mirror of https://github.com/vladmandic/human
161 lines
6.1 KiB
TypeScript
161 lines
6.1 KiB
TypeScript
/**
|
|
* HSE-FaceRes Module
|
|
* Returns Age, Gender, Descriptor
|
|
* Implements Face simmilarity function
|
|
*/
|
|
|
|
import { log, join } from '../helpers';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import { Tensor, GraphModel } from '../tfjs/types';
|
|
import { Config } from '../config';
|
|
|
|
let model: GraphModel;
|
|
const last: Array<{
|
|
age: number,
|
|
gender: string,
|
|
genderScore: number,
|
|
descriptor: number[],
|
|
}> = [];
|
|
|
|
let lastCount = 0;
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
|
|
type DB = Array<{ name: string, source: string, embedding: number[] }>;
|
|
|
|
export async function load(config: Config): Promise<GraphModel> {
|
|
const modelUrl = join(config.modelBasePath, config.face.description.modelPath);
|
|
if (!model) {
|
|
// @ts-ignore type mismatch for GraphModel
|
|
model = await tf.loadGraphModel(modelUrl);
|
|
if (!model) log('load model failed:', config.face.description.modelPath);
|
|
else if (config.debug) log('load model:', modelUrl);
|
|
} else if (config.debug) log('cached model:', modelUrl);
|
|
return model;
|
|
}
|
|
|
|
export function similarity(embedding1: Array<number>, embedding2: Array<number>, order = 2): number {
|
|
if (!embedding1 || !embedding2) return 0;
|
|
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
|
|
if (embedding1?.length !== embedding2?.length) return 0;
|
|
// general minkowski distance, euclidean distance is limited case where order is 2
|
|
const distance = 5.0 * embedding1
|
|
.map((_val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared
|
|
.reduce((sum, now) => (sum + now), 0) // sum all distances
|
|
** (1 / order); // get root of
|
|
const res = Math.max(0, 100 - distance) / 100.0;
|
|
return res;
|
|
}
|
|
|
|
export function match(embedding: Array<number>, db: DB, threshold = 0) {
|
|
let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };
|
|
if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;
|
|
for (const f of db) {
|
|
if (f.embedding && f.name) {
|
|
const perc = similarity(embedding, f.embedding);
|
|
if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
export function enhance(input): Tensor {
|
|
const image = tf.tidy(() => {
|
|
// input received from detector is already normalized to 0..1
|
|
// input is also assumed to be straightened
|
|
const tensor = input.image || input.tensor || input;
|
|
if (!(tensor instanceof tf.Tensor)) return null;
|
|
// do a tight crop of image and resize it to fit the model
|
|
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
|
|
// const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test
|
|
if (!model.inputs[0].shape) return null; // model has no shape so no point continuing
|
|
const crop = (tensor.shape.length === 3)
|
|
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
|
|
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
|
|
|
|
/*
|
|
// just resize to fit the embedding model instead of cropping
|
|
const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
|
|
*/
|
|
|
|
/*
|
|
// convert to black&white to avoid colorization impact
|
|
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
|
const [red, green, blue] = tf.split(crop, 3, 3);
|
|
const redNorm = tf.mul(red, rgb[0]);
|
|
const greenNorm = tf.mul(green, rgb[1]);
|
|
const blueNorm = tf.mul(blue, rgb[2]);
|
|
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
|
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
|
|
*/
|
|
|
|
/*
|
|
// increase image pseudo-contrast 100%
|
|
// (or do it per-channel so mean is done on each channel)
|
|
// (or calculate histogram and do it based on histogram)
|
|
const mean = merge.mean();
|
|
const factor = 2;
|
|
const contrast = merge.sub(mean).mul(factor).add(mean);
|
|
*/
|
|
|
|
/*
|
|
// normalize brightness from 0..1
|
|
// silly way of creating pseudo-hdr of image
|
|
const darken = crop.sub(crop.min());
|
|
const lighten = darken.div(darken.max());
|
|
*/
|
|
|
|
const norm = tf.mul(crop, 255);
|
|
|
|
return norm;
|
|
});
|
|
return image;
|
|
}
|
|
|
|
export async function predict(image: Tensor, config: Config, idx, count) {
|
|
if (!model) return null;
|
|
if ((skipped < config.face.description.skipFrames) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {
|
|
skipped++;
|
|
return last[idx];
|
|
}
|
|
skipped = 0;
|
|
return new Promise(async (resolve) => {
|
|
const enhanced = enhance(image);
|
|
|
|
let resT;
|
|
const obj = {
|
|
age: <number>0,
|
|
gender: <string>'unknown',
|
|
genderScore: <number>0,
|
|
descriptor: <number[]>[],
|
|
};
|
|
|
|
if (config.face.description.enabled) resT = await model.predict(enhanced);
|
|
tf.dispose(enhanced);
|
|
|
|
if (resT) {
|
|
const gender = await resT.find((t) => t.shape[1] === 1).data();
|
|
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
|
|
if (confidence > config.face.description.minConfidence) {
|
|
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
|
|
obj.genderScore = Math.min(0.99, confidence);
|
|
}
|
|
const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);
|
|
const age = (await argmax.data())[0];
|
|
const all = await resT.find((t) => t.shape[1] === 100).data(); // inside tf.tidy
|
|
obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
|
|
|
|
const desc = resT.find((t) => t.shape[1] === 1024);
|
|
// const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8
|
|
// const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor
|
|
|
|
const descriptor = await desc.data();
|
|
obj.descriptor = [...descriptor];
|
|
resT.forEach((t) => tf.dispose(t));
|
|
}
|
|
|
|
last[idx] = obj;
|
|
lastCount = count;
|
|
resolve(obj);
|
|
});
|
|
}
|