName:Za,backendName:"wasm",setupFunc:bG,kernelFunc:_G};function op(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var kG={kernelName:ps,backendName:"wasm",kernelFunc:op},n_;function IG(e){n_=e.wasm.cwrap(Bs,null,["number","array","number","number","number","array","number"])}function lp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=SG(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=NG(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=op({inputs:t,backend:n});return f.shape=o,f}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return n_(c,p,l.shape.length,Dn[l.dtype],h,d,s.length),u}function NG(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function SG(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var TG={kernelName:Bs,backendName:"wasm",kernelFunc:lp,setupFunc:IG};function kl(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=C.getInnerMostAxes(i.length,a),l=lp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var r_;function EG(e){r_=e.wasm.cwrap(Ya,null,["number","number","number","number","number"])}function CG(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=kl(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=v.sizeFromShape(p.shape),A=l.shape[c[0]];return r_(o,Dn[l.dtype],m,A,f),h&&t.disposeData(u.dataId),p}var RG={kernelName:Ya,backendName:"wasm",kernelFunc:CG,setupFunc:EG},a_;function FG(e){a_=e.wasm.cwrap(Ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function MG(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,b=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let w=r.makeOutput(c.outShape,"float32"),_=r.dataIdMap.get(w.dataId).id;return a_(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,b,_),w}var $G={kernelName:Ja,backendName:"wasm",setupFunc:FG,kernelFunc:MG};function wr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var DG={kernelName:Io,backendName:"wasm",kernelFunc:wr},s_;function OG(e){s_=e.wasm.cwrap(Qa,null,["number","array","number","number","array","number","number","number","number"])}function zG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),y=v.sizeFromShape(m),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,c,d]:[A,d,c],_=o?[y,p,h]:[y,h,p],x=wr({inputs:{x:a},backend:n,attrs:{shape:w}}),N=wr({inputs:{x:s},backend:n,attrs:{shape:_}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],D=o?N.shape[1]:N.shape[2],L=Math.max(A,y),P=n.makeOutput([L,M,D],x.dtype),U=n.dataIdMap.get(P.dataId).id,H=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return s_(T,H,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),P.shape=b,P}var LG={kernelName:Qa,backendName:"wasm",setupFunc:OG,kernelFunc:zG};function up(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var PG={kernelName:es,backendName:"wasm",kernelFunc:up},WG=vn(ts),i_;function BG(e){i_=e.wasm.cwrap(wa,null,["number","number","number","number"])}function VG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return i_(o,s,i,u),l}var UG={kernelName:wa,backendName:"wasm",setupFunc:BG,kernelFunc:VG};function o_(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return op({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(b=>{let w=v.sizeFromShape(b.shape.slice(r));return wr({inputs:{x:b},backend:n,attrs:{shape:[-1,w]}})}),f=p.map(b=>({vals:n.readSync(b.dataId),shape:b.shape}));a=C.computeOutShape(p.map(b=>b.shape),1);let m=p[0].shape[0]===1,A=iA(f,a,t[0].dtype,m),y=C.computeOutShape(s.map(b=>b.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),p.forEach(b=>n.disposeData(b.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let f=v.sizeFromShape(p.shape.slice(r));return u+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<h.length;m++){let A=c[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var HG={kernelName:Xi,backendName:"wasm",kernelFunc:o_},l_;function jG(e){l_=e.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function GG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,x=f.dilationWidth,N=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,D=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let L=r.makeOutput(f.outShape,"float32"),P=r.dataIdMap.get(L.dataId).id;return l_(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,b,w,D,_,x,N,T,E,M,P),L}var qG={kernelName:ns,backendName:"wasm",setupFunc:jG,kernelFunc:GG},u_;function XG(e){u_=e.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KG(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:b,outChannels:w,outHeight:_,outWidth:x,strideHeight:N,strideWidth:T}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,D=p.dataFormat==="channelsLast",L=v.computeStrides(p.inShape),P=v.computeStrides(a.shape),[U,H,X]=v.computeStrides(s.shape),G=L[0],ee=D?L[1]:L[2],J=D?L[2]:1,se=D?1:L[1],te=P[0],oe=D?P[1]:P[2],Q=D?P[2]:1,pe=D?1:P[1],le=t.makeOutput(p.inShape,"float32"),Ae=t.dataIdMap.get(le.dataId).id,me=t.dataIdMap.get(a.dataId).id,Ne=t.dataIdMap.get(s.dataId).id;return u_(me,Ne,f,m,A,g,b,y,_,x,w,N,T,E,M,U,H,X,G,ee,J,se,te,oe,Q,pe,Ae),le}var ZG={kernelName:rs,backendName:"wasm",setupFunc:XG,kernelFunc:KG},YG=vn(as),PA;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(PA||(PA={}));var c_;function JG(e){c_=e.wasm.cwrap(Zi,null,["number","number","number","number","array","number","number","number","number","number"])}function QG(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=up({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,b=t.makeOutput(p,"float32"),w=t.dataIdMap.get(b.dataId).id,_=new Uint8Array(new Int32Array(o.shape).buffer);return c_(A,y,g,c,_,h,d,PA[a],s,w),m!=null&&t.disposeData(m.dataId),b}var eq={kernelName:Zi,backendName:"wasm",setupFunc:JG,kernelFunc:QG},h_;function tq(e){h_=e.wasm.cwrap(ss,null,["number","number","number","number","number","number"])}function nq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=a;u!==null&&(c=lp({inputs:{x:a},attrs:{perm:u},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;h_(f,i?1:0,o?1:0,p,m,Dn[a.dtype]);let A=d;if(u!==null){let y=C.getUndoAxesPermutation(u);A=lp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var rq={kernelName:ss,backendName:"wasm",setupFunc:tq,kernelFunc:nq},d_;function aq(e){d_=e.wasm.cwrap(Yi,null,["number","number","number","array","number","array","array","number","number"])}function sq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return d_(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,b,f.length,w),m}var iq={kernelName:Yi,backendName:"wasm",setupFunc:aq,kernelFunc:sq},p_;function oq(e){p_=e.wasm.cwrap(is,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=C.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,b=p.padInfo.left,w=p.dilationHeight,_=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(D.dataId).id;return p_(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,b,M,w,_,x,N,T,E,L),D}var uq={kernelName:is,backendName:"wasm",setupFunc:oq,kernelFunc:lq},cq=!1,hq=pn(eo,cq,"bool"),dq=vn(ls);function WA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wr({inputs:{x:a},backend:r,attrs:{shape:o}})}var pq={kernelName:to,backendName:"wasm",kernelFunc:WA};function fq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var mq={kernelName:nu,backendName:"wasm",kernelFunc:fq},f_;function Aq(e){f_=e.wasm.cwrap(ro,null,["number","number","number","number","number","number"])}function yq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return f_(s,o,l,u,c,i),a}var gq={kernelName:ro,backendName:"wasm",kernelFunc:yq,setupFunc:Aq},xq=vn(us),wq=!1,bq=pn(cs,wq),m_;function _q(e){m_=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number"])}function vq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return m_(c,h,d,p,f,a,A),m}var kq={kernelName:hs,backendName:"wasm",setupFunc:_q,kernelFunc:vq},A_;function Iq(e){A_=e.wasm.cwrap(Us,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Nq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=oc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=m.outChannels,w=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==b)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${b})`);w=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,D=m.dilationHeight,L=m.dilationWidth,P=m.strideHeight,U=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(se.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return A_(y,G,ee,J,g,_,x,w,N,T,E,M,X,D,L,P,U,H,b,A,oe,f||0,te),se}var Sq={kernelName:Us,backendName:"wasm",setupFunc:Iq,kernelFunc:Nq},y_;function Tq(e){y_=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=oc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=m.outChannels,w=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==b)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${b})`);w=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,D=m.dilationHeight,L=m.dilationWidth,P=m.strideHeight,U=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(se.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return y_(y,G,ee,J,g,_,x,w,N,T,E,M,X,D,L,P,U,H,b,A,oe,f||0,te),se}var Cq={kernelName:Hs,backendName:"wasm",setupFunc:Tq,kernelFunc:Eq},g_;function Rq(e){g_=e.wasm.cwrap(so,null,["number","number","number","number","number","number","array","number"])}function Fq(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Rf.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return g_(d,Dn[r.dtype],p,i,h,o,f,m),u}var Mq={kernelName:so,backendName:"wasm",setupFunc:Rq,kernelFunc:Fq},x_;function $q(e){x_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Dq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=wr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=wr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],f=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),w=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return x_(A,Dn[a.dtype],b,m,y,u.batchSize,w,g),t.disposeData(c.dataId),t.disposeData(d.dataId),f.shape=u.outputShape,f}var Oq={kernelName:ao,backendName:"wasm",setupFunc:$q,kernelFunc:Dq},zq=!1,Lq=pn(io,zq,"bool"),Pq=!1,Wq=pn(ds,Pq,"bool"),w_;function Bq(e){w_=e.wasm.cwrap(fs,null,["number","number","number"])}function Vq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;w_(a,n,i)}return s}var Uq={kernelName:fs,backendName:"wasm",setupFunc:Bq,kernelFunc:Vq},Hq=!1,jq=pn(co,Hq,"bool"),Gq=!1,qq=pn(ho,Gq,"bool"),Xq=vn(ms),Kq=!1,Zq=pn(fo,Kq,"bool"),b_;function Yq(e){b_=e.wasm.cwrap(As,null,["number, number, number"])}function Jq(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=kl(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;C.assertAxesAreInnerMostDims("max",c,p);let[f,m]=C.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;b_(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var Qq={kernelName:As,backendName:"wasm",setupFunc:Yq,kernelFunc:Jq},eX=!1,tX=pn(ys,eX),__;function nX(e){__=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rX(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,b=c.strideHeight,w=c.strideWidth,_=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return __(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,b,w,_,x,T),N}var aX={kernelName:gs,backendName:"wasm",setupFunc:nX,kernelFunc:rX},v_;function sX(e){v_=e.wasm.cwrap(xs,null,["number, number, number"])}function iX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=kl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=up({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let b=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;v_(l,y,w)}if(p&&t.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,d);b.shape=w}return u.dtype!=="float32"&&t.disposeData(g.dataId),b}var oX={kernelName:xs,backendName:"wasm",setupFunc:sX,kernelFunc:iX},k_;function lX(e){k_=e.wasm.cwrap(ws,null,["number, number, number"])}function uX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=kl(i,a,t);if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b)}let f=u.shape.length;C.assertAxesAreInnerMostDims("min",h,f);let[m,A]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;k_(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var cX={kernelName:ws,backendName:"wasm",setupFunc:lX,kernelFunc:uX},hX=!1,dX=pn(bs,hX),pX=!0,fX=pn(_s,pX),mX=vn(Ao);function BA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var I_;function AX(e){I_=e.wasm.cwrap(go,"number",["number","number","number","number","number"])}function yX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=I_(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=BA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var gX={kernelName:go,backendName:"wasm",setupFunc:AX,kernelFunc:yX},N_;function xX(e){N_=e.wasm.cwrap(xo,"number",["number","number","number","number","number","bool"])}function wX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=N_(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=BA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var bX={kernelName:xo,backendName:"wasm",setupFunc:xX,kernelFunc:wX},S_;function _X(e){S_=e.wasm.cwrap(wo,"number",["number","number","number","number","number","number"])}function vX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=S_(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=BA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var kX={kernelName:wo,backendName:"wasm",setupFunc:_X,kernelFunc:vX},IX=!1,NX=pn(yo,IX,"bool"),T_;function SX(e){T_=e.wasm.cwrap(vs,null,["number","number","number","number","number"])}function TX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return T_(c,s,i,o,u),l}var EX={kernelName:vs,backendName:"wasm",setupFunc:SX,kernelFunc:TX};function CX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var RX={kernelName:bo,backendName:"wasm",kernelFunc:CX};function FX(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return WA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=WA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=o_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var MX={kernelName:_o,backendName:"wasm",kernelFunc:FX},E_;function $X(e){E_=e.wasm.cwrap(ks,null,["number","array","number","number","array","array","number","number"])}function DX(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return E_(i,u,t.shape.length,Dn[t.dtype],d,p,a,l),o}var OX={kernelName:ks,backendName:"wasm",kernelFunc:DX,setupFunc:$X},zX=!1,LX=pn(Is,zX),C_;function PX(e){C_=e.wasm.cwrap(Ns,null,["number","number","number"])}function WX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return C_(s,i,l),o}var BX={kernelName:Ns,backendName:"wasm",setupFunc:PX,kernelFunc:WX},R_;function VX(e){R_=e.wasm.cwrap(vo,null,["number","number","number","number"])}function UX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=kl(i,a,t),f=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;R_(l,y,Dn[g.dtype],b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var HX={kernelName:vo,backendName:"wasm",setupFunc:VX,kernelFunc:UX},jX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=uA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},GX={kernelName:lu,backendName:"wasm",kernelFunc:jX},qX=!0,XX=pn(os,qX),KX=vn(Ss),ZX=vn(Es),F_;function YX(e){F_=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number","number","number","number"])}function JX(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,f=[c,l,u,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=up({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(v.sizeFromShape(a.shape)===0)return g;let b=t.dataIdMap.get(g.dataId).id;return F_(y,c,h,d,p,l,u,s?1:0,i?1:0,b),A!=null&&t.disposeData(A.dataId),g}var QX={kernelName:Ts,backendName:"wasm",setupFunc:YX,kernelFunc:JX},M_;function eK(e){M_=e.wasm.cwrap(Cs,null,["number","array","number","array","number","number"])}function tK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return op({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);M_(l,c,i.length,h,a.shape.length,u);let d=wr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var nK={kernelName:Cs,backendName:"wasm",kernelFunc:tK,setupFunc:eK},$_;function rK(e){$_=e.wasm.cwrap(Po,null,["number","number","number","number","number","number","number","number","array","number","number"])}function aK(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=C.getImageCenter(o,d,p),y=i===0,g=255,b=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],w=new Uint8Array(new Int32Array(b).buffer);return $_(u,h,d,p,f,s,m,A,w,b.length,c),l}var sK={kernelName:Po,backendName:"wasm",kernelFunc:aK,setupFunc:rK},iK=vn(Rs),oK=vn(Fs),D_;function lK(e){D_=e.wasm.cwrap(No,null,["number","number","number","number","number","number","array","number","number"])}function uK(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=Ff.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return D_(p,f,Dn[s.dtype],l,u,c,m,d,A),o}var cK={kernelName:No,backendName:"wasm",setupFunc:lK,kernelFunc:uK},O_;function hK(e){O_=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function dK(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return O_(i,o,l,p,c),u}var pK={kernelName:So,backendName:"wasm",kernelFunc:dK,setupFunc:hK},z_;function fK(e){z_=e.wasm.cwrap($s,null,["number","number"])}function mK(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||z_(r,s),a}var AK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:fK,kernelFunc:mK},yK=vn(Ms);function cp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=ln.parseSliceParams(t,n,r),o=ln.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=ln.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(f,f+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=Bd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)gK(l,c[0],d,s,i);else if(p===3)xK(l,c[0],c[1],d,s,i);else if(p===4)wK(l,c[0],c[1],c[2],d,s,i);else{let f=Bd(l,s,i,t.shape,t.dtype);d.set(f)}return u}function gK(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function xK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let f=d*t+p*n+u;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function wK(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var bK={kernelName:Eo,backendName:"wasm",kernelFunc:cp},L_;function _K(e){L_=e.wasm.cwrap(zs,null,["number","number","number","number"])}function vK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||L_(a,i,o,l),s}var kK={kernelName:zs,backendName:"wasm",setupFunc:_K,kernelFunc:vK};function IK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=cp({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var NK={kernelName:Mo,backendName:"wasm",kernelFunc:IK},SK=vn(Ds),TK=vn(hu),EK=!0,CK=pn(Ls,EK),P_;function RK(e){P_=e.wasm.cwrap(_a,null,["number","number","number"])}function FK(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return P_(i,a,l),o}var MK={kernelName:_a,backendName:"wasm",setupFunc:RK,kernelFunc:FK},W_;function $K(e){W_=e.wasm.cwrap($o,null,["number","array","number","array","array","array","array","array","number","number"])}function DK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=C.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=C.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let y=wr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:b,strides:w}=C.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,u,c);s=g,i=b,o=w;let _=C.slice_util.maskToAxes(d);_.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=C.slice_util.computeOutShape(s,i,o),N=x.filter((M,D)=>_.indexOf(D)===-1);if(o.every(M=>M===1)){let M=cp({inputs:{x:a},attrs:{begin:s,size:x},backend:t});t.disposeData(y.dataId);let D=wr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),D}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),P=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;W_(M,D,y.shape.length,L,P,U,H,X,N.length,G)}t.disposeData(y.dataId);let E=wr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var OK={kernelName:$o,backendName:"wasm",setupFunc:$K,kernelFunc:DK},zK=!0,LK=pn(Ps,zK),B_;function PK(e){B_=e.wasm.cwrap(Os,null,["number, number, number"])}function WK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=kl(i,a,t),f=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;B_(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var BK={kernelName:Os,backendName:"wasm",setupFunc:PK,kernelFunc:WK},VK=vn(Ws),V_;function UK(e){V_=e.wasm.cwrap(ba,null,["number","array","number","array","number","number"])}function HK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return V_(s,l,a.shape.length,u,o.length,Dn[c.dtype],h),c}var jK={kernelName:ba,backendName:"wasm",setupFunc:UK,kernelFunc:HK},U_;function GK(e){U_=e.wasm.cwrap(Oo,null,["number","array","number","number","number","bool","number","number"])}var qK=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return U_(i,o,r.shape.length,Dn[r.dtype],a,s,c,d),[u,h]},XK={kernelName:Oo,backendName:"wasm",setupFunc:GK,kernelFunc:qK};function KK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=cp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var ZK={kernelName:zo,backendName:"wasm",kernelFunc:KK};function YK(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var JK={kernelName:Lo,backendName:"wasm",kernelFunc:YK},QK=[gG,wG,vG,RG,$G,LG,PG,WG,UG,HG,qG,ZG,YG,eq,rq,iq,uq,hq,dq,pq,mq,gq,xq,bq,yG,kq,Sq,Cq,Mq,Oq,Lq,Wq,kG,Uq,jq,qq,Xq,Zq,Qq,tX,aX,oX,cX,dX,fX,mX,gX,bX,kX,NX,EX,RX,MX,OX,LX,BX,HX,GX,XX,KX,ZX,DG,QX,nK,sK,oK,iK,cK,pK,AK,yK,bK,kK,NK,SK,TK,CK,MK,OK,LK,BK,VK,jK,XK,TG,ZK,JK];for(let e of QK)Wo(e);var VA=Y();VA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));VA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(VA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var H_=Qo(pk()),eZ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',tZ=Qo(fk()),R0=class extends Xl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new oh(this,Er())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return nZ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function rZ(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function j_(e,t,n){if(hp!=null)return hp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),lc!=null&&lc[r]!=null?lc[r]:n+r}async function aZ(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=eZ,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?j_(e,t,uc!=null?uc:l):l+o},UA&&(a.instantiateWasm=rZ(j_(e,t,uc!=null?uc:"")));let s=!1;a.onAbort=()=>{s||cc||(cc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&hp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+H_.default.toString()],{type:"text/javascript"}),i=(0,H_.default)(a)):i=(0,tZ.default)(a),i.then(o=>{s=!0,cc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function nZ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var sZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],hp=null,uc=null,lc={},cc=!1,UA=!1;function C8(e,t=!1){if(Mf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");hp=e,UA=t}function R8(e,t=!1){if(cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")uc=e;else{lc=e;let n=sZ.filter(r=>lc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}UA=t}var F0="3.2.0",iZ=2;Au("wasm",async()=>{let{wasm:e}=await aZ();return new R0(e)},iZ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),$f(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Df(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),jh(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),yu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),gu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),Of(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),j(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),j(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),j(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),j(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),j(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),zf(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),Lf(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),Pf(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),Wf(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),Bf(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),xu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),wu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Gs(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),bu(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),Uf(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),wn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Je&&(e=[e]),lt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),qh(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Xh(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Yr(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),_u(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Kh(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Zh(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),jf(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Uo(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Gf(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),qf(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ke(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),o0(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),Ho(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),ka(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Xf(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),jn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Tn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Kf(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),Fu(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),jo(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Uh(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),qs(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Na(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),rr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Zo(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),dd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),l0(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),u0(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),c0(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ku(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),Xs(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Jh(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Yf(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),p0(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ed(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Jf(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),En(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Qh(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ar(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Iu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),td(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),f0(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),qe(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Nu(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Gn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Rr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),vt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),qo(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Xo(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),em(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),tm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Ad(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Ks(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Bo(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Cn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),Jr(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),y0(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),Qr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Tu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),rd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),nm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Mr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),j(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),j(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),ux(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),cx(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Rn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),Mu(this)};Z().prototype.round=function(){return this.throwIfDisposed(),rm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),id(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),od(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),am(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),nr(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),sm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),ld(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),ud(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Me(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),Ru(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),Go(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Su(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),un(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Qt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),pd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Sa(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Je?[this,e]:[this,...e];return Fn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Yo(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),om(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),we(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Vo(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ia(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),um(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),at(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),md(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),cm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),sr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),bn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),je(this)};var G_={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Yo(ye(n,"float32"),-1))}}},oZ={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(ye(n,"float32")),a=Qt(we(Ie(1),r));return _t(ke(e,a))}}}},lZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(we(ot(ye(n,"float32")),1));return ke(e,r)}}}},uZ={kernelName:xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Ce(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Ce(s,i)),j(s,r.shape)}}}},cZ={kernelName:Za,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},hZ={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},dZ={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},pZ={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,Qt(we(Ie(1),ot(ye(n,"float32")))))}}},fZ={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(ie(Ie(1),ot(ye(n,"float32"))));return ke(e,r)}}}},mZ={kernelName:qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=ie(ot(n),ot(r)),i=W(e,ke(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Ce(i,o)),j(i,n.shape)},b:()=>{let s=ie(ot(n),ot(r)),i=_t(W(e,ke(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Ce(i,o)),j(i,r.shape)}}}},AZ={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,ie(ot(ye(n,"float32")),1))}}},yZ={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,we(Ie(1),ot(ye(n,"float32"))))}}};function gZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Gt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(hh,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xZ=O({avgPool3dGrad_:gZ}),wZ={kernelName:Yl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>xZ(e,r,a,s,i,o)}}};function bZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(ch,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var _Z=O({avgPoolGrad_:bZ}),vZ={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>_Z(e,r,a,s,i)}}},kZ={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>qe(e,a,!1,!0),b:()=>qe(r,e,!0,!1)}:!s&&i?{a:()=>qe(e,a,!1,!1),b:()=>qe(e,r,!0,!1)}:s&&!i?{a:()=>qe(a,e,!1,!0),b:()=>qe(r,e,!1,!1)}:{a:()=>qe(a,e,!0,!0),b:()=>qe(e,r,!0,!0)}}},IZ={kernelName:Jl,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Su(e,r,a)}}},NZ={kernelName:H2,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ce(e,o,!0)}}},SZ={kernelName:es,gradFunc:e=>({x:()=>e.clone()})},TZ={kernelName:ts,gradFunc:e=>({x:()=>je(e)})},EZ={kernelName:wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>bn(ar(Na(r,a),Xs(r,s)),e,je(e))}}},CZ={kernelName:Ql,inputsToSave:["x"],gradFunc:G_.gradFunc},RZ={kernelName:Xi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=or(a,t[0].shape)[0],i=r.map(o=>o[s]);return un(e,i,s).map(o=>()=>o)}},FZ={kernelName:ns,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F($a(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Ym(r.shape,e,a,i,o,l),filter:()=>nA(r,e,a.shape,i,o,l)}}},MZ={kernelName:rs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Yr(e,a,s,i,o,1,l),filter:()=>nA(e,r,a.shape,s,i,o,l)}}};function $Z(e,t,n,r,a){let s=e;e.rank===4&&(s=j(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(mh,o,l)}var DZ=O({conv3DBackpropFilter_:$Z}),OZ={kernelName:eu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F($a(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>K5(i.shape,e,o,a,s),filter:()=>DZ(i,e,o.shape,a,s)}}},zZ={kernelName:as,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(_t(ld(ye(n,"float32"))),e)}}},LZ={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ud(ye(n,"float32")),e)}}},PZ={kernelName:ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=J5([a],r.rank),l=Zh(e,a,s,!i);return o!=null&&(l=at(l,o)),l}}}},WZ={kernelName:is,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F($a(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Pr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>nx(l.shape,e,u,a,s,r,i),filter:()=>tx(l,e,u.shape,a,s,r,i)}}},BZ={kernelName:tu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(bh,s,n),filter:()=>$.runKernel(_h,i,n)}}},VZ={kernelName:Ji,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(vh,r)}}},UZ={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=W(jn(_t(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,r)}}},HZ={kernelName:ls,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},jZ={kernelName:to,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>j(e,n.shape)}}},GZ={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,jn(n))}}},qZ={kernelName:us,gradFunc:e=>({x:()=>je(e)})},XZ={kernelName:cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=ke(e,ye(r,"float32")),i=Pt(n.shape,a);return i.length>0?j(Ce(s,i),n.shape):s},b:()=>{let s=W(e,ye(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=j(Ce(s,i),r.shape));let o=ot(r);return _t(ke(s,ye(o,"float32")))}}}},KZ={kernelName:hs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Ie(1):o,u=Pt(s.shape,a.shape),c=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)c.push(a.shape[m]);c.push(1)}let h=we(a,s),d=W(e,l),p=id(ie(i,Ie(r))),f=W(W(W(p,p),p),Ie(-.5));return{x:()=>s.rank===1?j(W(W(e,Ia(j(p,[1,1,1,s.shape[0]]),c)),l),a.shape):j(W(W(e,p),l),a.shape),mean:()=>{let m=W(W(p,Ie(-1)),d);return s.rank===1&&(m=Ce(m,u)),j(m,s.shape)},variance:()=>{let m=W(W(f,h),d);return s.rank===1&&(m=Ce(m,u)),j(m,s.shape)},scale:()=>{let m=W(h,p),A=W(e,m);return s.rank===1&&(A=Ce(A,u)),j(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Ce(m,u)),j(m,s.shape)}}}},ZZ={kernelName:ao,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=or(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=q_(0,c),f=q_(c+1,c+1+d),m=X_([u,[l],h]),A=j(e,m),y=j(a,[l]),g=X_([[c],p,f]),b=at(A,g),w=cm(b,y,r.shape[i]),_=Qm(g);return w=at(w,_),w},indices:()=>a}}};function q_(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function X_(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var YZ={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>je(n),b:()=>je(r)}}},JZ={kernelName:ps,gradFunc:e=>({x:()=>ye(e,"float32")})},QZ={kernelName:oo,gradFunc:e=>({x:()=>je(e)})},eY={kernelName:lo,gradFunc:e=>({x:()=>je(e)})},tY={kernelName:uo,gradFunc:e=>({x:()=>je(e)})},nY={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=rr(r,0);return{x:()=>bn(s,e,W(e,a))}}},rY={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,ie(n,1))}}},aY={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,ye(n,"float32"))}}},sY={kernelName:j2,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=jn(r);return we(e,W(Ce(e,a,s),i))}}}};function iY(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Th,o,l)}var oY=O({localResponseNormalizationBackprop_:iY}),lY={kernelName:su,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>oY(r,a,e,s,i,o,l)}}};function K_(e,t,n,r){return t.rank<n.rank&&(t=j(t,ai(t.shape,r))),e.rank<n.rank&&(e=j(e,ai(e.shape,r))),{x:()=>W(e,ye(ka(n,t),e.dtype))}}var Z_={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=or(a,s.shape),l=K_(e,i,s,o);return{x:()=>l.x()}}},uY={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>W(e,ye(Na(n,r),"float32")),b:()=>W(e,ye(Jh(n,r),"float32"))}}};function cY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),u=R(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=j(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=j(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Gt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:c,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Ch,f,m);return p?j(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var hY=O({maxPool3dGrad_:cY}),dY={kernelName:iu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>hY(e,r,a,s,i,o,l)}}};function pY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),u=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Gt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Eh,c,h)}var fY=O({maxPoolGrad_:pY}),mY={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>fY(e,r,a,s,i,o)}}},AY={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=or(a,r.shape),i=Y5(r.shape,s)[1],o=Lt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=j(e,l);return ke(W(u,Fr(r.shape,"float32")),o)}}}},yY={kernelName:ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=or(a,s.shape),l=K_(e,i,s,o);return{x:()=>l.x()}}},gY={kernelName:bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>W(e,ye(Xs(n,r),"float32")),b:()=>W(e,ye(rr(n,r),"float32"))}}},xY={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},wY={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?j(Ce(e,s),n.shape):e},b:()=>{let s=W(e,_t(jo(ke(n,r)))),i=Pt(r.shape,a);return i.length>0?j(Ce(s,i),r.shape):s}}}},bY={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=W(e,ye(r,"float32")),i=Pt(n.shape,a);return i.length>0?j(Ce(s,i),n.shape):s},b:()=>{let s=W(e,ye(n,"float32")),i=Pt(r.shape,a);return i.length>0?j(Ce(s,i),r.shape):s}}}},_Y={kernelName:Ao,gradFunc:e=>({x:()=>_t(e)})},vY={kernelName:vs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ft(n.shape,"float32")}}},kY={kernelName:bo,gradFunc:e=>({x:()=>je(e)})},IY={kernelName:_o,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return sr(e,r).map(a=>()=>a)}},Y_={kernelName:ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},NY={kernelName:Is,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=At(s.shape,i.shape);return{a:()=>{let l=ye(i,"float32"),u=W(e,W(l,Qr(s,we(l,Ie(1))))),c=Pt(s.shape,o);return c.length>0&&(u=Ce(u,c)),j(u,s.shape)},b:()=>{let l=rr(s,0),u=bn(l,En(s),je(s)),c=W(e,W(a,u)),h=Pt(i.shape,o);return h.length>0&&(c=Ce(c,h)),j(c,i.shape)}}}},SY={kernelName:Ns,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=rr(n,0);return{x:()=>bn(a,e,W(e,r)),alpha:()=>{let s=bn(a,je(e),W(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Ce(s,i)),j(s,r.shape)}}}},TY={kernelName:os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=ke(e,ye(r,"float32")),i=Pt(n.shape,a);return i.length>0?j(Ce(s,i),n.shape):s},b:()=>{let s=W(e,ye(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=j(Ce(s,i),r.shape));let o=ot(r);return _t(ke(s,ye(o,"float32")))}}}},EY={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,_t(ot(n)))}}},CY={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=W(Xs(n,6),Yo(n));return{x:()=>W(e,ye(r,"float32"))}}},RY={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ye(Yo(n),"float32"))}}},FY={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n.shape)}}},MY={kernelName:Ts,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Dh,a,n)}}},$Y={kernelName:uu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel($h,a,n)}}},DY={kernelName:Cs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=or(r,e.shape);return{x:()=>Rn(e,a)}}},OY={kernelName:Rs,gradFunc:e=>({x:()=>je(e)})},zY={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(ke(e,W(Qr(n,1.5),2)))}}},LY={kernelName:So,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(je(n),"float32"),t:()=>W(e,ye(n,e.dtype)),e:()=>W(e,ye(Iu(n),e.dtype))}}},PY={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=rr(n,Ie(0)),a=Ie(dx),s=Ie(px),i=W(e,s),o=W(W(e,a),jn(ye(n,"float32")));return bn(r,i,o)}}}},WY={kernelName:$s,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,we(Ie(1),n)))}}},BY={kernelName:Ro,gradFunc:e=>({x:()=>je(e)})},VY={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(_u(ye(n,"float32")),e)}}},UY={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Kh(ye(n,"float32")),e)}}},HY={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=W5(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>Jr(e,u)}}},jY={kernelName:zs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=W(e,r);return{logits:()=>we(i,W(Ce(i,[a],s),r))}}},GY={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,nr(n))}}},J_={kernelName:cu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>wu(e,r,a)}}},Q_={kernelName:Mo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>lt(e,r)}}},qY={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,W(Qt(ye(n,"float32")),2))}}},XY={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(ye(n,"float32"),2))}}},KY={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Ie(2);return{a:()=>W(e,W(a,we(n,r))),b:()=>W(e,W(a,we(r,n)))}}},ZY={kernelName:_a,gradFunc:e=>({x:()=>je(e)})},YY={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Ce(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Ce(s,i)),j(_t(s),r.shape)}}}},JY={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;or(s,r.shape).forEach(l=>{a[l]=1});let i=j(e,a),o=W(i,Fr(r.shape,"float32"));return{x:()=>o}}},QY={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ke(e,ot(_u(n)))}}},eJ={kernelName:Ws,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(we(Ie(1),ot(n)),e)}}},tJ={kernelName:ba,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=je(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=ie(s,Me(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=ie(s,Me(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=ie(s,Me(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=ie(s,Me(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},nJ={kernelName:Bs,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Qm(a);return{x:()=>at(e,s)}}},rJ={kernelName:zo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Fn(e,a)}}},sJ={kernelName:du,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>aJ(e,n)}}};function aJ(e,t){let n=Rr(t,je(t)),r=qs(e,n),a=Na(t,Ie(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Tn(a,o+1);a=ar(a,Fr(r.shape,"bool"));let i=je(r);return bn(a,r,i)}var iJ={kernelName:Lo,gradFunc:e=>({x:()=>je(e)})},oJ=[G_,oZ,lZ,uZ,cZ,hZ,dZ,pZ,fZ,mZ,AZ,yZ,wZ,vZ,kZ,IZ,NZ,SZ,TZ,EZ,CZ,RZ,MZ,FZ,OZ,zZ,LZ,PZ,WZ,BZ,TY,VZ,UZ,HZ,jZ,GZ,XZ,qZ,KZ,ZZ,YZ,JZ,QZ,eY,tY,nY,rY,aY,sY,lY,Z_,Z_,uY,dY,mY,AY,yY,gY,xY,wY,bY,_Y,vY,kY,IY,Y_,Y_,NY,SY,EY,CY,RY,FY,MY,$Y,DY,OY,zY,LY,PY,WY,BY,VY,UY,HY,jY,GY,J_,J_,Q_,Q_,qY,KY,XY,ZY,YY,JY,QY,eJ,tJ,nJ,rJ,sJ,iJ];for(let e of oJ)G2(e);var M0={};Pe(M0,{maxNorm:()=>lJ,minMaxNorm:()=>hJ,nonNeg:()=>cJ,unitNorm:()=>uJ});var HA;function Wt(){return HA==null&&(HA=J2().epsilon()),HA}function br(){return"channelsLast"}var ia=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ia.prototype)}},_r=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_r.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},e3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,e3.prototype)}};function fi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Vr(e,t){if(!e)throw new e3(t)}function t3(e,t){let n=0;for(let r of e)r===t&&n++;return n}function kn(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function oa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function mi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ur={};function jA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function GA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>GA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:GA(r))}}}function hc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ur)i=ur[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ur?[o,l]=ur.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(ur))u[p]=ur[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},ur);for(let p of Object.keys(n))ur[p]=n[p];GA(s.config);let d=l(o,s.config,n,a);return ur=Object.assign({},h),d}else{let u=Object.assign({},ur);for(let h of Object.keys(n))ur[h]=n[h];let c=new o(s.config);return ur=Object.assign({},u),c}}}function dJ(e,t){return e<t?-1:e>t?1:0}function dp(e,t){return-1*dJ(e,t)}function La(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function pJ(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ai(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function qA(e,t,n=0,r=Infinity){return Vr(n>=0),Vr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Xt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Xt(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${n3(e)}.`)}function n3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>n3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function fJ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-n<t||(n=s,r=e(...a)),r}}function r3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function XA(e,t){return V(()=>Qt(Ce(W(e,e),t,!0)))}var dc=class extends ae.Serializable{getConfig(){return{}}},KA=class extends dc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=XA(e,this.axis),n=wn(t,0,this.maxValue);return W(e,ke(n,ie(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};KA.className="MaxNorm";ae.registerClass(KA);var ZA=class extends dc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>ke(e,ie(Wt(),XA(e,this.axis))))}getConfig(){return{axis:this.axis}}};ZA.className="UnitNorm";ae.registerClass(ZA);var YA=class extends dc{apply(e){return Mr(e)}};YA.className="NonNeg";ae.registerClass(YA);var JA=class extends dc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=XA(e,this.axis),n=ie(W(this.rate,wn(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,ke(n,ie(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};JA.className="MinMaxNorm";ae.registerClass(JA);var a3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return jA(e)}function s3(e,t={}){return hc(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a3?a3[e]:e,config:{}};return s3(t)}else return e instanceof dc?e:s3(e)}function lJ(e){return new KA(e)}function uJ(e){return new ZA(e)}function cJ(){return new YA}function hJ(e){return new JA(e)}var $0={};Pe($0,{constant:()=>yJ,glorotNormal:()=>kJ,glorotUniform:()=>vJ,heNormal:()=>IJ,heUniform:()=>NJ,identity:()=>bJ,leCunNormal:()=>SJ,leCunUniform:()=>TJ,ones:()=>AJ,orthogonal:()=>EJ,randomNormal:()=>xJ,randomUniform:()=>gJ,truncatedNormal:()=>wJ,varianceScaling:()=>_J,zeros:()=>mJ});var CJ=["channelsFirst","channelsLast"],RJ=["nearest","bilinear"],FJ=["valid","same","causal"],MJ=["max","avg"],$J=["sum","mul","concat","ave"],Il=new Map;function Ct(e){Ai(CJ,"DataFormat",e)}function DJ(e){Ai(RJ,"InterpolationFormat",e)}function Zn(e){Ai(FJ,"PaddingMode",e)}function i3(e){Ai(MJ,"PoolMode",e)}var pc=[],o3="/";function yi(e,t){pc.push(e);try{let n=t();return pc.pop(),n}catch(n){throw pc.pop(),n}}function OJ(){return pc.length===0?"":pc.join(o3)+o3}function u3(e){if(!l3(e))throw new Error("Not a valid tensor name: '"+e+"'");return OJ()+e}function c3(e){if(!l3(e))throw new Error("Not a valid tensor name: '"+e+"'");Il.has(e)||Il.set(e,0);let t=Il.get(e);if(Il.set(e,Il.get(e)+1),t>0){let n=`${e}_${t}`;return Il.set(n,1),n}else return e}var zJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function l3(e){return!!e.match(zJ)}function LJ(e){return e===parseInt(e.toString(),10)}function Pa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function h3(e){return e=Array.isArray(e)?new Float32Array(e):e,rn(e)}function Nl(e){return qo(h3(e)).dataSync()[0]}function Wa(e){return Gn(h3(e)).dataSync()[0]}function vr(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function fc(e,t){return e.asType(t)}function mc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function PJ(e,t){return V(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=mc(e,1);return QA(n,[1,t,1])})}function WJ(e){let t=[Pa(e.shape)];return e.reshape(t)}function BJ(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Pa(e.shape,1)];return e.reshape(t)}function gi(e,t,n){return V(()=>{switch(e.rank){case 1:return cd(e,t,n);case 2:return im(e,[t,0],[n,e.shape[1]]);case 3:return hd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Cu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Me(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Me(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ey(e,t,n){return V(()=>{switch(e.rank){case 1:return cd(e,t,n);case 2:return im(e,[0,t],[e.shape[0],n]);case 3:return hd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Cu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function pp(e,t,n,r){return V(()=>{switch(e.rank){case 1:return cd(e,t,n);case 2:switch(r){case 1:return gi(e,t,n);case 2:return ey(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return gi(e,t,n);case 2:return hd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ey(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return gi(e,t,n);case 2:return Cu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Cu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ey(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ty(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),lt(e,t)}function d3(e,t){switch(e.rank){case 1:return r0([e,t]);case 2:return Gh([e,t],0);case 3:return a0([e,t],0);case 4:return s0([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function QA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ia(e,t)}function fp(e,t=0,n=1,r,a){return g0(e,t,n,r,a)}function Ur(e,t,n,r){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ta.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?ny(e.rank,r,br()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ta.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?ny(e.rank,r,br()):null,activation:n}).reshape(h)}}function p3(e,t,n){return V(()=>(Array.isArray(t)?t=rn(t,"int32"):t=t.toInt(),qs(e,t,n)))}function Ac(e){return W(e,e)}function ny(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Hr(e,t,n){return V(()=>(n==null&&(n=br()),Ct(n),e.add(ny(e.rank,t,n))))}function VJ(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Ho(e)}function UJ(e){return V(()=>ke(e,zt(e).add(1)))}function f3(e,t,n,r){return V(()=>v0(e,t,n,r))}function HJ(e){return V(()=>{let t=ie(.5,W(.2,e));return wn(t,0,1)})}function yc(e,t,n=!1){return n?e():t()}var jJ=["fanIn","fanOut","fanAvg"],GJ=["normal","uniform","truncatedNormal"];function qJ(e){Ai(jJ,"FanMode",e)}function XJ(e){Ai(GJ,"Distribution",e)}var cr=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ry=class extends cr{apply(e,t){return Ft(e,t)}};ry.className="Zeros";ae.registerClass(ry);var mp=class extends cr{apply(e,t){return Fr(e,t)}};mp.className="Ones";ae.registerClass(mp);var ay=class extends cr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>W(Ie(this.value),Fr(e,t)))}getConfig(){return{value:this.value}}};ay.className="Constant";ae.registerClass(ay);var sy=class extends cr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ko(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};sy.className="RandomUniform";ae.registerClass(sy);var iy=class extends cr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return fp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};iy.className="RandomNormal";ae.registerClass(iy);var oy=class extends cr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return fd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};oy.className="TruncatedNormal";ae.registerClass(oy);var ly=class extends cr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,Zf(e[0]))})}getConfig(){return{gain:this.gain}}};ly.className="Identity";ae.registerClass(ly);function KJ(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Pa(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Pa(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Pa(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var In=class extends cr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,qJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,XJ(this.distribution),this.seed=e.seed}apply(e,t){let n=KJ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return fd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Ko(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};In.className="VarianceScaling";ae.registerClass(In);var Ap=class extends In{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return In.className}};Ap.className="GlorotUniform";ae.registerClass(Ap);var yp=class extends In{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return In.className}};yp.className="GlorotNormal";ae.registerClass(yp);var gp=class extends In{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return In.className}};gp.className="HeNormal";ae.registerClass(gp);var xp=class extends In{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return In.className}};xp.className="HeUniform";ae.registerClass(xp);var wp=class extends In{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return In.className}};wp.className="LeCunNormal";ae.registerClass(wp);var bp=class extends In{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return In.className}};bp.className="LeCunNormal";ae.registerClass(bp);var uy=class extends cr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=fp(n,0,1,"float32"),a=I0.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),W(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};uy.className="Orthogonal";ae.registerClass(uy);var m3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function A3(e,t={}){return hc(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function It(e){return jA(e)}function gt(e){if(typeof e=="string"){let t=e in m3?m3[e]:e;if(t==="GlorotNormal")return new yp;if(t==="GlorotUniform")return new Ap;if(t==="HeNormal")return new gp;if(t==="HeUniform")return new xp;if(t==="LeCunNormal")return new wp;if(t==="LeCunUniform")return new bp;{let n={};return n.className=t,n.config={},A3(n)}}else return e instanceof cr?e:A3(e)}function mJ(){return new ry}function AJ(){return new mp}function yJ(e){return new ay(e)}function gJ(e){return new sy(e)}function xJ(e){return new iy(e)}function wJ(e){return new oy(e)}function bJ(e){return new ly(e)}function _J(e){return new In(e)}function vJ(e){return new Ap(e)}function kJ(e){return new yp(e)}function IJ(e){return new gp(e)}function NJ(e){return new xp(e)}function SJ(e){return new wp(e)}function TJ(e){return new bp(e)}function EJ(e){return new uy(e)}var D0={};Pe(D0,{Layer:()=>Xe,RNN:()=>Dr,RNNCell:()=>gc,activation:()=>hQ,add:()=>wQ,alphaDropout:()=>ree,average:()=>bQ,averagePooling1d:()=>cy,averagePooling2d:()=>hy,averagePooling3d:()=>dy,avgPool1d:()=>CQ,avgPool2d:()=>FQ,avgPool3d:()=>$Q,avgPooling1d:()=>RQ,avgPooling2d:()=>MQ,avgPooling3d:()=>DQ,batchNormalization:()=>SQ,bidirectional:()=>KQ,concatenate:()=>_Q,conv1d:()=>rQ,conv2d:()=>aQ,conv2dTranspose:()=>sQ,conv3d:()=>iQ,convLstm2d:()=>jQ,convLstm2dCell:()=>GQ,cropping2D:()=>lQ,dense:()=>dQ,depthwiseConv2d:()=>cQ,dot:()=>NQ,dropout:()=>pQ,elu:()=>YJ,embedding:()=>xQ,flatten:()=>mQ,gaussianDropout:()=>nee,gaussianNoise:()=>tee,globalAveragePooling1d:()=>OQ,globalAveragePooling2d:()=>zQ,globalMaxPool1d:()=>YQ,globalMaxPool2d:()=>JQ,globalMaxPooling1d:()=>y3,globalMaxPooling2d:()=>g3,gru:()=>PQ,gruCell:()=>WQ,input:()=>W0,inputLayer:()=>ZJ,layerNormalization:()=>TQ,leakyReLU:()=>QJ,lstm:()=>BQ,lstmCell:()=>VQ,masking:()=>aee,maxPool1d:()=>QQ,maxPool2d:()=>eee,maxPooling1d:()=>x3,maxPooling2d:()=>w3,maxPooling3d:()=>LQ,maximum:()=>vQ,minimum:()=>kQ,multiply:()=>IQ,permute:()=>gQ,prelu:()=>eQ,reLU:()=>JJ,repeatVector:()=>AQ,reshape:()=>yQ,rnn:()=>qQ,separableConv2d:()=>oQ,simpleRNN:()=>UQ,simpleRNNCell:()=>HQ,softmax:()=>tQ,spatialDropout1d:()=>fQ,stackedRNNCells:()=>XQ,thresholdedReLU:()=>nQ,timeDistributed:()=>ZQ,upSampling2d:()=>uQ,zeroPadding2d:()=>EQ});var see=0;function b3(){return see++}var _p={};function vp(e=""){return e in _p||(_p[e]=0),_p[e]+=1,e+_p[e].toString()}function py(e){return Array.isArray(e)&&Array.isArray(e[0])}function kp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function We(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Ip(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var _3="Variable",O0=class{constructor(e,t="float32",n=_3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=b3(),n=n==null?_3:n,this.originalName=u3(n),this.name=c3(this.originalName),this.trainable_=r,this.constraint=a,this.val=w0(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function fy(e){return e.map(t=>t.read())}function my(e){e.forEach(t=>{t[0].write(t[1])})}var jt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},gr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=b3(),s!=null&&(this.originalName=u3(s),this.name=c3(this.originalName)),this.rank=t.length}},oee=0,Np=class{constructor(e,t){this.callArgs=t,this.id=oee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lee=0,Xe=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=oa(n)+"_"+vp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new _r(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return kn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return kn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ia(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ia(`Layer ${this.name} is not connected, no input to return.`);return kn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ia(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ia(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return kn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),r=!0;for(let s of n)if(!(s instanceof gr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof gr){a=!1;break}if(r===a)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return yi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(kn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=kn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=uee(e),i=this.computeOutputShape(s),o,l=cee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new gr(l,u,this,ft(e),t,this.name,c)):o=new gr(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ia(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ia(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new _r(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Ip(this.weights)}build(e){this.built=!0}getWeights(e=!1){return fy(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=fy(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}my(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=gt("zeros"));let o=r.apply(t,n),l=new O0(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=ft(e);t=ft(t),n=ft(n),r=ft(r),a=kp(a),s=kp(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new Np({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uee(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return kn(t)}function cee(e){return"float32"}function v3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=v3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var Sl=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:vp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new gr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Np({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Sl.className="InputLayer";ae.registerClass(Sl);function k3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Sl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ba(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Fe(r)}}function I3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var N3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(N3||(N3={}));var hee=125,Tl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},z0=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},dee=class extends Tl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=V(()=>ie(this.totals[r],W(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let r=W(ke(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},L0=class extends Tl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},P0=class extends Tl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=hee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=fJ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Ba(n),r.push(this.yield(e,t,n))),r.push(vd()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ba(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ba(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(vd()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ba(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ba(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(vd()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ba(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ba(e),await this.trainEnd(e))}};function S3(e,t){return e==null&&(e={}),e instanceof Tl?[e]:Array.isArray(e)&&e[0]instanceof Tl?e:ft(e).map(n=>new P0(n,t))}var hr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),hr.checkForDuplicate(t),hr.constructors[e]==null&&(hr.constructors[e]=[]),hr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in hr.constructors)hr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){hr.constructors={}}static createCallbacks(e){let t=[];for(let n in hr.constructors){let r=+n;e>=r&&t.push(...hr.constructors[r])}return t.map(n=>new n)}};hr.constructors={};function T3(e,t,n,r,a,s,i,o,l){let u=new L0,c=[new dee,...hr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new z0(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function kr(e,t={},n=!1){return hc(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Sp(e,t){return V(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ce(Ac(e),t,!0),r=vu(n.shape,Wt()),a=Qt(Rr(n,r));return ke(e,a)})}function xi(e,t){return V(()=>vt(Ac(we(t,e)),-1))}function Tp(e,t){return V(()=>vt(zt(we(t,e)),-1))}function El(e,t){return V(()=>{let n=we(e,t),r=wn(zt(e),Wt(),Number.MAX_VALUE),a=zt(ke(n,r));return W(100,vt(a,-1))})}function pee(e,t){return V(()=>{let n=wn(t,Wt(),Number.MAX_VALUE),r=En(ie(1,n)),a=wn(e,Wt(),Number.MAX_VALUE),s=En(ie(1,a));return vt(Ac(we(r,s)),-1)})}function fee(e,t){return V(()=>{let n=Rr(0,we(1,W(e,t)));return vt(Ac(n),-1)})}function mee(e,t){return V(()=>{let n=Rr(0,we(1,W(e,t)));return vt(n,-1)})}function Aee(e,t){return V(()=>{let n=Ce(W(e,t),-1),r=Gn(W(we(1,e),t),-1);return Rr(0,ie(1,we(r,n)))})}function yee(e,t){return V(()=>{let n=Math.log(2),r=we(t,e),a=we(ie(r,Go(W(-2,r))),n);return vt(a,-1)})}function xc(e,t,n=!1){return V(()=>{if(n)t=Ru(t);else{let r=Ce(t,t.shape.length-1,!0);t=ke(t,r)}return t=wn(t,Wt(),1-Wt()),_t(Ce(W(e.toFloat(),En(t)),t.shape.length-1))})}function Ep(e,t,n=!1){return V(()=>{let r=jo(WJ(e)).toInt();t=wn(t,Wt(),1-Wt());let a=t.shape,s=Bo(r,a[a.length-1]).reshape(a);return xc(s,t,n)})}function gee(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return V(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Cp(e,t){return V(()=>{let n;return n=wn(t,Wt(),1-Wt()),n=En(ke(n,we(1,n))),vt(gee(e,n),-1)})}function xee(e,t){return V(()=>{let n=wn(e,Wt(),1),r=wn(t,Wt(),1);return Ce(W(e,En(ke(n,r))),-1)})}function wee(e,t){return V(()=>{let n=En(ie(Wt(),t));return vt(we(t,W(e,n)),-1)})}function Ay(e,t){return V(()=>{let n=Sp(e,-1),r=Sp(t,-1),a=W(n,r);return _t(Ce(a,-1))})}var Rp={meanSquaredError:xi,meanAbsoluteError:Tp,meanAbsolutePercentageError:El,meanSquaredLogarithmicError:pee,squaredHinge:fee,hinge:mee,categoricalHinge:Aee,logcosh:yee,categoricalCrossentropy:xc,sparseCategoricalCrossentropy:Ep,binaryCrossentropy:Cp,kullbackLeiblerDivergence:xee,poisson:wee,cosineProximity:Ay};function yy(e){if(typeof e=="string"){if(e in Rp)return Rp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function gy(e,t){return V(()=>{let n=W(.5,Cn(t)),r=fc(rr(t,n),e.dtype);return vt(ka(e,r),-1)})}function xy(e,t){return V(()=>fc(ka(gu(e,-1),gu(t,-1)),"float32"))}function E3(e,t){return V(()=>ar(e.equal(1),t.equal(1)).sum().cast("float32"))}function bee(e,t){return V(()=>ar(e.equal(1),t.equal(0)).sum().cast("float32"))}function _ee(e,t){return V(()=>ar(e.equal(0),t.equal(1)).sum().cast("float32"))}function C3(e,t){return V(()=>{let n=E3(e,t),r=_ee(e,t),a=n.add(r);return bn(rr(a,0),n.div(a),0).cast("float32")})}function vee(e,t){return V(()=>{let n=E3(e,t),r=bee(e,t),a=n.add(r);return bn(rr(a,0),n.div(a),0).cast("float32")})}function R3(e,t){return Cp(e,t)}function F3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ka(e,t).asType("float32")}var kee=xi,Iee=xi,Nee=Tp,See=Tp,Tee=El,Eee=El,wy=xc,Cee=Ay,M3=Ep,Fp={binaryAccuracy:gy,categoricalAccuracy:xy,precision:C3,categoricalCrossentropy:wy,sparseCategoricalCrossentropy:M3,mse:kee,MSE:Iee,mae:Nee,MAE:See,mape:Tee,MAPE:Eee,cosine:Cee};function Ree(e){if(typeof e=="string"&&e in Fp)return Fp[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function Mp(e){if(Vr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Rp))if(Rp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}return t!==void 0?t:e.name}}function Fee(e){let t={Adagrad:()=>Zs.adagrad(.01),Adadelta:()=>Zs.adadelta(1,.95,Wt()),Adam:()=>Zs.adam(.001,.9,.999,Wt()),Adamax:()=>Zs.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Zs.rmsprop(.001,.9,0,Wt()),SGD:()=>Zs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var $3=1*1024*1024;function D3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!by(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>$3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${$3}.`)}}function by(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!by(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!by(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zee(e,t,n,r=console.log){let a=$ee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),$p(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?Dee(o[c],n,r):Oee(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Mee(e),u=Ip(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Mee(e){let t;return e.collectedTrainableWeights!=null?t=Ip(e.collectedTrainableWeights):t=Ip(e.trainableWeights),t}function $ee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function $p(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Dee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];$p(i,t,n)}function Oee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],f=c.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];$p(u,t,r);for(let c=1;c<s.length;++c)$p(["","","",s[c]],t,r)}function O3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function wc(e,t){if(e===null)return null;if(typeof e=="string")return mi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];O3(t,a,s)?n.push(s):n.push(wc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=mi(r);n[s]=wc(a,s)}}return n}}function _y(e,t){if(e==null)return null;if(typeof e=="string")return oa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];O3(t,a,s)?n.push(s):n.push(_y(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=oa(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=_y(a,r)}return n}}var ym="3.2.0";function Lee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Lee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof gr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof gr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Fe(this.id2Mask)}},vy={},z3={};function bc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(vy[c]==null){let f=Pee(i,t);h=f.sorted,d=f.recipientCounts,vy[c]=h,z3[c]=d}h=vy[c],d={},a||Object.assign(d,z3[c]);let p=new wi(t);for(let f=0;f<h.length;++f){if(r!=null){let E=Vh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof Sl)continue;let y=[],g=[],b=[],w=!1;for(let E of m.inputs){let M=p.getValue(E),D=p.getMask(E);y.push(M),g.push(D),D!=null&&(w=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&b.push(M))}w&&(n=n||{},n.mask=g[0]);let _=ft(A.apply(y,n)),x=null;A.supportsMasking&&(x=A.computeMask(y,g));let N=Wee(m),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],_[E],Array.isArray(x)?x[0]:x);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=_[E])}a||Fe(b)}return p.disposeMasks(),s?l:l[0]}function Pee(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=L3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=L3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Bee(r)}}function Bee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function L3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Wee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var jr=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=vp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],La(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);La(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(b),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let g=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex;Vr(b===0,"input layer has >1 nodes"),Vr(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(b),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Sl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,b,w,_,x)=>{(w==null||_==null||x==null)&&(w=y.sourceLayer,_=y.nodeIndex,x=y.tensorIndex);let N=w.inboundNodes[_];if(b.indexOf(N)!==-1)throw new _r(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(jr.nodeKey(w,_)),w.id in s||(s[w.id]=Object.keys(s).length),b.indexOf(N)===-1&&b.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],D=N.inboundLayers[E],L=N.nodeIndices[E],P=N.tensorIndices[E];o(M,g,b,D,L,P)}for(g.push(N);b.indexOf(N)>=0;)b.splice(b.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],b=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,b),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let w=0;w<y.inboundLayers.length;w++){let _=y.inboundLayers[w],x=y.nodeIndices[w],N=_.inboundNodes[x],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(dp);this.layers=[];for(let y of p){let g=d[y];g.sort((b,w)=>{let _=s[b.id],x=s[w.id];return _<x?-1:_>x?1:0});for(let b of g)b instanceof jr&&this.internalContainerRefs.push(b),this.layers.push(b)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(dp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let b=g.outboundLayer;if(b!=null){for(let w of g.inputTensors)if(f.indexOf(w)===-1)throw new _r(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${b.name}". The following previous layers were accessed without issue: ${m}`);for(let w of g.outputTensors)f.push(w);m.push(b.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(b=>b===y).length;if(g!==1)throw new _r(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Np({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}my(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ym}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=_y(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=ft(e);let n=new wi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return bc(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=ft(e);let n;return t==null?n=fi(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=kp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(dp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,b=n[g];c.push(b)}let h=u.computeOutputShape(kn(c)),d=kp(h),p=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Vr(o in n),a.push(n[o])}return kn(a)}runInternalGraph(e,t){t==null&&(t=fi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(dp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[b,w]=p[0];f.mask==null&&(f.mask=w),y=ft(c.call(b,f)),g=ft(c.computeMask(b,w)),m=[b],A=[w]}else m=p.map(b=>b[0]),A=p.map(b=>b[1]),f.mask==null&&(f.mask=A),y=ft(c.call(m,f)),g=ft(c.computeMask(m,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let b=0;b<d.length;++b){let w=d[b],_=y[b],x=g[b];n[w.id]=[_,x]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Vr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof jr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=jr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=jr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=jr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],b=jr.nodeKey(A,y),w=t[b];w==null&&(w=0),f.push([A.name,w,g,p])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=jr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=jr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let b of A){let w=b[0],_=b[1],x=b[2];if(g=b[3]==null?{}:b[3],!(w in a)){i(m,A);return}let N=a[w];if(N.inboundNodes.length<=_){i(m,A);return}let T=N.inboundNodes[_];y.push(T.outputTensors[x])}y.length>0&&m.apply(kn(y),g)}function l(m){let A=m.name,y=kr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!pJ(s);)for(let m of c){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Vr(A in a);let b=a[A].inboundNodes[y].outputTensors;h.push(b[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Vr(A in a);let b=a[A].inboundNodes[y].outputTensors;d.push(b[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Vee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function P3(e,t){return Vee(e,t,"classWeight")}async function W3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=V(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Fe(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),rn(i,"float32")}else return null}function Uee(e,t){return W(e,t)}var Hee=32;function V3(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=B3("input",e.inputNames,n),i=B3("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function B3(e,t,n){if(n instanceof Je)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function jee(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function qee(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(U3(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=jee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=S3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=T3(c,h,n.epochs,null,null,Gee(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let b=await m.next();if(r&&b.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(b.value!=null){let{xs:w,ys:_}=V3(e,b.value),x={};x.batch=g,x.size=w[0].shape[0],await d.onBatchBegin(g,x);let N=[];if(n.classWeight!=null){let M=P3(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)N.push(await W3(_[D],null,M[D]))}let T=w.concat(_).concat(N),E=o(T);Fe(T);for(let M=0;M<l.length;++M){let D=l[M],L=E[M];x[D]=L,Ht(L)}await d.onBatchEnd(g,x),I3(x),g++,y++}if(r?y>=n.batchesPerEpoch:b.done){if(a){let w;U3(n.validationData)?w=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Hee:n.validationBatchSize,verbose:0}));for(let _=0;_<e.metricsNames.length;++_)A[`val_${e.metricsNames[_]}`]=w[_]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Gee(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function U3(e){return typeof e.iterator=="function"}function Xee(e){return typeof e.next=="function"}async function Kee(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Xee(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=V(()=>{if(u.value){let{xs:c,ys:h}=V3(e,u.value),d=c.concat(h),p=V(()=>a(d));if(Fe(d),l===0)for(let m=0;m<p.length;++m)s.push(Ie(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=V(()=>ie(s[m],W(f,A))),l>0&&Fe(y)}Fe(p),o+=f,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=ke(s[u],o),Fe(c)}return kn(s)}function ky(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function _c(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>gi(r,t,n-t)):gi(e,t,n-t)}function Iy(e,t){return V(()=>e==null?null:Array.isArray(e)?e.map(n=>Iy(n,t)):p3(e,t.dtype==="int32"?t:t.toInt()))}function Ny(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function Zee(e,t,n,r,a,s,i,o,l,u,c,h,d,p,f){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=vr(0,A)),i==null&&(i=1);let{callbackList:g,history:b}=T3(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=b,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=d;w<s;++w){await g.onEpochBegin(w);let _={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&v.shuffle(y);let x=rn(y),N=Ny(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),V(()=>{let M=N[T][0],D=N[T][1],L=gi(x,M,D-M);E.batch=T,E.size=D-M;let P=Iy(n,L),U=t(P);for(let H=0;H<r.length;++H){let X=r[H],G=U[H];E[X]=G,Ht(G)}if(T===N.length-1&&m){let H=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let G=r[X],ee=H[X];Ht(ee),_["val_"+G]=ee}}}),await g.onBatchEnd(T,E),I3(E),e.stopTraining_)break}x.dispose()}if(await g.onEpochEnd(w,_),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Yee(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;ky(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=_c(a,x,N),a=_c(a,0,x),u=_c(s,x,N),s=_c(s,0,x),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),b,w;f?(e.makeTestFunction(),b=e.testFunction,w=g.slice().concat(g.map(x=>"val_"+x))):(b=null,m=[],w=g.slice());let _=S3(r.callbacks,r.yieldEvery);return await Zee(e,y,A,g,h,r.epochs,r.verbose,_,b,m,r.shuffle,w,r.initialEpoch,null,null)}finally{e.isTraining=!1,bi(a,t),bi(s,n),bi(l,i),bi(u,o),c!=null&&Fe(c)}}function H3(e){let t=[];e instanceof Je&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(mc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function bi(e,t){if(e==null)return;let n=[];if(t instanceof Je)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Je)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Jee(e){return e instanceof Je}function Sy(e){return Array.isArray(e)}function j3(e){return!Jee(e)&&!Sy(e)}function G3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Sy(e)&&e.length>0)i=!0;else if(j3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(j3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Sy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=H3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Qee(e,t,n){let r=La(e.map(s=>s.shape[0]));r.sort();let a=La(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function ete(e,t,n){let r=[xi,Cp,xc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===xc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function q3(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function tte(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var nte="layers-model",ta=class extends jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Fee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ea))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(yy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>yy(s))}else{let s=yy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],yi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=tte(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};yi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Cp?["accuracy","acc"].indexOf(d)!==-1?c=gy:["crossentropy","ce"].indexOf(d)!==-1&&(c=R3):this.lossFunctions[s]===Ep?["accuracy","acc"].indexOf(d)!==-1?c=F3:["crossentropy","ce"].indexOf(d)!==-1&&(c=M3):["accuracy","acc"].indexOf(d)!==-1?c=xy:["crossentropy","ce"].indexOf(d)!==-1&&(c=wy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=c,u=l+m}else h=Ree(d),u=l+Mp(d);let p;yi(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;ky(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return kn(l)}finally{bi(s[0],e),bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Kee(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new wi;if(e instanceof Je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=bc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=fi(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let r=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let a=Ny(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)V(()=>{let o=a[i][0],l=a[i][1],u=_c(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new wi(c);return bc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return kn(s.map(i=>lt(i,0)))})}predict(e,t={}){let n=H3(e);q3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return ky(r),this.predictLoop(n,r)}finally{bi(n,e)}}predictOnBatch(e){q3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new _r("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Ep?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=G3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=G3(t,this.feedOutputNames,a,!1,"target"),Qee(e,t,null),ete(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=P3(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await W3(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return V(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Oe("Verbose mode is not implemented yet.");if(a!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=Ny(s,n),l=rn(vr(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=gi(l,c,h-c),p=Iy(t,d),f=e(p);if(u===0)for(let m=0;m<f.length;++m)i.push(Ie(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=ie(i[m],W(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=ke(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;t3(e,r)>1&&(a+=`_${t3(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new wi(u),h=bc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=Uee(f,a[p]));let m=vt(f);t.push(m),p===0?d=f:d=ie(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=vt(m(r[A],h[A]))}Ht(f),s.push(f)}return d=vt(d),this.calculateLosses().forEach(p=>{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new wi(s),o=bc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=vt(u(a[l],o[l]));l===0?n=c:n=ie(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=vt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return Yee(this,e,t,n)}async fitDataset(e,t){return qee(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Fe(s),kn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Vh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Vh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=oa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>oa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=oa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[oa(Mp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>oa(Mp(e)));{let e={};for(let t in this.metrics)e[t]=oa(Mp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=wc(e.optimizer_config),n=kr(t),r;if(typeof e.loss=="string")r=mi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>mi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=mi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>mi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=mi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=xn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await xn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:nte,generatedBy:`TensorFlow.js tfjs-layers v${ym}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await xn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=xn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;D3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){D3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ta.className="Model";ae.registerClass(ta);var X3=class extends ta{};X3.className="Functional";ae.registerClass(X3);async function rte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=wc(n),a=kr(r,t);if(e.weightsManifest!=null){let s=await xn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Fe(s)}return a}async function ste(e,t){if(t==null&&(t={}),typeof e=="string"){let n=xn.getLoadHandlers(e,t);if(n.length===0)n.push(xn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return ate(e,void 0,t)}async function ate(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=kr(wc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=ite(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Fe(u),Fe(c.map(h=>h.tensor))}return o}function ite(e,t){let n=xn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Jo=class extends ta{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:vp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Jo||e instanceof ta,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=k3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=v3(this.outputs[0])}this.inboundNodes=[],new Np({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ta({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Jo))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=kr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Jo.className="Sequential";ae.registerClass(Jo);function F8(e){return new ta(e)}function M8(e){return new Jo(e)}function $8(e,t){return t==null&&(t={}),ste(e,t)}function W0(e){return k3(e)}function D8(e,t){hr.registerCallbackConstructor(e,t)}var On=class extends ae.Serializable{getConfig(){return{}}},K3=class extends On{apply(e,t=1){return VJ(e,t)}};K3.className="elu";ae.registerClass(K3);var Z3=class extends On{apply(e){return od(e)}};Z3.className="selu";ae.registerClass(Z3);var Y3=class extends On{apply(e){return Mr(e)}};Y3.className="relu";ae.registerClass(Y3);var J3=class extends On{apply(e){return V(()=>Xo(6,Mr(e)))}};J3.className="relu6";ae.registerClass(J3);var Q3=class extends On{apply(e){return e}};Q3.className="linear";ae.registerClass(Q3);var e7=class extends On{apply(e){return nr(e)}};e7.className="sigmoid";ae.registerClass(e7);var t7=class extends On{apply(e){return HJ(e)}};t7.className="hardSigmoid";ae.registerClass(t7);var n7=class extends On{apply(e){return Go(e)}};n7.className="softplus";ae.registerClass(n7);var r7=class extends On{apply(e){return UJ(e)}};r7.className="softsign";ae.registerClass(r7);var a7=class extends On{apply(e){return Vo(e)}};a7.className="tanh";ae.registerClass(a7);var Ty=class extends On{apply(e,t=-1){return Ru(e,t)}};Ty.className="softmax";ae.registerClass(Ty);var s7=class extends On{apply(e,t=-1){return ed(e,t)}};s7.className="logSoftmax";ae.registerClass(s7);var i7=class extends On{apply(e,t=1){return V(()=>nr(e.mul(t)).mul(e))}};i7.className="swish";ae.registerClass(i7);function Va(e){return e.getClassName()}function Ey(e,t={}){return hc(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Ua(e){if(e==null){let t={};return t.className="linear",t.config={},Ey(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ey(t)}else return e instanceof On?e:Ey(e)}function Cy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var o7=class extends ae.Serializable{},vc=class extends o7{constructor(e){super();Cy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=Ft([1]);return this.hasL1&&(t=ie(t,Ce(W(this.l1,zt(e))))),this.hasL2&&(t=ie(t,Ce(W(this.l2,Ac(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};vc.className="L1L2";ae.registerClass(vc);function ote(e){return Cy(e),new vc({l1:e!=null?e.l1:null,l2:0})}function lte(e){return Cy(e),new vc({l2:e!=null?e.l2:null,l1:0})}var l7={l1l2:"L1L2"};function ht(e){return jA(e)}function u7(e,t={}){return hc(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in l7?l7[e]:e,config:{}};return u7(t)}else return e instanceof o7?e:u7(e)}var Ry=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=We(e);let n=Mr(e);return this.maxValue!=null&&(n=wn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="ReLU";ae.registerClass(Ry);var Fy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return ku(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="LeakyReLU";ae.registerClass(Fy);var My=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new jt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=We(e),Tu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:It(this.alphaInitializer),alphaRegularizer:ht(this.alphaRegularizer),alphaConstraint:Bt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};My.className="PReLU";ae.registerClass(My);var $y=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return Ho(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$y.className="ELU";ae.registerClass($y);var Dy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=We(e);return n.mul(fc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="ThresholdedReLU";ae.registerClass(Dy);var Oy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Ty().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=We(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="Softmax";ae.registerClass(Oy);function Cl(e,t,n){if(typeof e=="number")return fi(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!LJ(a))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function Ir(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Dp(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Wa([n-t,0]);else if(r==="same")e=e*t;else throw new B(`Unsupport padding mode: ${r}.`);return e}function zy(e,t){return V(()=>(Ct(t),t==="channelsFirst"?at(e,[0,2,3,1]):e))}function c7(e,t){return V(()=>(Ct(t),t==="channelsFirst"?at(e,[0,2,3,4,1]):e))}function ute(e,t,n,r=1,a="valid",s,i=1){return V(()=>{if(s==null&&(s=br()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=at(e,[0,2,1])),a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=qh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Hr(o,n)),o})}function h7(e,t,n,r=[1,1],a="valid",s,i,o=null){return V(()=>{if(s==null&&(s=br()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=zy(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ta.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=at(l,[0,3,1,2])),l})}function cte(e,t,n,r=[1,1,1],a="valid",s,i){return V(()=>{if(s==null&&(s=br()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=c7(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Hf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Hr(o,n)),s==="channelsFirst"&&(o=at(o,[0,4,1,2,3])),o})}var Ly=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ly.verifyArgs(t),this.rank=e,Xt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Cl(t.kernelSize,e,"kernelSize"),this.strides=Cl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Zn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=Ua(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Cl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Vr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!qA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Va(this.activation),useBias:this.useBias,biasInitializer:It(this.biasInitializer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},kc=class extends Ly{constructor(e,t){super(e,t);this.kernel=null,kc.verifyArgs(t),this.filters=t.filters,Xt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=We(e);let n,r=this.bias==null?null:this.bias.read(),a=r3(this.activation.getClassName());if(a!=null&&this.rank===2)n=h7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=ute(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=h7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=cte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=Ir(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:It(this.kernelInitializer),kernelRegularizer:ht(this.kernelRegularizer),kernelConstraint:Bt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Ic=class extends kc{constructor(e){super(2,e);Ic.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Ic.className="Conv2D";ae.registerClass(Ic);var Op=class extends kc{constructor(e){super(3,e);Op.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Op.className="Conv3D";ae.registerClass(Op);var Py=class extends Ic{constructor(e){super(e);if(this.inputSpec=[new jt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new jt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=We(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Dp(o,h,u,this.padding),f=Dp(l,d,c,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=at(n,[0,2,3,1]));let A=Xh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=at(A,[0,3,1,2])),this.bias!=null&&(A=Hr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Dp(t[r],o,s,this.padding),t[a]=Dp(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Py.className="Conv2DTranspose";ae.registerClass(Py);var d7=class extends kc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new jt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=We(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=at(e,[0,2,3,1])),n=am(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=at(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=It(this.depthwiseInitializer),e.pointwiseInitializer=It(this.pointwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.pointwiseRegularizer=ht(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};d7.className="SeparableConv";var Wy=class extends d7{constructor(e){super(2,e)}};Wy.className="SeparableConv2D";ae.registerClass(Wy);var zp=class extends kc{constructor(e){super(1,e);zp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};zp.className="Conv1D";ae.registerClass(zp);var By=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=We(e),this.dataFormat==="channelsLast"){let n=pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};By.className="Cropping2D";ae.registerClass(By);var Vy=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,DJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=We(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=at(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return at(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="UpSampling2D";ae.registerClass(Vy);function hte(e,t,n=[1,1],r="valid",a,s){return V(()=>{a==null&&(a=br()),Ct(a);let i=zy(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Uo(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=at(i,[0,3,1,2])),i})}var Uy=class extends Ly{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=We(e);let n=hte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Ir(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ir(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=It(this.depthwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};Uy.className="DepthwiseConv2D";ae.registerClass(Uy);function p7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function f7(e,t,n,r=!1,a,s,i=!1,o=!1){return V(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(vr(2,l));if(t=at(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Tn(a,-1)),a=at(a,u)),r&&(t=Rn(t,0),a!=null&&(a=Rn(a,0)));let c=[],h,d=n,p=t.shape[0],f=sr(t),m;a!=null&&(m=sr(a));for(let y=0;y<p;++y){let g=f[y],b=V(()=>e(g,d));if(a==null)h=b[0],d=b[1];else{let w=V(()=>{let _=m[y],x=Cn(_).sub(_),N=b[0].mul(_).add(d[0].mul(x)),T=d.map((E,M)=>b[1][M].mul(_).add(E.mul(x)));return{output:N,newStates:T}});h=w.output,d=w.newStates}o&&c.push(h)}let A;return o&&(A=Fn(c,1)),[h,A,d]})}var Dr=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new jt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return vr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){py(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");py(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new jt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new jt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new ia("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ft([n,r])):this.states_=[Ft([n,this.cell.stateSize])];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ft([n,r])):this.states_[0]=Ft([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(a.shape,i))throw new B(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Ht(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=p7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new jt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof gr){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=We(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=f7((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return V(()=>{let t=Ft(e.shape);return t=Ce(t,[1,2]),t=mc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?QA(t,[1,n]):t):this.cell.stateSize>1?[QA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Dr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=kr(r,n);return new e(Object.assign(t,{cell:a}))}};Dr.className="RNN";ae.registerClass(Dr);var gc=class extends Xe{},Pp=class extends gc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Ua(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Nl([1,Wa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Nl([1,Wa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>Cn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>Cn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ur(W(e,s),this.kernel.read()):a=Ur(e,this.kernel.read()),this.bias!=null&&(a=Hr(a,this.bias.read())),i!=null&&(n=W(n,i));let o=ie(a,Ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Va(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Pp.className="SimpleRNNCell";ae.registerClass(Pp);var Hy=class extends Dr{constructor(e){e.cell=new Pp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Hy.className="SimpleRNN";ae.registerClass(Hy);var Wp=class extends gc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Xt(this.units,"units"),this.activation=Ua(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ua(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Nl([1,Wa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Nl([1,Wa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>Cn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=W(e,a[0]));let u=Ur(e,this.kernel.read());this.useBias&&(u=Hr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=W(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=un(c,[2*this.units,this.units],c.rank-1),p=Ur(r,h),[f,m,A]=un(u,3,u.rank-1),[y,g]=un(p,2,p.rank-1);i=this.recurrentActivation.apply(ie(f,y)),o=this.recurrentActivation.apply(ie(m,g));let b=Ur(W(o,r),d);l=this.activation.apply(ie(A,b));let w=ie(W(i,r),W(ie(1,_t(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Va(this.activation),recurrentActivation:Va(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Wp.className="GRUCell";ae.registerClass(Wp);var jy=class extends Dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Wp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jy.className="GRU";ae.registerClass(jy);var Nc=class extends gc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Ua(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ua(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Nl([1,Wa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Nl([1,Wa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends cr{apply(i,o){let l=a.apply([s]),u=new mp().apply([s]),c=a.apply([s*2]);return d3(d3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>Cn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let h=Ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=W(r,i[0])),h=ie(h,Ur(r,this.recurrentKernel.read())),this.useBias&&(h=Hr(h,this.bias.read()));let[d,p,f,m]=un(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=ie(W(l,a),W(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let A=W(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Va(this.activation),recurrentActivation:Va(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Nc.className="LSTMCell";ae.registerClass(Nc);var Gy=class extends Dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Nc(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gy.className="LSTM";ae.registerClass(Gy);var Lp=class extends gc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){py(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{yi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(kr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return fy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}my(t)}};Lp.className="StackedRNNCells";ae.registerClass(Lp);function Ha(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>f3(t(),n),i=()=>yc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var dte=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},m7=class extends Dr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new jt({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ft(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new ia("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ft(a)):this.states_=[Ft(a)];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ft(a)):this.states_[0]=Ft(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=Ir(l,r[0],a,s[0],i[0]),h=Ir(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};m7.className="ConvRNN2D";var Bp=class extends Nc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Xt(this.filters,"filters"),this.kernelSize=Cl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Xt(o,"kernelSize")),this.strides=Cl(r||1,2,"strides"),this.strides.forEach(o=>Xt(o,"strides")),this.padding=a||"valid",Zn(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Cl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Xt(o,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends cr{apply(c,h){let d=l.apply([u]),p=Fr([u]),f=l.apply([u*2]);return ty([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>Cn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,se,te)=>!se||!se[te]?J:W(se[te],J),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>Cn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[b,w,_,x]=un(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?un(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,b,N,this.padding),c=this.inputConv(c,w,T,this.padding),h=this.inputConv(h,_,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[D,L,P,U]=un(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,D),m=this.recurrentConv(m,L),A=this.recurrentConv(A,P),y=this.recurrentConv(y,U);let H=this.recurrentActivation.apply(ie(u,f)),X=this.recurrentActivation.apply(ie(c,m)),G=ie(W(X,s),W(H,this.activation.apply(ie(h,A)))),ee=W(this.recurrentActivation.apply(ie(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=dte(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Yr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Hr(a,n,this.dataFormat):a}recurrentConv(e,t){return Yr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Bp.className="ConvLSTM2DCell";ae.registerClass(Bp);var qy=class extends m7{constructor(e){let t=new Bp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};qy.className="ConvLSTM2D";ae.registerClass(qy);var Vp=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return yc(()=>f3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Vp.className="Dropout";ae.registerClass(Vp);var Xy=class extends Vp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Xy.className="SpatialDropout1D";ae.registerClass(Xy);var Ky=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Xt(this.units,"units"),this.activation=Ua(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e),r=r3(this.activation.getClassName()),a;return r!=null?a=Ur(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Ur(n,this.kernel.read()),this.bias!=null&&(a=Hr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Va(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Dense";ae.registerClass(Ky);var Zy=class extends Xe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Pa(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return BJ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Flatten";ae.registerClass(Zy);var Yy=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ua(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);return this.activation.apply(n)})}getConfig(){let e={activation:Va(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Activation";ae.registerClass(Yy);var Jy=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=We(e),PJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="RepeatVector";ae.registerClass(Jy);var Qy=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else a*=l}let i=Pa(e);if(s!==null){if(a===0||i%a!=0)throw new B(n);r[s]=i/a}else if(i!==a)throw new B(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="Reshape";ae.registerClass(Qy);var eg=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=vr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new jt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return at(We(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};eg.className="Permute";ae.registerClass(eg);var tg=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=We(e),r=-1;return yu(Ks(n,this.maskValue),r)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e),r=-1,a=!0,s=yu(Ks(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};tg.className="Masking";ae.registerClass(tg);var ng=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Xt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Xt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=We(e),Ks(e,je(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);return n.dtype!=="int32"&&(n=fc(n,"int32")),p3(this.embeddings.read(),n.as1D()).reshape(ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:It(this.embeddingsInitializer),embeddingsRegularizer:ht(this.embeddingsRegularizer),activityRegularizer:ht(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ng.className="Embedding";ae.registerClass(ng);var _i=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=La(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&La(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Wa(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=mc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Pa(u.slice(1))));d=at(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=vr(1,l).concat([0]);n.push(at(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=at(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(vr(0,i-1));s=at(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=La(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Tn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=ar(n,t[r]);return n})}},rg=class extends _i{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};rg.className="Add";ae.registerClass(rg);var ag=class extends _i{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};ag.className="Multiply";ae.registerClass(ag);var sg=class extends _i{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return W(1/e.length,t)})}};sg.className="Average";ae.registerClass(sg);var ig=class extends _i{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Rr(t,e[n]);return t})}};ig.className="Maximum";ae.registerClass(ig);var og=class extends _i{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Xo(t,e[n]);return t})}};og.className="Minimum";ae.registerClass(og);var lg=class extends _i{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>ty(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Cn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Tn(t[s],-1)):r.push(t[s]);let a=lt(r,this.axis);return jh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};lg.className="Concatenate";ae.registerClass(lg);function Sc(e,t){for(;e<0;)e+=t;return e}function pte(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return V(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var ug=class extends _i{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Sc(a,e[s].shape.length)):r=[Sc(this.axes,t.shape.length),Sc(this.axes,n.shape.length)],this.normalize&&(t=Sp(t,r[0]),n=Sp(n,r[1])),pte(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Sc(this.axes,e.length),Sc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ug.className="Dot";ae.registerClass(ug);var cg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);return yc(()=>fp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};cg.className="GaussianNoise";ae.registerClass(cg);var hg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=We(e);return this.rate>0&&this.rate<1?yc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(fp(n.shape,1,r))},()=>n,t.training||!1):n})}};hg.className="GaussianDropout";ae.registerClass(hg);var dg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||We(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return yc(()=>{let r=We(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Na(Ko(n),this.rate);o=fc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>We(e),t.training||!1)}return e})}};dg.className="AlphaDropout";ae.registerClass(dg);function Tc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Q2(e,t,n,r,a,s);else if(e.rank===3)i=e0(e,t,n,r,a,s);else if(e.rank===4)i=t0(e,t,n,r,a,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function fte(e,t,n,r,a=.001){return V(()=>{let s=nd(e,r),i=s.mean,o=s.variance;return[Tc(e,i,o,n,t,a),i,o]})}function mte(e,t,n,r,a=.001){return V(()=>{let s=nd(e,r),i=s.mean,o=s.variance,l=[];for(let p of vr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Tc(e,u,c,d,h,a),i,o]})}function Ate(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),vr(0,e.rank-1))?fte(e,t,n,r,a):mte(e,t,n,r,a)}var pg=class extends Xe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new jt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,r=We(e),a=r.shape,s=a.length,i=vr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=fi(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,vr(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,b=this.scale?this.gamma.read().reshape(l):null;return Tc(r,A,y,g,b,this.epsilon)}else return Tc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Ate(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{V(()=>{let b=1-g,w=A.read(),_=w.sub(y).mul(b);A.write(w.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),movingMeanInitializer:It(this.movingMeanInitializer),movingVarianceInitializer:It(this.movingVarianceInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};pg.className="BatchNormalization";ae.registerClass(pg);var fg=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==La(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=We(e),r=n.shape,a=r.length;return V(()=>{let s=!0,{mean:i,variance:o}=nd(n,this.axis,s),l=fi(1,a);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),Tc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};fg.className="LayerNormalization";ae.registerClass(fg);function yte(e,t,n){return V(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=br()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Jr(e,r)})}var mg=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?br():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>yte(We(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};mg.className="ZeroPadding2D";ae.registerClass(mg);function Up(e,t,n,r,a,s){return V(()=>{Ct(a),i3(s),Zn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=br()),s==null&&(s="max"),e=zy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Nu(e,t,n,o):i=xu(e,t,n,o),a==="channelsFirst"&&(i=at(i,[0,3,1,2])),i})}function A7(e,t,n,r,a,s){return V(()=>{Ct(a),i3(s),Zn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=br()),s==null&&(s="max"),e=c7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Qf(e,t,n,o):i=Vf(e,t,n,o),a==="channelsFirst"&&(i=at(i,[0,4,1,2,3])),i})}var y7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Xt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Zn(this.padding),this.inputSpec=[new jt({ndim:3})]}computeOutputShape(e){e=ct(e);let t=Ir(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=mc(We(e),2);let n=this.poolingFunction(We(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Sa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Ag=class extends y7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),Up(e,t,n,r,a,"max")}};Ag.className="MaxPooling1D";ae.registerClass(Ag);var yg=class extends y7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),Up(e,t,n,r,a,"avg")}};yg.className="AveragePooling1D";ae.registerClass(yg);var g7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Zn(this.padding),this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gg=class extends g7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),Up(e,t,n,r,a,"max")}};gg.className="MaxPooling2D";ae.registerClass(gg);var xg=class extends g7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),Up(e,t,n,r,a,"avg")}};xg.className="AveragePooling2D";ae.registerClass(xg);var x7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Zn(this.padding),this.inputSpec=[new jt({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),r=Ir(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},wg=class extends x7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),A7(e,t,n,r,a,"max")}};wg.className="MaxPooling3D";ae.registerClass(wg);var bg=class extends x7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),Zn(r),A7(e,t,n,r,a,"avg")}};bg.className="AveragePooling3D";ae.registerClass(bg);var w7=class extends Xe{constructor(e){super(e);this.inputSpec=[new jt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},_g=class extends w7{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=We(e);return vt(n,1)})}};_g.className="GlobalAveragePooling1D";ae.registerClass(_g);var vg=class extends w7{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=We(e);return Gn(n,1)})}};vg.className="GlobalMaxPooling1D";ae.registerClass(vg);var b7=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kg=class extends b7{call(e,t){return V(()=>{let n=We(e);return this.dataFormat==="channelsLast"?vt(n,[1,2]):vt(n,[2,3])})}};kg.className="GlobalAveragePooling2D";ae.registerClass(kg);var Ig=class extends b7{call(e,t){return V(()=>{let n=We(e);return this.dataFormat==="channelsLast"?Gn(n,[1,2]):Gn(n,[2,3])})}};Ig.className="GlobalMaxPooling2D";ae.registerClass(Ig);var _7=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=kr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Ng=class extends _7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return V(()=>(e=We(e),f7((n,r)=>[We(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Ng.className="TimeDistributed";ae.registerClass(Ng);function gte(e){Ai($J,"BidirectionalMergeMode",e)}var xte="concat",Sg=class extends _7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=kr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=kr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?xte:e.mergeMode,gte(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):kn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=p7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new jt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof gr;for(let l of s)if(l instanceof gr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Rn(a,1));let i;return this.mergeMode==="concat"?i=ty([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=W(.5,ie(r,a)):this.mergeMode==="mul"?i=W(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){yi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),yi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=kr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Sg.className="Bidirectional";ae.registerClass(Sg);function ZJ(e){return new Sl(e)}function YJ(e){return new $y(e)}function JJ(e){return new Ry(e)}function QJ(e){return new Fy(e)}function eQ(e){return new My(e)}function tQ(e){return new Oy(e)}function nQ(e){return new Dy(e)}function rQ(e){return new zp(e)}function aQ(e){return new Ic(e)}function sQ(e){return new Py(e)}function iQ(e){return new Op(e)}function oQ(e){return new Wy(e)}function lQ(e){return new By(e)}function uQ(e){return new Vy(e)}function cQ(e){return new Uy(e)}function hQ(e){return new Yy(e)}function dQ(e){return new Ky(e)}function pQ(e){return new Vp(e)}function fQ(e){return new Xy(e)}function mQ(e){return new Zy(e)}function AQ(e){return new Jy(e)}function yQ(e){return new Qy(e)}function gQ(e){return new eg(e)}function xQ(e){return new ng(e)}function wQ(e){return new rg(e)}function bQ(e){return new sg(e)}function _Q(e){return new lg(e)}function vQ(e){return new ig(e)}function kQ(e){return new og(e)}function IQ(e){return new ag(e)}function NQ(e){return new ug(e)}function SQ(e){return new pg(e)}function TQ(e){return new fg(e)}function EQ(e){return new mg(e)}function cy(e){return new yg(e)}function CQ(e){return cy(e)}function RQ(e){return cy(e)}function hy(e){return new xg(e)}function FQ(e){return hy(e)}function MQ(e){return hy(e)}function dy(e){return new bg(e)}function $Q(e){return dy(e)}function DQ(e){return dy(e)}function OQ(e){return new _g(e)}function zQ(e){return new kg(e)}function y3(e){return new vg(e)}function g3(e){return new Ig(e)}function x3(e){return new Ag(e)}function w3(e){return new gg(e)}function LQ(e){return new wg(e)}function PQ(e){return new jy(e)}function WQ(e){return new Wp(e)}function BQ(e){return new Gy(e)}function VQ(e){return new Nc(e)}function UQ(e){return new Hy(e)}function HQ(e){return new Pp(e)}function jQ(e){return new qy(e)}function GQ(e){return new Bp(e)}function qQ(e){return new Dr(e)}function XQ(e){return new Lp(e)}function KQ(e){return new Sg(e)}function ZQ(e){return new Ng(e)}var YQ=y3,JQ=g3,QQ=x3,eee=w3;function tee(e){return new cg(e)}function nee(e){return new hg(e)}function ree(e){return new dg(e)}function aee(e){return new tg(e)}var B0={};Pe(B0,{MAPE:()=>Cte,MSE:()=>Mte,binaryAccuracy:()=>wte,binaryCrossentropy:()=>bte,categoricalAccuracy:()=>vte,categoricalCrossentropy:()=>kte,cosineProximity:()=>Ste,mape:()=>Rte,meanAbsoluteError:()=>Tte,meanAbsolutePercentageError:()=>Ete,meanSquaredError:()=>Fte,mse:()=>$te,precision:()=>Ite,recall:()=>Nte,sparseCategoricalAccuracy:()=>_te});function wte(e,t){return gy(e,t)}function bte(e,t){return R3(e,t)}function _te(e,t){return F3(e,t)}function vte(e,t){return xy(e,t)}function kte(e,t){return wy(e,t)}function Ite(e,t){return C3(e,t)}function Nte(e,t){return vee(e,t)}function Ste(e,t){return Ay(e,t)}function Tte(e,t){return Tp(e,t)}function Ete(e,t){return El(e,t)}function Cte(e,t){return El(e,t)}function Rte(e,t){return El(e,t)}function Fte(e,t){return xi(e,t)}function Mte(e,t){return xi(e,t)}function $te(e,t){return xi(e,t)}var V0={};Pe(V0,{modelFromJSON:()=>rte});var U0={};Pe(U0,{l1:()=>Ote,l1l2:()=>Dte,l2:()=>zte});function Dte(e){return new vc(e)}function Ote(e){return ote(e)}function zte(e){return lte(e)}var H0=class extends Tl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ta))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hp(e,t){return e<t}function v7(e,t){return e>t}var j0=class extends H0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hp:this.mode==="max"?this.monitorFunc=v7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=v7:this.monitorFunc=Hp,this.monitorFunc===Hp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hp?Infinity:-Infinity}async onEpochEnd(e,t){await Ba(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Lte(e){return new j0(e)}var O8={earlyStopping:Lte},Nr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Nr||(Nr={}));var k7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(k7||(k7={}));var Tg={};function z8(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Tg[e]=n}function I7(e){return Tg[e]}function L8(e){delete Tg[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Nn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Nn(h,n,r,a));let u=Nn(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function Nn(e,t,n,r){let[a,s]=zn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[jp(a,o)]);return i!==void 0?t[jp(a,i)][s]:void 0}function Pte(e,t,n){return t[jp(e,n.currentContextId)]}function la(e,t){let[n,r]=zn(e);return[jp(n,t&&t.currentContextId),r]}function jp(e,t){return t?`${e}-${t}`:e}function zn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Gp(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function ua(e){return e.kept?e:Tr(e)}var N7={};Pe(N7,{json:()=>Wte});var Wte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],S7={};Pe(S7,{json:()=>Bte});var Bte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T7={};Pe(T7,{json:()=>Vte});var Vte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],E7={};Pe(E7,{json:()=>Ute});var Ute=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],C7={};Pe(C7,{json:()=>Hte});var Hte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],R7={};Pe(R7,{json:()=>jte});var jte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F7={};Pe(F7,{json:()=>Gte});var Gte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],M7={};Pe(M7,{json:()=>qte});var qte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],$7={};Pe($7,{json:()=>Xte});var Xte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],D7={};Pe(D7,{json:()=>Kte});var Kte=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],O7={};Pe(O7,{json:()=>Zte});var Zte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],z7={};Pe(z7,{json:()=>Yte});var Yte=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],L7={};Pe(L7,{json:()=>Jte});var Jte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],P7={};Pe(P7,{json:()=>Qte});var Qte=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],W7={};Pe(W7,{json:()=>ene});var ene=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],B7={};Pe(B7,{json:()=>tne});var tne=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],V7={};Pe(V7,{json:()=>nne});var nne=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],H7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[N7,S7,T7,E7,C7,R7,F7,O7,D7,M7,z7,L7,P7,W7,B7,V7,$7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=la(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(c).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=la(f),A=i[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=la(f),A=i[m];A&&(A.signatureKey=u[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=I7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Eg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Eg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Rg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Rg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Og(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Og(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Cg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Pg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Pg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Dg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Lg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Lg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Mg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Mg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=$g(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$g(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=U7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=U7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=la(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Fg(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=la(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=la(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function rne(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function j7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):rne(e);return t?n:n.toLowerCase()}function Eg(e,t,n,r=!1){let a=e[t];return a!=null?j7(a.s,r):n}function Cg(e,t,n){let r=e[t];return r?r.b:n}function Rg(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Fg(e){switch(typeof e=="string"&&(e=Nr[e]),e){case Nr.DT_FLOAT:return"float32";case Nr.DT_INT32:case Nr.DT_INT64:case Nr.DT_INT8:case Nr.DT_UINT8:return"int32";case Nr.DT_BOOL:return"bool";case Nr.DT_DOUBLE:return"float32";case Nr.DT_STRING:return"string";default:return null}}function U7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Mg(e,t,n){let r=e[t];return r&&r.type?Fg(r.type):n}function $g(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Fg(a)):n}function G7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Dg(e,t,n){let r=e[t];return r&&r.shape?G7(r.shape):n}function Og(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function zg(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>j7(s,r)):n}function Lg(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>G7(a)):n}function Pg(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var ane=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return Nn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Nn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Rg(this.node.rawAttrs,e,t);if(n.s!=null)return Eg(this.node.rawAttrs,e,t);if(n.b!=null)return Cg(this.node.rawAttrs,e,t);if(n.shape!=null)return Dg(this.node.rawAttrs,e,t);if(n.type!=null)return Mg(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Og(this.node.rawAttrs,e,t);if(n.list.s!=null)return zg(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Lg(this.node.rawAttrs,e,t);if(n.list.b!=null)return Pg(this.node.rawAttrs,e,t);if(n.list.type!=null)return $g(this.node.rawAttrs,e,t)}return t}},sne=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Hh(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[tm(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[W(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[ke(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[qf(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Uh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[we(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[Xo(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Rr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Qr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[pd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ine=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(k("x",e,t,n))];case"Acos":return[$f(k("x",e,t,n))];case"Acosh":return[Df(k("x",e,t,n))];case"Asin":return[zf(k("x",e,t,n))];case"Asinh":return[Lf(k("x",e,t,n))];case"Atan":return[Pf(k("x",e,t,n))];case"Atan2":return[Wf(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[Bf(k("x",e,t,n))];case"Ceil":return[Uf(k("x",e,t,n))];case"Complex":return[va(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[_u(k("x",e,t,n))];case"Cosh":return[Kh(k("x",e,t,n))];case"Elu":return[Ho(k("x",e,t,n))];case"Erf":return[Xf(k("x",e,t,n))];case"Exp":return[jn(k("x",e,t,n))];case"Expm1":return[Kf(k("x",e,t,n))];case"Floor":return[jo(k("x",e,t,n))];case"Log":return[En(k("x",e,t,n))];case"Log1p":return[Qh(k("x",e,t,n))];case"Imag":return[Yh(k("x",e,t,n))];case"Neg":return[_t(k("x",e,t,n))];case"Reciprocal":return[nm(k("x",e,t,n))];case"Real":return[Eu(k("x",e,t,n))];case"Relu":return[Mr(k("x",e,t,n))];case"Round":return[rm(k("x",e,t,n))];case"Selu":return[od(k("x",e,t,n))];case"Sigmoid":return[nr(k("x",e,t,n))];case"Sin":return[ld(k("x",e,t,n))];case"Sign":return[sm(k("x",e,t,n))];case"Sinh":return[ud(k("x",e,t,n))];case"Softplus":return[Go(k("x",e,t,n))];case"Sqrt":return[Qt(k("x",e,t,n))];case"Square":return[ot(k("x",e,t,n))];case"Tanh":return[Vo(k("x",e,t,n))];case"Tan":return[lm(k("x",e,t,n))];case"ClipByValue":return[wn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[sd(k("x",e,t,n))];case"Rsqrt":return[id(Nn(e.inputNames[0],t,n))];case"Prod":return[rd(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[ku(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[Tu(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];v.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function q7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ec(e,t,n){let r=Wg(e,n),a=!q7(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Wg(s.shape,r)}),!q7(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Wg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var one=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),dr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Ar([],[0].concat(this.elementShape));let n=this.readMany(e);return dr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Fn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Ar([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return dr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),lt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,sr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];V(()=>{t=j(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=j(Me(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Cc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);dr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=Ie(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Cc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);dr(e,this.elementShape,"TensorList shape mismatch: ");let r=Ec(this.elementShape,this.tensors,e);return V(()=>{let a=this.tensors.map(s=>j(s,r));return Fn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ec(this.elementShape,this.tensors,e),r=this.tensors.pop();return dr(r.shape,e,"TensorList shape mismatch: "),j(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(dr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);dr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Ec(this.elementShape,this.tensors,t);return j(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);dr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);dr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Ec(this.elementShape,this.tensors,n);return e.length===0?Ar([],[0].concat(r)):V(()=>{let a=e.map(s=>j(this.tensors[s],r));return Fn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);dr(this.elementShape,t,"TensorList shape mismatch: ");let n=Ec(this.elementShape,this.tensors,t);return this.size()===0?Ar([],[0].concat(n)):V(()=>{let r=this.tensors.map(a=>j(a,n));return lt(r,0)})}};function lne(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);dr(a,t,"TensorList shape mismatch: ");let s=sr(e);return new Cc(s,t,r)}function une(e,t,n){return new Cc([],e,t,n)}function cne(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Cc([],n,e.dtype,r),i=sr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function hne(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Wg(s,n),o=r===0?0:e.size/r,l=V(()=>{let c=[];e=j(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],f=[1,t[h],o];c[h]=j(Me(e,p,f),i)}return e.dispose(),c}),u=new Cc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var dne=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[ua(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=ua(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>Nn(a,t,n)!==void 0);if(r){let a=Nn(r,t,n);return[ua(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[ua(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[ua(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[ua(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new one(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Ie(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=cne(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=une(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=lne(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=hne(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function X7(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=Gp(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,f]=k("args",e,t,n),m=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var pne=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[qh(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=Gp(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Yr(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=X7(e,t,n);return[Ta.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=X7(e,t,n);return[Ta.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=Gp(e,t,n);return[Xh(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=Gp(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[Uo(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Hf(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[xu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Nu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=m0(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Vf(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Qf(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[Gf(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fne=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[vu(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[h0(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[A0(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[Bo(r,a,s,i)]}case"Ones":return[Fr(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Cn(k("x",e,t,n))];case"RandomUniform":return[Ko(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[ad(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[fd(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Ft(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[je(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bg(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var mne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Bg(e,t,n),u=await Tt.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Tt.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n);return[await Tt.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ye(k("condition",e,t,n),"bool"),a=[await hm(r)];return r.dispose(),a}case"ListDiff":return x0(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ane=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=um(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=md(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=md(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yne=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[Nn(e.name,t,n)||r];case"Placeholder":return[Nn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[ua(u)]}case"IdentityN":return k("x",e,t,n).map(u=>ua(u));case"Snapshot":let a=k("x",e,t,n);return[ua(a)];case"Shape":return[rn(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>rn(u.shape));case"Size":return[Ie(k("x",e,t,n).size,"int32")];case"Rank":return[Ie(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,Ht(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),V(()=>{let r=sr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Fn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},xne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new gne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wne=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Tt.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Tt.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Tt.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bne=(e,t,n)=>{switch(e.op){case"Equal":return[ka(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[Ks(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[rr(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Na(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Jh(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[Xs(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[ar(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Iu(k("a",e,t,n))];case"LogicalOr":return[td(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[bn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_ne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[qe(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[at(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ta.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vne=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Gs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[Gs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[Yf(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Ru(k("x",e,t,n))];case"LogSoftmax":return[ed(k("x",e,t,n))];case"SparseToDense":return[dm(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kne=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Gn(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[vt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[qo(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Ce(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[jh(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[yu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[gu(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[Of(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[rd(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Zh(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[n0(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[i0(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ine=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[lt(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[qs(r,ye(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[qs(s,ye(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=k("x",e,t,n);return[Rn(s,a)]}case"ReverseV2":{let r=k("axis",e,t,n),a=k("x",e,t,n);return[Rn(a,r)]}case"Slice":{let r=k("begin",e,t,n),a=k("size",e,t,n);return[Me(k("x",e,t,n),r,a)]}case"StridedSlice":{let r=k("begin",e,t,n),a=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),h=k("x",e,t,n);return[om(h,r,a,s,i,o,l,u,c)]}case"Pack":return V(()=>{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=Sa(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(Sa(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:j(l,s)});return[Fn(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return sr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Ia(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return un(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[b0(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[_0(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[dm(r,s,a,s.dtype===i.dtype?i:ye(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nne=(e,t,n)=>{switch(e.op){case"FFT":return[Fu(k("x",e,t,n))];case"IFFT":return[Zo(k("x",e,t,n))];case"RFFT":return[Mu(k("x",e,t,n))];case"IRFFT":return[dd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sne=(e,t,n)=>{switch(e.op){case"Cast":return[ye(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[Tn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[Sa(k("x",e,t,n),r)]}case"Reshape":return[j(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[em(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Jr(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[Su(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[wu(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[jf(k("x",e,t,n),r,a)]}case"BroadcastTo":return[bu(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function K7(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return V(()=>sne(s,i,o));case"basic_math":return V(()=>ine(s,i,o));case"control":return dne(s,i,o);case"convolution":return V(()=>pne(s,i,o));case"creation":return V(()=>fne(s,i,o));case"dynamic":return mne(s,i,o);case"evaluation":return V(()=>Ane(s,i,o));case"image":return V(()=>wne(s,i,o));case"graph":return V(()=>yne(s,i,o));case"logical":return V(()=>bne(s,i,o));case"matrices":return V(()=>_ne(s,i,o));case"normalization":return V(()=>vne(s,i,o));case"reduction":return V(()=>kne(s,i,o));case"slice_join":return V(()=>Ine(s,i,o));case"spectral":return V(()=>Nne(s,i,o));case"transformation":return V(()=>Sne(s,i,o));case"hash_table":return xne(s,i,o,r);case"custom":let l=I7(s.op);if(l&&l.customExecutor)return l.customExecutor(new ane(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Z7=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function J7(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>zn(d)[0]),c=[];r!=null&&(c=r.map(d=>zn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((Y7(d)||Tne(d)||Ene(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Cne(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>zn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Rne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Fne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Mne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function Y7(e){return Rne.indexOf(e.op)>=0}function Tne(e){return Fne.indexOf(e.op)>=0}function Ene(e){return Mne.indexOf(e.op)>=0}var Vg=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Vg(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=J7(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Cne(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[zn(c)[0]]),a=t.map(c=>zn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return V(()=>{let c=new Z7(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=zn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=K7(m,h,c,this._resourceManager);if(v.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(f=>Nn(f,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Pte(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Z7(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>Nn(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[zn(g)[0]]),i=n.map(g=>zn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=J7(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[b,w]=zn(g),_=[];_[w]=e[g],p[b]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!Y7(g)&&!Nn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=la(c.node.name,n)),r[c.node.name]==null){let d=K7(c.node,r,n,this._resourceManager);h||([h]=la(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=la(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Nn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Nn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=zn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=zn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},$ne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Dne="?tfjs-format=file",One="model.json",G0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new $ne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=xn.browserHTTPRequest(e,this.loadOptions);else{let t=xn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(xn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=xn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Vg(H7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=H7.Instance.transformGraph(e.modelInitializer);this.initializer=new Vg(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=xn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Hn(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${One}${Dne}`);let n=new G0(e,t);return await n.load(),n}var P8="3.2.0",q0={};Pe(q0,{CSVDataset:()=>ev,Dataset:()=>Rl,FileDataSource:()=>tv,TextLineDataset:()=>Q7,URLDataSource:()=>nv,array:()=>zne,csv:()=>Pne,func:()=>Wne,generator:()=>Bne,microphone:()=>Une,version_data:()=>Hne,webcam:()=>Vne,zip:()=>Lne});var jne=Qo(X0()),Gne=Qo(X0());function qne(e,t){return qp(e,t)}function qp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Fl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=qp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Xne(e,t=av){return rv(e,t)}function rv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Fl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=rv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function av(e){return e===null?null:Fl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function sv(e,t){let n=new Map;qp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return qp(e,t,n)}function Fl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Je))}function Zne(e){return e==null||Kne(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Je||v.isTypedArray(e)}function Kne(e){return e===null||typeof e!="object"&&typeof e!="function"}function Jne(e){return qne(e,Yne)}function Yne(e){return e instanceof Je?{value:e.clone(),recurse:!1}:Fl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var iv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Ug=class extends iv{constructor(){super(Ug.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Ug.INITIAL_CAPACITY=32;function ov(e){return new Qne(e)}function Hg(e){return new ere(e)}function tre(e,t){return new lv(e,t)}function rre(e,t=ja.FAIL){return new nre(e,t)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new cre(this,e)}filter(e){return new lre(this,e)}map(e){return new ure(this,e)}mapAsync(e){return new uv(this,e)}serialMapAsync(e){return new uv(this,e).serial()}flatmap(e){return new hre(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new ore(this,e,t)}columnMajorBatch(e,t=!0,n=av){return this.rowMajorBatch(e,t).map(r=>Xne(r,n))}concatenate(e,t){return new lv(ov([this,e]),t)}take(e){return e<0||e==null?this:new ire(this,e)}skip(e){return e<0||e==null?this:new sre(this,e)}prefetch(e){return new cv(this,e)}shuffle(e,t){return new dre(this,e,t)}serial(){return new are(this)}},Qne=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Jne(e),done:!1}}},ere=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},are=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},sre=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Fe(e.value)}return this.upstream.next()}},ire=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},ore=class extends Kt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},lre=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Fe(e.value)}}},ure=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},cre=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},uv=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},jg=class extends Kt{constructor(){super();this.outputQueue=new Ug,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},hre=class extends jg{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return!0}},lv=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ja;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ja||(ja={}));var nre=class extends Kt{constructor(e,t=ja.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Kt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await sv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ja.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ja.SHORTEST:return{value:null,done:!0};case ja.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},cv=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new iv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},dre=class extends cv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Gne.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Rl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Ln(async()=>(await n.iterator()).columnMajorBatch(e,t,pre),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Ln(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Ln(async()=>(await t.iterator()).filter(r=>V(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Ln(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return Ln(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Ln(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Ln(async()=>{let r=Hg(async()=>({value:await t.iterator(),done:!1}));return tre(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Ln(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=jne.alea(t||v.now().toString());return Ln(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Ln(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Rl.MAX_BUFFER_SIZE=1e4;function Ln(e,t=null){return new class extends Rl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function zne(e){return Ln(async()=>ov(e),e.length)}function Lne(e){if(!Fl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Ln(async()=>{let n=await sv(e,r=>{if(r instanceof Rl)return{value:r.iterator(),recurse:!1};if(Fl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return rre(n,ja.SHORTEST)},t)}function pre(e){if(e===null)return null;let t=e[0];return Zne(t)?{value:fre(e),recurse:!1}:{value:null,recurse:!0}}function fre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Je?Fn(e):Ar(e)}var Q7=class extends Rl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Xp='"',Rc=Symbol("out"),hv=Symbol("field"),Kp=Symbol("quote"),Gg=Symbol("quoteafterquote"),dv=Symbol("quoteinquote"),ev=class extends Rl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Q7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Rc;for(let i=0;i<a;i++)switch(s){case Rc:switch(e.charAt(i)){case Xp:r=i+1,s=Kp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Rc;break;default:s=hv,r=i;break}break;case hv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Rc,r=i+1;break;default:}break;case Kp:switch(e.charAt(i)){case Xp:s=Gg;break;default:}break;case Gg:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Rc,r=i+1;break;case Xp:s=Kp;break;default:s=dv;break}break;case dv:switch(e.charAt(i)){case Xp:s=Kp;break;default:}break;default:}if(s===Gg?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},pv=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new pv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Ar(n,t)}},fv=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=rn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=yr([s,a,o,i],[1,4])}else this.cropBox=yr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new fv(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=mu.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=Tn(ye(e,"float32"),0),n;n=Tt.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return j(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},mv=class{},Av=class extends Kt{split(e){return new mre(this,e)}},mre=class extends Av{constructor(e,t){super();this.upstream=e,this.impl=new Are(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Are=class extends jg{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},gre=class extends Kt{decodeUTF8(){return new yre(this)}},yre=class extends Av{constructor(e){super();this.upstream=e,this.impl=new xre(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xre=class extends jg{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=_k();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},yv=class extends gre{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function bre(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=wre(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new yv(s,t)}else throw new Error(a.statusText)}var wre=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function gv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var tv=class extends mv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(gv(this.input)&&Y().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new yv(this.input,this.options)}},nv=class extends mv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return gv(this.url)?new tv(this.url,this.fileOptions).iterator():bre(this.url,this.fileOptions)}};function Pne(e,t={}){return new ev(new nv(e),t)}function Wne(e){let t=Hg(e);return Ln(async()=>t)}function Bne(e){return Ln(async()=>{let t=await e();return Hg(()=>t.next())})}async function Vne(e,t){return fv.create(e,t)}async function Une(e){return pv.create(e)}var Hne="3.2.0",W8={tfjs:vk,"tfjs-core":kk,"tfjs-data":Ik,"tfjs-layers":Nk,"tfjs-converter":Sk,"tfjs-backend-cpu":N0,"tfjs-backend-webgl":E0,"tfjs-backend-wasm":F0},Pn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _re(){if(!Y2(Pn.name)){Le("backend registration:",Pn.name);try{Pn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Pn.width,Pn.height):document.createElement("canvas")}catch(e){Le("error: cannot create canvas:",e);return}try{Pn.gl=Pn.canvas.getContext("webgl2",Pn.webGLattr)}catch(e){Le("error: cannot get WebGL2 context:",e);return}try{mm(2,Pn.gl)}catch(e){Le("error: cannot set WebGL2 context:",e);return}try{let e=new Am(Pn.gl);Au(Pn.name,()=>new Du(e),Pn.priority)}catch(e){Le("error: cannot register WebGL backend:",e);return}try{pu("webgl").forEach(e=>{let t={...e,backendName:Pn.name};Wo(t)})}catch(e){Le("error: cannot update WebGL backend registration:",e);return}try{Kl.set("WEBGL_VERSION",2)}catch(e){Le("error: cannot set WebGL backend flags:",e);return}Le("backend registered:",Pn.name)}}var xv=6;function vre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var kre=e=>({startEndTensor:e,startPoint:Me(e,[0,0],[-1,2]),endPoint:Me(e,[0,2],[-1,2])});function Ire(e,t,n){let r=Me(e,[0,1],[-1,2]),a=ie(r,t),s=Me(e,[0,3],[-1,2]),i=ke(s,n),o=ke(a,n),l=ke(i,2),u=we(o,l),c=ie(o,l),h=W(u,n),d=W(c,n);return Gh([h,d],1)}var Nre=class{constructor(e,t){this.blazeFaceModel=e,this.width=t.face.detector.inputSize,this.height=t.face.detector.inputSize,this.anchorsData=vre(t.face.detector.inputSize),this.anchors=yr(this.anchorsData),this.inputSize=rn([this.width,this.height]),this.config=t,this.scaleFaces=.8}async getBoundingBoxes(e){if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return null;let[t,n,r]=V(()=>{let u=e.resizeBilinear([this.width,this.height]),c=we(u.div(127.5),1),h=this.blazeFaceModel.predict(c),d;if(Array.isArray(h)){let A=h.sort((b,w)=>b.size-w.size),y=lt([A[0],A[2]],2),g=lt([A[1],A[3]],2);d=lt([g,y],1).squeeze(0)}else d=h.squeeze();let p=Ire(d,this.anchors,this.inputSize),f=Me(d,[0,0],[-1,1]),m=nr(f).squeeze();return[d,p,m]}),a=await Tt.nonMaxSuppressionAsync(n,r,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),s=a.arraySync();a.dispose();let i=s.map(u=>Me(n,[u,0],[1,-1])).map(u=>{let c=u.arraySync();return u.dispose(),c}),o=r.dataSync(),l=[];for(let u=0;u<i.length;u++){let c=s[u],h=o[c];if(h>this.config.face.detector.minConfidence){let d=kre(i[u]),p=this.anchorsData[c],f=V(()=>Me(t,[c,xv-1],[1,-1]).squeeze().reshape([xv,-1]));l.push({box:d,landmarks:f,anchor:p,confidence:h})}}return t.dispose(),n.dispose(),r.dispose(),t.dispose(),{boxes:l,scaleFactor:[e.shape[2]/this.width,e.shape[1]/this.height]}}};async function D4(e){let t=await Hn(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Nre(t,e);return e.debug&&Le(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function Sre(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Zp(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Yp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function wv(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Tt.cropAndResize(t,s,[0],n)}function qg(e,t=1.6){let n=Yp(e),r=Zp(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Xg(e){let t=Yp(e),n=Zp(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,landmarks:e.landmarks}}var Kg=[[1,0,0],[0,1,0],[0,0,1]];function Tre(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Ere(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tre(n)}function bv(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function vi(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Cre(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function _v(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(vi(e[a],Cre(t,s)))}return n}function vv(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=bv(t[0],t[1]),i=_v(s,a),o=bv(-t[0],-t[1]);return _v(i,o)}function Rre(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-vi(t[0],n),-vi(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Fre(e,t){return[vi(e,t[0]),vi(e,t[1])]}var ga={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},kv=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Zg=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ql=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],Mre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],$re=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Dre=[33,133,362,263,1,78,308],zce=Mre.map(e=>Zg[e]),Lce=$re.map(e=>Zg[e]),Pce=Dre.map(e=>Zg[e]),Ore=468,zre=13,Lre=[zre,ga.midwayBetweenEyes[0]],Pre=3,Wre=2,Bre=[Pre,Wre],Yg=ga.leftEyeLower0,Jg=[Yg[0],Yg[Yg.length-1]],Qg=ga.rightEyeLower0,e2=[Qg[0],Qg[Qg.length-1]],Vre=3,Ure=4,Hre=71,t2=76;function Jp(e,t,n,r){for(let a=0;a<kv.length;a++){let{key:s,indices:i}=kv[a],o=ga[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var O4=class{constructor(e,t,n,r){this.storedBoxes=[],this.boundingBoxDetector=e,this.meshDetector=t,this.irisModel=n,this.meshWidth=r.face.mesh.inputSize,this.meshHeight=r.face.mesh.inputSize,this.irisSize=r.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(e,t,n,r){let a=Zp({startPoint:t.startPoint,endPoint:t.endPoint}),s=[a[0]/this.meshWidth,a[1]/this.meshHeight],i=e.map(h=>[s[0]*(h[0]-this.meshWidth/2),s[1]*(h[1]-this.meshHeight/2),h[2]]),o=n!==0?vv(n,[0,0]):Kg,l=n!==0?i.map(h=>[...Fre(h,o),h[2]]):i,u=n!==0?Rre(r):Kg,c=[...Yp({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(h=>[h[0]+vi(c,u[0]),h[1]+vi(c,u[1]),h[2]])}getLeftToRightEyeDepthDifference(e){let t=e[Jg[0]][2],n=e[e2[0]][2];return t-n}getEyeBox(e,t,n,r,a=!1){let s=Xg(qg(this.calculateLandmarksBoundingBox([e[n],e[r]]),this.irisEnlarge)),i=Zp(s),o=Tt.cropAndResize(t,[[s.startPoint[1]/this.meshHeight,s.startPoint[0]/this.meshWidth,s.endPoint[1]/this.meshHeight,s.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return a&&(o=Tt.flipLeftRight(o)),{box:s,boxSize:i,crop:o}}getEyeCoords(e,t,n,r=!1){let a=[];for(let s=0;s<t2;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*n[0]+t.startPoint[0],o/this.irisSize*n[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Hre)}}getAdjustedIrisCoords(e,t,n){let r=e[ga[`${n}EyeUpper0`][Vre]][2],a=e[ga[`${n}EyeLower0`][Ure]][2],s=(r+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=r:o===4&&(l=a),[i[0],i[1],l]})}async predict(e,t){let n=!1,r;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.videoOptimized)&&(r=await this.boundingBoxDetector.getBoundingBoxes(e),this.skipped=0),t.videoOptimized&&this.skipped++,r&&r.boxes&&(!t.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let s of r.boxes)this.storedBoxes.push({startPoint:s.box.startPoint.dataSync(),endPoint:s.box.endPoint.dataSync(),landmarks:s.landmarks,confidence:s.confidence});this.storedBoxes.length>0&&(n=!0)}if(t.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),n){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let s=0;s<this.storedBoxes.length;s++){let i=Sre({startPoint:this.storedBoxes[s].startPoint,endPoint:this.storedBoxes[s].endPoint},r.scaleFactor),o=qg(i),l=Xg(o),u=this.storedBoxes[s].landmarks.arraySync(),c=this.storedBoxes[s].confidence;this.storedBoxes[s]={...l,confidence:c,landmarks:u}}}r&&r.boxes&&r.boxes.forEach(s=>{s.box.startPoint.dispose(),s.box.endPoint.dispose(),s.landmarks.dispose()});let a=V(()=>this.storedBoxes.map((s,i)=>{let o,l=0,u;if(t.face.detector.rotation){let[g,b]=s.landmarks.length>=Ore?Lre:Bre;l=Ere(s.landmarks[g],s.landmarks[b]);let w=Yp({startPoint:s.startPoint,endPoint:s.endPoint}),_=[w[0]/e.shape[2],w[1]/e.shape[1]],x=Tt.rotateWithOffset(e,l,0,_);u=vv(-l,w),o=wv({startPoint:s.startPoint,endPoint:s.endPoint},x,[this.meshHeight,this.meshWidth]).div(255)}else{u=Kg;let g=e.clone();o=wv({startPoint:s.startPoint,endPoint:s.endPoint},g,[this.meshHeight,this.meshWidth]).div(255)}if(!t.face.mesh.enabled)return{coords:null,box:s,faceConfidence:null,confidence:s.confidence,image:o};let[,c,h]=this.meshDetector.predict(o),d=c.dataSync()[0];if(d<t.face.detector.minConfidence)return null;let p=j(h,[-1,3]).arraySync();if(t.face.iris.enabled){let{box:g,boxSize:b,crop:w}=this.getEyeBox(p,o,Jg[0],Jg[1],!0),{box:_,boxSize:x,crop:N}=this.getEyeBox(p,o,e2[0],e2[1]),T=this.irisModel.predict(lt([w,N])).dataSync(),E=T.slice(0,t2*3),{rawCoords:M,iris:D}=this.getEyeCoords(E,g,b,!0),L=T.slice(t2*3),{rawCoords:P,iris:U}=this.getEyeCoords(L,_,x),H=this.getLeftToRightEyeDepthDifference(p);Math.abs(H)<30?(Jp(p,M,"left",null),Jp(p,P,"right",null)):H<1?Jp(p,M,"left",["EyeUpper0","EyeLower0"]):Jp(p,P,"right",["EyeUpper0","EyeLower0"]);let X=this.getAdjustedIrisCoords(p,D,"left"),G=this.getAdjustedIrisCoords(p,U,"right");p=p.concat(X).concat(G)}let f=this.transformRawCoords(p,s,l,u),m=qg(this.calculateLandmarksBoundingBox(f)),A=Xg(m),y={coords:yr(f),box:m,faceConfidence:d,boxConfidence:s.confidence,image:o,rawCoords:p};return t.face.mesh.returnRawData||delete y.rawCoords,this.storedBoxes[i]={...A,landmarks:f,confidence:s.confidence,faceConfidence:d},y}));return a=a.filter(s=>s!==null),this.detectedFaces=a.length,a}calculateLandmarksBoundingBox(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),r=[Math.min(...t),Math.min(...n)],a=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:a,landmarks:e}}},Iv=ih(z4()),Nv={};er(Nv,{FaceBoxes:()=>Sv,load:()=>jre});var Tv={};function Ml(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};Tv[e]=i,Le("Human profiler",e,i)}var Sv=class{constructor(e,t){this.enlarge=1.1,this.model=e,this.config=t}async estimateFaces(e,t){t&&(this.config=t);let n=[],r=Tt.resizeBilinear(e,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),a=r.toInt(),s,i;if(t.profile){let o=await js(()=>this.model.executeAsync(a));s=o.result[0].dataSync(),i=o.result[1].squeeze().arraySync(),o.result.forEach(l=>l.dispose()),Ml("faceboxes",o)}else{let[o,l,u]=await this.model.executeAsync(a);s=o.dataSync();let c=l.squeeze();i=c.arraySync(),o.dispose(),l.dispose(),c.dispose(),u.dispose()}a.dispose(),r.dispose();for(let o in i)if(s[o]&&s[o]>this.config.face.detector.minConfidence){let l=[i[o][0]/this.enlarge,i[o][1]/this.enlarge,i[o][2]*this.enlarge,i[o][3]*this.enlarge],u=[l[1],l[0],l[3]-l[1],l[2]-l[0]],c=[parseInt((u[0]*e.shape[2]).toString()),parseInt((u[1]*e.shape[1]).toString()),parseInt((u[2]*e.shape[2]).toString()),parseInt((u[3]*e.shape[1]).toString())],h=Tt.cropAndResize(e,[l],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),d=h.div([255]);h.dispose(),n.push({confidence:s[o],box:c,boxRaw:this.config.face.mesh.returnRawData?u:null,image:d})}return n}};async function jre(e){let t=await Hn(e.face.detector.modelPath);e.debug&&Le(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new Sv(t,e);return e.face.mesh.enabled&&e.debug&&Le(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Le(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var Ev={};er(Ev,{load:()=>n2,predict:()=>r2});var $l,Qp={age:0},e1=Number.MAX_SAFE_INTEGER;async function n2(e){return $l||($l=await Hn(e.face.age.modelPath),e.debug&&Le(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),$l}async function r2(e,t){return $l?e1<t.face.age.skipFrames&&t.videoOptimized&&Qp.age&&Qp.age>0?(e1++,Qp):(t.videoOptimized?e1=0:e1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Tt.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=W(r,[255]);Fe(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await $l.predict(a));else{let o=t.face.age.enabled?await js(()=>$l.predict(a)):{};s=o.result.clone(),o.result.dispose(),Ml("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),Qp=i,n(i)})):null}var Cv={};er(Cv,{load:()=>a2,predict:()=>s2});var ki,i2={gender:""},t1=Number.MAX_SAFE_INTEGER,o2=!1,l2=[.2989,.587,.114];async function a2(e){return ki||(ki=await Hn(e.face.gender.modelPath),o2=ki.inputs[0].shape[3]===1,e.debug&&Le(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),ki}async function s2(e,t){return ki?t1<t.face.gender.skipFrames&&t.videoOptimized&&i2.gender!==""?(t1++,i2):(t.videoOptimized?t1=0:t1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Tt.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;o2?a=V(()=>{let[o,l,u]=un(r,3,3),c=W(o,l2[0]),h=W(l,l2[1]),d=W(u,l2[2]);return Hh([c,h,d]).sub(.5).mul(2)}):a=W(r,[255]),Fe(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ki.predict(a));else{let o=t.face.gender.enabled?await js(()=>ki.predict(a)):{};s=o.result.clone(),o.result.dispose(),Ml("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(o2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),i2=i,n(i)})):null}var Rv={};er(Rv,{load:()=>u2,predict:()=>c2});var Gre=["angry","disgust","fear","happy","sad","surprise","neutral"],Dl,h2=[],n1=Number.MAX_SAFE_INTEGER,d2=[.2989,.587,.114],Fv=1;async function u2(e){return Dl||(Dl=await Hn(e.face.emotion.modelPath),e.debug&&Le(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Dl}async function c2(e,t){return Dl?n1<t.face.emotion.skipFrames&&t.videoOptimized&&h2.length>0?(n1++,h2):(t.videoOptimized?n1=0:n1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Tt.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=un(r,3,3);r.dispose();let o=W(a,d2[0]),l=W(s,d2[1]),u=W(i,d2[2]);a.dispose(),s.dispose(),i.dispose();let c=Hh([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=V(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await js(()=>Dl.predict(h));p=f.result.dataSync(),f.result.dispose(),Ml("emotion",f)}else{let f=await Dl.predict(h);p=f.dataSync(),Fe(f)}for(let f=0;f<p.length;f++)Fv*p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*Fv*p[f])/100),emotion:Gre[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),h2=d,n(d)})):null}var Ol;async function Mv(e){return Ol||(Ol=await Hn(e.face.embedding.modelPath),e.debug&&Le(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Ol}function qre(e,t){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function $v(e,t){return Ol?new Promise(async n=>{let r=Tt.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await js(()=>Ol.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),Ml("emotion",s)}else{let s=await Ol.predict({img_inputs:r});a=[...s.dataSync()],Fe(s)}r.dispose(),n(a)}):null}var Dv={};er(Dv,{PoseNet:()=>Ov,load:()=>p2});var Xre=[-123.15,-115.9,-103.06];function Kre(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function Zre(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var Yre=class{constructor(e){this.model=e}predict(e,t){return V(()=>{let n=(t.body.modelType==="posenet-resnet"?e.toFloat().add(Xre):e.toFloat().div(127.5).sub(1)).expandDims(0),r=this.model.predict(n).map(s=>s.squeeze([0])),a=t.body.modelType==="posenet-resnet"?Zre(r):Kre(r);return{heatmapScores:a.heatmap.sigmoid(),offsets:a.offsets,displacementFwd:a.displacementFwd,displacementBwd:a.displacementBwd}})}dispose(){this.model.dispose()}};function f2(e){return Math.floor(e/2)}var Jre=class{constructor(e,t){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=t}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(f2(e),e);)this.exchange(e,f2(e)),e=f2(e)}sink(e){for(;2*e<=this.numberOfElements;){let t=2*e;if(t<this.numberOfElements&&this.less(t,t+1)&&t++,!this.less(e,t))break;this.exchange(e,t),e=t}}getValueAt(e){return this.getElementValue(this.priorityQueue[e])}less(e,t){return this.getValueAt(e)<this.getValueAt(t)}exchange(e,t){let n=this.priorityQueue[e];this.priorityQueue[e]=this.priorityQueue[t],this.priorityQueue[t]=n}};function Qre(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function eae(e,t,n){let[r,a,s]=n.shape,i=new Jre(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||Qre(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}var zl=ih(Sf()),tae=ih(Sf());function zv(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+tae.NUM_KEYPOINTS)}}function Lv(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=zv(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function Pv(e,t,n){return e<t?t:e>n?n:e}function nae(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function Wv(e,t){return{x:e.x+t.x,y:e.y+t.y}}var m2=ih(Sf());function rae(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function aae(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+m2.NUM_KEYPOINTS)}}function sae(e,t){let n=[];for(let r=0;r<m2.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=aae(a,s,r,t);n.push(o),n.push(i)}return yr(n,[m2.NUM_KEYPOINTS,2])}function iae(e,t,n){return V(()=>e.toTensor().mul(Ie(t,"int32")).toFloat().add(sae(e,n)))}function oae(e,t){return V(()=>{let n=e.div(Ie(t,"int32"));return e.sub(n.mul(Ie(t,"int32")))})}function lae(e){let[t,n,r]=e.shape;return V(()=>{let a=e.reshape([t*n,r]).argMax(0),s=a.div(Ie(n,"int32")).expandDims(1),i=oae(a,n).expandDims(1);return lt([s,i],1)})}var Bv=zl.poseChain.map(([e,t])=>[zl.partIds[e],zl.partIds[t]]),A2=Bv.map(([,e])=>e),Vv=Bv.map(([e])=>e),uae=16;function cae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function y2(e,t,n,r){return{y:Pv(Math.round(e.y/t),0,n-1),x:Pv(Math.round(e.x/t),0,r-1)}}function Uv(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=y2(t.position,s,l,u),h=cae(e,c,i),d=Wv(t.position,h);for(let m=0;m<o;m++){let A=y2(d,s,l,u),y=zv(A.y,A.x,n,a);d=Wv({x:A.x*s,y:A.y*s},{x:y.x,y:y.y})}let p=y2(d,s,l,u),f=r.get(p.y,p.x,n);return{position:d,part:zl.partNames[n],score:f}}function hae(e,t,n,r,a,s){let i=t.shape[2],o=A2.length,l=new Array(i),{part:u,score:c}=e,h=Lv(u,r,n);l[u.id]={score:c,part:zl.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=A2[d],f=Vv[d];l[p]&&!l[f]&&(l[f]=Uv(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=Vv[d],f=A2[d];l[p]&&!l[f]&&(l[f]=Uv(d,l[p],f,t,n,r,a))}return l}async function dae(e,t,n){let r=0,a=lae(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=iae(l,uae,o),c=await u.buffer(),h=Array.from(rae(i,l)).map((p,f)=>(r+=p,{position:{y:c.get(f,0),x:c.get(f,1)},part:zl.partNames[f],score:p})),d=h.filter(p=>p.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:d,score:r/h.length}}var pae=1,Hv=16;function jv(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return nae(r,n,i.y,i.x)<=t})}function fae(e,t,n){return n.reduce((r,{position:a,score:s},i)=>(jv(e,t,a,i)||(r+=s),r),0)/n.length}function mae(e,t,n,r,a){let s=[],i=eae(a.body.scoreThreshold,pae,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=Lv(l.part,Hv,t);if(jv(s,o,u,l.part.id))continue;let c=hae(l,e,t,Hv,n,r),h=fae(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}async function Aae(e){return Promise.all(e.map(t=>t.buffer()))}function yae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:Math.trunc(s.x*n),y:Math.trunc(s.y*t)}}))}}function gae(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function Gv(e,[t,n],[r,a]){return e.map(s=>yae(s,t/r,n/a))}async function xae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await Aae([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await mae(o,l,u,c,n),d=Gv(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function wae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=[await dae(t.heatmapScores,t.offsets,n)],o=Gv(i,[a,s],[n.body.inputSize,n.body.inputSize]);r(o)})}var Ov=class{constructor(e){this.baseModel=e}async estimatePoses(e,t){let n=gae(e,[t.body.inputSize,t.body.inputSize]),r=this.baseModel.predict(n,t),a=t.body.maxDetections<2?await wae(e,r,t):await xae(e,r,t);return r.heatmapScores.dispose(),r.offsets.dispose(),r.displacementFwd.dispose(),r.displacementBwd.dispose(),n.dispose(),a}dispose(){this.baseModel.dispose()}};async function p2(e){let t=await Hn(e.body.modelPath),n=new Yre(t);return e.debug&&Le(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new Ov(n)}var qv={};er(qv,{HandPose:()=>Xv,load:()=>g2});function x2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function r1(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function bae(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Tt.cropAndResize(t,s,[0],n)}function _ae(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function w2(e,t=1.5){let n=r1(e),r=x2(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function b2(e){let t=r1(e),n=x2(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,palmLandmarks:e.palmLandmarks}}var vae=class{constructor(e,t,n){this.model=e,this.anchors=n.map(r=>[r.x_center,r.y_center]),this.anchorsTensor=yr(this.anchors),this.inputSizeTensor=rn([t,t]),this.doubleInputSizeTensor=rn([t*2,t*2])}normalizeBoxes(e){return V(()=>{let t=Me(e,[0,0],[-1,2]),n=Me(e,[0,2],[-1,2]),r=ie(ke(t,this.inputSizeTensor),this.anchorsTensor),a=ke(n,this.doubleInputSizeTensor),s=W(we(r,a),this.inputSizeTensor),i=W(ie(r,a),this.inputSizeTensor);return Gh([s,i],1)})}normalizeLandmarks(e,t){return V(()=>{let n=ie(ke(e.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[t]);return W(n,this.inputSizeTensor)})}async getBoxes(e,t){let n=this.model.predict(e),r=n.squeeze();n.dispose();let a=V(()=>nr(Me(r,[0,0],[-1,1])).squeeze()),s=a.dataSync(),i=Me(r,[0,1],[-1,4]),o=this.normalizeBoxes(i);i.dispose();let l=await Tt.nonMaxSuppressionAsync(o,s,t.hand.maxHands,t.hand.iouThreshold,t.hand.scoreThreshold),u=l.arraySync();a.dispose(),l.dispose();let c=[];for(let h of u)if(s[h]>=t.hand.minConfidence){let d=Me(o,[h,0],[1,-1]),p=Me(r,[h,5],[1,14]),f=V(()=>this.normalizeLandmarks(p,h).reshape([-1,2]));p.dispose(),c.push({box:d,palmLandmarks:f,confidence:s[h]})}return r.dispose(),o.dispose(),c}async estimateHandBounds(e,t){let n=e.shape[1],r=e.shape[2],a=V(()=>e.resizeBilinear([t.hand.inputSize,t.hand.inputSize]).div(127.5).sub(1)),s=await this.getBoxes(a,t);a.dispose();let i=[];if(!s||s.length===0)return i;for(let o of s){let l=o.box.dataSync(),u=l.slice(0,2),c=l.slice(2,4),h=o.palmLandmarks.arraySync();o.box.dispose(),o.palmLandmarks.dispose(),i.push(_ae({startPoint:u,endPoint:c,palmLandmarks:h,confidence:o.confidence},[r/t.hand.inputSize,n/t.hand.inputSize]))}return i}};function kae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Iae(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return kae(n)}var Kv=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ii(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Nae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function Zv(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ii(e[a],Nae(t,s)))}return n}function Yv(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=Kv(t[0],t[1]),i=Zv(s,a),o=Kv(-t[0],-t[1]);return Zv(i,o)}function Sae(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ii(t[0],n),-Ii(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Jv(e,t){return[Ii(e,t[0]),Ii(e,t[1])]}var Tae=5,Qv=1.65,e6=[0,5,9,13,17,1,2],Eae=0,Cae=2,Rae=class{constructor(e,t,n){this.handDetector=e,this.landmarkDetector=t,this.inputSize=n,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(e,t){let n=e.map(a=>Jv([...a,1],t)),r=this.calculateLandmarksBoundingBox(n);return w2(b2(r),Tae)}getBoxForHandLandmarks(e){let t=this.calculateLandmarksBoundingBox(e),n=w2(b2(t),Qv);n.palmLandmarks=[];for(let r=0;r<e6.length;r++)n.palmLandmarks.push(e[e6[r]].slice(0,2));return n}transformRawCoords(e,t,n,r){let a=x2(t),s=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=e.map(d=>[s[0]*(d[0]-this.inputSize/2),s[1]*(d[1]-this.inputSize/2),s[2]*d[2]]),o=Yv(n,[0,0]),l=i.map(d=>[...Jv(d,o),d[2]]),u=Sae(r),c=[...r1(t),1],h=[Ii(c,u[0]),Ii(c,u[1])];return l.map(d=>[d[0]+h[0],d[1]+h[1],d[2]])}async estimateHands(e,t){let n=!1,r;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.videoOptimized)&&(r=await this.handDetector.estimateHandBounds(e,t),this.skipped=0),t.videoOptimized&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==t.hand.maxHands||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];t.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let s=0;s<this.storedBoxes.length;s++){let i=this.storedBoxes[s];if(i)if(t.hand.landmarks){let o=t.hand.rotation?Iae(i.palmLandmarks[Eae],i.palmLandmarks[Cae]):0,l=r1(i),u=[l[0]/e.shape[2],l[1]/e.shape[1]],c=t.hand.rotation?Tt.rotateWithOffset(e,o,0,u):e.clone(),h=Yv(-o,l),d=n?this.getBoxForPalmLandmarks(i.palmLandmarks,h):i,p=bae(d,c,[this.inputSize,this.inputSize]),f=p.div(255);p.dispose(),c.dispose();let[m,A]=await this.landmarkDetector.predict(f);f.dispose();let y=m.dataSync()[0];if(m.dispose(),y>=t.hand.minConfidence){let g=j(A,[-1,3]),b=g.arraySync();A.dispose(),g.dispose();let w=this.transformRawCoords(b,d,o,h),_=this.getBoxForHandLandmarks(w);this.storedBoxes[s]=_;let x={landmarks:w,confidence:y,box:{topLeft:_.startPoint,bottomRight:_.endPoint}};a.push(x)}else this.storedBoxes[s]=null;A.dispose()}else{let o=w2(b2(i),Qv),l={confidence:i.confidence,box:{topLeft:o.startPoint,bottomRight:o.endPoint}};a.push(l)}}return this.storedBoxes=this.storedBoxes.filter(s=>s!==null),this.detectedHands=a.length,a}calculateLandmarksBoundingBox(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),r=[Math.min(...t),Math.min(...n)],a=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:a}}},Fae=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}],_2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Xv=class{constructor(e){this.handPipeline=e}static getAnnotations(){return _2}async estimateHands(e,t){let n=await this.handPipeline.estimateHands(e,t);if(!n)return[];let r=[];for(let a of n){let s={};if(a.landmarks)for(let o of Object.keys(_2))s[o]=_2[o].map(l=>a.landmarks[l]);let i=a.box?[Math.max(0,a.box.topLeft[0]),Math.max(0,a.box.topLeft[1]),Math.min(e.shape[2],a.box.bottomRight[0])-a.box.topLeft[0],Math.min(e.shape[1],a.box.bottomRight[1])-a.box.topLeft[1]]:0;r.push({confidence:a.confidence,box:i,landmarks:a.landmarks,annotations:s})}return r}};async function g2(e){let[t,n]=await Promise.all([e.hand.enabled?Hn(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Hn(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new vae(t,e.hand.inputSize,Fae),a=new Rae(r,n,e.hand.inputSize),s=new Xv(a);return e.hand.enabled&&e.debug&&Le(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Le(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var t6={};er(t6,{load:()=>v2,predict:()=>k2});var Mae=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],$ae=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"],pr;async function v2(e){return pr||(pr=await Hn(e.body.modelPath),pr.width=parseInt(pr.signature.inputs["input_1:0"].tensorShape.dim[2].size),pr.height=parseInt(pr.signature.inputs["input_1:0"].tensorShape.dim[1].size),e.debug&&Le(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`)),pr}async function k2(e,t){if(!pr||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Tt.resizeBilinear(e,[pr.width||t.body.inputSize,pr.height||t.body.inputSize],!1),a=ke(r,[255]);r.dispose();let s;if(t.profile){let u=await js(()=>pr.predict(a));s=u.result.find(c=>c.size===195||c.size===155).dataSync(),u.result.forEach(c=>c.dispose()),Ml("blazepose",u)}else{let u=await pr.predict(a);s=u.find(c=>c.size===195||c.size===155).dataSync(),u.forEach(c=>c.dispose())}a.dispose();let i=[],o=s.length===195?Mae:$ae,l=5;for(let u=0;u<s.length/l;u++)i.push({id:u,part:o[u],position:{x:Math.trunc(n.width*s[l*u+0]/255),y:Math.trunc(n.height*s[l*u+1]/255),z:Math.trunc(s[l*u+2])+0},score:(100-Math.trunc(100/(1+Math.exp(s[l*u+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(s[l*u+4]))))/100});return[{keypoints:i}]}var Dae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},Oae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));a>10&&t.push({face:n,gesture:`mouth ${Math.trunc(a)}% open`});let s=e[n].mesh[152][2];Math.abs(s)>10&&t.push({face:n,gesture:`head ${s<0?"up":"down"}`})}return t},zae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},Lae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function Pae(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function Wae(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(_){let x=Array.prototype.slice.call(arguments,1),N=h[_];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(_,x){if(!(_===o&&x===l)){if(d.width=_,o=_,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,N,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},y=function(_,x){let N=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,N);let T=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,T);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,_,x,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(_){return s[_]=s[_]||y(o,l),s[_]},b=function(_=null){var x,N;let T=null,E=null,M=!1;t===0?T=n:T=(x=g(a))==null?void 0:x.texture,t++,r&&!(_&f.INTERMEDIATE)?(E=null,M=t%2==0):(a=(a+1)%2,E=(N=g(a))==null?void 0:N.fbo),m.bindTexture(m.TEXTURE_2D,T),m.bindFramebuffer(m.FRAMEBUFFER,E),m.uniform1f(c.uniform.flipY,M?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(_){if(A(_.width,_.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,_),i.length===0)return b(),d;for(let x=0;x<i.length;x++){r=x===i.length-1;let N=i[x];N.func.apply(this,N.args||[])}return d};let w=function(_){if(p[_])return c=p[_],m.useProgram(c.id),c;let x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Pae(m,x.VERTEX_IDENTITY,_);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,T,0*N),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,T,2*N),p[_]=c,c};h.colorMatrix=function(_){let x=new Float32Array(_);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let N=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=w(N);m.uniform1fv(T.uniform.m,x),b()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),h.brightness=function(_){let x=(_||0)+1;h.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},h.saturation=function(_){let x=(_||0)*2/3+1,N=(x-1)*-.5;h.colorMatrix([x,N,N,0,0,N,x,N,0,0,N,N,x,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(_){let x=(_||0)+1,N=-128*(x-1);h.colorMatrix([x,0,0,0,N,0,x,0,0,N,0,0,x,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(_){_=(_||0)/180*Math.PI;let x=Math.cos(_),N=Math.sin(_),T=.213,E=.715,M=.072;h.colorMatrix([T+x*(1-T)+N*-T,E+x*-E+N*-E,M+x*-M+N*(1-M),0,0,T+x*-T+N*.143,E+x*(1-E)+N*.14,M+x*-M+N*-.283,0,0,T+x*-T+N*-(1-T),E+x*-E+N*E,M+x*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(_){let x=new Float32Array(_),N=1/o,T=1/l,E=w(h.convolution.SHADER);m.uniform1fv(E.uniform.m,x),m.uniform2f(E.uniform.px,N,T),b()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(_){let x=_||1;h.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},h.emboss=function(_){let x=_||1;h.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},h.blur=function(_){let x=_/7/o,N=_/7/l,T=w(h.blur.SHADER);m.uniform2f(T.uniform.px,0,N),b(f.INTERMEDIATE),m.uniform2f(T.uniform.px,x,0),b()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),h.pixelate=function(_){let x=_/o,N=_/l,T=w(h.pixelate.SHADER);m.uniform2f(T.uniform.size,x,N),b()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Rt=null,nn=null,$t=null;function n6(e,t){let n;if(e instanceof Je)n=Tr(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Le("Human: invalid input",e),null;(!Rt||Rt.width!==s||Rt.height!==i)&&(Rt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Rt.width!==s&&(Rt.width=s),Rt.height!==i&&(Rt.height=i));let o=Rt.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Rt.width,Rt.height),t.filter.enabled){if((!$t||!nn||Rt.width!==nn.width||Rt.height!==nn.height)&&(nn=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Rt.width,Rt.height):document.createElement("canvas"),nn.width!==Rt.width&&(nn.width=Rt.width),nn.height!==Rt.height&&(nn.height=Rt.height),$t=Kl.flags.IS_BROWSER?new Wae({canvas:nn}):null),!$t)return Rt;$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Rt)}else nn=Rt,$t&&($t=null);let l;if(nn.data){let c=[nn.height,nn.width,3];l=Cf(nn.data,c,"int32")}else if(t.backend==="webgl"||nn instanceof ImageData)l=mu.fromPixels(nn);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(nn,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=mu.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?nn:null}}var Nt={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!0,maxFaces:10,skipFrames:11,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.1},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.1,skipFrames:21,modelPath:"../models/emotion.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.3,nmsRadius:20,modelType:"posenet-mobilenet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}},I2=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,N2=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`,r6={};er(r6,{author:()=>h6,browser:()=>u6,bugs:()=>d6,default:()=>Bae,dependencies:()=>y6,description:()=>s6,devDependencies:()=>x6,engines:()=>m6,homepage:()=>p6,keywords:()=>b6,license:()=>f6,main:()=>o6,module:()=>l6,name:()=>a6,peerDependencies:()=>g6,repository:()=>A6,scripts:()=>w6,sideEffects:()=>i6,types:()=>c6,version:()=>S2});var a6="@vladmandic/human",S2="0.40.6",s6="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",i6=!1,o6="dist/human.node.js",l6="dist/human.esm.js",u6="dist/human.esm.js",c6="types/human.d.ts",h6="Vladimir Mandic <mandic00@live.com>",d6={url:"https://github.com/vladmandic/human/issues"},p6="https://github.com/vladmandic/human#readme",f6="MIT",m6={node:">=12.0.0"},A6={type:"git",url:"git+https://github.com/vladmandic/human.git"},y6={},g6={},x6={"@tensorflow/tfjs":"^3.2.0","@tensorflow/tfjs-backend-cpu":"^3.2.0","@tensorflow/tfjs-backend-wasm":"^3.2.0","@tensorflow/tfjs-backend-webgl":"^3.2.0","@tensorflow/tfjs-converter":"^3.2.0","@tensorflow/tfjs-core":"^3.2.0","@tensorflow/tfjs-data":"^3.2.0","@tensorflow/tfjs-layers":"^3.2.0","@tensorflow/tfjs-node":"^3.2.0","@tensorflow/tfjs-node-gpu":"^3.2.0","@types/node":"^14.14.31","@typescript-eslint/eslint-plugin":"^4.16.1","@typescript-eslint/parser":"^4.16.1","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.8.56",eslint:"^7.21.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.36.0",tslib:"^2.1.0",typescript:"^4.2.3"},w6={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",lint:"eslint src demo server",dev:"npm install && node server/serve.js",build:"rimraf dist/* && rimraf types/* && node server/build.js && node server/changelog.js",update:"npm update --depth 20 --force && npm dedupe && npm prune && npm audit"},b6=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition","blazeface","blazepose"],Bae={name:a6,version:S2,description:s6,sideEffects:i6,main:o6,module:l6,browser:u6,types:c6,author:h6,bugs:d6,homepage:p6,license:f6,engines:m6,repository:A6,dependencies:y6,peerDependencies:g6,devDependencies:x6,scripts:w6,keywords:b6},_6={};er(_6,{all:()=>Uae,angles:()=>S6,body:()=>I6,canvas:()=>Vae,face:()=>k6,gesture:()=>v6,hand:()=>N6,options:()=>ce});var ce={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:20,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!0,bufferedOutput:!1};function a1(e,t,n){e.fillStyle=ce.color,e.beginPath(),e.arc(t,n,ce.pointSize,0,2*Math.PI),e.fill()}function T6(e,t,n,r,a){if(e.beginPath(),ce.useCurves){let s=(t+t+r)/2,i=(n+n+a)/2;e.ellipse(s,i,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=ce.lineWidth,e.moveTo(t+ce.roundRect,n),e.lineTo(t+r-ce.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+ce.roundRect),e.lineTo(t+r,n+a-ce.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-ce.roundRect,n+a),e.lineTo(t+ce.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-ce.roundRect),e.lineTo(t,n+ce.roundRect),e.quadraticCurveTo(t,n,t+ce.roundRect,n),e.closePath();e.stroke()}function T2(e,t=[]){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.lineTo(n[0],parseInt(n[1]));e.stroke(),ce.fillPolygons&&(e.closePath(),e.fill())}}function s1(e,t=[]){if(!(t===void 0||t.length===0)){if(!ce.useCurves||t.length<=2){T2(e,t);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let r=(t[n][0]+t[n+1][0])/2,a=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),ce.fillPolygons&&(e.closePath(),e.fill())}}async function v6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!n)return;n.font=ce.font,n.fillStyle=ce.color;let r=1;for(let a=0;a<t.length;a++){let s=[],i=[];if([s,i]=Object.entries(t[a]),i.length>1&&i[1].length>0){let o=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${o}: ${i[1]}`;ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText(l,8,2+r*ce.lineHeight)),n.fillStyle=ce.labelColor,n.fillText(l,6,0+r*ce.lineHeight),r+=1}}}async function k6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(n)for(let r of t){n.font=ce.font,n.strokeStyle=ce.color,n.fillStyle=ce.color,ce.drawBoxes&&T6(n,r.box[0],r.box[1],r.box[2],r.box[3]);let a=[];if(a.push(`face confidence: ${Math.trunc(100*r.confidence)}%`),r.genderConfidence&&a.push(`${r.gender||""} ${Math.trunc(100*r.genderConfidence)}% confident`),r.age&&a.push(`age: ${r.age||""}`),r.iris&&a.push(`iris distance: ${r.iris}`),r.emotion&&r.emotion.length>0){let s=r.emotion.map(i=>`${Math.trunc(100*i.score)}% ${i.emotion}`);a.push(s.join(" "))}a.length===0&&a.push("face"),n.fillStyle=ce.color;for(let s=a.length-1;s>=0;s--){let i=Math.max(r.box[0],0),o=s*ce.lineHeight+r.box[1];ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText(a[s],i+5,o+16)),n.fillStyle=ce.labelColor,n.fillText(a[s],i+4,o+15)}if(n.lineWidth=1,r.mesh){if(ce.drawPoints)for(let s of r.mesh)n.fillStyle=ce.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:ce.color,a1(n,s[0],s[1]);if(ce.drawPolygons){for(let s=0;s<ql.length/3;s++){let i=[ql[s*3+0],ql[s*3+1],ql[s*3+2]].map(o=>r.mesh[o]);n.strokeStyle=ce.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ce.color,n.fillStyle=ce.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ce.color,n.lineWidth=1,T2(n,i)}if(r.annotations&&r.annotations.leftEyeIris){n.strokeStyle=ce.useDepth?"rgba(255, 200, 255, 0.3)":ce.color,n.beginPath();let s=Math.abs(r.annotations.leftEyeIris[3][0]-r.annotations.leftEyeIris[1][0])/2,i=Math.abs(r.annotations.leftEyeIris[4][1]-r.annotations.leftEyeIris[2][1])/2;n.ellipse(r.annotations.leftEyeIris[0][0],r.annotations.leftEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ce.fillPolygons&&(n.fillStyle=ce.useDepth?"rgba(255, 255, 200, 0.3)":ce.color,n.fill())}if(r.annotations&&r.annotations.rightEyeIris){n.strokeStyle=ce.useDepth?"rgba(255, 200, 255, 0.3)":ce.color,n.beginPath();let s=Math.abs(r.annotations.rightEyeIris[3][0]-r.annotations.rightEyeIris[1][0])/2,i=Math.abs(r.annotations.rightEyeIris[4][1]-r.annotations.rightEyeIris[2][1])/2;n.ellipse(r.annotations.rightEyeIris[0][0],r.annotations.rightEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ce.fillPolygons&&(n.fillStyle=ce.useDepth?"rgba(255, 255, 200, 0.3)":ce.color,n.fill())}}}}}var Ga=[];async function I6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(n){n.lineJoin="round";for(let r=0;r<t.length;r++){if(!Ga[r]&&ce.bufferedOutput&&(Ga[r]={...t[r]}),n.strokeStyle=ce.color,n.lineWidth=ce.lineWidth,ce.drawPoints)for(let a=0;a<t[r].keypoints.length;a++)n.fillStyle=ce.useDepth&&t[r].keypoints[a].position.z?`rgba(${127.5+2*t[r].keypoints[a].position.z}, ${127.5-2*t[r].keypoints[a].position.z}, 255, 0.5)`:ce.color,ce.bufferedOutput?(Ga[r].keypoints[a][0]=(Ga[r].keypoints[a][0]+t[r].keypoints[a].position.x)/2,Ga[r].keypoints[a][1]=(Ga[r].keypoints[a][1]+t[r].keypoints[a].position.y)/2,a1(n,Ga[r].keypoints[a][0],Ga[r].keypoints[a][1])):a1(n,t[r].keypoints[a].position.x,t[r].keypoints[a].position.y);if(ce.drawLabels){n.font=ce.font;for(let a of t[r].keypoints)n.fillStyle=ce.useDepth&&a.position.z?`rgba(${127.5+2*a.position.z}, ${127.5-2*a.position.z}, 255, 0.5)`:ce.color,n.fillText(`${a.part}`,a.position.x+4,a.position.y+4)}if(ce.drawPolygons){let a,s=[];s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s.length===5&&T2(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftKnee"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftAnkle"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHeel"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftFoot"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s1(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightKnee"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightAnkle"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHeel"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightFoot"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s1(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftElbow"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftWrist"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftPalm"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s1(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightElbow"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightWrist"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightPalm"),a&&a.score>Nt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s1(n,s)}}}}async function N6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(n){n.lineJoin="round",n.font=ce.font;for(let r of t){if(ce.drawBoxes&&(n.strokeStyle=ce.color,n.fillStyle=ce.color,T6(n,r.box[0],r.box[1],r.box[2],r.box[3]),ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText("hand",r.box[0]+3,1+r.box[1]+ce.lineHeight,r.box[2])),n.fillStyle=ce.labelColor,n.fillText("hand",r.box[0]+2,0+r.box[1]+ce.lineHeight,r.box[2]),n.stroke()),ce.drawPoints&&r.landmarks&&r.landmarks.length>0)for(let a of r.landmarks)n.fillStyle=ce.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:ce.color,a1(n,a[0],a[1]);if(ce.drawPolygons){let a=s=>{if(s)for(let i=0;i<s.length;i++)n.lineWidth=ce.lineWidth,n.beginPath(),n.strokeStyle=ce.useDepth?`rgba(${127.5+2*s[i][2]}, ${127.5-2*s[i][2]}, 255, 0.5)`:ce.color,n.moveTo(s[i>0?i-1:0][0],s[i>0?i-1:0][1]),n.lineTo(s[i][0],s[i][1]),n.stroke()};a(r.annotations.indexFinger),a(r.annotations.middleFinger),a(r.annotations.ringFinger),a(r.annotations.pinky),a(r.annotations.thumb)}}}}async function S6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");!n||(n.font=ce.font,n.strokeStyle=ce.color,n.fillStyle=ce.color,n.lineWidth=ce.lineWidth)}async function Vae(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Uae(e,t){!t||!e||e instanceof HTMLCanvasElement&&(k6(e,t.face),I6(e,t.body),N6(e,t.hand),v6(e,t.gesture),S6(e,t.face))}var dt=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Fc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Fc(s,i):n[a]=i}),n),{})}var E6=class{constructor(e={}){this.calculateFaceAngle=t=>{if(!t||t.length<152)return{};let n=(a,s,i,o)=>Math.atan2(o-s,i-a),r=a=>Math.abs(a*180/Math.PI%360);return{roll:n(t[33][0],t[33][1],t[263][0],t[263][1]),yaw:n(t[33][0],t[33][2],t[263][0],t[263][2]),pitch:n(t[10][1],t[10][2],t[152][1],t[152][2])}},this.tf=V2,this.draw=_6,this.package=r6,this.version=S2,this.config=Fc(Nt,e),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,blazepose:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.image=t=>n6(t,this.config),this.facemesh=Iv,this.age=Ev,this.gender=Cv,this.emotion=Rv,this.body=this.config.body.modelType.startsWith("posenet")?Dv:t6,this.hand=qv,this.sysinfo=L4()}profile(){return this.config.profile?Tv:{}}analyze(...e){if(!this.analyzeMemoryLeaks)return;let t=this.tf.engine().state.numTensors,n=this.numTensors;this.numTensors=t;let r=t-n;r!==0&&Le(...e,r)}sanity(e){if(!this.checkSanity)return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof this.tf.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null}simmilarity(e,t){return this.config.face.embedding.enabled?qre(e,t):0}async load(e=null){this.state="load";let t=dt();e&&(this.config=Fc(this.config,e)),this.firstRun&&(this.config.debug&&Le(`version: ${this.version}`),this.config.debug&&Le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&Le("platform:",this.sysinfo.platform),this.config.debug&&Le("agent:",this.sysinfo.agent),await this.checkBackend(!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Le("configuration:",this.config),this.config.debug&&Le("tf flags:",this.tf.ENV.flags)));let n=this.config.face.detector.modelPath.includes("faceboxes")?Nv:Iv;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose]=await Promise.all([this.models.face||(this.config.face.enabled?n.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?n2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?a2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?u2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?Mv(this.config):null),this.models.handpose||(this.config.hand.enabled?g2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("posenet")?p2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("blazepose")?v2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await n.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await n2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await a2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await u2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await Mv(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await g2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelType.startsWith("posenet")&&(this.models.posenet=await p2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelType.startsWith("blazepose")&&(this.models.blazepose=await v2(this.config))),this.firstRun&&(this.config.debug&&Le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.firstRun=!1);let r=Math.trunc(dt()-t);r>(this.perf.load||0)&&(this.perf.load=r)}async checkBackend(e=!1){if(this.config.backend&&this.config.backend!==""&&e||this.tf.getBackend()!==this.config.backend){let t=dt();if(this.state="backend",this.config.backend&&this.config.backend!==""){if(this.config.debug&&Le("setting backend:",this.config.backend),this.config.backend==="wasm"){this.config.debug&&Le("wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath);let n=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),r=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&Le(`wasm execution: ${n?"SIMD":"no SIMD"} ${r?"multithreaded":"singlethreaded"}`),n||Le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&_re();try{await this.tf.setBackend(this.config.backend)}catch(n){Le("error: cannot set backend:",this.config.backend,n)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let n=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Le(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(dt()-t)}}async detectFace(e){var t,n,r,a,s,i;let o,l,u,c,h,d=[];this.state="run:face",o=dt();let p=await((t=this.models.face)==null?void 0:t.estimateFaces(e,this.config));this.perf.face=Math.trunc(dt()-o);for(let f of p){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){Le("Face object is disposed:",f.image);continue}let m=this.calculateFaceAngle(f.mesh);this.analyze("Start Age:"),this.config.async?l=this.config.face.age.enabled?r2(f.image,this.config):{}:(this.state="run:age",o=dt(),l=this.config.face.age.enabled?await r2(f.image,this.config):{},this.perf.age=Math.trunc(dt()-o)),this.analyze("Start Gender:"),this.config.async?u=this.config.face.gender.enabled?s2(f.image,this.config):{}:(this.state="run:gender",o=dt(),u=this.config.face.gender.enabled?await s2(f.image,this.config):{},this.perf.gender=Math.trunc(dt()-o)),this.analyze("Start Emotion:"),this.config.async?c=this.config.face.emotion.enabled?c2(f.image,this.config):{}:(this.state="run:emotion",o=dt(),c=this.config.face.emotion.enabled?await c2(f.image,this.config):{},this.perf.emotion=Math.trunc(dt()-o)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?h=this.config.face.embedding.enabled?$v(f.image,this.config):[]:(this.state="run:embedding",o=dt(),h=this.config.face.embedding.enabled?await $v(f.image,this.config):[],this.perf.embedding=Math.trunc(dt()-o)),this.analyze("End Emotion:"),this.config.async&&([l,u,c,h]=await Promise.all([l,u,c,h])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((n=f==null?void 0:f.annotations)==null?void 0:n.leftEyeIris)&&((r=f==null?void 0:f.annotations)==null?void 0:r.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let A=((a=f.annotations)==null?void 0:a.leftEyeIris)&&((s=f.annotations)==null?void 0:s.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;d.push({confidence:f.confidence,faceConfidence:f.faceConfidence,boxConfidence:f.boxConfidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:l.age,gender:u.gender,genderConfidence:u.confidence,emotion:c,embedding:h,iris:A!==0?Math.trunc(A)/100:0,angle:m}),(i=f.image)==null||i.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),d}async detect(e,t={}){return new Promise(async n=>{var r,a,s,i;this.state="config";let o;this.config=Fc(this.config,t),this.state="check";let l=this.sanity(e);l&&(Le(l,e),n({error:l}));let u=dt();await this.checkBackend(),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:"),o=dt();let c=n6(e,this.config);if(!c||!c.tensor){Le("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(dt()-o),this.analyze("Get Image:");let h,d,p;this.config.async?(p=this.config.face.enabled?this.detectFace(c.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",o=dt(),p=this.config.face.enabled?await this.detectFace(c.tensor):[],this.perf.face=Math.trunc(dt()-o)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelType.startsWith("posenet")?h=this.config.body.enabled?(r=this.models.posenet)==null?void 0:r.estimatePoses(c.tensor,this.config):[]:h=this.config.body.enabled?k2(c.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",o=dt(),this.config.body.modelType.startsWith("posenet")?h=this.config.body.enabled?await((a=this.models.posenet)==null?void 0:a.estimatePoses(c.tensor,this.config)):[]:h=this.config.body.enabled?await k2(c.tensor,this.config):[],this.perf.body=Math.trunc(dt()-o)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?(s=this.models.handpose)==null?void 0:s.estimateHands(c.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",o=dt(),d=this.config.hand.enabled?await((i=this.models.handpose)==null?void 0:i.estimateHands(c.tensor,this.config)):[],this.perf.hand=Math.trunc(dt()-o)),this.analyze("End Hand:"),this.config.async&&([p,h,d]=await Promise.all([p,h,d])),c.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(o=dt(),f=[...Oae(p),...Dae(h),...Lae(d),...zae(p)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(dt()-o)),this.perf.total=Math.trunc(dt()-u),this.state="idle",n({face:p,body:h,hand:d,gesture:f,performance:this.perf,canvas:c.canvas})})}async warmupBitmap(){let e=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e(I2);break;case"full":t=await e(N2);break;default:t=null}if(t){let r=await createImageBitmap(t);n=await this.detect(r,this.config),r.close()}return n}async warmupCanvas(){return new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+I2;break;case"full":case"body":n=1200,t="data:image/jpeg;base64,"+N2;break;default:t=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let s=a.getContext("2d");s==null||s.drawImage(r,0,0);let i=await this.detect(a,this.config);e(i)},t?r.src=t:e(null)})}async warmupNode(){let e=s=>Buffer.from(s,"base64"),t=this.config.warmup==="face"?e(I2):e(N2),n=(void 0).decodeJpeg(t),r=n.expandDims(0);this.tf.dispose(n);let a=await this.detect(r,this.config);return this.tf.dispose(r),a}async warmup(e){let t=dt();e&&(this.config=Fc(this.config,e));let n=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await this.warmupBitmap():typeof Image!="undefined"?r=await this.warmupCanvas():r=await this.warmupNode(),this.config.videoOptimized=n;let a=dt();return this.config.debug&&Le("Warmup",this.config.warmup,Math.round(a-t),"ms",r),r}};var Mc=0,C6=!1,wt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function Hae(){if(C6)return;let e=`
|
|
:root { --rounded: 0.1rem; }
|
|
.menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10;
|
|
box-shadow: 0 0 8px dimgrey; background: ${wt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; }
|
|
|
|
.menu:hover { box-shadow: 0 0 8px ${wt.hover}; }
|
|
.menu-container { display: block; max-height: 100vh; }
|
|
.menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; }
|
|
.menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; }
|
|
.menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; }
|
|
.menu-title { cursor: pointer; }
|
|
.menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) }
|
|
.menu-label { padding: 0; font-weight: 800; }
|
|
|
|
.menu-list { margin-right: 0.8rem; }
|
|
select:focus { outline: none; }
|
|
.menu-list-item { background: ${wt.itemBackground}; color: ${wt.itemColor}; border: none; padding: 0.2rem; font-family: inherit;
|
|
font-variant: inherit; border-radius: var(--rounded); font-weight: 800; }
|
|
|
|
.menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center}
|
|
.menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; }
|
|
|
|
.menu-button { border: 0; background: ${wt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey;
|
|
border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; }
|
|
.menu-button:hover { background: ${wt.buttonHover}; box-shadow: 4px 4px 4px 0 black; }
|
|
.menu-button:focus { outline: none; }
|
|
|
|
.menu-checkbox { width: 2.8rem; height: 1rem; background: ${wt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); }
|
|
.menu-checkbox:after { content: 'OFF'; color: ${wt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
|
|
.menu-checkbox:before { content: 'ON'; color: ${wt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
|
|
.menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${wt.checkboxOff};
|
|
border-radius: var(--rounded); transition: left 0.6s ease; }
|
|
|
|
input[type=checkbox] { visibility: hidden; }
|
|
input[type=checkbox]:checked + label { left: 1.4rem; background: ${wt.checkboxOn}; }
|
|
|
|
.menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${wt.rangeBackground}; }
|
|
.menu-range:before { color: ${wt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); }
|
|
|
|
input[type=range] { -webkit-appearance: none; }
|
|
input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${wt.itemBackground}; border-radius: var(--rounded); border: 1px; }
|
|
input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${wt.itemBackground}; border-radius: var(--rounded); border: 1px; }
|
|
input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${wt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
|
|
input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${wt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
|
|
|
|
.svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; }
|
|
.svg-foreground { fill:white; cursor:pointer; opacity: 0.8; }
|
|
`,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),C6=!0}var R6=class{constructor(t,n,r,a){a&&(wt={...wt,...a}),Hae(),this.createMenu(t,n,r),this.id=0,this.instance=Mc,Mc++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${Mc}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${Mc}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${Mc}`;let s=`<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" style="width: 2rem; height: 2rem; vertical-align: top;">
|
|
<path d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h352a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48zm-51.37 182.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-background"/>
|
|
<path d="M348.63 214.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-foreground"/>
|
|
</svg>`;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`<div class="menu-checkbox"><input class="menu-checkbox" type="checkbox" id="${this.newID}" ${n[r]?"checked":""}/><label class="menu-checkbox-label" for="${this.ID}"></label></div>${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=`<option value="${o}" ${o===r?"selected":""}>${o}</option>`;return s.innerHTML=`<div class="menu-list"><select name="${this.ID}" class="menu-list-item">${i}</select><label for="${this.ID}"></label></div>${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`<input class="menu-range" type="range" id="${this.newID}" min="${a}" max="${s}" step="${i}" value="${n[r]}">${t}`,this.container.appendChild(l),l.addEventListener("change",u=>{n[r]=parseInt(u.target.value)===parseFloat(u.target.value)?parseInt(u.target.value):parseFloat(u.target.value),u.target.setAttribute("value",u.target.value),o&&o(u.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(wt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`<font color=${wt.chartColor}>${t}</font><canvas id="menu-canvas-${n}" class="menu-chart-canvas" width="${r}px" height="${a}px"></canvas>`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=wt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l<n.length;l++){let u=a.createLinearGradient(0,(i-n[l])*o,0,0);u.addColorStop(.1,wt.chartColor),u.addColorStop(.4,wt.background),a.fillStyle=u,a.fillRect(l*s,0,s-4,r.height),a.fillStyle=wt.background,a.font=`${s/1.5}px "Segoe UI"`,a.fillText(Math.round(n[l]),l*s+1,r.height-1,s-1)}}},$c=R6;var jae=`
|
|
#gl-bench { position: absolute; right: 1rem; bottom: 1rem; z-index:1000; -webkit-user-select: none; -moz-user-select: none; user-select: none; }
|
|
#gl-bench div { position: relative; display: block; margin: 4px; padding: 0 7px 0 10px; background: darkslategray; border-radius: 0.2rem; cursor: pointer; opacity: 0.9; }
|
|
#gl-bench svg { height: 60px; margin: 0 0px 0px 4px; }
|
|
#gl-bench text { font-size: 16px; font-family: 'Lato', 'Segoe UI'; dominant-baseline: middle; text-anchor: middle; }
|
|
#gl-bench .gl-mem { font-size: 12px; fill: white; }
|
|
#gl-bench .gl-fps { font-size: 13px; fill: white; }
|
|
#gl-bench line { stroke-width: 5; stroke: white; stroke-linecap: round; }
|
|
#gl-bench polyline { fill: none; stroke: white; stroke-linecap: round; stroke-linejoin: round; stroke-width: 3.5; }
|
|
#gl-bench rect { fill: black; }
|
|
#gl-bench .opacity { stroke: black; }
|
|
`,Gae=`
|
|
<div class="gl-box">
|
|
<svg viewBox="0 0 55 60">
|
|
<text x="27" y="56" class="gl-fps">00 FPS</text>
|
|
<text x="30" y="8" class="gl-mem"></text>
|
|
<rect x="0" y="14" rx="4" ry="4" width="65" height="32"></rect>
|
|
<polyline class="gl-chart"></polyline>
|
|
</svg>
|
|
<svg viewBox="0 0 14 60" class="gl-cpu-svg">
|
|
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
|
|
<line x1="7" y1="38" x2="7" y2="11" class="gl-cpu" stroke-dasharray="0 27"/>
|
|
<path d="M5.35 43c-.464 0-.812.377-.812.812v1.16c-.783.1972-1.421.812-1.595 1.624h-1.16c-.435 0-.812.348-.812.812s.348.812.812.812h1.102v1.653H1.812c-.464 0-.812.377-.812.812 0 .464.377.812.812.812h1.131c.1943.783.812 1.392 1.595 1.595v1.131c0 .464.377.812.812.812.464 0 .812-.377.812-.812V53.15h1.653v1.073c0 .464.377.812.812.812.464 0 .812-.377.812-.812v-1.131c.783-.1943 1.392-.812 1.595-1.595h1.131c.464 0 .812-.377.812-.812 0-.464-.377-.812-.812-.812h-1.073V48.22h1.102c.435 0 .812-.348.812-.812s-.348-.812-.812-.812h-1.16c-.1885-.783-.812-1.421-1.595-1.624v-1.131c0-.464-.377-.812-.812-.812-.464 0-.812.377-.812.812v1.073H6.162v-1.073c0-.464-.377-.812-.812-.812zm.58 3.48h2.088c.754 0 1.363.609 1.363 1.363v2.088c0 .754-.609 1.363-1.363 1.363H5.93c-.754 0-1.363-.609-1.363-1.363v-2.088c0-.754.609-1.363 1.363-1.363z" style="fill: grey"></path>
|
|
</svg>
|
|
<svg viewBox="0 0 14 60" class="gl-gpu-svg">
|
|
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
|
|
<line x1="7" y1="38" x2="7" y2="11" class="gl-gpu" stroke-dasharray="0 27"/>
|
|
<path d="M1.94775 43.3772a.736.736 0 10-.00416 1.472c.58535.00231.56465.1288.6348.3197.07015.18975.04933.43585.04933.43585l-.00653.05405v8.671a.736.736 0 101.472 0v-1.4145c.253.09522.52785.1495.81765.1495h5.267c1.2535 0 2.254-.9752 2.254-2.185v-3.105c0-1.2075-1.00625-2.185-2.254-2.185h-5.267c-.28865 0-.5635.05405-.8165.1495.01806-.16445.04209-.598-.1357-1.0787-.22425-.6072-.9499-1.2765-2.0125-1.2765zm2.9095 3.6455c.42435 0 .7659.36225.7659.8119v2.9785c0 .44965-.34155.8119-.7659.8119s-.7659-.36225-.7659-.8119v-2.9785c0-.44965.34155-.8119.7659-.8119zm4.117 0a2.3 2.3 0 012.3 2.3 2.3 2.3 0 01-2.3 2.3 2.3 2.3 0 01-2.3-2.3 2.3 2.3 0 012.3-2.3z" style="fill: grey"></path>
|
|
</svg>
|
|
</div>
|
|
`,F6=class{constructor(t,n={}){this.css=jae,this.svg=Gae,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(c,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-c;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(c,h,d)=>{let p=h.now();c.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},u="drawElements";t[u]?t[u]=l(t[u],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'<style id="gl-bench-style">'+this.css+"</style>"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,u,c)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=u.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,y,g,b)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=c[p]?c[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+y.toFixed(1),l(c[p],f,m,A,y,g,b)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,u)=>{let c={"gl-chart":u.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A<m;A++){let y=(p+A+1)%m;d[y]!==void 0&&(f=f+" "+(55*A/(m-1)).toFixed(1)+","+(45-d[y]*22/60/this.detected).toFixed(1))}c["gl-chart"][h].setAttribute("points",f),l(this.names[h],d,p)}})(this.chartLogger,this.dom)}}addUI(t){this.names.indexOf(t)===-1&&(this.names.push(t),this.dom&&(this.dom.insertAdjacentHTML("beforeend",this.svg),this.updateUI()),this.cpuAccums.push(0),this.gpuAccums.push(0),this.activeAccums.push(!1))}nextFrame(t){this.frameId++;let n=t||this.now();if(this.frameId<=1)this.paramFrame=this.frameId,this.paramTime=n;else{let r=n-this.paramTime;if(r>=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i<this.names.length;i++){let o=this.cpuAccums[i]/r*100,l=this.gpuAccums[i]/r*100,u=performance&&performance.memory?performance.memory.usedJSHeapSize/(1<<20):0;this.paramLogger(i,o,l,u,s,r,a),this.cpuAccums[i]=0,Promise.all(this.finished).then(()=>{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o<this.names.length;o++)this.chartLogger(o,this.chart,this.circularId);this.circularId++,this.chartFrame=this.frameId,this.chartTime=n}}}begin(t){this.updateAccums(t)}end(t){this.updateAccums(t)}updateAccums(t){let n=this.names.indexOf(t);n===-1&&(n=this.names.length,this.addUI(t));let r=this.now(),a=r-this.t0;for(let s=0;s<n+1;s++)this.activeAccums[s]&&(this.cpuAccums[s]+=a);this.activeAccums[n]=!this.activeAccums[n],this.t0=r}},M6=F6;var ca={backend:"webgl"},re=new E6(ca),he={baseBackground:"rgba(50, 50, 50, 1)",crop:!0,columns:2,facing:!0,useWorker:!1,worker:"worker.js",samples:["../assets/sample6.jpg","../assets/sample1.jpg","../assets/sample4.jpg","../assets/sample5.jpg","../assets/sample3.jpg","../assets/sample2.jpg"],compare:"../assets/sample-me.jpg",console:!0,maxFPSframes:10,modelsPreload:!0,busy:!1,menuWidth:0,menuHeight:0,camera:{},detectFPS:[],drawFPS:[],buffered:!1,drawWarmup:!1,drawThread:null,detectThread:null,framesDraw:0,framesDetect:0,bench:!0,lastFrame:0},xe={},i1,Ni,o1={};function qae(...e){if(!Array.isArray(e))return e;let t="";for(let n of e)typeof n=="object"?t+=JSON.stringify(n).replace(/{|}|"|\[|\]/g,"").replace(/,/g,", "):t+=n;return t}function Wn(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;he.console&&console.log(n,...e)}function Yn(e){let t=document.getElementById("status");t&&(t.innerText=e)}var Si;async function Xae(e){var n,r,a,s;if(document.getElementById("compare-container").style.display=re.config.face.embedding.enabled?"block":"none",!re.config.face.embedding.enabled||((n=e==null?void 0:e.face)==null?void 0:n.length)>0&&((r=e==null?void 0:e.face[0].embedding)==null?void 0:r.length)!==192)return;Si||(Si=e,document.getElementById("compare-canvas").getContext("2d").drawImage(Si.canvas,0,0,200,200));let t=re.simmilarity((a=Si==null?void 0:Si.face[0])==null?void 0:a.embedding,(s=e==null?void 0:e.face[0])==null?void 0:s.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var $6=performance.now();async function l1(e){let t=o1,n=document.getElementById("canvas");if(he.drawFPS.push(1e3/(performance.now()-$6)),he.drawFPS.length>he.maxFPSframes&&he.drawFPS.shift(),$6=performance.now(),await xe.process.updateChart("FPS",he.detectFPS),he.buffered||!t.canvas){let h=await re.image(e);t.canvas=h.canvas,re.tf.dispose(h.tensor)}let r=n.getContext("2d");r.fillStyle=he.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),re.draw.face(n,t.face),re.draw.body(n,t.body),re.draw.hand(n,t.hand),re.draw.gesture(n,t.gesture),re.draw.angles(n,t.face),await Xae(t);let a=re.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*he.detectFPS.reduce((h,d)=>h+d,0)/he.detectFPS.length)/10,u=Math.trunc(10*he.drawFPS.reduce((h,d)=>h+d,0)/he.drawFPS.length)/10,c=he.detectFPS.length>5&&l<5?'<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>':"";document.getElementById("log").innerHTML=`
|
|
video: ${he.camera.name} | facing: ${he.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${he.camera.width} x ${he.camera.height} ${o}<br>
|
|
backend: ${re.tf.getBackend()} | ${i}<br>
|
|
performance: ${qae(t.performance)}ms FPS process:${l} refresh:${u}<br>
|
|
${c}<br>
|
|
`,he.framesDraw++,he.lastFrame=performance.now(),he.buffered?he.drawThread=requestAnimationFrame(()=>l1(e,n)):!he.buffered&&he.drawThread&&(Wn("stopping buffered refresh"),cancelAnimationFrame(he.drawThread),he.drawThread=null)}async function u1(){var u;if(he.busy)return null;he.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(Yn("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=`
|
|
${a}`,Wn(a),Yn(a),he.busy=!1,a;let s,i={audio:!1,video:{facingMode:he.facing?"user":"environment",resizeMode:he.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(c){return c.name==="PermissionDeniedError"||c.name==="NotAllowedError"?a="camera permission denied":c.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${c.message||c}`,n.innerText+=`
|
|
${a}`,Yn(a),Wn("camera error:",c),he.busy=!1,a}if(s)e.srcObject=s;else return he.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return he.camera={name:(u=o.label)==null?void 0:u.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(c=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",he.menuWidth.input.setAttribute("value",e.width),he.menuHeight.input.setAttribute("value",e.height),r&&e.play(),r&&!he.detectThread&&Dc(e,t),he.busy=!1,Yn(""),c()}})}function D6(){if(!Ni){let e=null;Ni=new M6(e,{trackGPU:!1,chartHz:20,chartLen:20}),Ni.begin()}}function Kae(e,t,n,r){i1||(Wn("creating worker thread"),i1=new Worker(he.worker,{type:"module"}),i1.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&he.detectFPS.push(1e3/a.data.result.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Ni||D6(),Ni.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),o1=a.data.result,he.framesDetect++,he.drawThread||l1(e),he.detectThread=requestAnimationFrame(s=>Dc(e,n,s))})),i1.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:ca},[t.data.buffer])}function Dc(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){he.drawThread&&cancelAnimationFrame(he.drawThread),he.detectThread&&cancelAnimationFrame(he.detectThread),he.drawThread=null,he.detectThread=null,e.paused?Wn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>Dc(e,t),500):Wn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(he.drawThread),he.drawThread=null,Wn("frame statistics: process:",he.framesDetect,"refresh:",he.framesDraw),Wn("memory",re.tf.engine().memory());return}if(Yn(""),he.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);Kae(e,o,t,ca,n)}else re.detect(e,ca).then(s=>{s.performance&&s.performance.total&&he.detectFPS.push(1e3/s.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Ni||D6(),Ni.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),s.error?(Wn(s.error),document.getElementById("log").innerText+=`
|
|
Human error: ${s.error}`):(o1=s,he.drawThread||l1(e),he.framesDetect++,he.detectThread=requestAnimationFrame(i=>Dc(e,t,i)))})}async function Zae(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{Wn("Processing image:",encodeURI(n.src));let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=re.config.filter.width&&re.config.filter.width>0?re.config.filter.width:n.naturalWidth,r.height=re.config.filter.height&&re.config.filter.height>0?re.config.filter.height:n.naturalHeight;let a=await re.detect(n,ca);o1=a,await l1(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(he.columns+.1),s.height=s.width*r.height/r.width,a.face&&a.face.length>0?s.title=a.face.map((o,l)=>`#${l} face: ${Math.trunc(100*o.faceConfidence)}% box: ${Math.trunc(100*o.boxConfidence)}% age: ${Math.trunc(o.age)} gender: ${Math.trunc(100*o.genderConfidence)}% ${o.gender}`).join(" | "):s.title="no face detected",s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function O6(){ca.videoOptimized=!0,document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start<br>video",Yn("paused"),e.pause();else{let n=await u1();if(n)Yn(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(xe))r.hide();Yn(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause<br>video",await e.play(),he.detectThread||Dc(e,t)}}}async function Yae(){document.getElementById("play").style.display="none",ca.videoOptimized=!1,document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",Wn("Running detection of sample images"),Yn("processing images"),document.getElementById("samples-container").innerHTML="";for(let e of Object.values(xe))e.hide();for(let e of he.samples)await Zae(e);Yn("")}function Jae(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],xe.display=new $c(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),xe.display.addBool("perf monitor",he,"bench",t=>he.bench=t),xe.display.addBool("buffered output",he,"buffered",t=>he.buffered=t),xe.display.addBool("crop & scale",he,"crop",t=>{he.crop=t,u1()}),xe.display.addBool("camera facing",he,"facing",t=>{he.facing=t,u1()}),xe.display.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.display.addBool("use 3D depth",re.draw.options,"useDepth"),xe.display.addBool("print labels",re.draw.options,"drawLabels"),xe.display.addBool("draw points",re.draw.options,"drawPoints"),xe.display.addBool("draw boxes",re.draw.options,"drawBoxes"),xe.display.addBool("draw polygons",re.draw.options,"drawPolygons"),xe.display.addBool("fill polygons",re.draw.options,"fillPolygons"),xe.image=new $c(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),xe.image.addBool("enabled",re.config.filter,"enabled",t=>re.config.filter.enabled=t),he.menuWidth=xe.image.addRange("image width",re.config.filter,"width",0,3840,10,t=>re.config.filter.width=parseInt(t)),he.menuHeight=xe.image.addRange("image height",re.config.filter,"height",0,2160,10,t=>re.config.filter.height=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addRange("brightness",re.config.filter,"brightness",-1,1,.05,t=>re.config.filter.brightness=parseFloat(t)),xe.image.addRange("contrast",re.config.filter,"contrast",-1,1,.05,t=>re.config.filter.contrast=parseFloat(t)),xe.image.addRange("sharpness",re.config.filter,"sharpness",0,1,.05,t=>re.config.filter.sharpness=parseFloat(t)),xe.image.addRange("blur",re.config.filter,"blur",0,20,1,t=>re.config.filter.blur=parseInt(t)),xe.image.addRange("saturation",re.config.filter,"saturation",-1,1,.05,t=>re.config.filter.saturation=parseFloat(t)),xe.image.addRange("hue",re.config.filter,"hue",0,360,5,t=>re.config.filter.hue=parseInt(t)),xe.image.addRange("pixelate",re.config.filter,"pixelate",0,32,1,t=>re.config.filter.pixelate=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addBool("negative",re.config.filter,"negative",t=>re.config.filter.negative=t),xe.image.addBool("sepia",re.config.filter,"sepia",t=>re.config.filter.sepia=t),xe.image.addBool("vintage",re.config.filter,"vintage",t=>re.config.filter.vintage=t),xe.image.addBool("kodachrome",re.config.filter,"kodachrome",t=>re.config.filter.kodachrome=t),xe.image.addBool("technicolor",re.config.filter,"technicolor",t=>re.config.filter.technicolor=t),xe.image.addBool("polaroid",re.config.filter,"polaroid",t=>re.config.filter.polaroid=t),xe.process=new $c(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),xe.process.addList("backend",["cpu","webgl","wasm","humangl"],re.config.backend,t=>re.config.backend=t),xe.process.addBool("async operations",re.config,"async",t=>re.config.async=t),xe.process.addBool("use web worker",he,"useWorker"),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addLabel("model parameters"),xe.process.addRange("max objects",re.config.face.detector,"maxFaces",1,50,1,t=>{re.config.face.detector.maxFaces=parseInt(t),re.config.body.maxDetections=parseInt(t),re.config.hand.maxHands=parseInt(t)}),xe.process.addRange("skip frames",re.config.face.detector,"skipFrames",0,50,1,t=>{re.config.face.detector.skipFrames=parseInt(t),re.config.face.emotion.skipFrames=parseInt(t),re.config.face.age.skipFrames=parseInt(t),re.config.hand.skipFrames=parseInt(t)}),xe.process.addRange("min confidence",re.config.face.detector,"minConfidence",0,1,.05,t=>{re.config.face.detector.minConfidence=parseFloat(t),re.config.face.gender.minConfidence=parseFloat(t),re.config.face.emotion.minConfidence=parseFloat(t),re.config.hand.minConfidence=parseFloat(t)}),xe.process.addRange("score threshold",re.config.face.detector,"scoreThreshold",.1,1,.05,t=>{re.config.face.detector.scoreThreshold=parseFloat(t),re.config.hand.scoreThreshold=parseFloat(t),re.config.body.scoreThreshold=parseFloat(t)}),xe.process.addRange("overlap",re.config.face.detector,"iouThreshold",.1,1,.05,t=>{re.config.face.detector.iouThreshold=parseFloat(t),re.config.hand.iouThreshold=parseFloat(t)}),xe.process.addBool("detection rotation",re.config.face.detector,"rotation",t=>{re.config.face.detector.rotation=t,re.config.hand.rotation=t}),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addButton("process sample images","process images",()=>Yae()),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addChart("FPS","FPS"),xe.models=new $c(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),xe.models.addBool("face detect",re.config.face,"enabled",t=>re.config.face.enabled=t),xe.models.addBool("face mesh",re.config.face.mesh,"enabled",t=>re.config.face.mesh.enabled=t),xe.models.addBool("face iris",re.config.face.iris,"enabled",t=>re.config.face.iris.enabled=t),xe.models.addBool("face age",re.config.face.age,"enabled",t=>re.config.face.age.enabled=t),xe.models.addBool("face gender",re.config.face.gender,"enabled",t=>re.config.face.gender.enabled=t),xe.models.addBool("face emotion",re.config.face.emotion,"enabled",t=>re.config.face.emotion.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("body pose",re.config.body,"enabled",t=>re.config.body.enabled=t),xe.models.addBool("hand pose",re.config.hand,"enabled",t=>re.config.hand.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("gestures",re.config.gesture,"enabled",t=>re.config.gesture.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("face compare",re.config.face.embedding,"enabled",t=>{re.config.face.embedding.enabled=t,Si=null}),document.getElementById("btnDisplay").addEventListener("click",t=>xe.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>xe.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>xe.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>xe.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>O6()),document.getElementById("play").addEventListener("click",()=>O6())}async function Qae(e){let t=document.getElementById("canvas");t.width=e.canvas.width,t.height=e.canvas.height,t.getContext("2d").drawImage(e.canvas,0,0,e.canvas.width,e.canvas.height,0,0,t.width,t.height),await re.draw.all(t,e)}async function ese(){if(Wn("Demo starting ..."),Jae(),document.getElementById("log").innerText=`Human: version ${re.version}`,he.modelsPreload&&!he.useWorker){Yn("loading"),await re.load(ca);let e=Object.keys(re.models).filter(t=>re.models[t]);Wn("Demo loaded models:",e)}if(!he.useWorker){Yn("initializing");let e=await re.warmup(ca);e&&e.canvas&&he.drawWarmup&&await Qae(e)}Yn("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",Wn("Demo ready...")}window.onload=ese;window.onresize=u1;
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=demo-browser-index.js.map
|