mirror of https://github.com/vladmandic/human
4443 lines
1.1 MiB
4443 lines
1.1 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var _G=Object.create,Zh=Object.defineProperty;var kG=Object.getOwnPropertyDescriptor;var vG=Object.getOwnPropertyNames;var CG=Object.getPrototypeOf,IG=Object.prototype.hasOwnProperty;var NG=r=>Zh(r,"__esModule",{value:!0});var qt=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),We=(r,e)=>{for(var t in e)Zh(r,t,{get:e[t],enumerable:!0})},SG=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of vG(e))!IG.call(r,n)&&n!=="default"&&Zh(r,n,{get:()=>e[n],enumerable:!(t=kG(e,n))||t.enumerable});return r},dc=r=>SG(NG(Zh(r!=null?_G(CG(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var lT=qt(()=>{});var WT=qt((GT,f_)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(GT,typeof f_=="object"&&f_,typeof define=="function"&&define)});var UT=qt((jT,d_)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(jT,typeof d_=="object"&&d_,typeof define=="function"&&define)});var qT=qt((HT,h_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(HT,typeof h_=="object"&&h_,typeof define=="function"&&define)});var XT=qt((KT,g_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(KT,typeof g_=="object"&&g_,typeof define=="function"&&define)});var ZT=qt((YT,x_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(YT,typeof x_=="object"&&x_,typeof define=="function"&&define)});var QT=qt((JT,y_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(JT,typeof y_=="object"&&y_,typeof define=="function"&&define)});var b_=qt(()=>{});var e1=qt((C_e,bg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(w,_,I){var E=[];_=_==!0?{entropy:!0}:_||{};var D=g(h(_.entropy?[w,b(r)]:w==null?x():w,3),E),$=new f(E),R=function(){for(var M=$.g(o),G=i,j=0;M<l;)M=(M+j)*n,G*=n,j=$.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return R.int32=function(){return $.g(4)|0},R.quick=function(){return $.g(4)/4294967296},R.double=R,g(b($.S),r),(_.pass||I||function(M,G,j,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),j?(e[a]=M,G):M})(R,D,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,I=w.length,E=this,D=0,$=E.i=E.j=0,R=E.S=[];for(I||(w=[I++]);D<n;)R[D]=D++;for(D=0;D<n;D++)R[D]=R[$=c&$+w[D%I]+(_=R[D])],R[$]=_;(E.g=function(M){for(var G,j=0,U=E.i,H=E.j,q=E.S;M--;)G=q[U=c&U+1],j=j*n+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return E.i=U,E.j=H,j})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var I=[],E=typeof w,D;if(_&&E=="object")for(D in w)try{I.push(h(w[D],_-1))}catch($){}return I.length?I:E=="string"?w:w+"\0"}function g(w,_){for(var I=w+"",E,D=0;D<I.length;)_[c&D]=c&(E^=_[c&D]*19)+I.charCodeAt(D++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=t.navigator,I=_&&_.plugins;return[+new Date,t,I,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof bg=="object"&&bg.exports){bg.exports=m;try{p=b_()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var w_=qt((I_e,t1)=>{var HU=WT(),qU=UT(),KU=qT(),XU=XT(),YU=ZT(),ZU=QT(),du=e1();du.alea=HU;du.xor128=qU;du.xorwow=KU;du.xorshift7=XU;du.xor4096=YU;du.tychei=ZU;t1.exports=du});var Op=qt(()=>{});var jM=qt(()=>{});var UM=qt(()=>{});var HM=qt((Tx,OC)=>{var PC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return ee.buffer!=He&&ir(ee.buffer),ct}function n(){return ee.buffer!=He&&ir(ee.buffer),mt}function o(){return ee.buffer!=He&&ir(ee.buffer),Zt}function s(){return ee.buffer!=He&&ir(ee.buffer),cn}function a(){return ee.buffer!=He&&ir(ee.buffer),Un}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(N,F){l=N,u=F});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(N,F){throw F},h=!1,g=!1,x=!1,b=!1;h=typeof window=="object",g=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!h&&!x&&!g;var w=i.ENVIRONMENT_IS_PTHREAD||!1;w&&(He=i.buffer);var _="";function I(N){return i.locateFile?i.locateFile(N,_):_+N}var E,D,$,R,M,G;if(x){g?_=Op().dirname(_)+"/":_=__dirname+"/",E=function(F,B){return M||(M=require("fs")),G||(G=Op()),F=G.normalize(F),M.readFileSync(F,B?null:"utf8")},$=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),de(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof wm))throw N}),process.on("unhandledRejection",bi),d=function(N){process.exit(N)},i.inspect=function(){return"[Emscripten Module object]"};var j;try{j=jM()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=j.Worker}else b?(typeof read!="undefined"&&(E=function(F){return read(F)}),$=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),de(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",x?(E=function(F,B){return M||(M=require("fs")),G||(G=Op()),F=G.normalize(F),M.readFileSync(F,B?null:"utf8")},$=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),de(B.buffer),B}):(E=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},g&&($=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),D=function(N,F,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){F(K.response);return}B()},K.onerror=B,K.send(null)}),R=function(N){document.title=N});x&&typeof performance=="undefined"&&(global.performance=UM().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,ne=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&bi("no native wasm support detected");var ee,ie,me=!1,ae;function de(N,F){N||bi("Assertion failed: "+F)}function he(N){var F=i["_"+N];return de(F,"Cannot call unknown function "+N+", make sure it is exported"),F}function xe(N,F,B,K,be){var ge={string:function(Hr){var fc=0;if(Hr!=null&&Hr!==0){var UI=(Hr.length<<2)+1;fc=cc(UI),Ke(Hr,fc,UI)}return fc},array:function(Hr){var fc=cc(Hr.length);return At(Hr,fc),fc}};function ye(Hr){return F==="string"?ve(Hr):F==="boolean"?Boolean(Hr):Hr}var Te=he(N),_t=[],kr=0;if(K)for(var gr=0;gr<K.length;gr++){var Ka=ge[B[gr]];Ka?(kr===0&&(kr=bm()),_t[gr]=Ka(K[gr])):_t[gr]=K[gr]}var mc=Te.apply(null,_t);return mc=ye(mc),kr!==0&&uc(kr),mc}function we(N,F,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),ge=F!=="string";return ge&&be&&!K?he(N):function(){return xe(N,F,B,arguments,K)}}function De(N,F,B){for(var K=F+B,be="";!(F>=K);){var ge=N[F++];if(!ge)return be;if(!(ge&128)){be+=String.fromCharCode(ge);continue}var ye=N[F++]&63;if((ge&224)==192){be+=String.fromCharCode((ge&31)<<6|ye);continue}var Te=N[F++]&63;if((ge&240)==224?ge=(ge&15)<<12|ye<<6|Te:ge=(ge&7)<<18|ye<<12|Te<<6|N[F++]&63,ge<65536)be+=String.fromCharCode(ge);else{var _t=ge-65536;be+=String.fromCharCode(55296|_t>>10,56320|_t&1023)}}return be}function ve(N,F){return N?De(n(),N,F):""}function Ge(N,F,B,K){if(!(K>0))return 0;for(var be=B,ge=B+K-1,ye=0;ye<N.length;++ye){var Te=N.charCodeAt(ye);if(Te>=55296&&Te<=57343){var _t=N.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|_t&1023}if(Te<=127){if(B>=ge)break;F[B++]=Te}else if(Te<=2047){if(B+1>=ge)break;F[B++]=192|Te>>6,F[B++]=128|Te&63}else if(Te<=65535){if(B+2>=ge)break;F[B++]=224|Te>>12,F[B++]=128|Te>>6&63,F[B++]=128|Te&63}else{if(B+3>=ge)break;F[B++]=240|Te>>18,F[B++]=128|Te>>12&63,F[B++]=128|Te>>6&63,F[B++]=128|Te&63}}return F[B]=0,B-be}function Ke(N,F,B){return Ge(N,n(),F,B)}function at(N){for(var F=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++F:K<=2047?F+=2:K<=65535?F+=3:F+=4}return F}function At(N,F){t().set(N,F)}function Et(N,F){return N%F>0&&(N+=F-N%F),N}var He,ct,mt,zt,vn,Zt,cn,Mr,Un;function ir(N){He=N,i.HEAP8=ct=new Int8Array(N),i.HEAP16=zt=new Int16Array(N),i.HEAP32=Zt=new Int32Array(N),i.HEAPU8=mt=new Uint8Array(N),i.HEAPU16=vn=new Uint16Array(N),i.HEAPU32=cn=new Uint32Array(N),i.HEAPF32=Mr=new Float32Array(N),i.HEAPF64=Un=new Float64Array(N)}var Cn=i.INITIAL_MEMORY||16777216;if(w)ee=i.wasmMemory,He=i.buffer;else if(i.wasmMemory)ee=i.wasmMemory;else if(ee=new WebAssembly.Memory({initial:Cn/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(He=ee.buffer),Cn=He.byteLength,ir(He);var Ur,_r=[],pn=[],Fn=[],zl=[],Wa=[],Ps=!1,xi=!1;w||pn.push({func:function(){jh()}});function cm(){if(!w){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)Dh(i.preRun.shift());sc(_r)}}function Bl(){Ps=!0,!w&&sc(pn)}function Ey(){w||sc(Fn)}function Eh(){w||(xi=!0)}function mn(){if(!w){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)Dy(i.postRun.shift());sc(Wa)}}function Dh(N){_r.unshift(N)}function Dy(N){Wa.unshift(N)}var yi=0,ja=null,Vl=null;function $y(N){de(!w,"addRunDependency cannot be used in a pthread worker"),yi++,i.monitorRunDependencies&&i.monitorRunDependencies(yi)}function Ry(N){if(yi--,i.monitorRunDependencies&&i.monitorRunDependencies(yi),yi==0&&(ja!==null&&(clearInterval(ja),ja=null),Vl)){var F=Vl;Vl=null,F()}}i.preloadedImages={},i.preloadedAudios={};function bi(N){i.onAbort&&i.onAbort(N),w&&console.error("Pthread aborting at "+new Error().stack),N+="",H(N),me=!0,ae=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw u(F),F}function $h(N,F){return String.prototype.startsWith?N.startsWith(F):N.indexOf(F)===0}var oc="data:application/octet-stream;base64,";function Rh(N){return $h(N,oc)}var Fy="file://";function Fh(N){return $h(N,Fy)}var fn="tfjs-backend-wasm-threaded-simd.wasm";Rh(fn)||(fn=I(fn));function Oh(N){try{if(N==fn&&Y)return new Uint8Array(Y);if($)return $(N);throw"both async and sync fetching of the wasm failed"}catch(F){bi(F)}}function Oy(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!Fh(fn))return fetch(fn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+fn+"'";return N.arrayBuffer()}).catch(function(){return Oh(fn)});if(D)return new Promise(function(N,F){D(fn,function(B){N(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return Oh(fn)})}function Py(){var N={a:Nb};function F(ye,Te){var _t=ye.exports;if(i.asm=_t,Ur=i.asm.F,ie=Te,!w){var kr=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(gr){Ae.loadWasmModuleToWorker(gr,function(){--kr||Ry("wasm-instantiate")})})}}w||$y("wasm-instantiate");function B(ye){F(ye.instance,ye.module)}function K(ye){return Oy().then(function(Te){return WebAssembly.instantiate(Te,N)}).then(ye,function(Te){H("failed to asynchronously prepare wasm: "+Te),bi(Te)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Rh(fn)&&!Fh(fn)&&typeof fetch=="function"?fetch(fn,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,N);return Te.then(B,function(_t){return H("wasm streaming compile failed: "+_t),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var ge=i.instantiateWasm(N,F);return ge}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var My={9816:function(){throw"Canceled!"},9834:function(N,F){setTimeout(function(){zI(N,F)},0)}};function Ph(){Ae.initRuntime()}function sc(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(i);continue}var B=F.func;typeof B=="number"?F.arg===void 0?Ur.get(B)():Ur.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function pm(N,F){if(N<=0||N>t().length||N&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=Infinity);var B=Atomics.load(o(),pc>>2),K=0;if(B==N){var be=Atomics.compareExchange(o(),pc>>2,B,0);if(be==B&&(--F,K=1,F<=0))return 1}var ge=Atomics.notify(o(),N>>2,F);if(ge>=0)return ge+K;throw"Atomics.notify returned an unexpected value "+ge}i._emscripten_futex_wake=pm;function Ly(N){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var F=Ae.pthreads[N];F.worker.terminate(),Ae.freeThreadData(F),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function zy(N){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Ae.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function By(N){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Ae.pthreads[N];if(F){o()[N+12>>2]=0;var B=F.worker;Ae.returnWorkerToPool(B)}}var Ae={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F<N;++F)Ae.allocateUnusedWorker()},initRuntime:function(){for(var N=Wl(228),F=0;F<228/4;++F)s()[N/4+F]=0;o()[N+12>>2]=N;var B=N+152;o()[B>>2]=B;for(var K=Wl(512),F=0;F<128;++F)s()[K/4+F]=0;Atomics.store(s(),N+100>>2,K),Atomics.store(s(),N+40>>2,N),Zb(N,!g,1),LI(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ae.threadExitHandlers.length>0;)Ae.threadExitHandlers.pop()();w&&lc()&&MI()},runExitHandlersAndDeinitThread:function(N,F){Atomics.store(s(),N+56>>2,1),Atomics.store(s(),N+60>>2,0),Ae.runExitHandlers(),Atomics.store(s(),N+4>>2,F),Atomics.store(s(),N+0>>2,1),pm(N+0,2147483647),Zb(0,0,0)},threadExit:function(N){var F=lc();F&&(Ae.runExitHandlersAndDeinitThread(F,N),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ae.runExitHandlersAndDeinitThread(lc(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Ae.pthreads){var F=Ae.pthreads[N];F&&F.worker&&Ae.returnWorkerToPool(F.worker)}Ae.pthreads={};for(var B=0;B<Ae.unusedWorkers.length;++B){var K=Ae.unusedWorkers[B];K.terminate()}Ae.unusedWorkers=[];for(var B=0;B<Ae.runningWorkers.length;++B){var K=Ae.runningWorkers[B],F=K.pthread;Ae.freeThreadData(F),K.terminate()}Ae.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var F=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,ym(F),ym(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&ym(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Ae.runWithoutMainThreadQueuedCalls(function(){delete Ae.pthreads[N.pthread.threadInfoStruct],Ae.unusedWorkers.push(N),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(N),1),Ae.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[jI>>2]=0;try{N()}finally{o()[jI>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,F){N.onmessage=function(B){var K=B.data,be=K.cmd;if(N.pthread&&(Ae.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=lc()){var ge=Ae.pthreads[K.targetThread];ge?ge.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")Xb();else if(be==="spawnThread")Gh(B.data);else if(be==="cleanupThread")By(K.thread);else if(be==="killThread")Ly(K.thread);else if(be==="cancelThread")zy(K.thread);else if(be==="loaded")N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=N.pthread&&Atomics.load(s(),N.pthread.threadInfoStruct+64>>2);ye&&Ae.returnWorkerToPool(N)}else if(be==="exitProcess")try{wG(K.returnCode)}catch(Te){if(Te instanceof wm)return;throw Te}else be==="cancelDone"?Ae.returnWorkerToPool(N):be==="objectTransfer"?Ae.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):H("worker sent an unknown command "+be);Ae.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:ee,wasmModule:ie})},allocateUnusedWorker:function(){var N=I("tfjs-backend-wasm-threaded-simd.worker.js");Ae.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.length>0?Ae.unusedWorkers.pop():null},busySpinWait:function(N){for(var F=performance.now()+N;performance.now()<F;);}};function Vy(N,F){GI(N,F),uc(N)}i.establishStackSpace=Vy;function Gy(){return re}i.getNoExitRuntime=Gy;function Wy(N,F){return Ur.get(N)(F)}i.invokeEntryPoint=Wy;function jy(N,F,B,K){bi("Assertion failed: "+ve(N)+", at: "+[F?ve(F):"unknown filename",B,K?ve(K):"unknown function"])}function Uy(N,F){var B=_main(N,F)}var Gl;x?Gl=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:w?Gl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Gl=dateNow:Gl=function(){return performance.now()};function Hy(N){return o()[OI()>>2]=N,N}function qy(N,F){if(w)return Ua(1,1,N,F)}function Ky(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Ae.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Xy(){bi()}function Yy(N,F,B){var K=tb(F,B);return My[N].apply(null,K)}function Zy(N,F){}function Jy(N,F,B){if(N<=0||N>t().length||N&!0)return-28;if(h){if(Atomics.load(o(),N>>2)!=F)return-6;for(var be=performance.now(),ge=be+B,ye=Atomics.exchange(o(),pc>>2,N);;){if(be=performance.now(),be>ge)return ye=Atomics.exchange(o(),pc>>2,0),-73;if(ye=Atomics.exchange(o(),pc>>2,0),ye==0)break;if(Xb(),Atomics.load(o(),N>>2)!=F)return-6;ye=Atomics.exchange(o(),pc>>2,N)}return 0}else{var K=Atomics.wait(o(),N>>2,F,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Qy(N,F,B){n().copyWithin(N,F,F+B)}function eb(){return x?require("os").cpus().length:navigator.hardwareConcurrency}function Ua(N,F){for(var B=arguments.length-2,K=bm(),be=B,ge=cc(be*8),ye=ge>>3,Te=0;Te<B;Te++){var _t=arguments[2+Te];a()[ye+Te]=_t}var kr=VI(N,be,ge,F);return uc(K),kr}var mm=[],fm=[];function tb(N,F){fm.length=0;var B;for(F>>=2;B=n()[N++];){var K=B<105;K&&F&1&&F++,fm.push(K?a()[F++>>1]:o()[F]),++F}return fm}function rb(N,F,B){mm.length=F;for(var K=B>>3,be=0;be<F;be++)mm[be]=a()[K+be];var ge=N<0,ye=ge?My[-N-1]:Ib[N];return ye.apply(null,mm)}function nb(){return n().length}function ob(N){try{return ee.grow(N-He.byteLength+65535>>>16),ir(ee.buffer),1}catch(F){}}function sb(N){var F=nb();if(N<=F)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var be=F*(1+.2/K);be=Math.min(be,N+100663296);var ge=Math.min(B,Et(Math.max(N,be),65536)),ye=ob(ge);if(ye)return!0}return!1}var Je={inEventHandler:0,removeAllEventListeners:function(){for(var N=Je.eventHandlers.length-1;N>=0;--N)Je._removeHandler(N);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(zl.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,B){function K(ye,Te){if(ye.length!=Te.length)return!1;for(var _t in ye)if(ye[_t]!=Te[_t])return!1;return!0}for(var be in Je.deferredCalls){var ge=Je.deferredCalls[be];if(ge.targetFunction==N&&K(ge.argsList,B))return}Je.deferredCalls.push({targetFunction:N,precedence:F,argsList:B}),Je.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Je.deferredCalls.length;++F)Je.deferredCalls[F].targetFunction==N&&(Je.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var N=0;N<Je.deferredCalls.length;++N){var F=Je.deferredCalls[N];Je.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var B=0;B<Je.eventHandlers.length;++B)Je.eventHandlers[B].target==N&&(!F||F==Je.eventHandlers[B].eventTypeString)&&Je._removeHandler(B--)},_removeHandler:function(N){var F=Je.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Je.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(be){++Je.inEventHandler,Je.currentEventHandler=N,Je.runDeferredCalls(),N.handlerFunc(be),Je.runDeferredCalls(),--Je.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Je.eventHandlers.push(N),Je.registerRemoveEventListeners();else for(var B=0;B<Je.eventHandlers.length;++B)Je.eventHandlers[B].target==N.target&&Je.eventHandlers[B].eventTypeString==N.eventTypeString&&Je._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,F,B,K,be){var ge=bm(),ye=cc(12);o()[ye>>2]=B,o()[ye+4>>2]=K,o()[ye+8>>2]=be,Yb(0,N,637534208,F,K,ye),uc(ge)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Ae.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ib(N){var F=at(N)+1,B=Wl(F);return Ke(N,B,F),B}function ab(N,F,B,K){var be=bm(),ge=cc(12),ye=0;F&&(ye=ib(F)),o()[ge>>2]=ye,o()[ge+4>>2]=B,o()[ge+8>>2]=K,Yb(0,N,657457152,0,ye,ge),uc(be)}function lb(N,F,B,K){F=F?ve(F):"",ab(N,F,B,K)}function ub(N){return N>2?ve(N):N}var cb=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function pb(N){N=ub(N);var F=cb[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function dm(N){return pb(N)}function Mh(N,F,B){var K=dm(N);if(!K)return-4;if(K.canvasSharedPtr&&(o()[K.canvasSharedPtr>>2]=F,o()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var ge=K.GLctxObject.GLctx.getParameter(2978);be=ge[0]===0&&ge[1]===0&&ge[2]===K.width&&ge[3]===K.height}K.width=F,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,F,B)}else if(K.canvasSharedPtr){var ye=o()[K.canvasSharedPtr+8>>2];return lb(ye,N,F,B),1}else return-4;return 0}function Lh(N,F,B){return w?Ua(2,1,N,F,B):Mh(N,F,B)}function mb(N,F,B){var K=dm(N);return K?Mh(N,F,B):Lh(N,F,B)}function fb(N){}function db(N,F){}function hb(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(B,K){F.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,be,ge){F.drawArraysInstancedANGLE(B,K,be,ge)},N.drawElementsInstanced=function(B,K,be,ge,ye){F.drawElementsInstancedANGLE(B,K,be,ge,ye)},1}function gb(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){F.bindVertexArrayOES(B)},N.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function xb(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(B,K){F.drawBuffersWEBGL(B,K)},1}function yb(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){ft.lastError||(ft.lastError=F)},getNewId:function(N){for(var F=ft.counter++,B=N.length;B<F;B++)N[B]=null;return F},getSource:function(N,F,B,K){for(var be="",ge=0;ge<F;++ge){var ye=K?o()[K+ge*4>>2]:-1;be+=ve(o()[B+ge*4>>2],ye<0?void 0:ye)}return be},createContext:function(N,F){var B=N.getContext("webgl",F);if(!B)return 0;var K=ft.registerContext(B,F);return K},registerContext:function(N,F){var B=Wl(8);o()[B+4>>2]=lc();var K={handle:B,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(N){return ft.currentContext=ft.contexts[N],i.ctx=Ha=ft.currentContext&&ft.currentContext.GLctx,!(N&&!Ha)},getContext:function(N){return ft.contexts[N]},deleteContext:function(N){ft.currentContext===ft.contexts[N]&&(ft.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(ft.contexts[N].GLctx.canvas),ft.contexts[N]&&ft.contexts[N].GLctx.canvas&&(ft.contexts[N].GLctx.canvas.GLctxObject=void 0),ym(ft.contexts[N].handle),ft.contexts[N]=null},initExtensions:function(N){if(N||(N=ft.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;hb(F),gb(F),xb(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),yb(F);var B=F.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&F.getExtension(K)})}},populateUniformTable:function(N){for(var F=ft.programs[N],B=ft.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=Ha.getProgramParameter(F,35718),ge=0;ge<be;++ge){var ye=Ha.getActiveUniform(F,ge),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var _t=Ha.getUniformLocation(F,Te);if(_t){var kr=ft.getNewId(ft.uniforms);K[Te]=[ye.size,kr],ft.uniforms[kr]=_t;for(var gr=1;gr<ye.size;++gr){var Ka=Te+"["+gr+"]";_t=Ha.getUniformLocation(F,Ka),kr=ft.getNewId(ft.uniforms),ft.uniforms[kr]=_t}}}}},bb=["default","low-power","high-performance"];function wb(N,F){var B=F>>2,K=o()[B+(24>>2)],be={alpha:!!o()[B+(0>>2)],depth:!!o()[B+(4>>2)],stencil:!!o()[B+(8>>2)],antialias:!!o()[B+(12>>2)],premultipliedAlpha:!!o()[B+(16>>2)],preserveDrawingBuffer:!!o()[B+(20>>2)],powerPreference:bb[K],failIfMajorPerformanceCaveat:!!o()[B+(28>>2)],majorVersion:o()[B+(32>>2)],minorVersion:o()[B+(36>>2)],enableExtensionsByDefault:o()[B+(40>>2)],explicitSwapControl:o()[B+(44>>2)],proxyContextToMainThread:o()[B+(48>>2)],renderViaOffscreenBackBuffer:o()[B+(52>>2)]},ge=dm(N);if(!ge||be.explicitSwapControl)return 0;var ye=ft.createContext(ge,be);return ye}function _b(N,F){return wb(N,F)}var ic={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var B=ic.buffers[N];F===0||F===10?((N===1?U:H)(De(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){ic.varargs+=4;var N=o()[ic.varargs-4>>2];return N},getStr:function(N){var F=ve(N);return F},get64:function(N,F){return N}};function zh(N){return w?Ua(3,1,N):0}function Bh(N,F,B,K,be){if(w)return Ua(4,1,N,F,B,K,be)}function Vh(N,F,B,K){if(w)return Ua(5,1,N,F,B,K);for(var be=0,ge=0;ge<B;ge++){for(var ye=o()[F+ge*8>>2],Te=o()[F+(ge*8+4)>>2],_t=0;_t<Te;_t++)ic.printChar(N,n()[ye+_t]);be+=Te}return o()[K>>2]=be,0}function kb(N){var F=Ae.threadExitHandlers.pop();N&&F()}function vb(N,F){Ae.threadExitHandlers.push(function(){Ur.get(N)(F)})}function Gh(N){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Ae.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Ae.runningWorkers.push(F);for(var B=Wl(128*4),K=0;K<128;++K)o()[B+K*4>>2]=0;var be=N.stackBase+N.stackSize,ge=Ae.pthreads[N.pthread_ptr]={worker:F,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ye=ge.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),N.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),ge.threadInfoStruct),Atomics.store(s(),ye+(80>>2),N.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),N.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),N.detached);var Te=PI(),_t=Te+40;Atomics.store(s(),ye+(172>>2),_t),F.pthread=ge;var kr={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};F.runPthread=function(){kr.time=performance.now(),F.postMessage(kr,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function Cb(N,F,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return H("pthread_create called with a null thread pointer!"),28;var be=[],ge=0;if(w&&(be.length===0||ge))return BI(687865856,N,F,B,K);if(ge)return ge;var ye=0,Te=0,_t=0;F&&F!=-1?(ye=o()[F>>2],ye+=81920,Te=o()[F+8>>2],_t=o()[F+12>>2]!==0):ye=2097152;var kr=Te==0;kr?Te=WI(16,ye):(Te-=ye,de(Te>0));for(var gr=Wl(228),Ka=0;Ka<228>>2;++Ka)s()[(gr>>2)+Ka]=0;o()[N>>2]=gr,o()[gr+12>>2]=gr;var mc=gr+152;o()[mc>>2]=mc;var Hr={stackBase:Te,stackSize:ye,allocatedOwnStack:kr,detached:_t,startRoutine:B,pthread_ptr:gr,arg:K,transferList:be};return w?(Hr.cmd="spawnThread",postMessage(Hr,be)):Gh(Hr),0}function Wh(N){if(w)return Ua(6,1,N);switch(N){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Hy(28),-1}w||Ae.initMainThreadBlock();var Ha,Ib=[null,qy,Lh,zh,Bh,Vh,Wh],Nb={e:jy,r:Uy,x:Ky,b:Xy,y:Yy,j:Zy,c:Jy,d:pm,f:Gl,p:Qy,z:eb,u:rb,q:sb,v:mb,i:fb,t:db,w:_b,m:zh,n:Bh,g:Vh,o:Ph,a:ee||i.wasmMemory,k:kb,l:vb,h:Cb,s:Wh},FI=Py(),jh=i.___wasm_call_ctors=function(){return(jh=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},Sb=i._init=function(){return(Sb=i._init=i.asm.B).apply(null,arguments)},Tb=i._register_tensor=function(){return(Tb=i._register_tensor=i.asm.C).apply(null,arguments)},Ab=i._dispose_data=function(){return(Ab=i._dispose_data=i.asm.D).apply(null,arguments)},Eb=i._dispose=function(){return(Eb=i._dispose=i.asm.E).apply(null,arguments)},Db=i._Abs=function(){return(Db=i._Abs=i.asm.G).apply(null,arguments)},$b=i._Add=function(){return($b=i._Add=i.asm.H).apply(null,arguments)},Rb=i._AddN=function(){return(Rb=i._AddN=i.asm.I).apply(null,arguments)},Fb=i._All=function(){return(Fb=i._All=i.asm.J).apply(null,arguments)},Ob=i._Any=function(){return(Ob=i._Any=i.asm.K).apply(null,arguments)},Pb=i._ArgMax=function(){return(Pb=i._ArgMax=i.asm.L).apply(null,arguments)},Mb=i._AvgPool=function(){return(Mb=i._AvgPool=i.asm.M).apply(null,arguments)},Lb=i._BatchMatMul=function(){return(Lb=i._BatchMatMul=i.asm.N).apply(null,arguments)},zb=i._Ceil=function(){return(zb=i._Ceil=i.asm.O).apply(null,arguments)},Bb=i._ClipByValue=function(){return(Bb=i._ClipByValue=i.asm.P).apply(null,arguments)},Vb=i._Conv2D=function(){return(Vb=i._Conv2D=i.asm.Q).apply(null,arguments)},Gb=i._Conv2DBackpropInput=function(){return(Gb=i._Conv2DBackpropInput=i.asm.R).apply(null,arguments)},Wb=i._Cos=function(){return(Wb=i._Cos=i.asm.S).apply(null,arguments)},jb=i._CropAndResize=function(){return(jb=i._CropAndResize=i.asm.T).apply(null,arguments)},Ub=i._Cumsum=function(){return(Ub=i._Cumsum=i.asm.U).apply(null,arguments)},Hb=i._DepthToSpace=function(){return(Hb=i._DepthToSpace=i.asm.V).apply(null,arguments)},qb=i._DepthwiseConv2dNative=function(){return(qb=i._DepthwiseConv2dNative=i.asm.W).apply(null,arguments)},Uh=i._Equal=function(){return(Uh=i._Equal=i.asm.X).apply(null,arguments)},Hh=i._Exp=function(){return(Hh=i._Exp=i.asm.Y).apply(null,arguments)},qh=i._FlipLeftRight=function(){return(qh=i._FlipLeftRight=i.asm.Z).apply(null,arguments)},hm=i._Floor=function(){return(hm=i._Floor=i.asm._).apply(null,arguments)},ac=i._FloorDiv=function(){return(ac=i._FloorDiv=i.asm.$).apply(null,arguments)},Kb=i._FusedBatchNorm=function(){return(Kb=i._FusedBatchNorm=i.asm.aa).apply(null,arguments)},gm=i._FusedConv2D=function(){return(gm=i._FusedConv2D=i.asm.ba).apply(null,arguments)},Z=i._FusedDepthwiseConv2D=function(){return(Z=i._FusedDepthwiseConv2D=i.asm.ca).apply(null,arguments)},se=i._Gather=function(){return(se=i._Gather=i.asm.da).apply(null,arguments)},ke=i._GatherNd=function(){return(ke=i._GatherNd=i.asm.ea).apply(null,arguments)},lt=i._Greater=function(){return(lt=i._Greater=i.asm.fa).apply(null,arguments)},Jt=i._GreaterEqual=function(){return(Jt=i._GreaterEqual=i.asm.ga).apply(null,arguments)},Bt=i._LeakyRelu=function(){return(Bt=i._LeakyRelu=i.asm.ha).apply(null,arguments)},tt=i._Less=function(){return(tt=i._Less=i.asm.ia).apply(null,arguments)},rt=i._LessEqual=function(){return(rt=i._LessEqual=i.asm.ja).apply(null,arguments)},Nr=i._Log=function(){return(Nr=i._Log=i.asm.ka).apply(null,arguments)},wi=i._LogicalAnd=function(){return(wi=i._LogicalAnd=i.asm.la).apply(null,arguments)},_i=i._Max=function(){return(_i=i._Max=i.asm.ma).apply(null,arguments)},Kh=i._MaxPool=function(){return(Kh=i._MaxPool=i.asm.na).apply(null,arguments)},xm=i._Maximum=function(){return(xm=i._Maximum=i.asm.oa).apply(null,arguments)},In=i._Mean=function(){return(In=i._Mean=i.asm.pa).apply(null,arguments)},qa=i._Min=function(){return(qa=i._Min=i.asm.qa).apply(null,arguments)},Xh=i._Minimum=function(){return(Xh=i._Minimum=i.asm.ra).apply(null,arguments)},RV=i._MirrorPad=function(){return(RV=i._MirrorPad=i.asm.sa).apply(null,arguments)},FV=i._Multiply=function(){return(FV=i._Multiply=i.asm.ta).apply(null,arguments)},OV=i._Neg=function(){return(OV=i._Neg=i.asm.ua).apply(null,arguments)},PV=i._NonMaxSuppressionV3=function(){return(PV=i._NonMaxSuppressionV3=i.asm.va).apply(null,arguments)},MV=i._NonMaxSuppressionV4=function(){return(MV=i._NonMaxSuppressionV4=i.asm.wa).apply(null,arguments)},LV=i._NonMaxSuppressionV5=function(){return(LV=i._NonMaxSuppressionV5=i.asm.xa).apply(null,arguments)},zV=i._NotEqual=function(){return(zV=i._NotEqual=i.asm.ya).apply(null,arguments)},BV=i._OneHot=function(){return(BV=i._OneHot=i.asm.za).apply(null,arguments)},VV=i._PadV2=function(){return(VV=i._PadV2=i.asm.Aa).apply(null,arguments)},GV=i._Pow=function(){return(GV=i._Pow=i.asm.Ba).apply(null,arguments)},WV=i._Prelu=function(){return(WV=i._Prelu=i.asm.Ca).apply(null,arguments)},jV=i._Prod=function(){return(jV=i._Prod=i.asm.Da).apply(null,arguments)},UV=i._RealDiv=function(){return(UV=i._RealDiv=i.asm.Ea).apply(null,arguments)},HV=i._Relu=function(){return(HV=i._Relu=i.asm.Fa).apply(null,arguments)},qV=i._Relu6=function(){return(qV=i._Relu6=i.asm.Ga).apply(null,arguments)},KV=i._ResizeBilinear=function(){return(KV=i._ResizeBilinear=i.asm.Ha).apply(null,arguments)},XV=i._Reverse=function(){return(XV=i._Reverse=i.asm.Ia).apply(null,arguments)},YV=i._RotateWithOffset=function(){return(YV=i._RotateWithOffset=i.asm.Ja).apply(null,arguments)},ZV=i._Round=function(){return(ZV=i._Round=i.asm.Ka).apply(null,arguments)},JV=i._Rsqrt=function(){return(JV=i._Rsqrt=i.asm.La).apply(null,arguments)},QV=i._ScatterNd=function(){return(QV=i._ScatterNd=i.asm.Ma).apply(null,arguments)},eG=i._SelectV2=function(){return(eG=i._SelectV2=i.asm.Na).apply(null,arguments)},tG=i._Sigmoid=function(){return(tG=i._Sigmoid=i.asm.Oa).apply(null,arguments)},rG=i._Sin=function(){return(rG=i._Sin=i.asm.Pa).apply(null,arguments)},nG=i._Softmax=function(){return(nG=i._Softmax=i.asm.Qa).apply(null,arguments)},oG=i._Sqrt=function(){return(oG=i._Sqrt=i.asm.Ra).apply(null,arguments)},sG=i._Square=function(){return(sG=i._Square=i.asm.Sa).apply(null,arguments)},iG=i._SquaredDifference=function(){return(iG=i._SquaredDifference=i.asm.Ta).apply(null,arguments)},aG=i._Step=function(){return(aG=i._Step=i.asm.Ua).apply(null,arguments)},lG=i._StridedSlice=function(){return(lG=i._StridedSlice=i.asm.Va).apply(null,arguments)},uG=i._Sub=function(){return(uG=i._Sub=i.asm.Wa).apply(null,arguments)},cG=i._Sum=function(){return(cG=i._Sum=i.asm.Xa).apply(null,arguments)},pG=i._Tan=function(){return(pG=i._Tan=i.asm.Ya).apply(null,arguments)},mG=i._Tanh=function(){return(mG=i._Tanh=i.asm.Za).apply(null,arguments)},fG=i._Tile=function(){return(fG=i._Tile=i.asm._a).apply(null,arguments)},dG=i._TopK=function(){return(dG=i._TopK=i.asm.$a).apply(null,arguments)},hG=i._Transform=function(){return(hG=i._Transform=i.asm.ab).apply(null,arguments)},gG=i._Transpose=function(){return(gG=i._Transpose=i.asm.bb).apply(null,arguments)},xG=i.__FusedMatMul=function(){return(xG=i.__FusedMatMul=i.asm.cb).apply(null,arguments)},Wl=i._malloc=function(){return(Wl=i._malloc=i.asm.db).apply(null,arguments)},ym=i._free=function(){return(ym=i._free=i.asm.eb).apply(null,arguments)},OI=i.___errno_location=function(){return(OI=i.___errno_location=i.asm.fb).apply(null,arguments)},PI=i._emscripten_get_global_libc=function(){return(PI=i._emscripten_get_global_libc=i.asm.gb).apply(null,arguments)},lc=i._pthread_self=function(){return(lc=i._pthread_self=i.asm.hb).apply(null,arguments)},MI=i.___pthread_tsd_run_dtors=function(){return(MI=i.___pthread_tsd_run_dtors=i.asm.ib).apply(null,arguments)},Xb=i._emscripten_main_thread_process_queued_calls=function(){return(Xb=i._emscripten_main_thread_process_queued_calls=i.asm.jb).apply(null,arguments)},yG=i._emscripten_current_thread_process_queued_calls=function(){return(yG=i._emscripten_current_thread_process_queued_calls=i.asm.kb).apply(null,arguments)},LI=i._emscripten_register_main_browser_thread_id=function(){return(LI=i._emscripten_register_main_browser_thread_id=i.asm.lb).apply(null,arguments)},zI=i.__emscripten_do_dispatch_to_thread=function(){return(zI=i.__emscripten_do_dispatch_to_thread=i.asm.mb).apply(null,arguments)},BI=i._emscripten_sync_run_in_main_thread_4=function(){return(BI=i._emscripten_sync_run_in_main_thread_4=i.asm.nb).apply(null,arguments)},VI=i._emscripten_run_in_main_runtime_thread_js=function(){return(VI=i._emscripten_run_in_main_runtime_thread_js=i.asm.ob).apply(null,arguments)},Yb=i.__emscripten_call_on_thread=function(){return(Yb=i.__emscripten_call_on_thread=i.asm.pb).apply(null,arguments)},bG=i._emscripten_tls_init=function(){return(bG=i._emscripten_tls_init=i.asm.qb).apply(null,arguments)},Zb=i.__emscripten_thread_init=function(){return(Zb=i.__emscripten_thread_init=i.asm.rb).apply(null,arguments)},bm=i.stackSave=function(){return(bm=i.stackSave=i.asm.sb).apply(null,arguments)},uc=i.stackRestore=function(){return(uc=i.stackRestore=i.asm.tb).apply(null,arguments)},cc=i.stackAlloc=function(){return(cc=i.stackAlloc=i.asm.ub).apply(null,arguments)},GI=i._emscripten_stack_set_limits=function(){return(GI=i._emscripten_stack_set_limits=i.asm.vb).apply(null,arguments)},WI=i._memalign=function(){return(WI=i._memalign=i.asm.wb).apply(null,arguments)},jI=i.__emscripten_allow_main_runtime_queued_calls=9808,pc=i.__emscripten_main_thread_futex=11432;i.cwrap=we,i.PThread=Ae,i.PThread=Ae,i.wasmMemory=ee,i.ExitStatus=wm;var Yh;function wm(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Vl=function N(){Yh||Jb(),Yh||(Vl=N)};function Jb(N){if(N=N||m,yi>0)return;if(w){l(i),Bl(),postMessage({cmd:"loaded"});return}if(cm(),yi>0)return;function F(){Yh||(Yh=!0,i.calledRun=!0,!me&&(Bl(),Ey(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),mn()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),F()},1)):F()}i.run=Jb;function wG(N,F){if(!(F&&re&&N===0)){if(!F&&w)throw postMessage({cmd:"exitProcess",returnCode:N}),new wm(N);re||(Ae.terminateAllThreads(),ae=N,Eh(),i.onExit&&i.onExit(N),me=!0),d(N,new wm(N))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return w&&(re=!1,Ae.initWorker()),Jb(),e.ready}}();typeof Tx=="object"&&typeof OC=="object"?OC.exports=PC:typeof define=="function"&&define.amd?define([],function(){return PC}):typeof Tx=="object"&&(Tx.WasmBackendModuleThreadedSimd=PC)});var KM=qt((Ax,MC)=>{var LC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},n,o;t.ready=new Promise(function(Z,se){n=Z,o=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,x,b,w,_,I;m?(p?d=Op().dirname(d)+"/":d=__dirname+"/",g=function(se,ke){return _||(_=require("fs")),I||(I=Op()),se=I.normalize(se),_.readFileSync(se,ke?null:"utf8")},b=function(se){var ke=g(se,!0);return ke.buffer||(ke=new Uint8Array(ke)),U(ke.buffer),ke},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof Kb))throw Z}),process.on("unhandledRejection",Ps),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),b=function(se){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ke=read(se,"binary"),U(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(b=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,ke){var lt=new XMLHttpRequest;lt.open("GET",Z,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&<.response){se(lt.response);return}ke()},lt.onerror=ke,lt.send(null)},w=function(Z){document.title=Z});var E=t.print||console.log.bind(console),D=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var $;t.wasmBinary&&($=t.wasmBinary);var R=t.noExitRuntime||!0;typeof WebAssembly!="object"&&Ps("no native wasm support detected");var M,G=!1,j;function U(Z,se){Z||Ps("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ke,lt,Jt){var Bt={string:function(In){var qa=0;if(In!=null&&In!==0){var Xh=(In.length<<2)+1;qa=hm(Xh),ie(In,qa,Xh)}return qa},array:function(In){var qa=hm(In.length);return me(In,qa),qa}};function tt(In){return se==="string"?re(In):se==="boolean"?Boolean(In):In}var rt=H(Z),Nr=[],wi=0;if(lt)for(var _i=0;_i<lt.length;_i++){var Kh=Bt[ke[_i]];Kh?(wi===0&&(wi=Hh()),Nr[_i]=Kh(lt[_i])):Nr[_i]=lt[_i]}var xm=rt.apply(null,Nr);return xm=tt(xm),wi!==0&&qh(wi),xm}function X(Z,se,ke,lt){ke=ke||[];var Jt=ke.every(function(tt){return tt==="number"}),Bt=se!=="string";return Bt&&Jt&&!lt?H(Z):function(){return q(Z,se,ke,arguments,lt)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ke){for(var lt=se+ke,Jt=se;Z[Jt]&&!(Jt>=lt);)++Jt;if(Jt-se>16&&Z.subarray&&ne)return ne.decode(Z.subarray(se,Jt));for(var Bt="";se<Jt;){var tt=Z[se++];if(!(tt&128)){Bt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){Bt+=String.fromCharCode((tt&31)<<6|rt);continue}var Nr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|Nr:tt=(tt&7)<<18|rt<<12|Nr<<6|Z[se++]&63,tt<65536)Bt+=String.fromCharCode(tt);else{var wi=tt-65536;Bt+=String.fromCharCode(55296|wi>>10,56320|wi&1023)}}return Bt}function re(Z,se){return Z?Y(xe,Z,se):""}function ee(Z,se,ke,lt){if(!(lt>0))return 0;for(var Jt=ke,Bt=ke+lt-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var Nr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|Nr&1023}if(rt<=127){if(ke>=Bt)break;se[ke++]=rt}else if(rt<=2047){if(ke+1>=Bt)break;se[ke++]=192|rt>>6,se[ke++]=128|rt&63}else if(rt<=65535){if(ke+2>=Bt)break;se[ke++]=224|rt>>12,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}else{if(ke+3>=Bt)break;se[ke++]=240|rt>>18,se[ke++]=128|rt>>12&63,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}}return se[ke]=0,ke-Jt}function ie(Z,se,ke){return ee(Z,xe,se,ke)}function me(Z,se){he.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var de,he,xe,we,De,ve,Ge,Ke,at;function At(Z){de=Z,t.HEAP8=he=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=ve=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=Ge=new Uint32Array(Z),t.HEAPF32=Ke=new Float32Array(Z),t.HEAPF64=at=new Float64Array(Z)}var Et=t.INITIAL_MEMORY||16777216,He,ct=[],mt=[],zt=[],vn=[],Zt=!1;mt.push({func:function(){Ph()}});function cn(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)Cn(t.preRun.shift());ja(ct)}function Mr(){Zt=!0,ja(mt)}function Un(){ja(zt)}function ir(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)Ur(t.postRun.shift());ja(vn)}function Cn(Z){ct.unshift(Z)}function Ur(Z){vn.unshift(Z)}var _r=0,pn=null,Fn=null;function zl(Z){_r++,t.monitorRunDependencies&&t.monitorRunDependencies(_r)}function Wa(Z){if(_r--,t.monitorRunDependencies&&t.monitorRunDependencies(_r),_r==0&&(pn!==null&&(clearInterval(pn),pn=null),Fn)){var se=Fn;Fn=null,se()}}t.preloadedImages={},t.preloadedAudios={};function Ps(Z){t.onAbort&&t.onAbort(Z),Z+="",D(Z),G=!0,j=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw o(se),se}function xi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var cm="data:application/octet-stream;base64,";function Bl(Z){return xi(Z,cm)}var Ey="file://";function Eh(Z){return xi(Z,Ey)}var mn="tfjs-backend-wasm.wasm";Bl(mn)||(mn=h(mn));function Dh(Z){try{if(Z==mn&&$)return new Uint8Array($);if(b)return b(Z);throw"both async and sync fetching of the wasm failed"}catch(se){Ps(se)}}function Dy(){if(!$&&(c||p)){if(typeof fetch=="function"&&!Eh(mn))return fetch(mn,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+mn+"'";return Z.arrayBuffer()}).catch(function(){return Dh(mn)});if(x)return new Promise(function(Z,se){x(mn,function(ke){Z(new Uint8Array(ke))},se)})}return Promise.resolve().then(function(){return Dh(mn)})}function yi(){var Z={a:Py};function se(tt,rt){var Nr=tt.exports;t.asm=Nr,M=t.asm.i,At(M.buffer),He=t.asm.o,Wa("wasm-instantiate")}zl("wasm-instantiate");function ke(tt){se(tt.instance)}function lt(tt){return Dy().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){D("failed to asynchronously prepare wasm: "+rt),Ps(rt)})}function Jt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Bl(mn)&&!Eh(mn)&&typeof fetch=="function"?fetch(mn,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ke,function(Nr){return D("wasm streaming compile failed: "+Nr),D("falling back to ArrayBuffer instantiation"),lt(ke)})}):lt(ke)}if(t.instantiateWasm)try{var Bt=t.instantiateWasm(Z,se);return Bt}catch(tt){return D("Module.instantiateWasm callback failed with error: "+tt),!1}return Jt().catch(o),{}}function ja(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ke=se.func;typeof ke=="number"?se.arg===void 0?He.get(ke)():He.get(ke)(se.arg):ke(se.arg===void 0?null:se.arg)}}function Vl(){Ps()}function $y(Z,se,ke){xe.copyWithin(Z,se,se+ke)}function Ry(){return xe.length}function bi(Z){try{return M.grow(Z-de.byteLength+65535>>>16),At(M.buffer),1}catch(se){}}function $h(Z){var se=Ry(),ke=2147483648;if(Z>ke)return!1;for(var lt=1;lt<=4;lt*=2){var Jt=se*(1+.2/lt);Jt=Math.min(Jt,Z+100663296);var Bt=Math.min(ke,ae(Math.max(Z,Jt),65536)),tt=bi(Bt);if(tt)return!0}return!1}var oc={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ke=oc.buffers[Z];se===0||se===10?((Z===1?E:D)(Y(ke,0)),ke.length=0):ke.push(se)},varargs:void 0,get:function(){oc.varargs+=4;var Z=ve[oc.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Rh(Z){return 0}function Fy(Z,se,ke,lt,Jt){}function Fh(Z,se,ke,lt){for(var Jt=0,Bt=0;Bt<ke;Bt++){for(var tt=ve[se+Bt*8>>2],rt=ve[se+(Bt*8+4)>>2],Nr=0;Nr<rt;Nr++)oc.printChar(Z,xe[tt+Nr]);Jt+=rt}return ve[lt>>2]=Jt,0}function fn(){return 6}function Oh(Z){return ve[Uh()>>2]=Z,Z}function Oy(Z){switch(Z){case 30:return 16384;case 85:var se=2147483648;return se/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Oh(28),-1}var Py={a:Vl,d:$y,e:$h,f:Rh,c:Fy,b:Fh,g:fn,h:Oy},My=yi(),Ph=t.___wasm_call_ctors=function(){return(Ph=t.___wasm_call_ctors=t.asm.j).apply(null,arguments)},sc=t._init=function(){return(sc=t._init=t.asm.k).apply(null,arguments)},pm=t._register_tensor=function(){return(pm=t._register_tensor=t.asm.l).apply(null,arguments)},Ly=t._dispose_data=function(){return(Ly=t._dispose_data=t.asm.m).apply(null,arguments)},zy=t._dispose=function(){return(zy=t._dispose=t.asm.n).apply(null,arguments)},By=t._Abs=function(){return(By=t._Abs=t.asm.p).apply(null,arguments)},Ae=t._Add=function(){return(Ae=t._Add=t.asm.q).apply(null,arguments)},Vy=t._AddN=function(){return(Vy=t._AddN=t.asm.r).apply(null,arguments)},Gy=t._All=function(){return(Gy=t._All=t.asm.s).apply(null,arguments)},Wy=t._Any=function(){return(Wy=t._Any=t.asm.t).apply(null,arguments)},jy=t._ArgMax=function(){return(jy=t._ArgMax=t.asm.u).apply(null,arguments)},Uy=t._AvgPool=function(){return(Uy=t._AvgPool=t.asm.v).apply(null,arguments)},Gl=t._BatchMatMul=function(){return(Gl=t._BatchMatMul=t.asm.w).apply(null,arguments)},Hy=t._Ceil=function(){return(Hy=t._Ceil=t.asm.x).apply(null,arguments)},qy=t._ClipByValue=function(){return(qy=t._ClipByValue=t.asm.y).apply(null,arguments)},Ky=t._Conv2D=function(){return(Ky=t._Conv2D=t.asm.z).apply(null,arguments)},Xy=t._Conv2DBackpropInput=function(){return(Xy=t._Conv2DBackpropInput=t.asm.A).apply(null,arguments)},Yy=t._Cos=function(){return(Yy=t._Cos=t.asm.B).apply(null,arguments)},Zy=t._CropAndResize=function(){return(Zy=t._CropAndResize=t.asm.C).apply(null,arguments)},Jy=t._Cumsum=function(){return(Jy=t._Cumsum=t.asm.D).apply(null,arguments)},Qy=t._DepthToSpace=function(){return(Qy=t._DepthToSpace=t.asm.E).apply(null,arguments)},eb=t._DepthwiseConv2dNative=function(){return(eb=t._DepthwiseConv2dNative=t.asm.F).apply(null,arguments)},Ua=t._Equal=function(){return(Ua=t._Equal=t.asm.G).apply(null,arguments)},mm=t._Exp=function(){return(mm=t._Exp=t.asm.H).apply(null,arguments)},fm=t._FlipLeftRight=function(){return(fm=t._FlipLeftRight=t.asm.I).apply(null,arguments)},tb=t._Floor=function(){return(tb=t._Floor=t.asm.J).apply(null,arguments)},rb=t._FloorDiv=function(){return(rb=t._FloorDiv=t.asm.K).apply(null,arguments)},nb=t._FusedBatchNorm=function(){return(nb=t._FusedBatchNorm=t.asm.L).apply(null,arguments)},ob=t._FusedConv2D=function(){return(ob=t._FusedConv2D=t.asm.M).apply(null,arguments)},sb=t._FusedDepthwiseConv2D=function(){return(sb=t._FusedDepthwiseConv2D=t.asm.N).apply(null,arguments)},Je=t._Gather=function(){return(Je=t._Gather=t.asm.O).apply(null,arguments)},ib=t._GatherNd=function(){return(ib=t._GatherNd=t.asm.P).apply(null,arguments)},ab=t._Greater=function(){return(ab=t._Greater=t.asm.Q).apply(null,arguments)},lb=t._GreaterEqual=function(){return(lb=t._GreaterEqual=t.asm.R).apply(null,arguments)},ub=t._LeakyRelu=function(){return(ub=t._LeakyRelu=t.asm.S).apply(null,arguments)},cb=t._Less=function(){return(cb=t._Less=t.asm.T).apply(null,arguments)},pb=t._LessEqual=function(){return(pb=t._LessEqual=t.asm.U).apply(null,arguments)},dm=t._Log=function(){return(dm=t._Log=t.asm.V).apply(null,arguments)},Mh=t._LogicalAnd=function(){return(Mh=t._LogicalAnd=t.asm.W).apply(null,arguments)},Lh=t._Max=function(){return(Lh=t._Max=t.asm.X).apply(null,arguments)},mb=t._MaxPool=function(){return(mb=t._MaxPool=t.asm.Y).apply(null,arguments)},fb=t._Maximum=function(){return(fb=t._Maximum=t.asm.Z).apply(null,arguments)},db=t._Mean=function(){return(db=t._Mean=t.asm._).apply(null,arguments)},hb=t._Min=function(){return(hb=t._Min=t.asm.$).apply(null,arguments)},gb=t._Minimum=function(){return(gb=t._Minimum=t.asm.aa).apply(null,arguments)},xb=t._MirrorPad=function(){return(xb=t._MirrorPad=t.asm.ba).apply(null,arguments)},yb=t._Multiply=function(){return(yb=t._Multiply=t.asm.ca).apply(null,arguments)},ft=t._Neg=function(){return(ft=t._Neg=t.asm.da).apply(null,arguments)},bb=t._NonMaxSuppressionV3=function(){return(bb=t._NonMaxSuppressionV3=t.asm.ea).apply(null,arguments)},wb=t._NonMaxSuppressionV4=function(){return(wb=t._NonMaxSuppressionV4=t.asm.fa).apply(null,arguments)},_b=t._NonMaxSuppressionV5=function(){return(_b=t._NonMaxSuppressionV5=t.asm.ga).apply(null,arguments)},ic=t._NotEqual=function(){return(ic=t._NotEqual=t.asm.ha).apply(null,arguments)},zh=t._OneHot=function(){return(zh=t._OneHot=t.asm.ia).apply(null,arguments)},Bh=t._PadV2=function(){return(Bh=t._PadV2=t.asm.ja).apply(null,arguments)},Vh=t._Pow=function(){return(Vh=t._Pow=t.asm.ka).apply(null,arguments)},kb=t._Prelu=function(){return(kb=t._Prelu=t.asm.la).apply(null,arguments)},vb=t._Prod=function(){return(vb=t._Prod=t.asm.ma).apply(null,arguments)},Gh=t._RealDiv=function(){return(Gh=t._RealDiv=t.asm.na).apply(null,arguments)},Cb=t._Relu=function(){return(Cb=t._Relu=t.asm.oa).apply(null,arguments)},Wh=t._Relu6=function(){return(Wh=t._Relu6=t.asm.pa).apply(null,arguments)},Ha=t._ResizeBilinear=function(){return(Ha=t._ResizeBilinear=t.asm.qa).apply(null,arguments)},Ib=t._Reverse=function(){return(Ib=t._Reverse=t.asm.ra).apply(null,arguments)},Nb=t._RotateWithOffset=function(){return(Nb=t._RotateWithOffset=t.asm.sa).apply(null,arguments)},FI=t._Round=function(){return(FI=t._Round=t.asm.ta).apply(null,arguments)},jh=t._Rsqrt=function(){return(jh=t._Rsqrt=t.asm.ua).apply(null,arguments)},Sb=t._ScatterNd=function(){return(Sb=t._ScatterNd=t.asm.va).apply(null,arguments)},Tb=t._SelectV2=function(){return(Tb=t._SelectV2=t.asm.wa).apply(null,arguments)},Ab=t._Sigmoid=function(){return(Ab=t._Sigmoid=t.asm.xa).apply(null,arguments)},Eb=t._Sin=function(){return(Eb=t._Sin=t.asm.ya).apply(null,arguments)},Db=t._Softmax=function(){return(Db=t._Softmax=t.asm.za).apply(null,arguments)},$b=t._Sqrt=function(){return($b=t._Sqrt=t.asm.Aa).apply(null,arguments)},Rb=t._Square=function(){return(Rb=t._Square=t.asm.Ba).apply(null,arguments)},Fb=t._SquaredDifference=function(){return(Fb=t._SquaredDifference=t.asm.Ca).apply(null,arguments)},Ob=t._Step=function(){return(Ob=t._Step=t.asm.Da).apply(null,arguments)},Pb=t._StridedSlice=function(){return(Pb=t._StridedSlice=t.asm.Ea).apply(null,arguments)},Mb=t._Sub=function(){return(Mb=t._Sub=t.asm.Fa).apply(null,arguments)},Lb=t._Sum=function(){return(Lb=t._Sum=t.asm.Ga).apply(null,arguments)},zb=t._Tan=function(){return(zb=t._Tan=t.asm.Ha).apply(null,arguments)},Bb=t._Tanh=function(){return(Bb=t._Tanh=t.asm.Ia).apply(null,arguments)},Vb=t._Tile=function(){return(Vb=t._Tile=t.asm.Ja).apply(null,arguments)},Gb=t._TopK=function(){return(Gb=t._TopK=t.asm.Ka).apply(null,arguments)},Wb=t._Transform=function(){return(Wb=t._Transform=t.asm.La).apply(null,arguments)},jb=t._Transpose=function(){return(jb=t._Transpose=t.asm.Ma).apply(null,arguments)},Ub=t.__FusedMatMul=function(){return(Ub=t.__FusedMatMul=t.asm.Na).apply(null,arguments)},Hb=t._malloc=function(){return(Hb=t._malloc=t.asm.Oa).apply(null,arguments)},qb=t._free=function(){return(qb=t._free=t.asm.Pa).apply(null,arguments)},Uh=t.___errno_location=function(){return(Uh=t.___errno_location=t.asm.Qa).apply(null,arguments)},Hh=t.stackSave=function(){return(Hh=t.stackSave=t.asm.Ra).apply(null,arguments)},qh=t.stackRestore=function(){return(qh=t.stackRestore=t.asm.Sa).apply(null,arguments)},hm=t.stackAlloc=function(){return(hm=t.stackAlloc=t.asm.Ta).apply(null,arguments)};t.cwrap=X;var ac;function Kb(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}Fn=function Z(){ac||gm(),ac||(Fn=Z)};function gm(Z){if(Z=Z||i,_r>0||(cn(),_r>0))return;function se(){ac||(ac=!0,t.calledRun=!0,!G&&(Mr(),Un(),n(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),ir()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=gm,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return gm(),e.ready}}();typeof Ax=="object"&&typeof MC=="object"?MC.exports=LC:typeof define=="function"&&define.amd?define([],function(){return LC}):typeof Ax=="object"&&(Ax.WasmBackendModule=LC)});var PB=qt((OB,bI)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(OB,typeof bI=="object"&&bI,typeof define=="function"&&define)});var LB=qt((MB,wI)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(MB,typeof wI=="object"&&wI,typeof define=="function"&&define)});var BB=qt((zB,_I)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(zB,typeof _I=="object"&&_I,typeof define=="function"&&define)});var GB=qt((VB,kI)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(VB,typeof kI=="object"&&kI,typeof define=="function"&&define)});var jB=qt((WB,vI)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(WB,typeof vI=="object"&&vI,typeof define=="function"&&define)});var HB=qt((UB,CI)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(UB,typeof CI=="object"&&CI,typeof define=="function"&&define)});var KB=qt((qB,vy)=>{(function(r,e,t){var n=256,o=6,s=52,a="random",i=t.pow(n,o),l=t.pow(2,s),u=l*2,c=n-1,p;function m(w,_,I){var E=[];_=_==!0?{entropy:!0}:_||{};var D=g(h(_.entropy?[w,b(e)]:w==null?x():w,3),E),$=new f(E),R=function(){for(var M=$.g(o),G=i,j=0;M<l;)M=(M+j)*n,G*=n,j=$.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return R.int32=function(){return $.g(4)|0},R.quick=function(){return $.g(4)/4294967296},R.double=R,g(b($.S),e),(_.pass||I||function(M,G,j,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),j?(t[a]=M,G):M})(R,D,"global"in _?_.global:this==t,_.state)}function f(w){var _,I=w.length,E=this,D=0,$=E.i=E.j=0,R=E.S=[];for(I||(w=[I++]);D<n;)R[D]=D++;for(D=0;D<n;D++)R[D]=R[$=c&$+w[D%I]+(_=R[D])],R[$]=_;(E.g=function(M){for(var G,j=0,U=E.i,H=E.j,q=E.S;M--;)G=q[U=c&U+1],j=j*n+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return E.i=U,E.j=H,j})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var I=[],E=typeof w,D;if(_&&E=="object")for(D in w)try{I.push(h(w[D],_-1))}catch($){}return I.length?I:E=="string"?w:w+"\0"}function g(w,_){for(var I=w+"",E,D=0;D<I.length;)_[c&D]=c&(E^=_[c&D]*19)+I.charCodeAt(D++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=r.navigator,I=_&&_.plugins;return[+new Date,r,I,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof vy=="object"&&vy.exports){vy.exports=m;try{p=b_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:qB,[],Math)});var II=qt((yjt,XB)=>{var Mne=PB(),Lne=LB(),zne=BB(),Bne=GB(),Vne=jB(),Gne=HB(),nc=KB();nc.alea=Mne;nc.xor128=Lne;nc.xorwow=zne;nc.xorshift7=Bne;nc.xor4096=Vne;nc.tychei=Gne;XB.exports=nc});var vV=qt(()=>{});var _m={};We(_m,{bin:()=>rN,browser:()=>lN,default:()=>TG,dependencies:()=>aN,description:()=>KI,devDependencies:()=>sN,jsdelivr:()=>JI,license:()=>oN,main:()=>YI,miniprogram:()=>tN,module:()=>ZI,name:()=>HI,private:()=>XI,repository:()=>nN,scripts:()=>iN,types:()=>eN,unpkg:()=>QI,version:()=>qI});var HI="@tensorflow/tfjs",qI="3.6.0",KI="An open-source machine learning framework.",XI=!1,YI="dist/tf.node.js",ZI="dist/index.js",JI="dist/tf.min.js",QI="dist/tf.min.js",eN="dist/index.d.ts",tN="dist/miniprogram",rN={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},nN={type:"git",url:"https://github.com/tensorflow/tfjs.git"},oN="Apache-2.0",sN={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},iN={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},aN={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},lN={"node-fetch":!1,util:!1,crypto:!1},TG={name:HI,version:qI,description:KI,private:XI,main:YI,module:ZI,jsdelivr:JI,unpkg:QI,types:eN,miniprogram:tN,bin:rN,repository:nN,license:oN,devDependencies:sN,scripts:iN,dependencies:aN,browser:lN};var km={};We(km,{browser:()=>NN,default:()=>AG,dependencies:()=>IN,description:()=>pN,devDependencies:()=>vN,engines:()=>wN,jsdelivr:()=>dN,"jsnext:main":()=>xN,license:()=>kN,main:()=>fN,miniprogram:()=>bN,module:()=>yN,name:()=>uN,private:()=>mN,repository:()=>_N,scripts:()=>CN,sideEffects:()=>SN,types:()=>gN,unpkg:()=>hN,version:()=>cN});var uN="@tensorflow/tfjs-core",cN="3.6.0",pN="Hardware-accelerated JavaScript library for machine intelligence",mN=!1,fN="dist/tf-core.node.js",dN="dist/tf-core.min.js",hN="dist/tf-core.min.js",gN="dist/index.d.ts",xN="dist/index.js",yN="dist/index.js",bN="dist/miniprogram",wN={yarn:">= 1.3.2"},_N={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},kN="Apache-2.0",vN={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},CN={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},IN={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},NN={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},SN=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],AG={name:uN,version:cN,description:pN,private:mN,main:fN,jsdelivr:dN,unpkg:hN,types:gN,"jsnext:main":xN,module:yN,miniprogram:bN,engines:wN,repository:_N,license:kN,devDependencies:vN,scripts:CN,dependencies:IN,browser:NN,sideEffects:SN};var vm={};We(vm,{browser:()=>jN,default:()=>EG,dependencies:()=>WN,description:()=>EN,devDependencies:()=>BN,jsdelivr:()=>RN,"jsnext:main":()=>PN,license:()=>zN,main:()=>$N,miniprogram:()=>LN,module:()=>MN,name:()=>TN,peerDependencies:()=>GN,private:()=>DN,scripts:()=>VN,types:()=>ON,unpkg:()=>FN,version:()=>AN});var TN="@tensorflow/tfjs-data",AN="3.6.0",EN="TensorFlow Data API in JavaScript",DN=!1,$N="dist/tf-data.node.js",RN="dist/tf-data.min.js",FN="dist/tf-data.min.js",ON="dist/index.d.ts",PN="dist/index.js",MN="dist/index.js",LN="dist/miniprogram",zN="Apache-2.0",BN={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},VN={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},GN={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},WN={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},jN={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},EG={name:TN,version:AN,description:EN,private:DN,main:$N,jsdelivr:RN,unpkg:FN,types:ON,"jsnext:main":PN,module:MN,miniprogram:LN,license:zN,devDependencies:BN,scripts:VN,peerDependencies:GN,dependencies:WN,browser:jN};var Cm={};We(Cm,{default:()=>DG,description:()=>qN,devDependencies:()=>nS,jsdelivr:()=>eS,"jsnext:main":()=>JN,license:()=>KN,main:()=>YN,miniprogram:()=>rS,module:()=>QN,name:()=>UN,peerDependencies:()=>sS,private:()=>XN,scripts:()=>oS,types:()=>ZN,unpkg:()=>tS,version:()=>HN});var UN="@tensorflow/tfjs-layers",HN="3.6.0",qN="TensorFlow layers API in JavaScript",KN="Apache-2.0 AND MIT",XN=!1,YN="dist/tf-layers.node.js",ZN="dist/index.d.ts",JN="dist/index.js",QN="dist/index.js",eS="dist/tf-layers.min.js",tS="dist/tf-layers.min.js",rS="dist/miniprogram",nS={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},oS={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},sS={"@tensorflow/tfjs-core":"3.6.0"},DG={name:UN,version:HN,description:qN,license:KN,private:XN,main:YN,types:ZN,"jsnext:main":JN,module:QN,jsdelivr:eS,unpkg:tS,miniprogram:rS,devDependencies:nS,scripts:oS,peerDependencies:sS};var Im={};We(Im,{default:()=>$G,description:()=>lS,devDependencies:()=>bS,jsdelivr:()=>dS,"jsnext:main":()=>cS,license:()=>xS,main:()=>uS,miniprogram:()=>hS,module:()=>pS,name:()=>iS,peerDependencies:()=>yS,repository:()=>gS,scripts:()=>wS,types:()=>mS,unpkg:()=>fS,version:()=>aS});var iS="@tensorflow/tfjs-converter",aS="3.6.0",lS="Tensorflow model converter for javascript",uS="dist/tf-converter.node.js",cS="dist/index.js",pS="dist/index.js",mS="dist/index.d.ts",fS="dist/tf-converter.min.js",dS="dist/tf-converter.min.js",hS="dist/miniprogram",gS={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},xS="Apache-2.0",yS={"@tensorflow/tfjs-core":"3.6.0"},bS={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},wS={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},$G={name:iS,version:aS,description:lS,main:uS,"jsnext:main":cS,module:pS,types:mS,unpkg:fS,jsdelivr:dS,miniprogram:hS,repository:gS,license:xS,peerDependencies:yS,devDependencies:bS,scripts:wS};var RG=1e-7,FG=1e-4,Xa=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ms=class{refCount(e){return Hn("refCount")}incRef(e){return Hn("incRef")}timerAvailable(){return!0}time(e){return Hn("time")}read(e){return Hn("read")}readSync(e){return Hn("readSync")}numDataIds(){return Hn("numDataIds")}disposeData(e,t){return Hn("disposeData")}write(e,t,n){return Hn("write")}move(e,t,n,o,s){return Hn("move")}memory(){return Hn("memory")}floatPrecision(){return Hn("floatPrecision")}epsilon(){return this.floatPrecision()===32?RG:FG}dispose(){return Hn("dispose")}};function Hn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function _S(r){let e=r.length,t=0,n=0;for(;e>0;)n=Math.random()*e|0,e--,t=r[e],r[e]=r[n],r[n]=t}function OG(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,n,o,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=r[t],o=e[t],r[t]=r[s],e[t]=e[s],r[s]=n,e[s]=o}function hc(r,e,t){return Math.max(r,Math.min(e,t))}function PG(r){return r%2==0?r:r+1}function MG(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function LG(r,e){let t=Math.random();return e*t+(1-t)*r}function zG(r,e){let t=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(e[n]);t+=o*o}return t}function T(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function Dt(r,e,t=""){T(Xr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function On(r){T(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function bo(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||ar(r)&&!t)for(let n=0;n<r.length;++n)bo(r[n],e,t);else e.push(r);return e}function nt(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function BG(r){return r.length===0}function Xr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function VG(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function GG(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function WG(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return _S(e),e}function jl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function jG(r,e=n=>0,t){return new Promise((n,o)=>{let s=0,a=()=>{if(r()){n();return}s++;let i=e(s);if(t!=null&&s>=t){o();return}setTimeout(a,i)};a()})}function UG(r,e){let t=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let o=r.slice();return o[n]=e/t,o}function nr(r,e){let t=e.length;return r=r==null?e.map((n,o)=>o):[].concat(r),T(r.every(n=>n>=-t&&n<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),T(r.every(n=>ot(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?t+n:n)}function Qb(r,e){let t=[],n=[],o=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||o?null:nr(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),n.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),n.push(i))}return{newShape:t,keptDims:n}}function ew(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function tw(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function rw(r,e){for(let t=0;t<r.length;t++){let n=r[t];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${e} being uploaded contains ${n}.`)}}function nw(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function HG(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function ar(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Jh(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function ow(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function wo(r){return typeof r=="string"||r instanceof String}function kS(r){return typeof r=="boolean"}function vS(r){return typeof r=="number"}function gc(r){return Array.isArray(r)?gc(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":vS(r)?"float32":wo(r)?"string":kS(r)?"bool":"float32"}function Ls(r){return!!(r&&r.constructor&&r.call&&r.apply)}function xc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function zs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let n=e-3;n>=0;--n)t[n]=t[n+1]*r[n+1];return t}function CS(r,e,t,n=!1){let o=new Array;if(e.length===1){let s=e[0]*(n?2:1);for(let a=0;a<s;a++)o[a]=t[r+a]}else{let s=e[0],a=e.slice(1),i=a.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)o[l]=CS(r+l*i,a,t,n)}return o}function Ul(r,e,t=!1){if(r.length===0)return e[0];let n=r.reduce((o,s)=>o*s)*(t?2:1);if(n===0)return[];if(n!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}${t?" for a complex tensor":""}.`);return CS(0,r,e,t)}function Nm(r,e){let t=yc(r,e);for(let n=0;n<t.length;n++)t[n]=1;return t}function yc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function qG(r,e){let t=r.reduce((n,o)=>n*o,1);if(e==null||e==="float32")return Ul(r,new Float32Array(t));if(e==="int32")return Ul(r,new Int32Array(t));if(e==="bool")return Ul(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function Sm(r){r.forEach(e=>{T(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function KG(r,e,t){if(e===0)return 0;if(e===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=t[o]*r[o];return n}function XG(r,e,t){if(e===0)return[];if(e===1)return[r];let n=new Array(e);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/t[o]),r-=n[o]*t[o];return n[n.length-1]=r,n}function Tm(r){return r&&r.then&&typeof r.then=="function"}var IS="tfjsflags",Qh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=YG,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let o=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${o}.`),this.set(e,o)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Tm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);IS in e&&e[IS].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=ZG(o,s)})}};function YG(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...n)=>(JG(e,n[0],n[1]),n.join("="))),e}function JG(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function ZG(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return sw}var sw=null;function NS(r){sw=r}var iw;function aw(){if(iw==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");iw=r}return iw}function QG(){let r=aw();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Am(r,e){let t=QG();if(t.has(r))return t.get(r);{let n=e();return t.set(r,n),t.get(r)}}var Bs="Abs",ki="Acos",vi="Acosh",Pn="Add",_o="AddN",Ci="All",Ii="Any",ko="ArgMax",Ya="ArgMin",Ni="Asin",Si="Asinh",Ti="Atan",Ai="Atanh",Ei="Atan2",vo="AvgPool",bc="AvgPoolGrad",Za="AvgPool3D",wc="AvgPool3DGrad",Co="BatchMatMul",Ja="BatchToSpaceND",_c="Bincount",SS="BroadcastTo",qn="Cast",Io="Ceil",Kn="ClipByValue",kc="Complex",Qa="ComplexAbs",Vs="Concat",No="Conv2D",vc="Conv2DBackpropFilter",So="Conv2DBackpropInput",el="Conv3D",Cc="Conv3DBackpropFilterV2",Ic="Conv3DBackpropInputV2",To="Cos",Di="Cosh",Ao="Cumsum",$i="CropAndResize",Nc="DenseBincount",Ri="DepthToSpace",Eo="DepthwiseConv2dNative",Sc="DepthwiseConv2dNativeBackpropFilter",Tc="DepthwiseConv2dNativeBackpropInput",Ac="Diag",tl="Dilation2D",Em="Dilation2DBackpropInput",Dm="Dilation2DBackpropFilter",Do="RealDiv",Ec="Einsum",Fi="Elu",Dc="EluGrad",Oi="Erf",Pi="Equal",$o="Exp",Gs="ExpandDims",Mi="Expm1",$c="FFT",rl="Fill",Li="FlipLeftRight",Ro="Floor",Fo="FloorDiv",Oo="FusedBatchNorm",Ws="GatherV2",zi="GatherNd",Bi="Greater",Po="GreaterEqual",Xn="Identity",Rc="IFFT",Fc="Imag",Vi="IsFinite",Gi="IsInf",Wi="IsNan",Mo="LeakyRelu",ji="Less",Ui="LessEqual",Oc="LinSpace",Lo="Log",Hi="Log1p",qi="LogicalAnd",Hl="LogicalNot",ql="LogicalOr",TS="LogSoftmax",nl="LRN",Pc="LRNGrad",zo="Max",Bo="Maximum",Vo="MaxPool",Mc="MaxPoolGrad",ol="MaxPool3D",Lc="MaxPool3DGrad",zc="MaxPoolWithArgmax",Go="Mean",Wo="Min",jo="Minimum",Uo="MirrorPad",Ki="Mod",Bc="Multinomial",Ho="Multiply",js="Neg",Xi="NotEqual",Yi="NonMaxSuppressionV3",Zi="NonMaxSuppressionV4",Ji="NonMaxSuppressionV5",Us="OnesLike",qo="OneHot",Hs="Pack",Ko="PadV2",toe="Pool",Xo="Pow",Yo="Prelu",Qi="Prod",sl="Range",Vc="Real",ea="Reciprocal",Zo="Relu",qs="Reshape",il="ResizeNearestNeighbor",Gc="ResizeNearestNeighborGrad",Jo="ResizeBilinear",Wc="ResizeBilinearGrad",Qo="Relu6",es="Reverse",ts="Round",rs="Rsqrt",ta="ScatterNd",Ks="Select",ra="Selu",Xs="Slice",ns="Sin",na="Sinh",oa="Sign",os="Sigmoid",sa="Softplus",ss="Sqrt",is="Sum",al="SpaceToBatchND",Ys="SplitV",as="Softmax",jc="SparseFillEmptyRows",Uc="SparseReshape",Hc="SparseToDense",ls="SquaredDifference",ll="Square",ia="StridedSlice",us="Sub",cs="Tan",ps="Tanh",Mn="Tile",aa="TopK",la="Transform",ms="Transpose",qc="Unique",Zs="Unpack",ul="UnsortedSegmentSum",Js="ZerosLike",Yn="Step",$m="FromPixels",ua="RotateWithOffset",Qs="_FusedMatMul",ei="FusedConv2D",ti="FusedDepthwiseConv2D";var Kc=Am("kernelRegistry",()=>new Map),Rm=Am("gradRegistry",()=>new Map);function Fm(r,e){let t=lw(r,e);return Kc.get(t)}function uw(r){return Rm.get(r)}function eg(r){let e=Kc.entries(),t=[];for(;;){let{done:n,value:o}=e.next();if(n)break;let[s,a]=o,[i]=s.split("_");i===r&&t.push(a)}return t}function Kl(r){let{kernelName:e,backendName:t}=r,n=lw(e,t);Kc.has(n)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Kc.set(n,r)}function AS(r){let{kernelName:e}=r;Rm.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),Rm.set(e,r)}function soe(r,e){let t=lw(r,e);if(!Kc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Kc.delete(t)}function ioe(r){if(!Rm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Rm.delete(r)}function aoe(r,e){eg(r).forEach(n=>{let o=Object.assign({},n,{backendName:e});Kl(o)})}function lw(r,e){return`${e}_${r}`}var y={};We(y,{arraysEqual:()=>Xr,assert:()=>T,assertNonNegativeIntegerDimensions:()=>Sm,assertNonNull:()=>On,assertShapesMatch:()=>Dt,bytesFromStringArray:()=>ow,bytesPerElement:()=>Jh,checkConversionForErrors:()=>rw,clamp:()=>hc,computeStrides:()=>zs,createScalarValue:()=>eW,createShuffledIndices:()=>WG,decodeString:()=>Yc,distSquared:()=>zG,encodeString:()=>cl,fetch:()=>rW,flatten:()=>bo,getArrayFromDType:()=>tw,getTypedArrayFromDType:()=>ew,hasEncodingLoss:()=>HG,indexToLoc:()=>XG,inferDtype:()=>gc,inferFromImplicitShape:()=>UG,isBoolean:()=>kS,isFunction:()=>Ls,isInt:()=>ot,isNumber:()=>vS,isPromise:()=>Tm,isScalarShape:()=>BG,isString:()=>wo,isTypedArray:()=>ar,isValidDtype:()=>nw,locToIndex:()=>KG,makeOnesTypedArray:()=>Nm,makeZerosNestedTypedArray:()=>qG,makeZerosTypedArray:()=>yc,nearestDivisor:()=>xc,nearestLargerEven:()=>PG,now:()=>Xl,parseAxisParam:()=>nr,randUniform:()=>LG,repeatedTry:()=>jG,rightPad:()=>jl,shuffle:()=>_S,shuffleCombo:()=>OG,sizeFromShape:()=>nt,sizeToSquarishShape:()=>GG,squeezeShape:()=>Qb,sum:()=>MG,tanh:()=>VG,toNestedArray:()=>Ul,toTypedArray:()=>Xc});function eW(r,e){return e==="string"?cl(r):Xc([r],e)}function tW(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Xc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=bo(r)),W().getBool("DEBUG")&&rw(r,e),tW(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let n=0;n<t.length;++n)Math.round(r[n])!==0&&(t[n]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Xl(){return W().platform.now()}function rW(r,e){return W().platform.fetch(r,e)}function cl(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function Yc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var cw=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new ES)}profileKernel(e,t,n){let o,s=()=>{o=n()},a,i=Xl();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of o)u.dataSync();a=Promise.resolve({kernelMs:Xl()-i})}if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<o.length;u++){let c=o[u];c.data().then(p=>{nW(p,c.dtype,e)})}return{kernelName:e,outputs:o,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:o,inputs:s,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),o,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function nW(r,e,t){if(e!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${t}'`),!0}return!1}var ES=class{logKernelProfile(e,t,n,o,s,a){let i=typeof o=="number"?jl(`${o}ms`,9):o.error,l=jl(e,25),u=t.rank,c=t.size,p=jl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function DS(r,e,t){let n={},o={};for(let l=0;l<e.length;l++)n[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(n[m.id]){u.outputs.forEach(h=>n[h.id]=!0),f=!0,o[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(o[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function $S(r,e,t,n){for(let o=e.length-1;o>=0;o--){let s=e[o],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Xr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=n(p,u),p.dispose()}}}}var RS=20,Om=3,pw=7;function FS(r,e,t,n){let o=zs(e),s=oW(r,e,t,o),a=e.length,i=tg(r,e,t,o,s),l=["Tensor"];return n&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function oW(r,e,t,n){let o=nt(e),s=n[n.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?Mm(r):r;if(i>1)for(let u=0;u<o/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],Pm(l[c+p],0,t).length)}return a}function Pm(r,e,t){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(pw))} + ${parseFloat(r[1].toFixed(pw))}j`:wo(r)?n=`'${r}'`:t==="bool"?n=OS(r):n=parseFloat(r.toFixed(pw)).toString(),jl(n,e)}function OS(r){return r===0?"false":"true"}function tg(r,e,t,n,o,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=Mm(r);return[Pm(h[0],0,t)]}return t==="bool"?[OS(r[0])]:[r[0].toString()]}if(l===1){if(i>RS){let g=Om*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-Om)*a,i*a));return t==="complex64"&&(x=Mm(x),b=Mm(b)),["["+x.map((w,_)=>Pm(w,o[_],t)).join(", ")+", ..., "+b.map((w,_)=>Pm(w,o[i-Om+_],t)).join(", ")+"]"]}let h=t==="complex64"?Mm(r):Array.from(r);return["["+h.map((g,x)=>Pm(g,o[x],t)).join(", ")+"]"]}let u=e.slice(1),c=n.slice(1),p=n[0]*a,m=[];if(i>RS){for(let h=0;h<Om;h++){let g=h*p,x=g+p;m.push(...tg(r.slice(g,x),u,t,c,o,!1))}m.push("...");for(let h=i-Om;h<i;h++){let g=h*p,x=g+p;m.push(...tg(r.slice(g,x),u,t,c,o,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...tg(r.slice(g,x),u,t,c,o,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
|
|
`;for(let h=2;h<l;h++)d+=`
|
|
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function Mm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var ut=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=nt(e),n!=null){let o=n.length;T(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||tw(t,this.size),this.strides=zs(e)}set(e,...t){t.length===0&&(t=[0]),T(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let o of e){if(o<0||o>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let o=0;o<e.length-1;++o)n+=this.strides[o]*e[o];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return ri().makeTensor(this.values,this.shape,this.dtype)}},ri=null,Zc=null,sW=null;function PS(r){ri=r}function MS(r){Zc=r}function LS(r){sW=r}var Pe=class{constructor(e,t,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=nt(e),this.strides=zs(e),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Zc.buffer(this.shape,this.dtype,e)}bufferSync(){return Zc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Ul(this.shape,e,this.dtype==="complex64")}arraySync(){return Ul(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=ri().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Yc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=ri().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Yc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await ri().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(ri().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Zc.print(this,e)}clone(){return this.throwIfDisposed(),Zc.clone(this)}toString(e=!1){let t=this.dataSync();return FS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Zc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),ri().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function P(){return Am("Tensor",()=>Pe)}P();var pl=class extends Pe{constructor(e,t,n,o){super(e.shape,e.dtype,e.dataId,o);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Xr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);ri().disposeTensor(this),this.dataId=e.dataId,ri().incRef(this,null)}dispose(){ri().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(pl,Symbol.hasInstance,{value:r=>r instanceof Pe&&r.assign!=null&&r.assign instanceof Function});var Zn={};We(Zn,{assertTypesMatch:()=>xw,getTensorsInContainer:()=>Lm,isTensorInList:()=>aW,makeTypesMatch:()=>je});var mw;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(mw||(mw={}));var fw;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(fw||(fw={}));var dw;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(dw||(dw={}));var hw;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(hw||(hw={}));var gw;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(gw||(gw={}));var iW={float32:hw,int32:fw,bool:dw,complex64:gw};function lr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return iW[r][e]}function Yl(r){return lr(r,"int32")}function je(r,e){if(r.dtype===e.dtype)return[r,e];let t=lr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function xw(r,e){T(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function aW(r,e){return e.some(t=>t.id===r.id)}function Lm(r){let e=[],t=new Set;return zS(r,e,t),e}function zS(r,e,t){if(r==null)return;if(r instanceof Pe){e.push(r);return}if(!lW(r))return;let n=r;for(let o in n){let s=n[o];t.has(s)||(t.add(s),zS(s,e,t))}}function lW(r){return Array.isArray(r)||typeof r=="object"}function yw(r){return r.kernelName!=null}var bw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Zl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new bw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new cw(this.backendInstance),!0}setupRegisteredKernels(){eg(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){eg(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ms)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(a=>o<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),o=n.backend,s=this.readSync(t),a=o.refCount(t);o.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=t(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(e,t,n){e();try{let o=n();return t(),o}catch(o){throw t(),o}}nextTensorId(){return Zl.nextTensorId++}nextVariableId(){return Zl.nextVariableId++}clone(e){let t=A.runKernel(Xn,{x:e}),n={x:e},o=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return A.runKernel(qn,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],o,s,{}),t}runKernel(e,t,n){if(!(Fm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let o=this.backend.numDataIds(),s=0;n.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=o-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],o=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=yw(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(yw(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Fm(d,this.backendName);T(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(I=>{if(I.rank!=null)return I;let{dataId:E,shape:D,dtype:$}=I;return this.makeTensorFromDataId(E,D,$)});if(o){let I=this.getTensorsForGradient(d,h,_);n=this.saveTensorsForBackwardMode(I)}return _}}else{let{forwardFunc:d}=e,h=g=>{!o||(n=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=yw(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),o&&this.addTapeNode(u,c,t,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let o=uw(e);if(o!=null){let s=o.inputsToSave||[],a=o.outputsToSave||[],i;o.saveAllInputs?(T(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=n.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,n,o){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=e;n==="string"&&wo(e[0])&&(s=e.map(l=>cl(l)));let a=o.write(s,t,n),i=new Pe(t,n,a,this.nextTensorId());if(this.trackTensor(i,o),n==="string"){let l=this.state.tensorInfo.get(a),u=ow(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,n,o){n=n||"float32";let s=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(s,o),s}makeVariable(e,t=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==e.dtype&&(e=e.cast(o));let s=new pl(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Jh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof pl||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Jh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,o,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},l=uw(e);l!=null&&(o=l.gradFunc),o!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=n[p],f=yc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Lm(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(e,t,n,o=!1){if(T(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));T(s instanceof Pe,()=>"The result y returned by f() must be a tensor.");let a=DS(this.state.activeTape,t,s);if(!o&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=n==null?uW(s.shape):n,$S(i,a,u=>this.tidy(u),cW);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return T(Ls(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{T(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};t.forEach((i,l)=>{o[l]=i});let s=(i,l)=>(n=e(...t,l),T(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),T(Ls(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,l)=>{let u=n.gradFunc(i,l),c=Array.isArray(u)?u:[u];T(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),T(c.every(m=>m instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:o})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Xl(),n=await this.backend.time(e);return n.wallMs=Xl()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new bw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Zl.nextTensorId=0;Zl.nextVariableId=0;function uW(r){let e=Nm(nt(r),"float32");return A.makeTensor(e,r,"float32")}function ww(){let r=aw();if(r._tfengine==null){let e=new Qh(r);r._tfengine=new Zl(e)}return NS(r._tfengine.ENV),PS(()=>r._tfengine),r._tfengine}var A=ww();function cW(r,e){let t={a:r,b:e};return A.runKernel(Pn,t)}var Jl={};We(Jl,{isBrowser:()=>_w,isMobile:()=>mW});function pW(){return typeof navigator!="undefined"&&navigator!=null}function mW(r){if(r||pW()){if(r||(r=navigator),r.product==="ReactNative")return!0;let e=r.userAgent||r.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function _w(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var fs=W();fs.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});fs.registerFlag("IS_BROWSER",()=>_w());fs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");fs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));fs.registerFlag("PROD",()=>!1);fs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>fs.getBool("DEBUG"));fs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);fs.registerFlag("IS_TEST",()=>!1);fs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);fs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ar(r,e){let t=r;if(ar(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(t)||ar(t)&&e!=="string";)n.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&BS(r,n,[]),n}function BS(r,e,t){if(t=t||[],!Array.isArray(r)&&!ar(r)){T(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}T(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),T(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let n=e.slice(1);for(let o=0;o<r.length;++o)BS(r[o],n,t.concat(o))}function VS(r,e,t,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${n}' must be ${r} tensor, but got ${e} tensor`)}}function k(r,e,t,n="numeric"){if(r instanceof Pe)return VS(n,r.dtype,e,t),r;let o=gc(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),VS(n,o,e,t),r==null||!ar(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Ar(r,o);!ar(r)&&!Array.isArray(r)&&(r=[r]);let i=o!=="string"?Xc(r,o):bo(r,[],!0);return A.makeTensor(i,s,o)}function ca(r,e,t,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>k(s,`${e}[${a}]`,t,n))}var GS="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],n=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+GS;let o=(...s)=>{A.startScope(t);try{let a=n(...s);return Tm(a)&&console.error("Cannot return a Promise inside of tidy."),A.endScope(a),a}catch(a){throw A.endScope(null),a}};return Object.defineProperty(o,"name",{value:t,configurable:!0}),o}function fW(r,e){let t=k(r,"real","complex"),n=k(e,"imag","complex");Dt(t.shape,n.shape,`real and imag shapes, ${t.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:t,imag:n};return A.runKernel(kc,o)}var Nn=S({complex_:fW});function Yr(r,e,t,n){if(n==null&&(n=gc(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!ar(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){Sm(e);let o=nt(e),s=nt(t);T(o===s,()=>`Based on the provided shape, [${e}], the tensor should have ${o} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==nt(e.slice(a)):!0;T(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!ar(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=n!=="string"?Xc(r,n):bo(r,[],!0),A.makeTensor(r,e,n)}function vr(r,e,t){let n=Ar(r,t);return Yr(r,e,n,t)}var zm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var rg=4;async function WS(r,e){let t=[],n=[],o=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<o.length;++a){let i=o[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+rg*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=rg,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(n);return{data:dW(s),specs:t}}function ng(r,e){let t={},n,o=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=nt(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=zm[p.dtype],f=r.slice(o,o+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=hW()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*m}else if(i==="string"){let p=nt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+rg))[0];o+=rg;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=zm[i],m=r.slice(o,o+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=vr(f,l,"float32"),g=vr(d,l,"float32");t[a]=Nn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*p}i!=="complex64"&&(t[a]=vr(c,l,i))}return t}function dW(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(e),o=0;return t.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var kw=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function jS(r){return kw?Buffer.byteLength(r):new Blob([r]).size}function US(r){if(kw)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let n=0,o=e.length;n<o;n++)t+=String.fromCharCode(e[n]);return btoa(t)}function HS(r){if(kw){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let n=0;n<e.length;++n)t.set([e.charCodeAt(n)],n);return t.buffer}function Jc(r){if(r.length===1)return r[0];let e=0;r.forEach(o=>{e+=o.byteLength});let t=new Uint8Array(e),n=0;return r.forEach(o=>{t.set(new Uint8Array(o),n),n+=o.byteLength}),t.buffer}function vw(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function ni(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:jS(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:jS(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function gW(){let r=t=>{let n=t<<13,o=0;for(;(n&8388608)==0;)o-=8388608,n<<=1;return n&=~8388608,o+=947912704,n|o},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function xW(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function yW(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function hW(){let r=gW(),e=xW(),t=yW();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let a=0;a<n.length;a++){let i=n[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(o)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let o=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&o.push(i)}),o}},qS=r=>St.registerSaveRouter(r),KS=r=>St.registerLoadRouter(r),XS=r=>St.getSaveHandlers(r),YS=(r,e)=>St.getLoadHandlers(r,e);var Cw="tensorflowjs",Iw=1,Ql="models_store",ml="model_info_store";function ZS(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function Nw(r){let e=r.result;e.createObjectStore(Ql,{keyPath:"modelPath"}),e.createObjectStore(ml,{keyPath:"modelPath"})}var pa=class{constructor(e){if(this.indexedDB=ZS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,o)=>{let s=this.indexedDB.open(Cw,Iw);s.onupgradeneeded=()=>Nw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(Ql,"readonly"),u=i.objectStore(Ql).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=c=>(a.close(),o(u.error)),i.oncomplete=()=>a.close()}else{let i=ni(t),l=a.transaction(ml,"readwrite"),u=l.objectStore(ml),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(Ql,"readwrite");let f=p.objectStore(Ql).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>n({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(ml);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),o(f.error)),h.onerror=g=>(a.close(),o(f.error))}},c.onerror=m=>(a.close(),o(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>o(s.error)})}};pa.URL_SCHEME="indexeddb://";var JS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(pa.URL_SCHEME)?bW(r.slice(pa.URL_SCHEME.length)):null;St.registerSaveRouter(JS);St.registerLoadRouter(JS);function bW(r){return new pa(r)}function wW(r){return r.startsWith(pa.URL_SCHEME)?r.slice(pa.URL_SCHEME.length):r}var Sw=class{constructor(){this.indexedDB=ZS()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Cw,Iw);n.onupgradeneeded=()=>Nw(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(ml,"readonly"),i=s.objectStore(ml).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(o.close(),t(i.error)),s.oncomplete=()=>o.close()},n.onerror=o=>t(n.error)})}async removeModel(e){return e=wW(e),new Promise((t,n)=>{let o=this.indexedDB.open(Cw,Iw);o.onupgradeneeded=()=>Nw(o),o.onsuccess=()=>{let s=o.result,a=s.transaction(ml,"readwrite"),i=a.objectStore(ml),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(Ql,"readwrite");let f=u.objectStore(Ql).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>n(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(l.error))}},l.onerror=c=>(s.close(),n(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var ma="/",Qc="tensorflowjs_models",QS="info",_W="model_topology",kW="weight_specs",vW="weight_data",CW="model_metadata";function eT(r){return{info:[Qc,r,QS].join(ma),topology:[Qc,r,_W].join(ma),weightSpecs:[Qc,r,kW].join(ma),weightData:[Qc,r,vW].join(ma),modelMetadata:[Qc,r,CW].join(ma)}}function IW(r){let e=r.split(ma);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(ma)}function NW(r){return r.startsWith(fa.URL_SCHEME)?r.slice(fa.URL_SCHEME.length):r}var fa=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=eT(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),o=ni(e);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,US(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=HS(a),t}};fa.URL_SCHEME="localstorage://";var tT=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(fa.URL_SCHEME)?SW(r.slice(fa.URL_SCHEME.length)):null;St.registerSaveRouter(tT);St.registerLoadRouter(tT);function SW(r){return new fa(r)}var Tw=class{constructor(){T(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),T(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qc+ma,n=ma+QS;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(t)&&s.endsWith(n)){let a=IW(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=NW(e);let t=eT(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}};var ep="://",Zr=class{constructor(){this.managers={}}static getInstance(){return Zr.instance==null&&(Zr.instance=new Zr),Zr.instance}static registerManager(e,t){T(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ep)&&(e=e.slice(0,e.indexOf(ep))),T(e.length>0,()=>"scheme must not be an empty string.");let n=Zr.getInstance();T(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function og(r){if(r.indexOf(ep)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Zr.getSchemes().join(",")}`);return{scheme:r.split(ep)[0],path:r.split(ep)[1]}}async function rT(r,e,t=!1){T(r!==e,()=>`Old path and new path are the same: '${r}'`);let n=St.getLoadHandlers(r);T(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),T(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=St.getSaveHandlers(e);T(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),T(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${e}.`);let a=s[0],i=og(r).scheme,l=og(r).path,u=i===og(r).scheme,c=await o.load();t&&u&&await Zr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Zr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function nT(){let r=Zr.getSchemes(),e={};for(let t of r){let n=await Zr.getManager(t).listModels();for(let o in n){let s=t+ep+o;e[s]=n[o]}}return e}async function oT(r){let e=og(r);return Zr.getManager(e.scheme).removeModel(e.path)}async function sT(r,e){return rT(r,e,!1)}async function iT(r,e){return rT(r,e,!0)}var aT=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new aT);try{Zr.registerManager(fa.URL_SCHEME,new Tw)}catch(r){}try{Zr.registerManager(pa.URL_SCHEME,new Sw)}catch(r){}}var TW={importFetch:()=>lT()},Aw;var uT=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(Aw==null&&(Aw=TW.importFetch()),Aw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new uT);function Ce(r,e="float32",t){return e=e||"float32",Sm(r),new ut(r,e,t)}function AW(r,e){let t=k(r,"x","cast");if(!nw(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:t},o={dtype:e};return A.runKernel(qn,n,o)}var oe=S({cast_:AW});function EW(r){let t={x:k(r,"x","clone","string_or_numeric")};return A.runKernel(Xn,t)}var Ln=S({clone_:EW});function Ew(r,e=!1){console.log(r.toString(e))}ww();var DW={buffer:Ce,cast:oe,clone:Ln,print:Ew};MS(DW);var Er={};We(Er,{browserFiles:()=>mT,browserHTTPRequest:()=>hT,concatenateArrayBuffers:()=>Jc,copyModel:()=>sT,decodeWeights:()=>ng,encodeWeights:()=>WS,fromMemory:()=>xT,getLoadHandlers:()=>YS,getModelArtifactsInfoForJSON:()=>ni,getSaveHandlers:()=>XS,http:()=>ag,isHTTPScheme:()=>ig,listModels:()=>nT,loadWeights:()=>fT,moveModel:()=>iT,registerLoadRouter:()=>KS,registerSaveRouter:()=>qS,removeModel:()=>oT,weightsLoaderFactory:()=>Rw,withSaveHandler:()=>yT});var $W="model",RW=".json",FW=".weights.bin";function cT(r){return new Promise(e=>setTimeout(e)).then(r)}var fl=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=$W),this.modelTopologyFileName=e+RW,this.weightDataFileName=e+FW}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await cT(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await cT(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ni(e)}}}};fl.URL_SCHEME="downloads://";var pT=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,o)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){o(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:l});let u=i.weightsManifest;if(u==null){o(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){o(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Jc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},g.onerror=x=>o(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>o(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],o=t.map(a=>vw(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=vw(i);if(n.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(n.push(l),o.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[o.indexOf(l)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},PW=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(fl.URL_SCHEME)?OW(r.slice(fl.URL_SCHEME.length)):null;St.registerSaveRouter(PW);function OW(r="model"){return new fl(r)}function mT(r){return new pT(r)}function Dw(r,e,t,n){a(r),t=t==null?0:t,n=n==null?1:n,i(t,n);let o=0,s=l=>(l.then(u=>{let c=t+ ++o/r.length*(n-t);return e(c),u}),l);function a(l){T(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){T(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),T(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),T(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function $w(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,n=r.map(p=>t(p,e.requestInit,{isBinary:!0})),o=0,s=.5,i=(e.onProgress==null?await Promise.all(n):await Dw(n,e.onProgress,o,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await Dw(i,e.onProgress,l,u)}async function fT(r,e="",t,n){return Rw(a=>$w(a,{requestInit:n}))(r,e,t)}function Rw(r){return async(e,t="",n)=>{let o=e.map(()=>!1),s={},a=n!=null?n.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=zm[x]*nt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((_,I)=>{_===g.name&&(w(),a[I]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=n.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let I=new Uint8Array(c[m+_]);x.set(I,b),b+=I.byteLength}s[f].forEach(_=>{let I=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),E=ng(I,[_.manifestEntry]);for(let D in E)p[D]=E[D]}),m+=d}),p}}var MW="application/octet-stream",LW="application/json",sg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(T(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,T(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&T(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(o)],{type:LW}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:MW}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:ni(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let n=t.modelTopology,o=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;o!=null&&([c,p]=await this.loadWeights(o));let m={modelTopology:n,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=zW(t),s=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+o);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await $w(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Jc(u)]}};sg.URL_SCHEME_REGEX=/^https?:\/\//;function zW(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),n=r.substring(0,e),o=t>e?r.substring(t):"";return[n+"/",o]}function ig(r){return r.match(sg.URL_SCHEME_REGEX)!=null}var dT=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(n=>ig(n)):t=ig(r),t)return ag(r,e)}return null};St.registerSaveRouter(dT);St.registerLoadRouter(dT);function ag(r,e){return new sg(r,e)}function hT(r,e){return ag(r,e)}var lg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},gT=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function xT(r,e,t,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new lg(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lg({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lg({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:n}))}function yT(r){return new gT(r)}var wT={};We(wT,{confusionMatrix:()=>bT});function BW(r,e,t=!1,n=!1){let o=k(r,"a","matMul"),s=k(e,"b","matMul");[o,s]=je(o,s);let a={a:o,b:s},i={transposeA:t,transposeB:n};return A.runKernel(Co,a,i)}var ze=S({matMul_:BW});function VW(r,e,t=1,n=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:k(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:n};return A.runKernel(qo,s,a)}var ds=S({oneHot_:VW});function GW(r,e){let t=k(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{T(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let n={x:t},o={perm:e};return A.runKernel(ms,n,o)}var Ue=S({transpose_:GW});function WW(r,e,t){let n=k(r,"labels","confusionMatrix"),o=k(e,"predictions","confusionMatrix");T(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),T(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),T(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),T(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),T(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=ds(oe(n,"int32"),t),a=ds(oe(o,"int32"),t),i=Ue(s),l=ze(i,a);return oe(l,"int32")}var bT=S({confusionMatrix_:WW});var ug={};We(ug,{fromPixels:()=>YW,fromPixelsAsync:()=>KW,toPixels:()=>XW});function Fw(r,e,t){if(On(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Ar(r,t);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Yr(r,e,n,t)}var tp;function _T(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,n=!1,o=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o){let d=2;if(o&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Fm($m,A.backendName)!=null){let d={pixels:r},h={numChannels:e};return A.runKernel($m,d,h)}let[u,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:n||t?p=r.data:(s||o||i)&&(tp==null&&(tp=document.createElement("canvas").getContext("2d")),tp.canvas.width=u,tp.canvas.height=c,tp.drawImage(r,0,0,u,c),p=tp.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return Fw(m,[c,u,e],"int32")}function jW(r){return r!=null&&r.data instanceof Uint8Array}function UW(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function HW(r){return r!=null&&r.width!==0&&r.height!==0}function qW(r){return UW()&&!(r instanceof ImageBitmap)&&HW(r)&&!jW(r)}async function KW(r,e=3){let t=null;if(W().getBool("WRAP_TO_IMAGEBITMAP")&&qW(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?t=n:t=r}else t=r;return _T(t,e)}async function XW(r,e){let t=k(r,"img","toPixels");if(!(r instanceof Pe)){let u=t;t=oe(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[n,o]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(o*n*4);for(let u=0;u<n*o;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=o,e.height=n;let u=e.getContext("2d"),c=new ImageData(l,o,n);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var YW=S({fromPixels_:_T});var cg={};We(cg,{prepareAndValidate:()=>kT});function kT(r,e){let t=r.shape.length,n=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[n-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[n-1]} vs. ${t}`);if(nt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=e.shape,s=o[o.length-1],a=1;for(let p=0;p<o.length-1;++p)a*=o[p];let i=r.shape,l=o.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...zs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var pg={};We(pg,{calculateShapes:()=>vT,validateInput:()=>mg,validateUpdateShape:()=>Ow});function Ow(r,e,t){let n=e.rank>1?e.shape[e.rank-1]:1,o=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(t.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(t.rank-o))throw new Error(s+` Output shape length < ${n+(t.rank-o)}`);if(t.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let a=0;a<o;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-o;++a)if(t.shape[a+o]!==r[a+n])throw new Error(s+` updates.shape[${a+o}] (${t.shape[a+o]}) != shape[${a+o}] (${r[a+o]})`)}function mg(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Ow(t,e,r)}function vT(r,e,t){let n=e.shape.length,o=n>1?e.shape[n-1]:1,s=t.length,a=1;for(let p=o;p<s;++p)a*=t[p];let i=o<1?1:o,l=nt(e.shape)/i,u=[...zs(t.slice(0,o)),1],c=nt(t);return{sliceRank:o,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var or={};We(or,{assertParamsValid:()=>ZW,computeFlatOffset:()=>QW,computeOutShape:()=>CT,getNormalizedAxes:()=>RT,isSliceContinous:()=>JW,maskToAxes:()=>fg,parseSliceParams:()=>Pw,sliceInfo:()=>ej,startForAxis:()=>DT,startIndicesWithElidedDims:()=>TT,stopForAxis:()=>$T,stopIndicesWithElidedDims:()=>AT,stridesForAxis:()=>ET,stridesWithElidedDims:()=>IT});function ZW(r,e,t){let n=r.shape.length;T(n===e.length,()=>`Error in slice${n}D: Length of begin ${e} must match the rank of the array (${n}).`),T(n===t.length,()=>`Error in slice${n}D: Length of size ${t} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)T(e[o]+t[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${e[o]+t[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function fg(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function CT(r,e,t){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((e[o]-r[o])/t[o]);return n}function IT(r,e,t,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<t;s++)s===0?o[e]=1:(o.splice(e,0,1),o.pop());return o}function NT(r,e,t){return t<=r?t:t-(e-1)}function ST(r,e){let t=[];for(let n=0;n<r;n++)t.push(e+n);return t}function RT(r,e,t,n,o,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=TT(a,f,d,n,r),p=AT(i,f,d,o,r),m=IT(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=DT(a,n,s,r,f,l),p[f]=$T(i,o,s,r,f,l),m[f]=ET(s,f,l);return{begin:c,end:p,strides:m}}function TT(r,e,t,n,o){let s=[...o],a=ST(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=NT(e,t,i),u=n[l];r&1<<l&&(u=0),s[i]=u}return s}function AT(r,e,t,n,o){let s=[...o],a=ST(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=NT(e,t,i),u=n[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=o[i];s[i]<0&&(s[i]+=l),s[i]=hc(0,s[i],o[i])}return s}function ET(r,e,t){let n=r[e];return(t&1<<e||n==null)&&(n=1),n}function DT(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),a=hc(0,a,l-1),a}function $T(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),i>0?a=hc(0,a,l):a=hc(-1,a,l-1),a}function JW(r,e,t){let n=t.length;for(let o=0;o<t.length;o++)if(t[o]>1){n=o;break}for(let o=n+1;o<t.length;o++)if(e[o]>0||t[o]!==r[o])return!1;return!0}function QW(r,e){let t=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)t+=r[n]*e[n];return t}function Pw(r,e,t){let n,o=r.shape.length;typeof e=="number"?n=[e,...new Array(o-1).fill(0)]:e.length<o?n=e.concat(new Array(o-e.length).fill(0)):n=e.slice(),n.forEach(a=>{T(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(o).fill(-1):typeof t=="number"?s=[t,...new Array(o-1).fill(-1)]:t.length<o?s=t.concat(new Array(o-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(T(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-n[i])),[n,s]}function ej(r,e,t,n,o,s,a,i,l){let u=e.slice(),c=t.slice(),p=n;n==null&&(p=new Array(u.length));let m=fg(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=fg(i),h=r.slice();d.forEach(D=>{u[D]=0,c[D]=1,h.splice(D,0,1)});let{begin:g,end:x,strides:b}=RT(h,m,f,u,c,p,o,s,a);u=g,c=x,p=b;let w=fg(l);w.forEach(D=>{c[D]=u[D]+1,p[D]=1});let _=CT(u,c,p),I=_.filter((D,$)=>w.indexOf($)===-1);return{nonStrided:p.every(D=>D===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:I}}var Q={};We(Q,{Serializable:()=>dg,SerializationMap:()=>da,registerClass:()=>dn});var dg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},da=class{constructor(){this.classNameMap={}}static getMap(){return da.instance==null&&(da.instance=new da),da.instance}static register(e){da.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function dn(r){T(r.className!=null,()=>"Class being registered does not have the static className property defined."),T(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),T(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),da.register(r)}var FT={};We(FT,{TEST_EPSILON_FLOAT16:()=>OT,encodeStrings:()=>PT,expectArrayBuffersEqual:()=>aj,expectArraysClose:()=>rj,expectArraysEqual:()=>oj,expectNumbersClose:()=>sj,expectPromiseToFail:()=>nj,expectValuesInRange:()=>ij,testEpsilon:()=>Mw});var tj=.001,OT=.1;function rj(r,e,t){return t==null&&(t=Mw()),Lw(r,e,(n,o)=>zw(n,o,t))}function Mw(){return A.backend.floatPrecision()===32?tj:OT}function Lw(r,e,t){let n=!0;if((ar(r)||ar(e))&&(n=!1),ar(r)&&ar(e)&&(n=!0),n){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Ar(r),i=Ar(e);if(!Xr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let o=ar(r)?r:bo(r),s=ar(e)?e:bo(e);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=o[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`)}}function nj(r,e){r().then(()=>e.fail(),()=>e())}function oj(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return wo(r)||wo(r[0])||wo(e)||wo(e[0])?Lw(r,t,(n,o)=>n==o):Lw(r,e,(n,o)=>zw(n,o,0))}function sj(r,e,t){if(t==null&&(t=Mw()),!zw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function zw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function ij(r,e,t){for(let n=0;n<r.length;n++)if(r[n]<e||r[n]>t)throw new Error(`Value out of range:${r[n]} low: ${e}, high: ${t}`)}function aj(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function PT(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?PT(t):r[e]=cl(t)}return r}var lj="3.6.0";function Pae(){W().set("PROD",!0)}function Mae(){W().set("DEBUG",!0)}function Lae(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Bw(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}LS(Bw);function zae(){A.disposeVariables()}function hs(){return A}function Bm(){return A.memory()}function Bae(r){return A.profile(r)}function V(r,e){return A.tidy(r,e)}function Ee(r){Lm(r).forEach(t=>t.dispose())}function $t(r){return A.keep(r)}function Vae(r){return A.time(r)}function uj(r){return A.setBackend(r)}function Gae(){return A.ready()}function Wae(){return A.backendName}function jae(r){A.removeBackend(r)}function Uae(r){return A.findBackend(r)}function Hae(r){return A.findBackendFactory(r)}function rp(r,e,t=1){return A.registerBackend(r,e,t)}function MT(){return A.backend}function qae(r,e){W().setPlatform(r,e)}function cj(r,e){let t=k(r,"a","add"),n=k(e,"b","add");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Pn,o)}var J=S({add_:cj});function pj(r,e){let t=k(r,"a","floorDiv"),n=k(e,"b","floorDiv");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Fo,o)}var eu=S({floorDiv_:pj});function mj(r,e){let t=k(r,"a","div"),n=k(e,"b","div");if([t,n]=je(t,n),t.dtype==="int32"&&n.dtype==="int32")return eu(t,n);let o={a:t,b:n},s={};return A.runKernel(Do,o,s)}var pe=S({div_:mj});function fj(r,e){let t=k(r,"a","mul"),n=k(e,"b","mul");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ho,o)}var O=S({mul_:fj});function dj(r){let e=k(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return A.runKernel(Qa,t)}else{let t={x:e};return A.runKernel(Bs,t)}}var Tt=S({abs_:dj});function hj(r){let t={x:k(r,"x","acos")};return A.runKernel(ki,t)}var Vm=S({acos_:hj});function gj(r){let t={x:k(r,"x","acosh")};return A.runKernel(vi,t)}var Gm=S({acosh_:gj});function xj(r){T(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),T(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((o,s)=>k(o,`tensors${s}`,"addN")),t=e[0];e.forEach(o=>{if(o.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(o=>{if(!Xr(o.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=e;return A.runKernel(_o,n)}var Vw=S({addN_:xj});function yj(r,e=null,t=!1){let o={x:k(r,"x","all","bool")},s={axis:e,keepDims:t};return A.runKernel(Ci,o,s)}var tu=S({all_:yj});function bj(r,e=null,t=!1){let o={x:k(r,"x","any","bool")},s={axis:e,keepDims:t};return A.runKernel(Ii,o,s)}var dl=S({any_:bj});function wj(r,e=0){let n={x:k(r,"x","argMax")},o={axis:e};return A.runKernel(ko,n,o)}var hl=S({argMax_:wj});function _j(r,e=0){let n={x:k(r,"x","argMin")},o={axis:e};return A.runKernel(Ya,n,o)}var Wm=S({argMin_:_j});function kj(r){let t={x:k(r,"x","asin")};return A.runKernel(Ni,t)}var jm=S({asin_:kj});function vj(r){let t={x:k(r,"x","asinh")};return A.runKernel(Si,t)}var Um=S({asinh_:vj});function Cj(r){let t={x:k(r,"x","atan")};return A.runKernel(Ti,t)}var Hm=S({atan_:Cj});function Ij(r,e){let t=k(r,"a","atan2"),n=k(e,"b","atan2");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ei,o)}var qm=S({atan2_:Ij});function Nj(r){let t={x:k(r,"x","atanh")};return A.runKernel(Ai,t)}var Km=S({atanh_:Nj});function Sj(r,e,t,n,o="NHWC",s){let a=r[3],i=[...e,a],l=LT(o);return ru(r,i,t,s,n,null,null,l)}function Gw(r,e,t,n,o,s,a="channelsLast"){let[i,l]=hg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return ru(r,u,t,n,o,s,!1,a)}function Tj(r,e,t,n,o,s,a="NDHWC"){let[i,l,u]=Ww(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return zT(r,c,t,n,o,!1,p,s)}function ru(r,e,t,n,o,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=hg(t),[x,b]=hg(n),w=np(m,x),_=np(f,b),{padInfo:I,outHeight:E,outWidth:D}=Aj(o,u,c,h,g,w,_,s,i),$=a?d*p:d,R;return i==="channelsFirst"?R=[l,$,E,D]:i==="channelsLast"&&(R=[l,E,D,$]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:E,outWidth:D,outChannels:$,padInfo:I,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:x,dilationWidth:b,inShape:r,outShape:R,filterShape:e}}function zT(r,e,t,n,o,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,w]=Ww(t),[_,I,E]=Ww(n),D=np(f,_),$=np(d,I),R=np(h,E),{padInfo:M,outDepth:G,outHeight:j,outWidth:U}=Ej(o,u,c,p,x,b,w,D,$,R,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,G,j,U]:a==="channelsLast"&&(q=[l,G,j,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:j,outWidth:U,outChannels:H,padInfo:M,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:D,effectiveFilterHeight:$,effectiveFilterWidth:R,dilationDepth:_,dilationHeight:I,dilationWidth:E,inShape:r,outShape:q,filterShape:e}}function Dj(r,e,t,n,o){n==null&&(n=jw(r,e,t));let s=r[0],a=r[1],i=nu((s-e+2*n)/t+1,o),l=nu((a-e+2*n)/t+1,o);return[i,l]}function $j(r,e,t,n,o,s){o==null&&(o=jw(r,e,n));let a=r[0],i=r[1],l=r[2],u=nu((a-e+2*o)/n+1,s),c=nu((i-e+2*o)/n+1,s),p=nu((l-e+2*o)/n+1,s);return[u,c,p,t]}function jw(r,e,t,n=1){let o=np(e,n);return Math.floor((r[0]*(t-1)-t+o)/2)}function hg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Ww(r){return typeof r=="number"?[r,r,r]:r}function np(r,e){return e<=1?r:r+(r-1)*(e-1)}function Aj(r,e,t,n,o,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=Dj([e,t],s,n,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/n),p=Math.ceil(t/o);let m=Math.max(0,(c-1)*n+s-e),f=Math.max(0,(p-1)*o+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/n),p=Math.ceil((t-a+1)/o);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=nu((e-s+m+f)/n+1,i),p=nu((t-a+d+h)/o+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function Ej(r,e,t,n,o,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=$j([e,t,n,1],i,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/o),f=Math.ceil(t/s),d=Math.ceil(n/a);let h=(m-1)*o+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-n,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),I=g-_,E=Math.floor(x/2),D=x-E;p={top:_,bottom:I,left:E,right:D,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/o),f=Math.ceil((t-l+1)/s),d=Math.ceil((n-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function nu(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function zn(r){let[e,t,n]=hg(r);return e===1&&t===1&&n===1}function Cr(r,e){return zn(r)||zn(e)}function LT(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Rj(r,e){let n={x:k(r,"x","reshape","string_or_numeric")},o={shape:e};return A.runKernel(qs,n,o)}var L=S({reshape_:Rj});function Fj(r,e,t,n,o){let s=k(r,"x","avgPool","float32"),a=1;T(Cr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),o!=null&&T(ot(n),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=A.runKernel(vo,u,c);return p=oe(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ha=S({avgPool_:Fj});function Oj(r,e,t,n,o,s="NDHWC"){let a=k(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&T(ot(n),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=A.runKernel(Za,u,c);return p=oe(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Xm=S({avgPool3d_:Oj});function Pj(r,e=0){T(r.length>=1,()=>"Pass at least one tensor to concat");let t=ca(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),t.length===1)return Ln(t[0]);let n=t,o={axis:e};return A.runKernel(Vs,n,o)}var Qe=S({concat_:Pj});function Mj(r){let t={x:k(r,"x","sigmoid")};return A.runKernel(os,t)}var Dr=S({sigmoid_:Mj});function Lj(r,e,t){let n=k(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:e,size:t};return A.runKernel(Xs,o,s)}var Re=S({slice_:Lj});function zj(r){let t={x:k(r,"x","tanh")};return A.runKernel(ps,t)}var gs=S({tanh_:zj});function Bj(r,e,t,n,o,s){let a=k(r,"forgetBias","basicLSTMCell"),i=k(e,"lstmKernel","basicLSTMCell"),l=k(t,"lstmBias","basicLSTMCell"),u=k(n,"data","basicLSTMCell"),c=k(o,"c","basicLSTMCell"),p=k(s,"h","basicLSTMCell"),m=Qe([u,p],1),f=ze(m,i),d=J(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Re(d,[0,0],x),w=Re(d,[0,g],x),_=Re(d,[0,g*2],x),I=Re(d,[0,g*3],x),E=J(O(Dr(b),gs(w)),O(c,Dr(J(a,_)))),D=O(gs(E),Dr(I));return[E,D]}var Vj=S({basicLSTMCell_:Bj});function Gj(r,e,t){let n=k(r,"x","batchToSpaceND"),o=e.reduce((i,l)=>i*l);T(n.rank>=1+e.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${e.length}`),T(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),T(n.shape[0]%o==0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${o}`);let s={x:n},a={blockShape:e,crops:t};return A.runKernel(Ja,s,a)}var ga=S({batchToSpaceND_:Gj});function BT(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function Wj(r,e,t,n,o,s){s==null&&(s=.001);let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;n!=null&&(c=k(n,"offset","batchNorm")),T(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),T(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),T(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:BT(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=A.runKernel(Oo,m,f);return L(d,a.shape)}var Jn=S({batchNorm_:Wj});function jj(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),T(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),T(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var Uw=S({batchNorm2d_:jj});function Uj(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),T(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),T(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var Hw=S({batchNorm3d_:Uj});function Hj(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),T(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),T(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var qw=S({batchNorm4d_:Hj});function qj(r,e,t){let n=k(r,"x","bincount"),o=k(e,"weights","bincount");T(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},a={size:t};return A.runKernel(_c,s,a)}var Ym=S({bincount_:qj});function Kj(r,e){let t=k(r,"broadcastTo","x"),n=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let o=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(o[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ln(t);let i={x:t},l={reps:s};return A.runKernel(Mn,i,l)}var xa=S({broadcastTo_:Kj});function Xj(r){let t={x:k(r,"x","ceil")};return A.runKernel(Io,t)}var Zm=S({ceil_:Xj});function Yj(r,e,t){let n=k(r,"x","clipByValue");T(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let o={x:n},s={clipValueMin:e,clipValueMax:t};return A.runKernel(Kn,o,s)}var ur=S({clipByValue_:Yj});function Zj(r){return Qe(r,0)}var Kw=S({concat1d_:Zj});function Jj(r,e){return Qe(r,e)}var Xw=S({concat2d_:Jj});function Qj(r,e){return Qe(r,e)}var Yw=S({concat3d_:Qj});function e4(r,e){return Qe(r,e)}var Zw=S({concat4d_:e4});function t4(r,e,t,n,o="NHWC",s=[1,1],a){let i=k(r,"x","conv2d"),l=k(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&T(ot(n),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p=o==="NHWC"?u.shape[3]:u.shape[1];T(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),T(Cr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},d=A.runKernel(No,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Jr=S({conv2d_:t4});function r4(r,e,t,n,o="NWC",s=1,a){let i=k(r,"x","conv1d"),l=k(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),T(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),T(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&T(ot(n),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),T(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),T(Cr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),T(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Jr(m,p,[1,t],n,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var ou=S({conv1d_:r4});function n4(r,e,t,n,o,s="NHWC",a){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),T(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),T(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),T(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];T(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),T(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&T(ot(o),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let m={dy:l,filter:t},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,inputShape:i},d=A.runKernel(So,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var op=S({conv2DBackpropInput_:n4});function o4(r,e,t,n,o,s){let a=k(r,"x","conv2dTranspose"),i=k(e,"filter","conv2dTranspose");return op(t,a,i,n,o,"NHWC",s)}var su=S({conv2dTranspose_:o4});function s4(r,e,t,n,o="NDHWC",s=[1,1,1]){let a=k(r,"x","conv3d"),i=k(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),T(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),T(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),T(Cr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:n,dataFormat:o,dilations:s},m=A.runKernel(el,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Jm=S({conv3d_:s4});function i4(r,e,t,n,o){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];T(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),T(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),T(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),T(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),T(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:o,strides:n,inputShape:s},m=A.runKernel(Ic,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var gg=S({conv3DBackpropInput_:i4});function a4(r,e,t,n,o){let s=k(r,"x","conv3dTranspose"),a=k(e,"filter","conv3dTranspose");return gg(t,s,a,n,o)}var Jw=S({conv3dTranspose_:a4});function l4(r){let t={x:k(r,"x","cos")};return A.runKernel(To,t)}var ya=S({cos_:l4});function u4(r){let t={x:k(r,"x","cosh")};return A.runKernel(Di,t)}var iu=S({cosh_:u4});function c4(r,e=0,t=!1,n=!1){let s={x:k(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:n};return A.runKernel(Ao,s,a)}var au=S({cumsum_:c4});function p4(r,e,t,n=!1){let o=k(r,"x","denseBincount"),s=k(e,"weights","denseBincount");T(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),T(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let a={x:o,weights:s},i={size:t,binaryOutput:n};return A.runKernel(Nc,a,i)}var Qw=S({denseBincount_:p4});function m4(r,e,t="NHWC"){let n=k(r,"x","depthToSpace"),o=t==="NHWC"?n.shape[1]:n.shape[2],s=t==="NHWC"?n.shape[2]:n.shape[3],a=t==="NHWC"?n.shape[3]:n.shape[1];T(o*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${o} and ${e} for depthToSpace with input shape
|
|
${n.shape}`),T(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${e} for depthToSpace with input shape
|
|
${n.shape}`),T(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${n.shape}`);let i={x:n},l={blockSize:e,dataFormat:t};return A.runKernel(Ri,i,l)}var Qm=S({depthToSpace_:m4});function f4(r,e,t,n,o="NHWC",s=[1,1],a){let i=k(r,"x","depthwiseConv2d"),l=k(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&T(ot(n),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:u,filter:l},m={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},f=A.runKernel(Eo,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var xs=S({depthwiseConv2d_:f4});function d4(r){let t={x:k(r,"x","diag")};return A.runKernel(Ac,t)}var h4=S({diag_:d4});function g4(r,e,t,n,o=[1,1],s="NHWC"){let a=k(r,"x","dilation2d"),i=k(e,"filter","dilation2d");T(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),T(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),T(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:n,dilations:o},m=A.runKernel(tl,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ef=S({dilation2d_:g4});function x4(r,e){let t=r.length,n=[];for(let o=0;o<t;o++){let s=t-1-o,a=r[s]||1;(e[e.length-1-o]||1)>1&&a===1&&n.unshift(s)}return n}function kt(r,e){let t=[];for(let n=0;n<e.length;n++){let o=r[r.length-n-1],s=e.length-n-1,a=e[s];(o==null||o===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],n=Math.max(r.length,e.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let a=e[e.length-o-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function y4(r,e){let t=k(r,"a","equal"),n=k(e,"b","equal");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Pi,o)}var Sn=S({equal_:y4});function b4(r,e,t){let n=k(e,"a","where"),o=k(t,"b","where"),s=k(r,"condition","where","bool"),a=Be(Be(s.shape,n.shape),o.shape),i=xa(s,a),l=xa(n,a),u=xa(o,a),c={condition:i,t:l,e:u};return A.runKernel(Ks,c)}var vt=S({where_:b4});function w4(r){let t={x:k(r,"x","zerosLike")};return A.runKernel(Js,t)}var Ie=S({zerosLike_:w4});function _4(r,e){let t=k(r,"a","div"),n=k(e,"b","div");[t,n]=je(t,n);let o=pe(t,n),s=Ie(o),a=Sn(n,s);return vt(a,s,o)}var tf=S({divNoNan_:_4});function k4(r,e){let t=k(r,"t1","dot"),n=k(e,"t2","dot");T((t.rank===1||t.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${n.rank}.`);let o=t.rank===1?t.size:t.shape[1],s=n.rank===1?n.size:n.shape[0];if(T(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),t.rank===1&&n.rank===1){let a=L(t,[1,-1]),i=L(n,[-1,1]),l=ze(a,i);return L(l,[])}else if(t.rank===1&&n.rank===2){let a=L(t,[1,-1]),i=L(n,[n.shape[0],n.shape[1]]),l=ze(a,i);return L(l,[l.size])}else if(t.rank===2&&n.rank===1){let a=L(n,[-1,1]),i=ze(t,a);return L(i,[i.size])}else{let a=L(n,[n.shape[0],n.shape[1]]);return ze(t,a)}}var e_=S({dot_:k4});function v4(r,...e){let t=e.map((o,s)=>k(o,`tensors${s}`,"einsum")),n={equation:r};return A.runKernel(Ec,t,n)}var t_=S({einsum_:v4});function C4(r){let t={x:k(r,"x","elu")};return A.runKernel(Fi,t)}var ys=S({elu_:C4});function I4(r){let e=k(r,"x","erf");T(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=oe(e,"float32"));let t={x:e};return A.runKernel(Oi,t)}var rf=S({erf_:I4});function N4(r){let t={x:k(r,"x","exp")};return A.runKernel($o,t)}var Qt=S({exp_:N4});function S4(r,e=0){let t=k(r,"x","expandDims","string_or_numeric");T(e<=t.rank,()=>"Axis must be <= rank of the tensor");let n={input:t},o={dim:e};return A.runKernel(Gs,n,o)}var cr=S({expandDims_:S4});function T4(r){let t={x:k(r,"x","expm1")};return A.runKernel(Mi,t)}var nf=S({expm1_:T4});function A4(r,e){let t=k(r,"x","tile","string_or_numeric");T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let n={x:t},o={reps:e};return A.runKernel(Mn,n,o)}var Bn=S({tile_:A4});function E4(r,e,t,n="float32"){e==null&&(e=r);let o=Ce([r,e],n),s=r<=e?r:e;for(let i=0;i<s;++i)o.set(1,i,i);let a=L(o.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Bn(cr(a,0),[t[0],1,1]);if(t.length===2)return Bn(cr(cr(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Bn(cr(cr(cr(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var sp=S({eye_:E4});function bs(r,e,t){let n={shape:r,value:e,dtype:t};return A.runKernel(rl,{},n)}function D4(r){let t={x:k(r,"x","floor")};return A.runKernel(Ro,t)}var ws=S({floor_:D4});function $4(r,e,t=0,n=0){let o=k(r,"x","gather"),s=k(e,"indices","gather","int32"),a={x:o,indices:s},i={axis:t,batchDims:n};return A.runKernel(Ws,a,i)}var Qn=S({gather_:$4});function R4(r,e){let t=k(r,"a","greater"),n=k(e,"b","greater");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Bi,o)}var Vt=S({greater_:R4});function F4(r,e){let t=k(r,"a","greaterEqual"),n=k(e,"b","greaterEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Po,o)}var hn=S({greaterEqual_:F4});function O4(r){let t={input:k(r,"input","imag")};return A.runKernel(Fc,t)}var lu=S({imag_:O4});function P4(r){let t={x:k(r,"x","isFinite")};return A.runKernel(Vi,t)}var r_=S({isFinite_:P4});function M4(r){let t={x:k(r,"x","isInf")};return A.runKernel(Gi,t)}var n_=S({isInf_:M4});function L4(r){let t={x:k(r,"x","isNaN")};return A.runKernel(Wi,t)}var of=S({isNaN_:L4});function z4(r,e=.2){let n={x:k(r,"x","leakyRelu")},o={alpha:e};return A.runKernel(Mo,n,o)}var ba=S({leakyRelu_:z4});function B4(r,e){let t=k(r,"a","less"),n=k(e,"b","less");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(ji,o)}var uu=S({less_:B4});function V4(r,e){let t=k(r,"a","lessEqual"),n=k(e,"b","lessEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Ui,o)}var gn=S({lessEqual_:V4});function o_(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:e,num:t};return A.runKernel(Oc,{},n)}function G4(r,e=5,t=1,n=1,o=.5){let s=k(r,"x","localResponseNormalization");T(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),T(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:n,beta:o},c=A.runKernel(nl,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var sf=S({localResponseNormalization_:G4});function W4(r){let t={x:k(r,"x","log")};return A.runKernel(Lo,t)}var pr=S({log_:W4});function j4(r){let t={x:k(r,"x","log1p")};return A.runKernel(Hi,t)}var cu=S({log1p_:j4});function U4(r){return T(Ls(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let n=k(e,"x","tf.grad","string_or_numeric"),o=t!=null?k(t,"dy","tf.grad"):null;return A.tidy(()=>{let{value:s,grads:a}=A.gradients(()=>r(n),[n],o);return o!=null&&Dt(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),xg(a),a[0]})}}function H4(r){return T(Ls(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{T(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ca(e,"args","tf.grads","string_or_numeric"),o=t!=null?k(t,"dy","tf.grads"):null;return A.tidy(()=>{let{value:s,grads:a}=A.gradients(()=>r(...n),n,o);return o!=null&&Dt(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),xg(a),a})}}function q4(r){return T(Ls(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{T(e instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),T(t==null||t instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=A.gradients(()=>r(e),[e],t);return xg(n),{grad:n[0],value:o}}}function K4(r){return T(Ls(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{T(Array.isArray(e)&&e.every(o=>o instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),T(t==null||t instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=A.gradients(()=>r(...e),e,t);return t!=null&&Dt(n.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),xg(n.grads),n}}function yg(r,e){T(Ls(r),()=>"The f passed in variableGrads(f) must be a function"),T(e==null||Array.isArray(e)&&e.every(u=>u instanceof pl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in A.registeredVariables)e.push(A.registeredVariables[u])}let n=t?e.filter(u=>!u.trainable):null,o=e.length;e=e.filter(u=>u.trainable),T(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:a,grads:i}=A.gradients(r,e,null,s);T(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),T(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Qr(r){return A.customGrad(r)}function xg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function X4(r){let t={x:k(r,"x","neg")};return A.runKernel(js,t)}var qe=S({neg_:X4});function Y4(r){let t={x:k(r,"x","softplus")};return A.runKernel(sa,t)}var eo=S({softplus_:Y4});function Z4(r){let e=k(r,"x","logSigmoid");return Qr(n=>({value:qe(eo(qe(n))),gradFunc:a=>O(a,Dr(qe(n)))}))(e)}var s_=S({logSigmoid_:Z4});function J4(r,e=null,t=!1){let o={x:k(r,"x","max")},s={reductionIndices:e,keepDims:t};return A.runKernel(zo,o,s)}var mr=S({max_:J4});function Q4(r,e){let t=k(r,"a","sub"),n=k(e,"b","sub");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(us,o)}var le=S({sub_:Q4});function eU(r,e=null,t=!1){let n=k(r,"x","sum");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return A.runKernel(is,o,s)}var fe=S({sum_:eU});function tU(r,e=-1){let t=k(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Qr((o,s)=>{let a=!0,i=mr(o,e,!0),l=le(o,i),u=le(oe(l,"float32"),pr(fe(Qt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Qt(f);return le(p,O(fe(p,e,d),h))}}})(t)}var pu=S({logSoftmax_:tU});function i_(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function VT(r,e,t){let n=r.length+e.length,o=[],s=0,a=0;for(let i=0;i<n;i++)t.indexOf(i)===-1?o.push(r[s++]):o.push(e[a++]);return o}function a_(r,e){let t=[],n=r.length;for(let s=0;s<n;s++)e.indexOf(s)===-1&&t.push(r[s]);let o=e.map(s=>r[s]);return[t,o]}function to(r,e){let t=e.map(n=>1);return VT(r,t,e)}function rU(r,e,t){T(i_(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function l_(r,e){if(i_(r,e))return null;let t=[];for(let n=0;n<e;++n)r.indexOf(n)===-1&&t.push(n);return r.forEach(n=>t.push(n)),t}function af(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function nU(r,e){let t=[];for(let n=e-r;n<e;++n)t.push(n);return t}function oU(r,e=null,t=!1){let n=k(r,"x","logSumExp"),o=nr(e,n.shape),s=mr(n,o,!0),a=le(n,s),i=Qt(a),l=fe(i,o),u=pr(l),c=J(L(s,u.shape),u);if(t){let p=to(c.shape,o);return L(c,p)}return c}var lf=S({logSumExp_:oU});function sU(r,e){let t=k(r,"a","logicalAnd","bool"),n=k(e,"b","logicalAnd","bool");Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(qi,o)}var yr=S({logicalAnd_:sU});function iU(r){let t={x:k(r,"x","logicalNot","bool")};return A.runKernel(Hl,t)}var wa=S({logicalNot_:iU});function aU(r,e){let t=k(r,"a","logicalOr","bool"),n=k(e,"b","logicalOr","bool");Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(ql,o)}var mu=S({logicalOr_:aU});function lU(r,e){let t=k(r,"a","logicalXor","bool"),n=k(e,"b","logicalXor","bool");return Be(t.shape,n.shape),yr(mu(r,e),wa(yr(r,e)))}var u_=S({logicalXor_:lU});function uU(r,e,t,n,o){let s=k(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),T(Cr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),o!=null&&T(ot(n),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=A.runKernel(Vo,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _a=S({maxPool_:uU});function cU(r,e=[1,1,1],t,n,o,s="NDHWC"){let a=k(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&T(ot(n),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=A.runKernel(ol,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var uf=S({maxPool3d_:cU});function pU(r,e,t,n,o=!1){let a={x:k(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:n,includeBatchInIndex:o},l=A.runKernel(zc,a,i);return{result:l[0],indexes:l[1]}}var c_=S({maxPoolWithArgmax_:pU});function mU(r,e){let t=k(r,"a","maximum"),n=k(e,"b","maximum");[t,n]=je(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Bo,o)}var en=S({maximum_:mU});function fU(r,e=null,t=!1){let o={x:k(r,"x","mean")},s={axis:e,keepDims:t};return A.runKernel(Go,o,s)}var dt=S({mean_:fU});function ht(r,e="float32"){if(e==="complex64"){let n=ht(r,"float32"),o=ht(r,"float32");return Nn(n,o)}let t=yc(nt(r),e);return A.makeTensor(t,r,e)}function er(r,e="float32"){if(e==="complex64"){let n=er(r,"float32"),o=ht(r,"float32");return Nn(n,o)}let t=Nm(nt(r),e);return A.makeTensor(t,r,e)}function dU(r,e,{indexing:t="xy"}={}){if(t!=="xy"&&t!=="ij")throw new TypeError(`${t} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=k(r,"x","meshgrid",r instanceof Pe?r.dtype:"float32");if(e===void 0)return[n];let o=k(e,"y","meshgrid",e instanceof Pe?e.dtype:"float32"),s=nt(n.shape),a=nt(o.shape);return t==="xy"?(n=L(n,[1,-1]),o=L(o,[-1,1]),[ze(er([a,1],n.dtype),n),ze(o,er([1,s],o.dtype))]):(n=L(n,[-1,1]),o=L(o,[1,-1]),[ze(n,er([1,a],n.dtype)),ze(er([s,1],o.dtype),o)])}function hU(r,e=null,t=!1){let o={x:k(r,"x","min")},s={axis:e,keepDims:t};return A.runKernel(Wo,o,s)}var oi=S({min_:hU});function gU(r,e){let t=k(r,"a","minimum"),n=k(e,"b","minimum");[t,n]=je(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(jo,o)}var _s=S({minimum_:gU});function xU(r,e,t){T(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let n=k(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");T(e.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${e.length}.`);let o=t==="reflect"?1:0;for(let i=0;i<n.rank;i++)T(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),T(e[i][0]>=0&&e[i][0]<=n.shape[i]-o&&e[i][1]>=0&&e[i][1]<=n.shape[i]-o,()=>`Padding in dimension ${i} cannot be greater than or equal to ${n.shape[i]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:e,mode:t},a={x:n};return A.runKernel(Uo,a,s)}var cf=S({mirrorPad_:xU});function yU(r,e){let t=k(r,"a","mod"),n=k(e,"b","mod");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ki,o)}var pf=S({mod_:yU});function bU(r){let e=k(r,"x","square"),t={};return A.runKernel("Square",{x:e},t)}var Me=S({square_:bU});function wU(r,e=null,t=!1){r=k(r,"x","moments");let n=nr(e,r.shape),o=dt(r,n,t),s=o.shape;t||(s=to(o.shape,n));let a=Me(le(oe(r,"float32"),L(o,s))),i=dt(a,n,t);return{mean:o,variance:i}}var ip=S({moments_:wU});function _U(r,e,t,n){let o=k(e,"data","multiRNNCell"),s=ca(t,"c","multiRNNCell"),a=ca(n,"h","multiRNNCell"),i=o,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var kU=S({multiRNNCell_:_U});function vU(r,e,t,n=!1){let o=k(r,"logits","multinomial"),s=o.size,a=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(o,[1,-1]):o},u={numSamples:e,seed:t,normalized:n},c=A.runKernel(Bc,l,u);return a===1?L(c,[c.size]):c}var p_=S({multinomial_:vU});function CU(r,e){let t=k(r,"a","notEqual"),n=k(e,"b","notEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Xi,o)}var ro=S({notEqual_:CU});function IU(r){let t={x:k(r,"x","onesLike")};return A.runKernel(Us,t)}var sr=S({onesLike_:IU});function NU(r,e){let t=k(r,"v1","outerProduct"),n=k(e,"v2","outerProduct");T(t.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${n.rank}.`);let o=L(t,[-1,1]),s=L(n,[1,-1]);return ze(o,s)}var SU=S({outerProduct_:NU});function TU(r,e,t=0){let n=k(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:e,constantValue:t},s={x:n};return A.runKernel(Ko,s,o)}var Lr=S({pad_:TU});function AU(r,e,t=0){return T(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Lr(r,[e],t)}var EU=S({pad1d_:AU});function DU(r,e,t=0){return T(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Lr(r,e,t)}var $U=S({pad2d_:DU});function RU(r,e,t=0){return T(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Lr(r,e,t)}var FU=S({pad3d_:RU});function OU(r,e,t=0){return T(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Lr(r,e,t)}var PU=S({pad4d_:OU});function MU(r,e,t){let n=k(r,"x","spaceToBatchND");T(n.rank>=1+e.length,()=>`input rank ${n.rank} should be > than [blockShape] ${e.length}`),T(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),T(n.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let o={x:n},s={blockShape:e,paddings:t};return A.runKernel(al,o,s)}var ka=S({spaceToBatchND_:MU});function BU(r,e,t,n,o,s){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=k(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),T(Cr(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let u=Gw(i.shape,e,s,o,n),c=[u.dilationHeight,u.dilationWidth],p;n==="same"?p=zU([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=LU([u.inHeight,u.inWidth],c,p),h=m?n:"valid",g=m?i:ka(i,c,f),b=(t==="avg"?()=>ha(g,e,s,h):()=>_a(g,e,s,h))(),w=m?b:ga(b,c,d);return l?L(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function LU(r,e,t){let n=t.map(c=>c[0]),o=t.map(c=>c[1]),s=r.concat(n,o),a=e.map((c,p)=>(c-s[p]%c)%c),i=o.map((c,p)=>c+a[p]),l=e.map((c,p)=>[n[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function zU(r,e){let n=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),o=n.map(a=>Math.floor(a/2)),s=n.map((a,i)=>a-o[i]);return n.map((a,i)=>[o[i],s[i]])}var m_=S({pool_:BU});function VU(r,e){let t=k(r,"base","pow"),n=k(e,"exp","pow");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Xo,o)}var zr=S({pow_:VU});function GU(r,e){let t=k(r,"x","prelu"),n=k(e,"alpha","prelu"),o={x:t,alpha:n};return A.runKernel(Yo,o)}var va=S({prelu_:GU});function WU(r,e=null,t=!1){let n=k(r,"x","prod");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return A.runKernel(Qi,o,s)}var fu=S({prod_:WU});function jU(r,e,t){let n=nt(r),o=null;if(t==null||t==="float32")o=new Float32Array(n);else if(t==="int32")o=new Int32Array(n);else if(t==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<n;s++)o[s]=e();return A.makeTensor(o,r,t)}var UU=S({rand_:jU});var wg=dc(w_());var ap=class{constructor(e,t,n,o,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=wg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let e,t,n=!1;for(;!n;){let o,s,a;do o=2*this.random()-1,s=2*this.random()-1,a=o*o+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*o*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},__=class{constructor(e,t,n,o){this.alpha=e,this.beta=1/t,this.dtype=n;let s=o||Math.random();this.randu=wg.alea(s.toString()),this.randn=new ap(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,o,s,a;for(;;){do o=this.randn.nextValue(),a=1+this.c*o;while(a<=0);if(a*=a*a,e=o*o,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},k_=class{constructor(e=0,t=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=wg.alea(o)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function JU(r,e,t=1,n="float32",o){if(t==null&&(t=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new __(e,t,n,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var QU=S({randomGamma_:JU});function eH(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new ap(e,t,n,!1,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var _g=S({randomNormal_:eH});function tH(r,e=0,t=1,n="float32",o){let s=Ce(r,n),a=new k_(e,t,null,o);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var ks=S({randomUniform_:tH});function Ca(r,e,t=1,n="float32"){if(t===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:e,step:t,dtype:n};return A.runKernel(sl,{},o)}function rH(r){let t={input:k(r,"input","real")};return A.runKernel(Vc,t)}var gl=S({real_:rH});function nH(r){let t={x:k(r,"x","reciprocal")};return A.runKernel(ea,t)}var mf=S({reciprocal_:nH});function oH(r){let t={x:k(r,"x","relu")};return A.runKernel(Zo,t)}var $r=S({relu_:oH});function sH(r){let t={x:k(r,"x","relu6")};return A.runKernel(Qo,t)}var hu=S({relu6_:sH});function iH(r,e){let n={x:k(r,"x","reverse")},o={dims:e};return A.runKernel(es,n,o)}var Kt=S({reverse_:iH});function aH(r){let e=k(r,"x","reverse");return T(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),Kt(e,0)}var lH=S({reverse1d_:aH});function uH(r,e){let t=k(r,"x","reverse");return T(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),Kt(t,e)}var cH=S({reverse2d_:uH});function pH(r,e){let t=k(r,"x","reverse");return T(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),Kt(t,e)}var mH=S({reverse3d_:pH});function fH(r,e){let t=k(r,"x","reverse");return T(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),Kt(t,e)}var dH=S({reverse4d_:fH});function hH(r){let t={x:k(r,"x","round")};return A.runKernel(ts,t)}var gu=S({round_:hH});function gH(r){let t={x:k(r,"x","rsqrt")};return A.runKernel(rs,t)}var xu=S({rsqrt_:gH});function ue(r,e){if((ar(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&ar(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Yr(r,[],[],e)}function xH(r){let t={x:k(r,"x","selu")};return A.runKernel(ra,t)}var yu=S({selu_:xH});function yH(r,e,t,n,o,s=[1,1],a="NHWC"){let i=k(r,"x","separableConv2d"),l=k(e,"depthwiseFilter","separableConv2d"),u=k(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");T(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),T(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),T(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];T(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=xs(c,l,n,o,a,s),g=Jr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ff=S({separableConv2d_:yH});async function bH(r,e){let t=k(r,"x","setdiff1d"),n=k(e,"y","setdiff1d");T(t.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${n.dtype}).`),T(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),T(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await t.data(),s=await n.data(),a=new Set(s),i=0;for(let c=0;c<o.length;c++)a.has(o[c])||i++;let l=new ut([i],t.dtype),u=new ut([i],"int32");for(let c=0,p=0;c<o.length;c++)a.has(o[c])||(l.values[p]=o[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var v_=bH;function wH(r){let t={x:k(r,"x","sign")};return A.runKernel(oa,t)}var df=S({sign_:wH});function _H(r){let t={x:k(r,"x","sin")};return A.runKernel(ns,t)}var bu=S({sin_:_H});function kH(r){let t={x:k(r,"x","sinh")};return A.runKernel(na,t)}var wu=S({sinh_:kH});function vH(r,e,t){let n=k(r,"x","slice1d");return T(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Re(n,[e],[t])}var hf=S({slice1d_:vH});function CH(r,e,t){let n=k(r,"x","slice2d");return T(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var kg=S({slice2d_:CH});function IH(r,e,t){let n=k(r,"x","slice3d");return T(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var gf=S({slice3d_:IH});function NH(r,e,t){let n=k(r,"x","slice4d");return T(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var lp=S({slice4d_:NH});function SH(r,e=-1){let t=k(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let n={logits:t},o={dim:e};return A.runKernel(as,n,o)}var Ia=S({softmax_:SH});function TH(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return A.runKernel($c,e)}var Na=S({fft_:TH});function AH(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return A.runKernel(Rc,e)}var si=S({ifft_:AH});function EH(r){let e=r.shape[r.shape.length-1],t=r.size/e,n;if(e<=2){let o=L(r,[t,e]);n=si(o)}else{let o=[t,2*(e-1)],s=L(gl(r),[t,e]),a=L(lu(r),[t,e]),i=Kt(Re(s,[0,1],[t,e-2]),1),l=O(Kt(Re(a,[0,1],[t,e-2]),1),ue(-1)),u=Qe([s,i],1),c=Qe([a,l],1),p=L(Nn(u,c),[o[0],o[1]]);n=si(p)}if(n=gl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=L(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var _u=S({irfft_:EH});function DH(r,e,t=0){let o={x:k(r,"x","split")},s={numOrSizeSplits:e,axis:t};return A.runKernel(Ys,o,s)}var tr=S({split_:DH});function $H(r,e){T(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],n=r.size/t,o;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,o=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,o=Qe([r,ht(d)],r.shape.length-1),t=e}else o=r;let s=Ie(o),a=L(Nn(o,s),[n,t]),i=Na(a),l=Math.floor(t/2)+1,u=gl(i),c=lu(i),p=tr(u,[l,t-l],u.shape.length-1),m=tr(c,[l,t-l],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=l,L(Nn(p[0],m[0]),f)}var Sa=S({rfft_:$H});function RH(r){let t={x:k(r,"x","sqrt")};return A.runKernel(ss,t)}var gt=S({sqrt_:RH});function FH(r,e){let t=k(r,"a","squaredDifference"),n=k(e,"b","squaredDifference");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n},s={};return A.runKernel(ls,o,s)}var ku=S({squaredDifference_:FH});function OH(r,e){let t=k(r,"x","squeeze");return L(t,Qb(t.shape,e).newShape)}var Tn=S({squeeze_:OH});function PH(r,e=0){let t=ca(r,"tensors","stack","string_or_numeric");T(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&T(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let n=t,o={axis:e};return A.runKernel(Hs,n,o)}var Gt=S({stack_:PH});function MH(r,e=0){let n={x:k(r,"x","step")},o={alpha:e};return A.runKernel(Yn,n,o)}var vs=S({step_:MH});function LH(r,e,t,n,o=0,s=0,a=0,i=0,l=0){let c={x:k(r,"x","stridedSlice")},p={begin:e,end:t,strides:n,beginMask:o,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return A.runKernel(ia,c,p)}var xf=S({stridedSlice_:LH});function zH(r){let t={x:k(r,"x","tan")};return A.runKernel(cs,t)}var yf=S({tan_:zH});function Ct(r,e){On(r);let t=Ar(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Yr(r,null,t,e)}function ii(r,e,t){if(On(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Ar(r,t);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Yr(r,e,n,t)}function BH(r,e,t){if(On(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Ar(r,t);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Yr(r,e,n,t)}function VH(r,e,t){if(On(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Ar(r,t);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Yr(r,e,n,t)}function GH(r,e,t){if(On(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Ar(r,t);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||n,Yr(r,e,n,t)}function WH(r,e=1,t=!0){let n=k(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(e>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${e}`);let s={x:n},a={k:e,sorted:t},[i,l]=A.runKernel(aa,s,a);return{values:i,indices:l}}var bf=S({topk_:WH});function jH(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new ap(e,t,n,!0,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var vu=S({truncatedNormal_:jH});function UH(r,e=0){let t=k(r,"x","unique","string_or_numeric");T(t.rank>0,()=>"The input tensor must be at least 1D");let n={x:t},o={axis:e},[s,a]=A.runKernel(qc,n,o);return{values:s,indices:a}}var up=S({unique_:UH});function HH(r,e,t){let n=k(r,"x","unsortedSegmentSum"),o=k(e,"segmentIds","unsortedSegmentSum","int32");T(ot(t),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},a={numSegments:t};return A.runKernel(ul,s,a)}var wf=S({unsortedSegmentSum_:HH});function qH(r,e=0){let t=k(r,"x","unstack","string_or_numeric");T(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let n={value:t},o={axis:e};return A.runKernel(Zs,n,o)}var fr=S({unstack_:qH});function C_(r,e=!0,t,n){return A.makeVariable(r,e,t,n)}function vg(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let n=Ce(r,"int32"),o=Ce([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=n.indexToLoc(t[s]),i=s*r.length;o.values.set(a,i)}return o.toTensor()}async function KH(r){let e=k(r,"condition","whereAsync","bool"),t=await e.data(),n=vg(e.shape,t);return r!==e&&e.dispose(),n}var _f=KH;async function XH(r,e,t){let n=k(r,"tensor","boolMask"),o=k(e,"mask","boolMask","bool"),s=t==null?0:t,a=o.rank,i=n.shape;T(a>0,()=>"mask cannot be scalar"),Dt(i.slice(s,s+a),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(n,u),p=L(o,[-1]),m=await _f(p),f=Tn(m,[1]),d=Qn(c,f,s);return r!==n&&n.dispose(),e!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var IIe=XH;function YH(r,e="euclidean",t=null,n=!1){r=k(r,"x","norm");let o=r1(r,e,t),s=o.shape;if(n){let a=nr(t,r.shape);s=to(o.shape,a)}return L(o,s)}function r1(r,e,t=null){if(r.rank===0)return Tt(r);if(r.rank!==1&&t===null)return r1(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return fe(Tt(r),t);if(e===Infinity)return mr(Tt(r),t);if(e===-Infinity)return oi(Tt(r),t);if(e==="euclidean"||e===2)return gt(fe(zr(Tt(r),ue(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return mr(fe(Tt(r),t[0]),t[1]-1);if(e===Infinity)return mr(fe(Tt(r),t[1]),t[0]);if(e===-Infinity)return oi(fe(Tt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return gt(fe(Me(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var cp=S({norm_:YH});function ZH(r,e,t,n,o=!0){let s=k(r,"v","movingAverage"),a=k(e,"x","movingAverage"),i=k(t,"decay","movingAverage");xw(s,a),T(Xr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=ue(1),u=le(l,i),c=O(le(a,s),u);if(o){T(n!=null,()=>"When using zeroDebias: true, step is required.");let p=k(n,"step","movingAverage");c=pe(c,le(l,zr(i,p)))}return J(s,c)}var ZIe=S({movingAverage_:ZH});function JH(r,e,t){let n=k(r,"indices","scatterND","int32"),o=k(e,"updates","scatterND");mg(o,n,t);let s={indices:n,updates:o},a={shape:t};return A.runKernel(ta,s,a)}var n1=S({scatterND_:JH});function o1(r,e,t,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===o))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${o}]`);if(e.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function QH(r,e,t,n=0){let o=k(r,"sparseIndices","sparseToDense","int32"),s=k(e,"sparseValues","sparseToDense"),a=k(n,"defaultValue","sparseToDense",s.dtype);o1(o,s,t,a);let i={sparseIndices:o,sparseValues:s,defaultValue:a},l={outputShape:t};return A.runKernel(Hc,i,l)}var Cg=S({sparseToDense_:QH});function eq(r,e){let t=k(e,"indices","gatherND","int32"),o={params:k(r,"x","gatherND"),indices:t};return A.runKernel(zi,o)}var s1=S({gatherND_:eq});function i1(r,e){if(e==null)return r.shape.slice();if(Xr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let n=0;n<r.shape.length;n++)e[n]==null&&r.shape[n]!=null?t.push(r.shape[n]):t.push(e[n]);return t}return e}function tq(r,e,t,n){let o=k(r,"x","dropout");if(T(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),T(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Pe?o.clone():o;let s=i1(o,t),a=1-e,i=pe(ws(J(ks(s,0,1,"float32",n),a)),a);return O(o,i)}var a1=S({dropout_:tq});function l1(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function Ig(r,e,t){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+n-1);o[s]=e-t*Math.cos(a)}return Ct(o,"float32")}async function rq(r,e,t=1){let n=k(r,"predictions","inTopK"),o=k(e,"targets","inTopK");T(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),T(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Dt(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];T(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await n.data(),i=await o.data(),[l,u]=[a.length/s,s],c=ew("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==n&&n.dispose(),e!==o&&o.dispose(),vr(c,o.shape,"bool")}var ONe=rq;var no={};We(no,{conv2d:()=>u1,depthwiseConv2d:()=>c1,matMul:()=>p1});function nq(r,e,t,n,o,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),T(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),T(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),T(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];T(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),T(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&T(ot(o),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:i,dy:l},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,filterShape:t};return A.runKernel(vc,p,m)}var pp=S({conv2DBackpropFilter_:nq});function Cu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return O(r,vs(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Iu(r,e){let t=e,n=kt(r.shape,e.shape);return n.length>0&&(t=fe(t,n)),L(t,r.shape)}function Nu(r,e,t,n){if(e==="linear")return r;if(e==="relu")return $r(r);if(e==="elu")return ys(r);if(e==="relu6")return hu(r);if(e==="prelu")return va(r,t);if(e==="leakyrelu")return ba(r,n);if(e==="sigmoid")return Dr(r);throw new Error(`Unknown fused activation ${e}.`)}var Su=(r,e)=>!(r>0)||e==="linear";function oq({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Su(A.state.gradientDepth,l)===!1){let I=Jr(r,e,t,n,o,s,a);return i!=null&&(I=J(I,i)),Nu(I,l,u,c)}let p=k(r,"x","conv2d"),m=k(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&T(ot(n),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),T(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),T(Cr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(o==="NHWC",()=>`Error in conv2d: got dataFormat of ${o} but only NHWC is currently supported.`);let h=ru(f.shape,m.shape,t,s,n,a),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=je(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=k(u,"prelu weights","fused conv2d"));let b=(I,E)=>{let[D,$,R,M]=E,G=Cu(I,R,l);T(zn(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let j=op($.shape,G,D,t,n),U=pp($,G,D.shape,t,n),H=[j,U];if(M!=null){let q=Iu(M,G);H.push(q)}return H},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((E,D,$)=>{let R=A.runKernel(ei,w,_);return $([D,E,R]),d&&(R=L(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:b}})(f,m):Qr((E,D,$,R)=>{let M=A.runKernel(ei,w,_);return R([D,E,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var u1=S({fusedConv2d_:oq});function sq(r,e,t,n,o,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,filterShape:t};return A.runKernel(Sc,u,c)}var Ng=S({depthwiseConv2dNativeBackpropFilter_:sq});function iq(r,e,t,n,o,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,inputShape:r},p=A.runKernel(Tc,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Sg=S({depthwiseConv2dNativeBackpropInput_:iq});function aq({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Su(A.state.gradientDepth,l)===!1){let I=xs(r,e,t,n,o,s,a);return i!=null&&(I=J(I,i)),Nu(I,l,u,c)}let p=k(r,"x","depthwiseConv2d"),m=k(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),T(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),T(Cr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&T(ot(n),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${n}.`);let h=ru(f.shape,m.shape,t,s,n,a,!0),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=je(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=k(u,"prelu weights","fused depthwiseConv2d"));let b=(I,E)=>{T(zn(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[D,$,R,M]=E,G=Cu(I,R,l),j=Sg($.shape,G,D,t,n,s,a),U=Ng($,G,D.shape,t,n,s,a);if(M!=null){let H=Iu(g,G);return[j,U,H]}return[j,U]},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((E,D,$)=>{let R=A.runKernel(ti,w,_);return $([D,E,R]),d&&(R=L(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:b}})(f,m):Qr((E,D,$,R)=>{let M=A.runKernel(ti,w,_);return R([D,E,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var c1=S({fusedDepthwiseConv2d_:aq});function lq({a:r,b:e,transposeA:t=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(Su(A.state.gradientDepth,s)===!1){let M=ze(r,e,t,n);return o!=null&&(M=J(M,o)),Nu(M,s,a,i)}let l=k(r,"a","fused matMul"),u=k(e,"b","fused matMul");[l,u]=je(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=n?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=n?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=nt(d),x=nt(h);T(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),T(Xr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),T(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${n} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?L(l,[g,c,m]):L(l,[g,m,c]),_=n?L(u,[x,f,p]):L(u,[x,p,f]),I;o!=null&&(I=k(o,"bias","fused matMul"),[I]=je(I,l),Be(b,I.shape));let E;a!=null&&(E=k(a,"prelu weights","fused matMul"));let D=(M,G)=>{let[j,U,H,q]=G,X=Cu(L(M,H.shape),H,s),ne,Y;if(!t&&!n?(ne=ze(X,U,!1,!0),Y=ze(j,X,!0,!1)):!t&&n?(ne=ze(X,U,!1,!1),Y=ze(X,j,!0,!1)):t&&!n?(ne=ze(U,X,!1,!0),Y=ze(j,X,!1,!1)):(ne=ze(U,X,!0,!0),Y=ze(X,j,!0,!0)),o!=null){let re=Iu(q,X);return[ne,Y,re]}else return[ne,Y]},$={a:w,b:_,bias:I,preluActivationWeights:E},R={transposeA:t,transposeB:n,activation:s,leakyreluAlpha:i};return o==null?Qr((G,j,U)=>{let H=A.runKernel(Qs,$,R);return U([G,j,H]),{value:L(H,b),gradFunc:D}})(w,_):Qr((G,j,U,H)=>{let q=A.runKernel(Qs,$,R);return H([G,j,q,U]),{value:L(q,b),gradFunc:D}})(w,_,I)}var p1=S({fusedMatMul_:lq});function uq(r){return Ig(r,.54,.46)}var m1=S({hammingWindow_:uq});function cq(r){return Ig(r,.5,.5)}var Tg=S({hannWindow_:cq});function pq(r,e,t,n=!1,o=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(n)for(;s<r.size;){let i=s+e-r.size,l=Qe([Re(r,s,e-i),bs([i],o)]);a.push(l),s+=t}return a.length===0?ii([],[0,e]):L(Qe(a),[a.length,e])}var Ag=S({frame_:pq});function mq(r,e,t,n,o=Tg){n==null&&(n=l1(e));let s=Ag(r,e,t),a=O(s,o(e));return Sa(a,n)}var f1=S({stft_:mq});function fq(r,e,t,n,o="bilinear",s=0){let a=k(r,"image","cropAndResize"),i=k(e,"boxes","cropAndResize","float32"),l=k(t,"boxInd","cropAndResize","int32"),u=i.shape[0];T(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),T(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),T(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),T(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),T(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:a,boxes:i,boxInd:l},p={method:o,extrapolationValue:s,cropSize:n};return A.runKernel($i,c,p)}var d1=S({cropAndResize_:fq});function dq(r){let e=k(r,"image","flipLeftRight","float32");T(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return A.runKernel(Li,t,{})}var h1=S({flipLeftRight_:dq});function hq(r,e,t=0,n=.5){let o=k(r,"image","rotateWithOffset","float32");T(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},a={radians:e,fillValue:t,center:n};return A.runKernel(ua,s,a)}var g1=S({rotateWithOffset_:hq});function oo(r,e,t,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),T(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),T(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),T(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),T(e.rank===1,()=>"scores must be a 1D tensor"),T(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),T(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function gq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppression"),a=k(e,"scores","nonMaxSuppression"),i=oo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:n,scoreThreshold:o};return A.runKernel(Yi,{boxes:s,scores:a},l)}var x1=S({nonMaxSuppression_:gq});function y1(r,e,t){let n=xq(r,e,t),o=n<0?-(n+1):n;r.splice(o,0,e)}function xq(r,e,t){return bq(r,e,t||yq)}function yq(r,e){return r>e?1:r<e?-1:0}function bq(r,e,t){let n=0,o=r.length,s=0,a=!1;for(;n<o;){s=n+(o-n>>>1);let i=t(e,r[s]);i>0?n=s+1:(o=s,a=!i)}return a?n:-n-1}function Eg(r,e,t,n,o){return I_(r,e,t,n,o,0)}function Dg(r,e,t,n,o,s){return I_(r,e,t,n,o,0,!1,s,!0)}function $g(r,e,t,n,o,s){return I_(r,e,t,n,o,s,!0)}function I_(r,e,t,n,o,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>o&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(b1);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<o)break;let _=!1;for(let I=p.length-1;I>=w;--I){let E=wq(r,b,p[I]);if(E>=n){_=!0;break}if(g.score=g.score*_q(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,_||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&y1(u,g,b1))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function wq(r,e,t){let n=r.subarray(e*4,e*4+4),o=r.subarray(t*4,t*4+4),s=Math.min(n[0],n[2]),a=Math.min(n[1],n[3]),i=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function _q(r,e,t){let n=Math.exp(e*t*t);return t<=r?n:0}function b1(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function kq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppressionAsync"),a=k(e,"scores","nonMaxSuppressionAsync"),i=oo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=Eg(u,c,t,n,o);return s!==r&&s.dispose(),a!==e&&a.dispose(),Ct(p,"int32")}var w1=kq;function vq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=oo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=A.runKernel(Ji,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var _1=S({nonMaxSuppressionWithScore_:vq});async function Cq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=oo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=$g(c,p,t,n,o,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Ct(m,"int32"),selectedScores:Ct(f)}}var k1=Cq;function Iq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=oo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=A.runKernel(Zi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var v1=S({nonMaxSuppressionPadded_:Iq});async function Nq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=oo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=Dg(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Ct(d,"int32"),validOutputs:ue(h,"int32")}}var C1=Nq;function Sq(r,e,t=!1,n=!1){let o=k(r,"images","resizeBilinear");T(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),T(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),T(n===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=A.runKernel(Jo,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Rg=S({resizeBilinear_:Sq});function Tq(r,e,t=!1,n=!1){let o=k(r,"images","resizeNearestNeighbor");T(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),T(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),T(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),T(n===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=A.runKernel(il,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Fg=S({resizeNearestNeighbor_:Tq});function Eq(r,e="binary",t=!1,n=.5){let o=k(r,"image","threshold"),s=.2989,a=.587,i=.114,l=o.shape[0]*o.shape[1],u=O(Ct([n]),255),c,p,m,f;if(T(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),T(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),T(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),T(e==="otsu"||e==="binary",()=>`Method must be binary or otsu, but was ${e}`),o.shape[2]===3){[c,p,m]=tr(o,[1,1,1],-1);let g=O(c,s),x=O(p,a),b=O(m,i);f=J(J(g,x),b)}else f=r;if(e==="otsu"){let g=Ym(oe(gu(f),"int32"),vr([]),256);u=Aq(g,l)}let d=t?gn(f,u):Vt(f,u);return oe(O(d,255),"int32")}function Aq(r,e){let t=Ct([-1]),n=Ct([0]),o=Ct([0]),s,a,i,l,u,c;for(let p=0;p<r.size-1;p++){s=Re(r,0,p+1),a=Re(r,p+1),u=pe(fe(s),e),c=pe(fe(a),e);let m=fe(O(s,Ca(0,s.size)));i=pe(m,fe(s));let f=bs(a.shape,s.size),d=J(Ca(0,a.size),f),h=O(a,d);l=pe(fe(h),fe(a));let g=le(i,l),x=le(i,l),b=O(u,c);o=O(O(b,g),x);let w=Vt(o,n);n=vt(w,o,n),t=vt(w,Ct([p]),t)}return t}var I1=S({threshold_:Eq});function Dq(r,e,t="nearest",n="constant",o=0,s){let a=k(r,"image","transform","float32"),i=k(e,"transforms","transform","float32");T(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),T(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:n,fillValue:o,outputShape:s};return A.runKernel(la,l,u)}var N1=S({transform_:Dq});function $q(r,e,t){T(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),T(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let n=k(r,"a","bandPart");T(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,a]=n.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Ca(0,s,1,"int32"),[-1,1]),l=Ca(0,a,1,"int32"),u=le(i,l),c=yr(gn(u,ue(+e,"int32")),hn(u,ue(-t,"int32"))),p=ht([s,a],n.dtype);return L(Gt(fr(L(n,[-1,s,a])).map(m=>vt(c,m,p))),o)}var S1=S({bandPart_:$q});function Rq(r){let e;if(Array.isArray(r)){e=!1,T(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)T(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else e=!0,r=tr(r,r.shape[0],0).map(o=>Tn(o,[0]));T(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],n=r;for(let o=0;o<r.length;++o)t.push(A.tidy(()=>{let s=n[o];if(o>0)for(let a=0;a<o;++a){let i=O(fe(O(t[a],s)),t[a]);s=le(s,i)}return pe(s,cp(s,"euclidean"))}));return e?Gt(t,0):t}var T1=S({gramSchmidt_:Rq});function Fq(r,e=!1){if(T(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return A1(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),n=fr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(l=>{let[u,c]=A1(l,e);o.push(u),s.push(c)});let a=L(Gt(o,0),r.shape),i=L(Gt(s,0),r.shape);return[a,i]}}function A1(r,e=!1){return A.tidy(()=>{T(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],n=r.shape[1],o=sp(t),s=Ln(r),a=ii([[1]],[1,1]),i=Ln(a),l=t>=n?n:t;for(let u=0;u<l;++u){let c=s,p=i,m=o;[i,s,o]=A.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=cp(f),h=Re(s,[u,u],[1,1]),g=vt(Vt(h,0),ii([[-1]]),ii([[1]])),x=le(h,O(g,d)),b=pe(f,x);b.shape[0]===1?i=Ln(a):i=Qe([a,Re(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=qe(pe(ze(g,x),d)),_=Re(s,[u,0],[t-u,n]),I=O(w,i),E=Ue(i);if(u===0)s=le(_,ze(I,ze(E,_)));else{let R=le(_,ze(I,ze(E,_)));s=Qe([Re(s,[0,0],[u,n]),R],0)}let D=Ue(I),$=Re(o,[0,u],[t,o.shape[1]-u]);if(u===0)o=le($,ze(ze($,i),D));else{let R=le($,ze(ze($,i),D));o=Qe([Re(o,[0,0],[t,u]),R],1)}return[i,s,o]}),Ee([c,p,m])}return!e&&t>n&&(o=Re(o,[0,0],[t,n]),s=Re(s,[0,0],[n,n])),[o,s]})}var E1=S({qr_:Fq});var Wt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Wt||(Wt={}));function Oq(r,e,t=Wt.SUM_BY_NONZERO_WEIGHTS){let n=k(r,"losses","computeWeightedLoss"),o=null;e!=null&&(o=k(e,"weights","computeWeightedLoss"));let s=o==null?n:O(n,o);if(t===Wt.NONE)return s;if(t===Wt.SUM)return fe(s);if(t===Wt.MEAN){if(o==null)return dt(s);{let a=n.size/o.size,i=pe(fe(s),fe(o));return a>1?pe(i,ue(a)):i}}if(t===Wt.SUM_BY_NONZERO_WEIGHTS){if(o==null)return pe(fe(s),ue(n.size));{let a=O(o,er(n.shape)),i=oe(fe(ro(a,ue(0))),"float32");return pe(fe(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Rr=S({computeWeightedLoss_:Oq});function Pq(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","absoluteDifference"),s=k(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=k(t,"weights","absoluteDifference")),Dt(o.shape,s.shape,"Error in absoluteDifference: ");let i=Tt(le(o,s));return Rr(i,a,n)}var D1=S({absoluteDifference_:Pq});function Mq(r,e,t,n,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","cosineDistance"),a=k(e,"predictions","cosineDistance"),i=null;n!=null&&(i=k(n,"weights","cosineDistance")),Dt(s.shape,a.shape,"Error in cosineDistance: ");let l=ue(1),u=le(l,fe(O(s,a),t,!0));return Rr(u,i,o)}var $1=S({cosineDistance_:Mq});function Lq(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","hingeLoss"),s=k(e,"predictions","hingeLoss"),a=null;t!=null&&(a=k(t,"weights","hingeLoss")),Dt(o.shape,s.shape,"Error in hingeLoss: ");let i=ue(1);o=le(O(ue(2),o),i);let l=$r(le(i,O(o,s)));return Rr(l,a,n)}var R1=S({hingeLoss_:Lq});function zq(r,e,t,n=1,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","huberLoss"),a=k(e,"predictions","huberLoss"),i=null;t!=null&&(i=k(t,"weights","huberLoss")),Dt(s.shape,a.shape,"Error in huberLoss: ");let l=ue(n),u=Tt(le(a,s)),c=_s(u,l),p=le(u,c),m=J(O(ue(.5),Me(c)),O(l,p));return Rr(m,i,o)}var F1=S({huberLoss_:zq});function Bq(r,e,t,n=1e-7,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","logLoss"),a=k(e,"predictions","logLoss"),i=null;t!=null&&(i=k(t,"weights","logLoss")),Dt(s.shape,a.shape,"Error in logLoss: ");let l=ue(1),u=ue(n),c=qe(O(s,pr(J(a,u)))),p=O(le(l,s),pr(J(le(l,a),u))),m=le(c,p);return Rr(m,i,o)}var O1=S({logLoss_:Bq});function Vq(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","meanSquaredError"),s=k(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=k(t,"weights","meanSquaredError")),Dt(o.shape,s.shape,"Error in meanSquaredError: ");let i=ku(o,s);return Rr(i,a,n)}var P1=S({meanSquaredError_:Vq});function Gq(r,e){let t=k(r,"labels","sigmoidCrossEntropyWithLogits"),n=k(e,"logits","sigmoidCrossEntropyWithLogits");Dt(t.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=$r(n),s=O(n,t),a=cu(Qt(qe(Tt(n))));return J(le(o,s),a)}function Wq(r,e,t,n=0,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"multiClassLabels","sigmoidCrossEntropy"),a=k(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","sigmoidCrossEntropy")),Dt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=ue(n),c=ue(1),p=ue(.5);s=J(O(s,le(c,u)),O(p,u))}let l=Gq(s,a);return Rr(l,i,o)}var M1=S({sigmoidCrossEntropy_:Wq});function jq(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Qr((o,s,a)=>{let l=lf(s,[t],!0),u=le(oe(s,"float32"),l);a([o,u]);let c=qe(O(u,o));return{value:fe(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=to(f.shape,[t]);return[O(L(f,x),le(oe(h,"float32"),Qt(g))),O(L(f,x),le(Qt(g),oe(h,"float32")))]}}})(r,e)}function Uq(r,e,t,n=0,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"onehotLabels","softmaxCrossEntropy"),a=k(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","softmaxCrossEntropy")),Dt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),n>0){let u=ue(n),c=ue(1),p=ue(s.shape[1]);s=J(O(s,le(c,u)),pe(u,p))}let l=jq(s,a);return Rr(l,i,o)}var L1=S({softmaxCrossEntropy_:Uq});function Hq(r,e,t,n){let o=k(r,"indices","sparseFillEmptyRows"),s=k(e,"values","sparseFillEmptyRows"),a=k(t,"denseShape","sparseFillEmptyRows"),i=k(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${a.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:o,values:s,denseShape:a,defaultValue:i},u=A.runKernel(jc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var z1=S({sparseFillEmptyRows_:Hq});function qq(r,e,t){let n=k(r,"inputIndices","sparseReshape"),o=k(e,"inputShape","sparseReshape"),s=k(t,"newShape","sparseReshape");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let a={inputIndices:n,inputShape:o,newShape:s},i=A.runKernel(Uc,a);return{outputIndices:i[0],outputShape:i[1]}}var B1=S({sparseReshape_:qq});var DOe={fft:Na,ifft:si,rfft:Sa,irfft:_u},$Oe={hammingWindow:m1,hannWindow:Tg,frame:Ag,stft:f1},ai={flipLeftRight:h1,resizeNearestNeighbor:Fg,resizeBilinear:Rg,rotateWithOffset:g1,cropAndResize:d1,nonMaxSuppression:x1,nonMaxSuppressionAsync:w1,nonMaxSuppressionWithScore:_1,nonMaxSuppressionWithScoreAsync:k1,nonMaxSuppressionPadded:v1,nonMaxSuppressionPaddedAsync:C1,threshold:I1,transform:N1},V1={bandPart:S1,gramSchmidt:T1,qr:E1},ROe={absoluteDifference:D1,computeWeightedLoss:Rr,cosineDistance:$1,hingeLoss:R1,huberLoss:F1,logLoss:O1,meanSquaredError:P1,sigmoidCrossEntropy:M1,softmaxCrossEntropy:L1},G1={sparseFillEmptyRows:z1,sparseReshape:B1};var Br=class extends dg{minimize(e,t=!1,n){let{value:o,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ee(s),t?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return yg(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ue(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var mp=class extends Br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n],a=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedGrads[o].variable,u=this.accumulatedUpdates[o].variable;V(()=>{let c=J(O(l,this.rho),O(Me(i),1-this.rho)),p=O(pe(gt(J(u,this.epsilon)),gt(J(l,this.epsilon))),i),m=J(O(u,this.rho),O(Me(p),1-this.rho));l.assign(c),u.assign(m);let f=J(O(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};mp.className="Adadelta";dn(mp);var fp=class extends Br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n];if(this.accumulatedGrads[o]==null){let l=!1;this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:V(()=>bs(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[o].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[o].variable;V(()=>{let l=J(i,Me(a));i.assign(l);let u=J(O(pe(a,gt(J(l,A.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};fp.className="Adagrad";dn(fp);var dp=class extends Br{constructor(e,t,n,o=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=ue(t).variable(),this.accBeta2=ue(n).variable()}),o==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=le(1,this.accBeta1),o=le(1,this.accBeta2);t.forEach((s,a)=>{let i=A.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ie(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ie(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=J(O(c,this.beta1),O(u,1-this.beta1)),f=J(O(p,this.beta2),O(Me(u),1-this.beta2)),d=pe(m,n),h=pe(f,o);c.assign(m),p.assign(f);let g=J(O(pe(d,J(gt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};dp.className="Adam";dn(dp);var hp=class extends Br{constructor(e,t,n,o=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=ue(0).variable(),this.accBeta1=ue(t).variable()}),o==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=le(1,this.accBeta1),o=pe(-this.learningRate,J(O(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=A.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ie(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ie(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=J(O(c,this.beta1),O(u,1-this.beta1)),f=O(p,this.beta2),d=Tt(u),h=en(f,d);c.assign(m),p.assign(h);let g=J(O(pe(o,n),pe(m,J(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};hp.className="Adamax";dn(hp);var xl=class extends Br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=Array.isArray(e)?e[o].tensor:e[n];if(s==null)return;let a=A.registeredVariables[n];V(()=>{let i=J(O(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=$t(ue(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};xl.className="SGD";dn(xl);var gp=class extends xl{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ue(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n];if(this.accumulations[o]==null){let l=!1;this.accumulations[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(l))}}let a=this.accumulations[o].variable,i=Array.isArray(e)?e[o].tensor:e[n];i!=null&&V(()=>{let l,u=J(O(this.m,a),i);this.useNesterov?l=J(O(this.c,J(i,O(u,this.m))),s):l=J(O(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};gp.className="Momentum";dn(gp);var xp=class extends Br{constructor(e,t=.9,n=0,o=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=A.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n],a=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedMeanSquares[o].variable,u=this.accumulatedMoments[o].variable;V(()=>{let c=J(O(l,this.decay),O(Me(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=J(O(p,this.decay),O(i,1-this.decay)),f=pe(O(i,this.learningRate),gt(le(c,J(Me(m),this.epsilon)))),d=J(O(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=le(s,d);s.assign(h)}else{let p=J(O(l,this.decay),O(Me(i),1-this.decay)),m=J(O(u,this.momentum),pe(O(i,this.learningRate),gt(J(p,this.epsilon))));l.assign(p),u.assign(m);let f=le(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xp.className="RMSProp";dn(xp);var Ta=class{static sgd(e){return new xl(e)}static momentum(e,t,n=!1){return new gp(e,t,n)}static rmsprop(e,t=.9,n=0,o=null,s=!1){return new xp(e,t,n,o,s)}static adam(e=.001,t=.9,n=.999,o=null){return new dp(e,t,n,o)}static adadelta(e=.001,t=.95,n=null){return new mp(e,t,n)}static adamax(e=.002,t=.9,n=.999,o=null,s=0){return new hp(e,t,n,o,s)}static adagrad(e,t=.1){return new fp(e,t)}};var Tu={sgd:Ta.sgd,momentum:Ta.momentum,adadelta:Ta.adadelta,adagrad:Ta.adagrad,rmsprop:Ta.rmsprop,adamax:Ta.adamax,adam:Ta.adam};var Kq=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function kf(){return new Promise(r=>Kq(()=>r()))}var C={};We(C,{ERF_A1:()=>sK,ERF_A2:()=>iK,ERF_A3:()=>aK,ERF_A4:()=>lK,ERF_A5:()=>uK,ERF_P:()=>oK,PARALLELIZE_THRESHOLD:()=>Og,SELU_SCALE:()=>S_,SELU_SCALEALPHA:()=>N_,applyActivation:()=>Nu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>rU,assertParamsConsistent:()=>Xq,assignToTypedArray:()=>xK,axesAreInnerMostDims:()=>i_,calculateShapes:()=>vT,checkEinsumDimSizes:()=>vK,combineLocations:()=>VT,complexWithEvenIndex:()=>dK,complexWithOddIndex:()=>hK,computeConv2DInfo:()=>ru,computeConv3DInfo:()=>zT,computeDefaultPad:()=>jw,computeDilation2DInfo:()=>Sj,computeOptimalWindowSize:()=>Zq,computeOutAndReduceShapes:()=>a_,computeOutShape:()=>Yq,computePool2DInfo:()=>Gw,computePool3DInfo:()=>Tj,convertConv2DDataFormat:()=>LT,decodeEinsumEquation:()=>_K,eitherStridesOrDilationsAreOne:()=>Cr,expandShapeToKeepDim:()=>to,exponent:()=>bK,exponents:()=>yK,fromStringArrayToUint8:()=>$K,fromUint8ToStringArray:()=>DK,getAxesPermutation:()=>l_,getBroadcastDims:()=>x4,getComplexWithIndex:()=>gK,getEinsumComputePath:()=>IK,getEinsumPermutation:()=>kK,getFusedBiasGradient:()=>Iu,getFusedDyActivation:()=>Cu,getImageCenter:()=>Jq,getInnerMostAxes:()=>nU,getPermuted:()=>eK,getReductionAxes:()=>kt,getReshaped:()=>Qq,getReshapedPermuted:()=>tK,getSliceBeginCoords:()=>rK,getSliceSize:()=>nK,getUndoAxesPermutation:()=>af,isIdentityPermutation:()=>NK,log:()=>pK,mergeRealAndImagArrays:()=>mK,prepareAndValidate:()=>kT,prepareSplitSize:()=>SK,segment_util:()=>A_,shouldFuse:()=>Su,slice_util:()=>or,splitRealAndImagArrays:()=>fK,tupleValuesAreOne:()=>zn,upcastType:()=>lr,validateInput:()=>mg,validateUpdateShape:()=>Ow,warn:()=>cK});function Xq(r,e){let t=r[0].length;r.forEach((o,s)=>{T(o.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),T(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let n=r[0];r.forEach((o,s)=>{for(let a=0;a<t;a++)T(a===e||o[a]===n[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function Yq(r,e){let t=r[0].slice();for(let n=1;n<r.length;n++)t[e]+=r[n][e];return t}var Og=30;function Zq(r){return r<=Og?r:xc(r,Math.floor(Math.sqrt(r)))}function Jq(r,e,t){let n=t*(typeof r=="number"?r:r[0]),o=e*(typeof r=="number"?r:r[1]);return[n,o]}function Qq(r,e,t,n=!0){let o=[];if(n)o=o.concat(e.slice(0)),o.push(r[0]/t),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)o=o.concat([r[a+1]/e[a],e[a]]);o=o.concat(r.slice(s+1))}return o}function eK(r,e,t=!0){let n=[];if(t){n.push(e);for(let o=e+1;o<r;++o)o<=2*e?(n.push(o),n.push(o-(e+1))):n.push(o)}else{let o=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):o.push(a);n.push(...o),n.push(0),n.push(...s)}return n}function tK(r,e,t,n=!0){let o=[];n?o.push(r[0]/t):o.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?n?o.push(e[s-1]*r[s]):o.push(r[s]/e[s-1]):o.push(r[s]);return o}function rK(r,e){let t=[0];for(let n=0;n<e;++n)t.push(r[n][0]);return t}function nK(r,e,t){let n=r.slice(0,1);for(let o=0;o<t;++o)n.push(r[o+1]-e[o][0]-e[o][1]);return n}var N_=1.7580993408473768,S_=1.0507009873554805;var oK=.3275911,sK=.254829592,iK=-.284496736,aK=1.421413741,lK=-1.453152027,uK=1.061405429;function cK(...r){W().getBool("IS_TEST")||console.warn(...r)}function pK(...r){W().getBool("IS_TEST")||console.log(...r)}function mK(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let n=0;n<t.length;n+=2)t[n]=r[n/2],t[n+1]=e[n/2];return t}function fK(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)e[n/2]=r[n],t[n/2]=r[n+1];return{real:e,imag:t}}function dK(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=0;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function hK(r){let e=Math.floor(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=2;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function gK(r,e){let t=r[e*2],n=r[e*2+1];return{real:t,imag:n}}function xK(r,e,t,n){r[n*2]=e,r[n*2+1]=t}function yK(r,e){let t=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(e?2:-2)*Math.PI*(o/r);t[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:t,imag:n}}function bK(r,e,t){let n=(t?2:-2)*Math.PI*(r/e),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var T_="->",wK=/->/g,W1=",",j1="...";function _K(r,e){r=r.replace(/\s/g,"");let t=(r.length-r.replace(wK,"").length)/T_.length;if(t<1)throw new Error("Equations without an arrow are not supported.");if(t>1)throw new Error(`Equation must contain exactly one arrow ("${T_}").`);let[n,o]=r.split(T_);T(n.indexOf(j1)===-1,()=>`The ellipsis notation ("${j1}") is not supported yet.`);let s=n.split(W1),a=s.length;if(e!==a)throw new Error(`Expected ${a} input tensors, received ${e}`);if(a>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);i.indexOf(f)===-1&&i.push(f)}for(let m=0;m<n.length;++m){let f=n[m];i.indexOf(f)===-1&&f!==W1&&i.push(f)}let l=new Array(s.length);for(let m=0;m<a;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);l[m]=[];for(let f=0;f<s[m].length;++f)l[m].push(i.indexOf(s[m][f]))}let u=i.length,c=o.length,p=[];for(let m=c;m<u;++m)p.push(m);return{allDims:i,summedDims:p,idDims:l}}function kK(r,e){let t=new Array(r);t.fill(-1);for(let o=0;o<e.length;++o)t[e[o]]=o;let n=[];for(let o=0;o<r;++o)t[o]===-1&&n.push(o);return t=t.filter(o=>o!==-1),{permutationIndices:t,expandDims:n}}function vK(r,e,t){let n=new Array(r);for(let o=0;o<t.length;++o){let s=t[o].shape;for(let a=0;a<e[o].length;++a)n[e[o][a]]===void 0?n[e[o][a]]=s[a]:T(n[e[o][a]]===s[a],()=>`Expected dimension ${n[e[o][a]]} at axis ${a} of input shaped ${JSON.stringify(s)}, but got dimension ${s[a]}`)}}function IK(r,e){let t=r,n=[],o=0;r.length===0&&t.push(-1),o=r.length+1;for(let a=0;a<o;++a)n.push([]);let s=[];for(let a=0;a<t.length;++a){let i=t[a],l=CK(e,i);for(let u of l)s.indexOf(u)===-1&&(n[a].push(u),s.push(u))}return{path:t,steps:n}}function NK(r){return r.every((e,t)=>e===t)}function CK(r,e){let t=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(e)!==-1||e===-1)&&t.push(n);return t}function SK(r,e,t=0){let n=[];if(typeof e=="number")T(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),n=new Array(e).fill(r.shape[t]/e);else{let o=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);T(o<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}T(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),n=e}return n}var A_={};We(A_,{collectGatherOpShapeInfo:()=>EK,computeOutShape:()=>AK,segOpComputeOptimalWindowSize:()=>TK});function TK(r,e){let t=!1,n;for(r<=Og?(n=r,t=!0):n=xc(r,Math.floor(Math.sqrt(r)));!t;)n>e||n===r?t=!0:n=xc(r,n+1);return n}function AK(r,e,t){let n=[],o=r.length;for(let s=0;s<o;s++)s!==e?n.push(r[s]):n.push(t);return n}function EK(r,e,t,n){let o=e.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(t<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${t}).`);for(let p=0;p<n;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<n;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<o;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function DK(r){try{return r.map(e=>Yc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function $K(r){return r.map(e=>cl(e))}var Fr={};We(Fr,{nonMaxSuppressionV3Impl:()=>Eg,nonMaxSuppressionV4Impl:()=>Dg,nonMaxSuppressionV5Impl:()=>$g,whereImpl:()=>vg});function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var RK=Fr.whereImpl,Au=class extends Ms{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Xa(this,hs())}nextDataId(){return Au.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:e,dtype:n,refCount:1}),o}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return{dataId:o,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,o,s){this.data.set(e,{values:t,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(o,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}makeOutput(e,t,n){let o=this.write(e,t,n);return hs().makeTensorFromDataId(o,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return RK(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Au.nextDataId=0;var Hg={};We(Hg,{addImpl:()=>D_,bincountImpl:()=>wp,bincountReduceImpl:()=>Pg,ceilImpl:()=>$_,concatImpl:()=>Eu,expImpl:()=>R_,expm1Impl:()=>O_,floorImpl:()=>P_,gatherV2Impl:()=>Mg,greaterImpl:()=>M_,lessImpl:()=>L_,linSpaceImpl:()=>Lg,logImpl:()=>z_,maxImpl:()=>zg,maximumImpl:()=>B_,minimumImpl:()=>V_,multiplyImpl:()=>vf,negImpl:()=>G_,notEqualImpl:()=>W_,prodImpl:()=>j_,rangeImpl:()=>$u,rsqrtImpl:()=>U_,simpleAbsImpl:()=>E_,sliceImpl:()=>Ru,sparseFillEmptyRowsImpl:()=>Bg,sparseReshapeImpl:()=>Vg,squaredDifferenceImpl:()=>H_,stridedSliceImpl:()=>Gg,subImpl:()=>q_,tileImpl:()=>Wg,topKImpl:()=>jg,transposeImpl:()=>_p,uniqueImpl:()=>Ug});function E_(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var FK=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId).values;return n=E_(o),t.makeOutput(n,e.shape,"float32")},U1={kernelName:Bs,backendName:"cpu",kernelFunc:FK};function Ye(r){return(e,t,n,o,s)=>{let a=C.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=C.getBroadcastDims(e,a),g=C.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,l),w=b.slice(-p);h.forEach(D=>w[D]=0);let _=y.locToIndex(w,p,f),I=b.slice(-m);g.forEach(D=>I[D]=0);let E=y.locToIndex(I,m,d);c[x]=r(n[_],o[E])}return[c,a]}}function dr(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,i=t.makeTensorInfo(n.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(n.shape,"float32",s),imag:t.makeTensorInfo(o.shape,"float32",a)},i}var H1={kernelName:kc,backendName:"cpu",kernelFunc:dr};function yp(r,e,t="float32"){if(t==="complex64"){let o=yp(r,e,"float32"),s=yp(r,e,"float32");return dr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,n)}function Or(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var q1={kernelName:Xn,backendName:"cpu",kernelFunc:Or};function so(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.real,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var K1={kernelName:Vc,backendName:"cpu",kernelFunc:so};function io(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Or({inputs:{x:o},backend:t});let a=yp(t,o.shape,o.dtype),i=io({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=dr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=so({inputs:{input:o},backend:t}),i=io({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Or({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(o.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(o.shape,"int32",i)}if(s==="bool"){let a=t.data.get(o.dataId).values,i=y.toTypedArray([0],o.dtype),[l,u]=Ye((c,p)=>c!==p?1:0)(o.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var X1={kernelName:qn,backendName:"cpu",kernelFunc:io};function et(r,e,t,n){return t==null?({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=io({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=io({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(x.dataId).values,_=l.data.get(b.dataId).values,[I,E,D]=t(a.shape,i.shape,f,d,w,_),$=l.makeTensorInfo(D,"float32",I),R=l.makeTensorInfo(D,"float32",E),M=dr({inputs:{real:$,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo($),l.disposeIntermediateTensorInfo(R),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function bp(r){return(e,t,n,o,s,a)=>{let i=C.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=C.getBroadcastDims(e,i),d=C.getBroadcastDims(t,i),h=C.mergeRealAndImagArrays(n,o),g=C.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),w=t.length,_=y.computeStrides(t);if(f.length+d.length===0)for(let I=0;I<p.length;I++){let E=I%h.length,D=I%g.length,$=r(h[E*2],h[E*2+1],g[D*2],g[D*2+1]);p[I]=$.real,m[I]=$.imag}else for(let I=0;I<p.length;I++){let E=y.indexToLoc(I,u,c),D=E.slice(-x);f.forEach(j=>D[j]=0);let $=y.locToIndex(D,x,b),R=E.slice(-w);d.forEach(j=>R[j]=0);let M=y.locToIndex(R,w,_),G=r(h[$*2],h[$*2+1],g[M*2],g[M*2+1]);p[I]=G.real,m[I]=G.imag}return[p,m,i]}}var D_=Ye((r,e)=>r+e),OK=bp((r,e,t,n)=>({real:r+t,imag:e+n})),Aa=et(Pn,D_,OK),Y1={kernelName:Pn,backendName:"cpu",kernelFunc:Aa};function wp(r,e,t,n,o){let s=y.sizeFromShape(n),a=y.makeZerosTypedArray(o,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=o||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Pg(r,e,t,n=!1){let o=r.shape[0],s=r.shape[1],a=Ce([o,t],e.dtype);for(let i=0;i<o;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(n?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function ao(r){return(e,t,n)=>{let o=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)o[s]=r(e[s],n);return o}}function $e(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],o);return i.makeTensorInfo(a.shape,c,p)}}function lo(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,o);return i.makeTensorInfo(a.shape,u,c)}}var $_=ao(r=>Math.ceil(r)),PK=lo(Io,$_),Z1={kernelName:Io,backendName:"cpu",kernelFunc:PK};function Eu(r,e,t,n){let o=y.getArrayFromDType(t,y.sizeFromShape(e));if(n&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);o.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?C.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)o[c+p]=i[l++]}s+=a.shape[1]})}return o}var R_=ao(r=>Math.exp(r)),F_=lo($o,R_),J1={kernelName:$o,backendName:"cpu",kernelFunc:F_};var O_=ao(r=>Math.expm1(r)),MK=lo(Mi,O_),Q1={kernelName:Mi,backendName:"cpu",kernelFunc:MK};var P_=ao(r=>Math.floor(r)),LK=lo(Ro,P_),eA={kernelName:Ro,backendName:"cpu",kernelFunc:LK};function Mg(r,e,t){let n=Ce(t,r.dtype);for(let o=0;o<n.size;++o){let a=n.indexToLoc(o).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);n.values[o]=r.values[c]}return n}var M_=Ye((r,e)=>r>e?1:0),zK=et(Bi,M_,null,"bool"),tA={kernelName:Bi,backendName:"cpu",kernelFunc:zK};var L_=Ye((r,e)=>r<e?1:0),BK=et(ji,L_,null,"bool"),rA={kernelName:ji,backendName:"cpu",kernelFunc:BK};function Lg(r,e,t){let n=(e-r)/(t-1),o=y.makeZerosTypedArray(t,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var z_=ao(r=>Math.log(r)),VK=lo(Lo,z_),nA={kernelName:Lo,backendName:"cpu",kernelFunc:VK};function zg(r,e,t,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(t));for(let s=0;s<o.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}o[s]=i}return o}var B_=Ye((r,e)=>Math.max(r,e)),GK=et(Bo,B_),oA={kernelName:Bo,backendName:"cpu",kernelFunc:GK};var V_=Ye((r,e)=>Math.min(r,e)),WK=et(jo,V_),sA={kernelName:jo,backendName:"cpu",kernelFunc:WK};var vf=Ye((r,e)=>r*e),jK=bp((r,e,t,n)=>({real:r*t-e*n,imag:r*n+e*t})),Du=et(Ho,vf,jK),iA={kernelName:Ho,backendName:"cpu",kernelFunc:Du};function G_(r,e,t){let n=y.createScalarValue(-1,t);return vf([],e,n,r,t)}function UK(r){let{inputs:e,backend:t}=r,{x:n}=e;te(n,"neg");let o=t.data.get(n.dataId).values,[s,a]=G_(o,n.shape,n.dtype);return t.makeTensorInfo(a,n.dtype,s)}var aA={kernelName:js,backendName:"cpu",kernelFunc:UK};var W_=Ye((r,e)=>r!==e?1:0),HK=et(Xi,W_,null,"bool"),lA={kernelName:Xi,backendName:"cpu",kernelFunc:HK};function _p(r,e,t,n,o){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(o),u=y.getTypedArrayFromDType(t,y.sizeFromShape(o));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function Xt(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{perm:s}=t;te(o,"transpose");let a=o.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=o.shape[s[p]];let l=n.data.get(o.dataId).values,u=_p(l,o.shape,o.dtype,s,i);return{dataId:n.write(u,i,o.dtype),shape:i,dtype:o.dtype}}var uA={kernelName:ms,backendName:"cpu",kernelFunc:Xt};function j_(r,e,t,n){let[o,s]=C.computeOutAndReduceShapes(r,n),a=lr(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(o),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:o,outDtype:a}}function qK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"prod");let i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=C.getAxesPermutation(l,i),c=l,p=o,m=[];u!=null&&(p=Xt({inputs:{x:o},backend:t,attrs:{perm:u}}),m.push(p),c=C.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=j_(p.shape,p.dtype,f,c),x=h;return a&&(x=C.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var cA={kernelName:Qi,backendName:"cpu",kernelFunc:qK};function $u(r,e,t,n){let o=r===e,s=r<e&&t<0,a=e<r&&t>1;if(o||s||a)return y.makeZerosTypedArray(0,n);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,n);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var U_=ao(r=>1/Math.sqrt(r)),KK=lo(rs,U_),pA={kernelName:rs,backendName:"cpu",kernelFunc:KK};function Ru(r,e,t,n,o){let s=or.isSliceContinous(n,e,t),a=y.sizeFromShape(t),i=y.computeStrides(n);if(s){let p=or.computeFlatOffset(e,i);return o==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=o==="string"?C.fromUint8ToStringArray(r):r,u=Ce(n,o,l),c=Ce(t,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return o==="string"?C.fromStringArrayToUint8(c.values):c.values}function uo(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n;te(o,"slice");let[i,l]=or.parseSliceParams(o,s,a);or.assertParamsValid(o,i,l);let u=t.data.get(o.dataId).values,c=Ru(u,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,c)}var mA={kernelName:Xs,backendName:"cpu",kernelFunc:uo};function Bg(r,e,t,n,o,s,a){let i=e[0],l=s[0],u=new Array(l),c=new Array(i),p=e[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=y.getArrayFromDType(t,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,u,c]}let m=!0,f=0,d=new Array(l).fill(0);for(let g=0;g<i;++g){let x=r[g*p];if(x<0)throw new Error(`indices(${g}, 0) is invalid: ${x} < 0`);if(x>=l)throw new Error(`indices(${g}, 0) is invalid: ${x} >= ${l}`);++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g<l;++g){let x=d[g]===0;u[g]=x,h=h&&!x,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b<i;++b)c[b]=b;return[g,[i,p],x,u,c]}else{let g=d[l-1],x=y.getArrayFromDType(t,g*p),b=y.getArrayFromDType(o,g),w=new Array(l).fill(0);for(let _=0;_<i;++_){let I=r[_*p],E=w[I],D=(I===0?0:d[I-1])+E;w[I]++;for(let $=0;$<p;++$)x[D*p+$]=r[_*p+$];b[D]=n[_],c[_]=D}for(let _=0;_<l;++_)if(w[_]===0){let E=_===0?0:d[_-1];x[E*p+0]=_;for(let D=1;D<p;++D)x[E*p+D]=0;b[E]=a}return[x,[i,p],b,u,c]}}function Vg(r,e,t,n,o){let s=y.sizeFromShape(n),a=e[0],i=o.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let x=o[g];if(x===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${g}`);c=g,l.push(1)}else{if(x<0)throw new Error(`size ${g} must be non-negative, not ${x}`);u*=x,l.push(x)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(s/u);if(u*g!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${n} outputShape= ${l}`);l[c]=g}let p=y.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${n} outputShape=${l}`);let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(i>0){d[i-1]=1;for(let g=i-2;g>=0;--g)d[g]=d[g+1]*l[g+1]}let h=y.getArrayFromDType(t,a*i);for(let g=0;g<a;++g){let x=0;for(let b=0;b<m;++b)x+=r[g*m+b]*f[b];for(let b=0;b<i;++b)h[g*i+b]=Math.trunc(x/d[b]),x%=d[b]}return[h,[a,i],l]}var H_=Ye((r,e)=>{let t=r-e;return t*t}),XK=et(ls,H_),fA={kernelName:ls,backendName:"cpu",kernelFunc:XK};function Gg(r,e,t,n){let o=Ce(r,e.dtype);for(let s=0;s<o.size;s++){let a=o.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+n[l];o.set(e.get(...i),...a)}return o}var q_=Ye((r,e)=>r-e),YK=bp((r,e,t,n)=>({real:r-t,imag:e-n})),Cf=et(us,q_,YK),dA={kernelName:us,backendName:"cpu",kernelFunc:Cf};function Wg(r,e){let t=new Array(r.rank);for(let o=0;o<t.length;o++)t[o]=r.shape[o]*e[o];let n=Ce(t,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);n.values[o]=r.values[i]}return n}function jg(r,e,t,n,o){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*n),u=y.getTypedArrayFromDType("int32",a*n);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*n,g=l.subarray(h,h+n),x=u.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,x[b]=d[b].index}let c=e.slice();return c[c.length-1]=n,[Ce(c,t,l),Ce(c,"int32",u)]}function Ug(r,e,t,n){let o=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<o;d++)s[0]*=t[d];s[1]=t[o];for(let d=o+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[o]),l=new ut(s,n,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(l.get(x,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new ut(p,n);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var K_="3.6.0";rp("cpu",()=>new Au,1);var X_=$e(Fi,r=>r>=0?r:Math.exp(r)-1),hA={kernelName:Fi,backendName:"cpu",kernelFunc:X_};function Y_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n;te([o],"leakyRelu");let a=y.sizeFromShape(o.shape),i=t.data.get(o.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(o.shape,"float32",l)}var gA={kernelName:Mo,backendName:"cpu",kernelFunc:Y_};var ZK=Ye((r,e)=>r<0?e*r:r);function Z_(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e;te([n,o],"prelu");let s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,[i,l]=ZK(n.shape,o.shape,s,a,n.dtype);return t.makeTensorInfo(l,n.dtype,i)}var xA={kernelName:Yo,backendName:"cpu",kernelFunc:Z_};var J_=$e(Zo,r=>Math.max(0,r)),yA={kernelName:Zo,backendName:"cpu",kernelFunc:J_};var Q_=$e(Qo,r=>Math.min(Math.max(0,r),6)),bA={kernelName:Qo,backendName:"cpu",kernelFunc:Q_};var ek=$e(os,r=>1/(1+Math.exp(-r))),wA={kernelName:os,backendName:"cpu",kernelFunc:ek};function kp(r,e,t,n,o){if(t==="linear")return Or({inputs:{x:e},backend:r});if(t==="relu")return J_({inputs:{x:e},backend:r});if(t==="elu")return X_({inputs:{x:e},backend:r});if(t==="relu6")return Q_({inputs:{x:e},backend:r});if(t==="prelu")return Z_({inputs:{x:e,alpha:n},backend:r});if(t==="leakyrelu")return Y_({inputs:{x:e},backend:r,attrs:{alpha:o}});if(t==="sigmoid")return ek({inputs:{x:e},backend:r});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Ze(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=y.sizeFromShape(o.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(o.dataId);let u=t.data.get(o.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:o.dataId,shape:i,dtype:o.dtype}}var _A={kernelName:qs,backendName:"cpu",kernelFunc:Ze};function tk(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;te([o,s],"matMul");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let I=a?[g,c,m]:[g,m,c],E=i?[x,f,p]:[x,p,f],D=Ze({inputs:{x:o},backend:t,attrs:{shape:I}}),$=Ze({inputs:{x:s},backend:t,attrs:{shape:E}}),R=a?D.shape[1]:D.shape[2],M=a?D.shape[2]:D.shape[1],G=i?$.shape[1]:$.shape[2],j=Math.max(g,x),U=t.data.get(D.dataId).values,H=t.data.get($.dataId).values,q=y.computeStrides(D.shape),X=y.computeStrides($.shape),[ne,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[ee,ie,me]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*G,de=Ce([j,M,G],D.dtype),he=de.values,xe=t.blockSize;for(let we=0;we<j;we++)for(let De=0;De<M;De+=xe)for(let ve=0;ve<G;ve+=xe)for(let Ge=0;Ge<R;Ge+=xe){let Ke=Math.min(De+xe,M),at=Math.min(ve+xe,G),At=Math.min(Ge+xe,R);for(let Et=De;Et<Ke;Et++)for(let He=ve;He<at;He++){let ct=0;for(let mt=Ge;mt<At;mt++){let zt=Math.min(we,g-1)*ne,vn=Math.min(we,x-1)*me,Zt=U[zt+Et*Y+mt*re],cn=H[mt*ee+He*ie+vn];ct+=Zt*cn}he[we*ae+(Et*G+He)]+=ct}}return t.disposeIntermediateTensorInfo(D),t.disposeIntermediateTensorInfo($),t.makeTensorInfo(_,de.dtype,de.values)}var kA={kernelName:Co,backendName:"cpu",kernelFunc:tk};function JK(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=tk({inputs:{a:o,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=Aa({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=kp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var vA={kernelName:Qs,backendName:"cpu",kernelFunc:JK};var QK=$e(ki,r=>Math.acos(r)),CA={kernelName:ki,backendName:"cpu",kernelFunc:QK};var e6=$e(vi,r=>Math.acosh(r)),IA={kernelName:vi,backendName:"cpu",kernelFunc:e6};function t6(r){let{inputs:e,backend:t}=r,n=e;te(e,"addN");let o=n.map(i=>t.data.get(i.dataId).values),s=Ce(n[0].shape,n[0].dtype),a=s.values;for(let i=0;i<n.length;i++){let l=o[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var NA={kernelName:_o,backendName:"cpu",kernelFunc:t6};function r6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"all");let i=y.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Xt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];w=w&&I}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var SA={kernelName:Ci,backendName:"cpu",kernelFunc:r6};function n6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"any");let i=y.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Xt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];w=w||I}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var TA={kernelName:Ii,backendName:"cpu",kernelFunc:n6};function o6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMax");let a=y.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Xt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],C.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let I=h[x+_];I>b&&(b=I,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var AA={kernelName:ko,backendName:"cpu",kernelFunc:o6};function s6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMin");let a=y.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Xt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],C.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let I=h[x+_];I<b&&(b=I,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var EA={kernelName:Ya,backendName:"cpu",kernelFunc:s6};var i6=$e(Ni,r=>Math.asin(r)),DA={kernelName:Ni,backendName:"cpu",kernelFunc:i6};var a6=$e(Si,r=>Math.asinh(r)),$A={kernelName:Si,backendName:"cpu",kernelFunc:a6};var l6=$e(Ti,r=>Math.atan(r)),RA={kernelName:Ti,backendName:"cpu",kernelFunc:l6};var u6=Ye((r,e)=>Math.atan2(r,e)),c6=et(Ei,u6),FA={kernelName:Ei,backendName:"cpu",kernelFunc:c6};var p6=$e(Ai,r=>Math.atanh(r)),OA={kernelName:Ai,backendName:"cpu",kernelFunc:p6};function vp(r,e,t,n,o,s){let a=o.strideHeight,i=o.strideWidth,l=o.dilationHeight,u=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ce(o.outShape,t),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let _=0;_<o.batchSize;++_){let I=_*x,E=_*n[0];for(let D=0;D<o.inChannels;++D)for(let $=0;$<o.outHeight;++$){let R=$*a-m,M=Math.max(0,R),G=Math.min(o.inHeight,c+R),j=I+$*b;for(let U=0;U<o.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(o.inWidth,p+H),ne=d,Y=0,re=0;for(let ie=M;ie<G;ie+=l){let me=E+ie*n[1];for(let ae=q;ae<X;ae+=u){let de=me+ae*n[2],he=r[de+D];s==="max"&&he>ne?ne=he:s==="avg"&&(Y+=he,re++)}if(isNaN(ne))break}let ee=j+U*w+D;g[ee]=s==="avg"?Y/re:ne}}}return h}function qg(r,e,t,n,o=!1,s=!1){let a=Ce(n.outShape,"int32"),i=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=Ce(e,t,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let b=0;b<n.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let I=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let D=E*l-d,$=D;for(;$<0;)$+=c;let R=Math.min(n.inWidth,m+D),M=Number.NEGATIVE_INFINITY,G=-1;for(let j=_;j<I;j+=u){let U=j-w;for(let H=$;H<R;H+=c){let q=H-D,X=h.get(g,j,H,x);X>M&&(M=X,o?G=s?((g*n.inHeight+j)*n.inWidth+H)*n.inChannels+x:(j*n.inWidth+H)*n.inChannels+x:G=U*m+q)}}a.set(G,g,b,E,x)}}return a}function Kg(r,e,t,n,o,s){let a=o.strideDepth,i=o.strideHeight,l=o.strideWidth,u=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ce(o.outShape,t),_=w.values,I=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],D=o.outShape[3]*o.outShape[4],$=o.outShape[4];for(let R=0;R<o.batchSize;++R){let M=R*I,G=R*n[0];for(let j=0;j<o.inChannels;++j)for(let U=0;U<o.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(o.inDepth,m+H),ne=M+U*E;for(let Y=0;Y<o.outHeight;++Y){let re=Y*i-g,ee=re;for(;ee<0;)ee+=c;let ie=Math.min(o.inHeight,f+re),me=ne+Y*D;for(let ae=0;ae<o.outWidth;++ae){let de=ae*l-x,he=de;for(;he<0;)he+=p;let xe=Math.min(o.inWidth,d+de),we=me+ae*$,De=b,ve=0,Ge=0;for(let at=q;at<X;at+=u){let At=G+at*n[1];for(let Et=ee;Et<ie;Et+=c){let He=At+Et*n[2];for(let ct=he;ct<xe;ct+=p){let mt=He+ct*n[3],zt=r[mt+j];if(s==="max"&&zt>De?De=zt:s==="avg"&&(ve+=zt,Ge++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let Ke=we+j;_[Ke]=s==="avg"?ve/Ge:De}}}}return w}function PA(r,e){let t=Ce(e.outShape,"int32"),n=e.strideDepth,o=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*n-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let I=0;I<e.outHeight;++I){let E=I*o-f,D=E;for(;D<0;)D+=i;let $=Math.min(e.inHeight,c+E);for(let R=0;R<e.outWidth;++R){let M=R*s-d,G=M;for(;G<0;)G+=l;let j=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=w;q<_;q+=a){let X=q-b;for(let ne=D;ne<$;ne+=i){let Y=ne-E;for(let re=G;re<j;re+=l){let ee=re-M,ie=r.get(h,q,ne,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+ee)}}}t.set(H,h,x,I,R,g)}}}return t}function m6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Or({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=vp(m,o.shape,o.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var MA={kernelName:vo,backendName:"cpu",kernelFunc:m6};function f6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"avgPool3d");let c=C.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Kg(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var LA={kernelName:Za,backendName:"cpu",kernelFunc:f6};function d6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,I=c.effectiveFilterHeight,E=c.effectiveFilterWidth,D=_-1-c.padInfo.front,$=E-1-c.padInfo.left,R=I-1-c.padInfo.top,M=Ce(s.shape,"float32"),G=1/(d*h*g),j=t.bufferSync(o);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let ne=0;ne<c.inWidth;++ne){let Y=q-D,re=X-R,ee=ne-$,ie=0;for(let me=0;me<_;me+=x){let ae=(Y+me)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let de=0;de<I;de+=b){let he=(re+de)/m;if(!(he<0||he>=c.outHeight||Math.floor(he)!==he))for(let xe=0;xe<E;xe+=w){let we=(ee+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=j.get(U,ae,he,we,H)}}}M.set(ie*G,U,q,X,ne,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var zA={kernelName:wc,backendName:"cpu",kernelFunc:d6};function h6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;te([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=C.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=x-1-c.padInfo.top,I=Ce(a.shape,"float32"),E=1/(f*d),D=t.data.get(o.dataId).values,$=Ce(o.shape,"float32",D);for(let R=0;R<c.batchSize;++R)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let j=0;j<c.inWidth;++j){let U=G-_,H=j-w,q=0;for(let X=0;X<x;X+=h){let ne=(U+X)/p;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let Y=0;Y<b;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=$.get(R,ne,re,M)}}I.set(q*E,R,G,j,M)}return t.makeTensorInfo(I.shape,I.dtype,I.values)}var BA={kernelName:bc,backendName:"cpu",kernelFunc:h6};function g6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([o,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let c=t.data.get(o.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,_=0,I=0,E=0,D=0;for(let $=0;$<c.length;++$)h[$]=d[_++]+(c[$]-p[I++])*f[E++]/Math.sqrt(m[D++]+u),_>=g&&(_=0),I>=w&&(I=0),E>=x&&(E=0),D>=b&&(D=0);return t.makeTensorInfo(o.shape,o.dtype,h)}var VA={kernelName:Oo,backendName:"cpu",kernelFunc:g6};function x6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;te([o],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=C.getReshaped(o.shape,s,i),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(o.shape,s,i),p=C.getSliceBeginCoords(a,s.length),m=C.getSliceSize(c,a,s.length),f=Ze({inputs:{x:o},backend:t,attrs:{shape:l}}),d=Xt({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Ze({inputs:{x:d},backend:t,attrs:{shape:c}}),g=uo({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var GA={kernelName:Ja,backendName:"cpu",kernelFunc:x6};function y6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.data.get(o.dataId).values,l=t.data.get(s.dataId).values,u=wp(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var WA={kernelName:_c,backendName:"cpu",kernelFunc:y6};var b6=$e(Kn,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),jA={kernelName:Kn,backendName:"cpu",kernelFunc:b6};var w6=r=>{let{x:e}=r.inputs,t=r.backend,n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId),s=o.complexTensorInfos.real,a=o.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];n[u]=Math.hypot(c,p)}return t.makeOutput(n,e.shape,"float32")},UA={kernelName:Qa,backendName:"cpu",kernelFunc:w6};function li(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.imag,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var HA={kernelName:Fc,backendName:"cpu",kernelFunc:li};function yl(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=C.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Or({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(C.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>so({inputs:{input:_},backend:t})),g=i.map(_=>li({inputs:{input:_},backend:t})),x=yl({inputs:h,backend:t,attrs:{axis:s}}),b=yl({inputs:g,backend:t,attrs:{axis:s}}),w=dr({inputs:{real:x,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return Ze({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=C.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=Eu(c,a,e[0].dtype,p),f=C.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var qA={kernelName:Vs,backendName:"cpu",kernelFunc:yl};function rk(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n;te([o,s],"conv2d");let p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new ut(m.outShape,o.dtype),I=y.computeStrides(o.shape),E=y.computeStrides(s.shape),D=I[0],$=w?I[1]:I[2],R=w?I[2]:1,M=w?1:I[1],G=_.strides[0],j=w?_.strides[1]:_.strides[2],U=w?_.strides[2]:1,H=w?1:_.strides[1],q=t.data.get(o.dataId).values,X=t.data.get(s.dataId).values,ne=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*D,ee=Y*G;for(let ie=0;ie<m.outHeight;++ie){let me=ee+ie*j,ae=ie*m.strideHeight-b;for(let de=0;de<f;++de){let he=ae+de*h;if(he<0||he>=m.inHeight)continue;let xe=de*E[0],we=re+he*$;for(let De=0;De<m.outWidth;++De){let ve=me+De*U,Ge=De*m.strideWidth-x;for(let Ke=0;Ke<d;++Ke){let at=Ge+Ke*g;if(at<0||at>=m.inWidth)continue;let At=xe+Ke*E[1],Et=we+at*R,He=At;for(let ct=0;ct<m.inChannels;++ct){let mt=q[Et+ct*M];for(let zt=0;zt<m.outChannels;++zt)ne[ve+zt*H]+=mt*X[He+zt];He+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,ne)}var KA={kernelName:No,backendName:"cpu",kernelFunc:rk};function _6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new ut(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,I=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,D=new ut(o.shape,o.dtype,I),$=new ut(s.shape,s.dtype,E);for(let R=0;R<h;++R){let M=Math.max(0,Math.ceil((_-R)/f)),G=Math.min(m.outHeight,(m.inHeight+_-R)/f);for(let j=0;j<g;++j){let U=Math.max(0,Math.ceil((w-j)/d)),H=Math.min(m.outWidth,(m.inWidth+w-j)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let ne=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<G;++re){let ee=R+re*f-_;for(let ie=U;ie<H;++ie){let me=j+ie*d-w;x?ne+=D.get(Y,ee,me,q)*$.get(Y,re,ie,X):ne+=D.get(Y,q,ee,me)*$.get(Y,X,re,ie)}}b.set(ne,R,j,q,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var XA={kernelName:vc,backendName:"cpu",kernelFunc:_6};function k6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n;te([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new ut(d.inShape,"float32"),g=h.values,x=t.data.get(o.dataId).values,b=t.data.get(s.dataId).values,[w,_,I]=p,{batchSize:E,filterHeight:D,filterWidth:$,inChannels:R,inHeight:M,inWidth:G,outChannels:j,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let ne=D-1-d.padInfo.top,Y=$-1-d.padInfo.left,re=f==="channelsLast",ee=h.strides[0],ie=re?h.strides[1]:h.strides[2],me=re?h.strides[2]:1,ae=re?1:h.strides[1],de=m[0],he=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let De=0;De<E;++De)for(let ve=0;ve<R;++ve)for(let Ge=0;Ge<M;++Ge){let Ke=Ge-ne,at=Math.max(0,Math.ceil(Ke/q)),At=Math.min(U,(D+Ke)/q);for(let Et=0;Et<G;++Et){let He=Et-Y,ct=Math.max(0,Math.ceil(He/X)),mt=Math.min(H,($+He)/X),zt=0;for(let Zt=at;Zt<At;++Zt){let cn=Zt*q-Ke;for(let Mr=ct;Mr<mt;++Mr){let Un=Mr*X-He,ir=de*De+he*Zt+xe*Mr,Cn=w*(D-1-cn)+_*($-1-Un)+I*ve;for(let Ur=0;Ur<j;++Ur){let _r=x[ir+we*Ur],pn=b[Cn+Ur];zt+=_r*pn}}}let vn=ee*De+ie*Ge+me*Et+ae*ve;g[vn]=zt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var YA={kernelName:So,backendName:"cpu",kernelFunc:k6};function v6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n;te([o,s],"conv3d");let u=C.computeConv3DInfo(o.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,w=g.top,_=new ut(u.outShape,o.dtype),I=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,D=_.values,$=y.computeStrides(o.shape),R=y.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let G=M*$[0],j=M*_.strides[0];for(let U=0;U<u.outDepth;++U){let H=j+U*_.strides[1],q=U*u.strideDepth-x;for(let X=0;X<c;++X){let ne=q+X*f;if(ne<0||ne>=u.inDepth)continue;let Y=X*R[0],re=G+ne*$[1];for(let ee=0;ee<u.outHeight;++ee){let ie=H+ee*_.strides[2],me=ee*u.strideHeight-w;for(let ae=0;ae<p;++ae){let de=me+ae*d;if(de<0||de>=u.inHeight)continue;let he=Y+ae*R[1],xe=re+de*$[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,ve=we*u.strideWidth-b;for(let Ge=0;Ge<m;++Ge){let Ke=ve+Ge*h;if(Ke<0||Ke>=u.inWidth)continue;let at=he+Ge*R[2],At=xe+Ke*u.inChannels,Et=at;for(let He=0;He<u.inChannels;++He){let ct=I[At+He];for(let mt=0;mt<u.outChannels;++mt)D[De+mt]+=ct*E[Et+mt];Et+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var ZA={kernelName:el,backendName:"cpu",kernelFunc:v6};function C6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n;te([o,s],"conv3dBackpropFilterV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=C.computeConv3DInfo(o.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new ut(p.filterShape,"float32"),w=b.values,[_,I,E,D]=b.strides,$=t.data.get(s.dataId).values,[R,M,G,j]=c,U=t.data.get(o.dataId).values,[H,q,X,ne]=u,Y=p.padInfo.front,re=p.padInfo.left,ee=p.padInfo.top;for(let ie=0;ie<h;++ie){let me=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),de=ie*_;for(let he=0;he<g;++he){let xe=Math.max(0,Math.ceil((ee-he)/f)),we=Math.min(p.outHeight,(p.inHeight+ee-he)/f),De=he*I+de;for(let ve=0;ve<x;++ve){let Ge=Math.max(0,Math.ceil((re-ve)/d)),Ke=Math.min(p.outWidth,(p.inWidth+re-ve)/d),at=ve*E+De;for(let At=0;At<p.inChannels;++At){let Et=At*D+at;for(let He=0;He<p.outChannels;++He){let ct=0;for(let mt=0;mt<p.batchSize;++mt){let zt=mt*H,vn=mt*R;for(let Zt=me;Zt<ae;++Zt){let Mr=(ie+Zt*m-Y)*q+zt,Un=Zt*M+vn;for(let ir=xe;ir<we;++ir){let Ur=(he+ir*f-ee)*X+Mr,_r=ir*G+Un;for(let pn=Ge;pn<Ke;++pn){let zl=(ve+pn*d-re)*ne+Ur,Wa=pn*j+_r;ct+=U[zl+At]*$[Wa+He]}}}}w[Et+He]=ct}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var JA={kernelName:Cc,backendName:"cpu",kernelFunc:C6};function I6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n;te([o],"conv3dBackpropInputV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,i,1,a),m=new ut(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=t.data.get(o.dataId).values,[w,_,I,E]=u,D=t.data.get(s.dataId).values,[$,R,M,G]=c,{batchSize:j,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:ne,inHeight:Y,inWidth:re,outChannels:ee,outDepth:ie,outHeight:me,outWidth:ae,strideDepth:de,strideHeight:he,strideWidth:xe}=p,we=U-1-p.padInfo.front,De=H-1-p.padInfo.top,ve=q-1-p.padInfo.left;for(let Ge=0;Ge<j;++Ge)for(let Ke=0;Ke<X;++Ke)for(let at=0;at<ne;++at){let At=at-we,Et=Math.max(0,Math.ceil(At/de)),He=Math.min(ie,(U+At)/de);for(let ct=0;ct<Y;++ct){let mt=ct-De,zt=Math.max(0,Math.ceil(mt/he)),vn=Math.min(me,(H+mt)/he);for(let Zt=0;Zt<re;++Zt){let cn=Zt-ve,Mr=Math.max(0,Math.ceil(cn/xe)),Un=Math.min(ae,(q+cn)/xe),ir=0;for(let Cn=Et;Cn<He;++Cn){let Ur=Cn*de-At;for(let _r=zt;_r<vn;++_r){let pn=_r*he-mt;for(let Fn=Mr;Fn<Un;++Fn){let zl=Fn*xe-cn,Wa=w*Ge+_*Cn+I*_r+E*Fn,Ps=$*(U-1-Ur)+R*(H-1-pn)+M*(q-1-zl)+G*Ke;for(let xi=0;xi<ee;++xi){let cm=b[Wa+xi],Bl=D[Ps+xi];ir+=cm*Bl}}}}f[d*Ge+h*at+g*ct+x*Zt+Ke]=ir}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var QA={kernelName:Ic,backendName:"cpu",kernelFunc:I6};var N6=$e(To,r=>Math.cos(r)),eE={kernelName:To,backendName:"cpu",kernelFunc:N6};var S6=$e(Di,r=>Math.cosh(r)),tE={kernelName:Di,backendName:"cpu",kernelFunc:S6};function T6(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=i,x=Ce([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(o.dataId).values,I=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let D=0;D<d;D++){let $=D*4,R=b[$],M=b[$+1],G=b[$+2],j=b[$+3],U=w[D];if(U>=c)continue;let H=h>1?(G-R)*(p-1)/(h-1):0,q=g>1?(j-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let ne=h>1?R*(p-1)+X*H:.5*(R+G)*(p-1);if(ne<0||ne>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let ee=re+Y*E[2]+X*E[1]+D*E[0];x.values[ee]=u}continue}if(l==="bilinear"){let Y=Math.floor(ne),re=Math.ceil(ne),ee=ne-Y;for(let ie=0;ie<g;ie++){let me=g>1?M*(m-1)+ie*q:.5*(M+j)*(m-1);if(me<0||me>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*E[2]+X*E[1]+D*E[0];x.values[we]=u}continue}let ae=Math.floor(me),de=Math.ceil(me),he=me-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*I[2]+Y*I[1]+U*I[0],De=_[we];we=xe+de*I[2]+Y*I[1]+U*I[0];let ve=_[we];we=xe+ae*I[2]+re*I[1]+U*I[0];let Ge=_[we];we=xe+de*I[2]+re*I[1]+U*I[0];let Ke=_[we],at=De+(ve-De)*he,At=Ge+(Ke-Ge)*he;we=xe+ie*E[2]+X*E[1]+D*E[0],x.values[we]=at+(At-at)*ee}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+j)*(m-1);if(re<0||re>m-1){for(let me=0;me<f;me++){let ae=me+Y*E[2]+X*E[1]+D*E[0];x.values[ae]=u}continue}let ee=Math.round(re),ie=Math.round(ne);for(let me=0;me<f;me++){let ae=me+ee*I[2]+ie*I[1]+U*I[0],de=me+Y*E[2]+X*E[1]+D*E[0];x.values[de]=_[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var rE={kernelName:$i,backendName:"cpu",kernelFunc:T6};function A6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n;te(o,"cumsum");let l=C.getAxesPermutation([s],o.shape.length),u=o;l!=null&&(u=Xt({inputs:{x:o},backend:t,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,o.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=lr(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=a?0:f[w];else{let _=h(x,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=C.getUndoAxesPermutation(l),b=Xt({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var nE={kernelName:Ao,backendName:"cpu",kernelFunc:A6};function E6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=wp(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=Pg(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var oE={kernelName:Nc,backendName:"cpu",kernelFunc:E6};function D6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=o.shape[1],u=o.shape[2],c=o.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(o.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let I=0;I<m;++I){let E=Math.floor(I/s),D=I%s,$=(_*s+D)*f;for(let R=0;R<f;++R){let G=R+$+c*(E+u*(w+l*x));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],o.dtype,h)}var sE={kernelName:Ri,backendName:"cpu",kernelFunc:D6};function nk(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n;te([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(C.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=C.computeConv2DInfo(o.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,_=b.top,I=f.outChannels/f.inChannels,E=new ut(f.outShape,o.dtype),D=t.data.get(o.dataId).values,$=t.data.get(s.dataId).values,R=E.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],j=M*E.strides[0];for(let U=0;U<f.outHeight;++U){let H=j+U*E.strides[1],q=U*f.strideHeight-_;for(let X=0;X<d;++X){let ne=q+X*g;if(ne<0||ne>=f.inHeight)continue;let Y=X*p[0],re=G+ne*c[1];for(let ee=0;ee<f.outWidth;++ee){let ie=H+ee*E.strides[2],me=ee*f.strideWidth-w;for(let ae=0;ae<h;++ae){let de=me+ae*x;if(de<0||de>=f.inWidth)continue;let he=Y+ae*p[1],xe=re+de*f.inChannels,we=ie,De=he;for(let ve=0;ve<f.inChannels;++ve){let Ge=D[xe+ve];for(let Ke=0;Ke<I;++Ke)R[we+Ke]+=Ge*$[De+Ke];we+=I,De+=I}}}}}}return t.makeTensorInfo(E.shape,E.dtype,E.values)}var iE={kernelName:Eo,backendName:"cpu",kernelFunc:nk};function $6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(o.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new ut(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(o.dataId).values,I=new ut(o.shape,o.dtype,_),E=t.data.get(s.dataId).values,D=new ut(s.shape,s.dtype,E);for(let $=0;$<d;++$){let R=Math.max(0,Math.ceil((b-$)/m)),M=Math.min(p.outHeight,(p.inHeight+b-$)/m);for(let G=0;G<h;++G){let j=Math.max(0,Math.ceil((x-G)/f)),U=Math.min(p.outWidth,(p.inWidth+x-G)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/w),X=H%w,ne=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=R;re<M;++re){let ee=$+re*m-b;for(let ie=j;ie<U;++ie){let me=G+ie*f-x;ne+=I.get(Y,ee,me,q)*D.get(Y,re,ie,H)}}g.set(ne,$,G,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var aE={kernelName:Sc,backendName:"cpu",kernelFunc:$6};function R6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n;te([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=C.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new ut(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=t.data.get(o.dataId).values,[_,I,E]=p,D=t.data.get(s.dataId).values,[$,R,M]=m,{batchSize:G,filterHeight:j,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:ne,outHeight:Y,outWidth:re,strideHeight:ee,strideWidth:ie}=f,me=j-1-f.padInfo.top,ae=U-1-f.padInfo.left,de=ne/H;for(let he=0;he<G;++he)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let De=we-me,ve=Math.max(0,Math.ceil(De/ee)),Ge=Math.min(Y,(j+De)/ee);for(let Ke=0;Ke<X;++Ke){let at=Ke-ae,At=Math.max(0,Math.ceil(at/ie)),Et=Math.min(re,(U+at)/ie),He=0;for(let ct=ve;ct<Ge;++ct){let mt=ct*ee-De;for(let zt=At;zt<Et;++zt){let vn=zt*ie-at,Zt=_*he+I*ct+E*zt,cn=$*(j-1-mt)+R*(U-1-vn)+M*xe;for(let Mr=0;Mr<de;++Mr){let Un=xe*de+Mr,ir=w[Zt+Un],Cn=D[cn+Mr];He+=ir*Cn}}}h[g*he+x*we+b*Ke+xe]=He}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var lE={kernelName:Tc,backendName:"cpu",kernelFunc:R6};function F6(r){let{inputs:e,backend:t}=r,{x:n}=e,o=y.sizeFromShape(n.shape),s=t.data.get(n.dataId).values,a=Ce([o,o],n.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*o+u]=s[u];let l=[...n.shape,...n.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var uE={kernelName:Ac,backendName:"cpu",kernelFunc:F6};var cE={kernelName:tl,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(n.dataId).values,c=n.shape.length,p=l.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:_,strideWidth:I,filterHeight:E,filterWidth:D,dilationHeight:$,dilationWidth:R,outShape:M}=C.computeDilation2DInfo(n.shape,o.shape,s,a,"NHWC",i),G=y.sizeFromShape(M),j=M.length,U=y.getArrayFromDType(n.dtype,G);for(let q=0;q<f;++q)for(let X=0;X<x;++X){let ne=X*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*I-w.left;for(let ee=0;ee<g;++ee){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<E;++ae){let de=ne+ae*$;if(de>=0&&de<d)for(let he=0;he<D;++he){let xe=re+he*R;if(xe>=0&&xe<h){let we=y.locToIndex([q,de,xe,ee],c,y.computeStrides(n.shape)),De=y.locToIndex([ae,he,ee],m,y.computeStrides(o.shape)),ve=u[we]+p[De];ve>ie&&(ie=ve)}}}let me=y.locToIndex([q,X,Y,ee],j,y.computeStrides(M));U[me]=ie}}}return{dataId:l.write(y.toTypedArray(U,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var pE={kernelName:Dm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:I,filterWidth:E,dilationHeight:D,dilationWidth:$,outShape:R}=C.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===R.length,()=>`Error in ${Dm}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let M=y.toNestedArray(R,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let ne=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,ee=0,ie=0;for(let me=0;me<I;++me){let ae=q+me*D;if(ae>=0&&ae<f)for(let de=0;de<E;++de){let he=ne+de*$;if(he>=0&&he<d){let xe=c[U][ae][he][Y]+p[me][de][Y];xe>re&&(re=xe,ee=me,ie=de)}}}G[ee][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var mE={kernelName:Em,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:I,filterWidth:E,dilationHeight:D,dilationWidth:$,outShape:R}=C.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===R.length,()=>`Error in ${Em}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let M=y.toNestedArray(R,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let ne=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,ee=q<0?0:q,ie=ne<0?0:ne;for(let me=0;me<I;++me){let ae=q+me*D;if(ae>=0&&ae<f)for(let de=0;de<E;++de){let he=ne+de*$;if(he>=0&&he<d){let xe=c[U][ae][he][Y]+p[me][de][Y];xe>re&&(re=xe,ee=ae,ie=he)}}}G[U][ee][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ea(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"sum");let i;o.dtype==="bool"?i=io({inputs:{x:o},backend:t,attrs:{dtype:"int32"}}):i=Or({inputs:{x:o},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=C.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=Xt({inputs:{x:i},backend:t,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=C.computeOutAndReduceShapes(m.shape,p),h=C.upcastType(m.dtype,"int32"),g=yp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let I=_*x,E=0;for(let D=0;D<x;++D)E+=w[I+D];b[_]=E}if(a){let _=C.expandShapeToKeepDim(g.shape,u),I=g;g=Ze({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(I)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var fE={kernelName:is,backendName:"cpu",kernelFunc:Ea};function O6(r){let{inputs:e,backend:t,attrs:n}=r,{equation:o}=n,s=e,{allDims:a,summedDims:i,idDims:l}=C.decodeEinsumEquation(o,s.length);C.checkEinsumDimSizes(a.length,l,s);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,m=null,f=a.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=C.getEinsumPermutation(f,l[g]),w;C.isIdentityPermutation(x)?w=s[g]:(w=Xt({inputs:{x:s[g]},backend:t,attrs:{perm:x}}),d.push(w));let _=w.shape.slice();for(let I=0;I<b.length;++I)_.splice(b[I],0,1);y.arraysEqual(w.shape,_)||(w=Ze({inputs:{x:w},backend:t,attrs:{shape:_}}),d.push(w)),m===null?m=w:(m=Du({inputs:{a:w,b:m},backend:t}),d.push(m))}h<p-1&&(u[h]>=0&&(m=Ea({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var dE={kernelName:Ec,backendName:"cpu",kernelFunc:O6};function P6(r){let{inputs:e,backend:t}=r,{dy:n,y:o}=e;te([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(o.shape,"float32",s)}var hE={kernelName:Dc,backendName:"cpu",kernelFunc:P6};var M6=Ye((r,e)=>r===e?1:0),ok=et(Pi,M6,null,"bool"),gE={kernelName:Pi,backendName:"cpu",kernelFunc:ok};var L6=C.ERF_P,z6=C.ERF_A1,B6=C.ERF_A2,V6=C.ERF_A3,G6=C.ERF_A4,W6=C.ERF_A5,j6=$e(Oi,r=>{let e=Math.sign(r),t=Math.abs(r),n=1/(1+L6*t);return e*(1-((((W6*n+G6)*n+V6)*n+B6)*n+z6)*n*Math.exp(-t*t))}),xE={kernelName:Oi,backendName:"cpu",kernelFunc:j6};function Cp(r){let{inputs:e,backend:t,attrs:n}=r,{input:o}=e,{dim:s}=n,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Ze({inputs:{x:o},backend:t,attrs:{shape:i}})}var yE={kernelName:Gs,backendName:"cpu",kernelFunc:Cp};var U6=Ye((r,e)=>r/e),If=et(Do,U6),Nf={kernelName:Do,backendName:"cpu",kernelFunc:If};function Xg(r,e,t){let n=r.shape,o=n[0],s=n[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[o,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=uo({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=uo({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=dr({inputs:{real:x,imag:b},backend:t}),{real:_,imag:I}=H6(w,e,t),E=C.mergeRealAndImagArrays(_,I);for(let D=0;D<s;D++){let $=C.getComplexWithIndex(E,D);p[g*s+D]=$.real,m[g*s+D]=$.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=dr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function H6(r,e,t){let n=y.sizeFromShape(r.shape),o=t.data.get(r.dataId),s=t.data.get(o.complexTensorInfos.real.dataId).values,a=t.data.get(o.complexTensorInfos.imag.dataId).values;if(q6(n)){let i=sk(s,a,n,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Or({inputs:{x:p},backend:t}),f=Nf.kernelFunc({inputs:{a:u,b:p},backend:t}),d=Nf.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=C.mergeRealAndImagArrays(s,a),l=K6(i,n,e);return C.splitRealAndImagArrays(l)}}function q6(r){return(r&r-1)==0}function sk(r,e,t,n,o){if(t===1)return{real:r,imag:e};let s=C.mergeRealAndImagArrays(r,e),a=t/2,i=C.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=o.makeTensorInfo(c,"float32",l),m=o.makeTensorInfo(c,"float32",u),f=dr({inputs:{real:p,imag:m},backend:o}),d=C.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=o.makeTensorInfo(x,"float32",h),w=o.makeTensorInfo(x,"float32",g),_=dr({inputs:{real:b,imag:w},backend:o}),I=sk(l,u,a,n,o),E=I.real,D=I.imag,$=[E.length],R=o.makeTensorInfo($,"float32",E),M=o.makeTensorInfo($,"float32",D),G=dr({inputs:{real:R,imag:M},backend:o}),j=sk(h,g,a,n,o),U=j.real,H=j.imag,q=[U.length],X=o.makeTensorInfo(q,"float32",U),ne=o.makeTensorInfo(q,"float32",H),Y=dr({inputs:{real:X,imag:ne},backend:o}),re=C.exponents(t,n),ee=[re.real.length],ie=o.makeTensorInfo(ee,"float32",re.real),me=o.makeTensorInfo(ee,"float32",re.imag),ae=dr({inputs:{real:ie,imag:me},backend:o}),de=Du({inputs:{a:ae,b:Y},backend:o}),he=Aa({inputs:{a:G,b:de},backend:o}),xe=Cf({inputs:{a:G,b:de},backend:o}),we=so({inputs:{input:he},backend:o}),De=so({inputs:{input:xe},backend:o}),ve=li({inputs:{input:he},backend:o}),Ge=li({inputs:{input:xe},backend:o}),Ke=yl({inputs:[we,De],backend:o,attrs:{axis:0}}),at=yl({inputs:[ve,Ge],backend:o,attrs:{axis:0}}),At=o.data.get(Ke.dataId).values,Et=o.data.get(at.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(_),o.disposeIntermediateTensorInfo(R),o.disposeIntermediateTensorInfo(M),o.disposeIntermediateTensorInfo(G),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(ne),o.disposeIntermediateTensorInfo(Y),o.disposeIntermediateTensorInfo(ie),o.disposeIntermediateTensorInfo(me),o.disposeIntermediateTensorInfo(ae),o.disposeIntermediateTensorInfo(de),o.disposeIntermediateTensorInfo(he),o.disposeIntermediateTensorInfo(xe),o.disposeIntermediateTensorInfo(we),o.disposeIntermediateTensorInfo(ve),o.disposeIntermediateTensorInfo(De),o.disposeIntermediateTensorInfo(Ge),o.disposeIntermediateTensorInfo(Ke),o.disposeIntermediateTensorInfo(at),{real:At,imag:Et}}function K6(r,e,t){let n=new Float32Array(e*2);for(let o=0;o<e;o++){let s=0,a=0;for(let i=0;i<e;i++){let l=C.exponent(o*i,e,t),u=C.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),C.assignToTypedArray(n,s,a,o)}return n}function X6(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Ze({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=Xg(i,!1,t),u=Ze({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var bE={kernelName:$c,backendName:"cpu",kernelFunc:X6};function Sf(r){let{backend:e,attrs:t}=r,{shape:n,value:o,dtype:s}=t,a=s||y.inferDtype(o),i=y.getArrayFromDType(a,y.sizeFromShape(n));return Y6(i,o,a),e.makeTensorInfo(n,a,i)}var wE={kernelName:rl,backendName:"cpu",kernelFunc:Sf};function Y6(r,e,t){r.fill(e)}var _E={kernelName:Li,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,o=t,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[a,i,l,u]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],I=Math.round(l-_),E=f+h+x+b,D=c[E];if(I>=0&&I<l){let $=I*u,R=f+h+$+b;D=c[R]}s[E]=D}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var Z6=Ye((r,e)=>Math.floor(r/e)),J6=et(Fo,Z6,null,"int32"),kE={kernelName:Fo,backendName:"cpu",kernelFunc:J6};function Q6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=rk({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Aa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=kp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var vE={kernelName:ei,backendName:"cpu",kernelFunc:Q6};function e5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=nk({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Aa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=kp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var CE={kernelName:ti,backendName:"cpu",kernelFunc:e5};function t5(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=y.sizeFromShape(n.shape),a=o.shape,i=a[a.length-1],[l,u,c,p]=C.prepareAndValidate(n,o);if(u===0)return t.makeTensorInfo(l,n.dtype,[]);let m=Ce([u,c],n.dtype),f=t.data.get(o.dataId).values,d=t.data.get(n.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let b=0;b<i;b++){let w=f[h*i+b];x+=w*p[b],g.push(w)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${n.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[x*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var IE={kernelName:zi,backendName:"cpu",kernelFunc:t5};function r5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n;te([o,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,o.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(o,s,c,l),m=Ze({inputs:{x:o},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Ze({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=Mg(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var NE={kernelName:Ws,backendName:"cpu",kernelFunc:r5};var n5=Ye((r,e)=>r>=e?1:0),o5=et(Po,n5,null,"bool"),SE={kernelName:Po,backendName:"cpu",kernelFunc:o5};function s5(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Ze({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=Xg(i,!0,t),u=Ze({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var TE={kernelName:Rc,backendName:"cpu",kernelFunc:s5};var i5=$e(Vi,r=>Number.isFinite(r)?1:0,"bool"),AE={kernelName:Vi,backendName:"cpu",kernelFunc:i5};var a5=$e(Gi,r=>Math.abs(r)===Infinity?1:0,"bool"),EE={kernelName:Gi,backendName:"cpu",kernelFunc:a5};var l5=$e(Wi,r=>Number.isNaN(r)?1:0,"bool"),DE={kernelName:Wi,backendName:"cpu",kernelFunc:l5};var u5=Ye((r,e)=>r<=e?1:0),c5=et(Ui,u5,null,"bool"),$E={kernelName:Ui,backendName:"cpu",kernelFunc:c5};function p5(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=Lg(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var RE={kernelName:Oc,backendName:"cpu",kernelFunc:p5};var m5=$e(Hi,r=>Math.log1p(r)),FE={kernelName:Hi,backendName:"cpu",kernelFunc:m5};var f5=Ye((r,e)=>r&&e),d5=et(qi,f5,null,"bool"),OE={kernelName:qi,backendName:"cpu",kernelFunc:d5};var h5=$e(Hl,r=>r?0:1,"bool"),PE={kernelName:Hl,backendName:"cpu",kernelFunc:h5};var g5=Ye((r,e)=>r||e),x5=et(ql,g5,null,"bool"),ME={kernelName:ql,backendName:"cpu",kernelFunc:x5};function y5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n;te(o,"LRN");let u=o.shape[3],c=u-1,p=t.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let _=p[x];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(o.shape,o.dtype,f)}var LE={kernelName:nl,backendName:"cpu",kernelFunc:y5};function b5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(o.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,_=b-w+Math.max(0,w-i),I=b-w+Math.min(m,w+i+1),E=0;for(let D=_;D<I;D++)E+=Math.pow(d[D],2);E=u*E+l;for(let D=_;D<I;D++){let $=-2*u*c*d[D]*h[b]/E;b===D&&($+=Math.pow(E,-c)),$*=f[b],g[D]+=$}}return t.makeTensorInfo(a.shape,o.dtype,g)}var zE={kernelName:Pc,backendName:"cpu",kernelFunc:b5};function ik(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=t,l=o.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=C.getAxesPermutation(p,u),f=i.data.get(o.dataId).values;if(m!=null){let _=new Array(u);for(let I=0;I<_.length;I++)_[I]=l[m[I]];f=_p(f,l,o.dtype,m,_),p=C.getInnerMostAxes(p.length,u),l=_}te(o,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[d,h]=C.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=zg(f,g,d,o.dtype),b=i.write(x,d,o.dtype),w=d;return a&&(w=C.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var BE={kernelName:zo,backendName:"cpu",kernelFunc:ik};function w5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Or({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=vp(m,o.shape,o.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var VE={kernelName:Vo,backendName:"cpu",kernelFunc:w5};function _5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"maxPool3d");let c=C.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Kg(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var GE={kernelName:ol,backendName:"cpu",kernelFunc:_5};function k5(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=PA(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,I=c.effectiveFilterWidth,E=w-1-c.padInfo.front,D=I-1-c.padInfo.left,$=_-1-c.padInfo.top,R=Ce(s.shape,"float32"),M=t.bufferSync(o);for(let G=0;G<c.batchSize;++G)for(let j=0;j<c.inChannels;++j)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-E,ne=H-$,Y=q-D,re=0;for(let ee=0;ee<w;ee+=g){let ie=(X+ee)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let me=0;me<_;me+=x){let ae=(ne+me)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let de=0;de<I;de+=b){let he=(Y+de)/h;if(he<0||he>=c.outWidth||Math.floor(he)!==he)continue;let xe=w*_*I-1-m.get(G,ie,ae,he,j),we=ee*_*I+me*I+de,De=xe===we?1:0;if(De===0)continue;re+=M.get(G,ie,ae,he,j)*De}}}R.set(re,G,U,H,q,j)}return t.makeTensorInfo(R.shape,R.dtype,R.values)}var WE={kernelName:Lc,backendName:"cpu",kernelFunc:k5};function v5(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=C.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=Ce(m.outShape,i.dtype,qg(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,I=_-1-m.padInfo.left,E=w-1-m.padInfo.top,D=Ce(i.shape,"float32"),$=t.data.get(o.dataId).values,R=Ce(o.shape,"float32",$);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let j=0;j<m.inHeight;++j)for(let U=0;U<m.inWidth;++U){let H=j-E,q=U-I,X=0;for(let ne=0;ne<w;ne+=x){let Y=(H+ne)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let ee=(q+re)/g;if(ee<0||ee>=m.outWidth||Math.floor(ee)!==ee)continue;let ie=w*_-1-d.get(M,Y,ee,G),me=ne*_+re,ae=ie===me?1:0;if(ae===0)continue;X+=R.get(M,Y,ee,G)*ae}}D.set(X,M,j,U,G)}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var jE={kernelName:Mc,backendName:"cpu",kernelFunc:v5};function UE(r,e,t,n,o){let s=y.computeStrides(e),a=vp(r,e,t,s,o,"max"),i=qg(r,e,t,o,!0,n);return[a.values,i.values]}var HE={kernelName:zc,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,c=C.computePool2DInfo(n.shape,o,s,[1,1],a),[p,m]=UE(u,n.shape,n.dtype,i,c),f=l.write(p,c.outShape,n.dtype),d=l.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function C5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=y.parseAxisParam(s,o.shape),u=C.computeOutAndReduceShapes(o.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=io({inputs:{x:o},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=If({inputs:{a:f,b:m},backend:t});p.push(d);let h=Ea({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var qE={kernelName:Go,backendName:"cpu",kernelFunc:C5};function I5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"min");let i=y.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Xt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];I<w&&(w=I)}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var KE={kernelName:Wo,backendName:"cpu",kernelFunc:I5};function N5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,mode:a}=n;te(o,"mirrorPad");let i=s.map((w,_)=>w[0]+o.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+o.shape[_]),c=a==="reflect"?0:1,p=t.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let _=y.indexToLoc(w,h,g);for(let E=0;E<h;E++)_[E]<l[E]?_[E]=l[E]*2-_[E]-c:_[E]>=u[E]&&(_[E]=(u[E]-1)*2-_[E]+c);_=_.map((E,D)=>E-l[D]);let I=y.locToIndex(_,m,f);x[w]=p[I]}return{dataId:t.write(x,i,o.dtype),shape:i,dtype:o.dtype}}var XE={kernelName:Uo,backendName:"cpu",kernelFunc:N5};var S5=Ye((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),T5=et(Ki,S5),YE={kernelName:Ki,backendName:"cpu",kernelFunc:T5};var JE=dc(w_());function ak(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=o.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],o.shape),u=ik({inputs:{x:o},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=Ze({inputs:{x:u},backend:t,attrs:{shape:c}}),m=Cf({inputs:{a:o,b:p},backend:t}),f=F_({inputs:{x:m},backend:t}),d=Ea({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Ze({inputs:{x:d},backend:t,attrs:{shape:c}}),g=If({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var ZE={kernelName:as,backendName:"cpu",kernelFunc:ak};function A5(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n;te(o,"multinomial");let l=i?o:ak({inputs:{logits:o},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=JE.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=x();f[b+w]=g.length;for(let I=0;I<g.length;I++)if(_<g[I]){f[b+w]=I;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var QE={kernelName:Bc,backendName:"cpu",kernelFunc:A5};var E5=Fr.nonMaxSuppressionV3Impl;function D5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n;te(o,"NonMaxSuppression");let u=t.data.get(o.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=E5(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var e2={kernelName:Yi,backendName:"cpu",kernelFunc:D5};var $5=Fr.nonMaxSuppressionV4Impl;function R5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n;te(o,"NonMaxSuppressionPadded");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=$5(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var t2={kernelName:Zi,backendName:"cpu",kernelFunc:R5};var F5=Fr.nonMaxSuppressionV5Impl;function O5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n;te(o,"NonMaxSuppressionWithScore");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=F5(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var r2={kernelName:Ji,backendName:"cpu",kernelFunc:O5};function P5(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n;te(o,"oneHot");let l=y.sizeFromShape(o.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(o.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...o.shape,s],"int32",u)}var n2={kernelName:qo,backendName:"cpu",kernelFunc:P5};function Tf(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=so({inputs:{input:n},backend:t}),s=Tf({inputs:{x:o},backend:t}),a=li({inputs:{input:n},backend:t}),i=Tf({inputs:{x:a},backend:t}),l=dr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Sf({backend:t,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var o2={kernelName:Js,backendName:"cpu",kernelFunc:Tf};function s2(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=so({inputs:{input:n},backend:t}),s=s2({inputs:{x:o},backend:t}),a=li({inputs:{input:n},backend:t}),i=Tf({inputs:{x:a},backend:t}),l=dr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Sf({backend:t,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var i2={kernelName:Us,backendName:"cpu",kernelFunc:s2};function lk(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return Cp({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Cp({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=yl({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var a2={kernelName:Hs,backendName:"cpu",kernelFunc:lk};function M5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n;te(o,"pad");let i=s.map((b,w)=>b[0]+o.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(o.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=y.indexToLoc(b,p,m).map((E,D)=>E+l[D]),I=y.locToIndex(_,d,h);g[I]=u[b]}return{dataId:t.write(g,i,o.dtype),shape:i,dtype:o.dtype}}var Yg={kernelName:Ko,backendName:"cpu",kernelFunc:M5};var L5=Ye((r,e)=>Math.pow(r,e)),z5=et(Xo,L5),l2={kernelName:Xo,backendName:"cpu",kernelFunc:z5};function B5(r){let{backend:e,attrs:t}=r,{start:n,stop:o,dtype:s,step:a}=t,i=$u(n,o,a,s);return e.makeTensorInfo([i.length],s,i)}var u2={kernelName:sl,backendName:"cpu",kernelFunc:B5};var V5=$e(ea,r=>1/r),c2={kernelName:ea,backendName:"cpu",kernelFunc:V5};function G5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeBilinear");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=x[0]/b[0],I=x[1]/b[1];for(let E=0;E<p;E++)for(let D=0;D<u;D++){let $;a?$=_*(D+.5)-.5:$=_*D;let R=Math.max(0,Math.floor($)),M=$-R,G=Math.min(m-1,Math.ceil($)),j=E*l[0]+R*l[1],U=E*l[0]+G*l[1];for(let H=0;H<c;H++){let q;a?q=I*(H+.5)-.5:q=I*H;let X=Math.max(0,Math.floor(q)),ne=q-X,Y=Math.min(f-1,Math.ceil(q)),re=j+X*l[2],ee=U+X*l[2],ie=j+Y*l[2],me=U+Y*l[2];for(let ae=0;ae<d;ae++){let de=h[re+ae],he=h[ee+ae],xe=h[ie+ae],we=h[me+ae],De=de+(xe-de)*ne,ve=he+(we-he)*ne,Ge=De+(ve-De)*M;g[w++]=Ge}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var p2={kernelName:Jo,backendName:"cpu",kernelFunc:G5};function W5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeBilinearGrad");let i=y.computeStrides(o.shape),[l,u,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let I=0;I<l;I++){let E=I*i[0];for(let D=0;D<m;D++){let $=D*x,R=Math.floor($),M=Math.min(Math.ceil($),u-1),G=E+R*i[1],j=E+M*i[1],U=$-R,H=1-U;for(let q=0;q<f;q++){let X=q*b,ne=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-ne,ee=1-re,ie=G+ne*i[2],me=G+Y*i[2],ae=j+ne*i[2],de=j+Y*i[2],he=H*ee,xe=H*re,we=U*ee,De=U*re;for(let ve=0;ve<p;ve++){let Ge=w[_++];d[ie+ve]+=Ge*he,d[me+ve]+=Ge*xe,d[ae+ve]+=Ge*we,d[de+ve]+=Ge*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var m2={kernelName:Wc,backendName:"cpu",kernelFunc:W5};function j5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeNearestNeighbor");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=x[0]/b[0],_=x[1]/b[1],I=0;for(let E=0;E<p;E++){let D=E*l[0];for(let $=0;$<u;$++){let R=a?w*($+.5):w*$,M=Math.min(m-1,s?Math.round(R):Math.floor(R));a&&(M=Math.max(0,M));let G=D+M*l[1];for(let j=0;j<c;j++){let U=a?_*(j+.5):_*j,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=G+H*l[2];for(let X=0;X<d;X++){let ne=h[q+X];g[I++]=ne}}}}return t.makeTensorInfo([p,u,c,d],o.dtype,g)}var f2={kernelName:il,backendName:"cpu",kernelFunc:j5};function U5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeNearestNeighborGrad");let i=y.computeStrides(o.shape),l=y.computeStrides(s.shape),[u,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=x[0]/b[0],_=x[1]/b[1],I=1/w,E=1/_,D=Math.ceil(I)*2+2,$=Math.ceil(E)*2+2;for(let R=0;R<u;R++){let M=R*i[0];for(let G=0;G<c;G++){let j=M+G*i[1],U=Math.floor(G*I),H=Math.floor(U-D/2);for(let q=0;q<p;q++){let X=j+q*i[2],ne=Math.floor(q*E),Y=Math.floor(ne-$/2);for(let re=0;re<m;re++){let ee=0;for(let ie=0;ie<D;ie++){let me=ie+H;if(me<0||me>=f)continue;let ae=M+me*l[1],de=me*w,he=Math.min(c-1,a?Math.round(de):Math.floor(de));if(G===he)for(let xe=0;xe<$;xe++){let we=xe+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],ve=we*_,Ge=Math.min(p-1,a?Math.round(ve):Math.floor(ve));q===Ge&&(ee+=g[De+re])}}h[X+re]=ee}}}}return t.makeTensorInfo(o.shape,o.dtype,h)}var d2={kernelName:Gc,backendName:"cpu",kernelFunc:U5};function H5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n;te(o,"reverse");let a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Or({inputs:{x:o},backend:t});let l=new ut(o.shape,o.dtype),u=t.bufferSync(o);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=o.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var h2={kernelName:es,backendName:"cpu",kernelFunc:H5};var g2={kernelName:ua,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[u,c,p,m]=n.shape,[f,d]=C.getImageCenter(a,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=i.data.get(n.dataId).values;for(let _=0;_<u;_++){let I=_*p*c*m;for(let E=0;E<c;E++){let D=E*(p*m);for(let $=0;$<p;$++){let R=$*m;for(let M=0;M<m;M++){let G=[u,E,$,M],j=G[2],U=G[1],H=(j-f)*x-(U-d)*g,q=(j-f)*g+(U-d)*x;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,ee=I+Y+re+M;X=b[ee]}let ne=I+D+R+M;l[ne]=X}}}}return{dataId:i.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var q5=$e(ts,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),x2={kernelName:ts,backendName:"cpu",kernelFunc:q5};function Zg(r,e,t,n,o,s,a,i,l,u){let c=[n/o,o],p=r.values,m=e.values;if(n===0)return Ce(t,e.dtype);let f=Ce(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let b=p[d*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<o;x++)u?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=e.rank===0?m[0]:m[d*o+x]}return f}function K5(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(s,o,a),m=!0,f=t.bufferSync(o),d=t.bufferSync(s),h=Zg(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var y2={kernelName:ta,backendName:"cpu",kernelFunc:K5};function X5(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e;te([n,o,s],"select");let a=n.shape.length,i=t.data.get(n.dataId).values,l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=lr(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=a===0||a>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(o.shape,c,p)}var b2={kernelName:Ks,backendName:"cpu",kernelFunc:X5};var Y5=C.SELU_SCALEALPHA,Z5=C.SELU_SCALE,J5=$e(ra,r=>r>=0?Z5*r:Y5*(Math.exp(r)-1)),w2={kernelName:ra,backendName:"cpu",kernelFunc:J5};var Q5=$e(oa,r=>r<0?-1:r>0?1:0),_2={kernelName:oa,backendName:"cpu",kernelFunc:Q5};var e8=$e(ns,r=>Math.sin(r)),k2={kernelName:ns,backendName:"cpu",kernelFunc:e8};var t8=$e(na,r=>Math.sinh(r)),v2={kernelName:na,backendName:"cpu",kernelFunc:t8};var r8=11920928955078125e-23,C2=Math.log(r8)+2,n8=$e(sa,r=>{let e=r>-C2,t=r<C2,n=Math.exp(r),o;return t?o=n:e?o=r:o=Math.log(1+n),o}),I2={kernelName:sa,backendName:"cpu",kernelFunc:n8};function o8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;te([o],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let E=1+s.length;E<o.shape.length;++E)l.push([0,0]);let u=Yg.kernelFunc({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,i,!1),p=C.getPermuted(c.length,s.length,!1),m=C.getReshapedPermuted(u.shape,s,i,!1),h=Ze({inputs:{x:u},backend:t,attrs:{shape:c}}),b=Xt({inputs:{x:h},backend:t,attrs:{perm:p}}),I=Ze({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),I}var N2={kernelName:al,backendName:"cpu",kernelFunc:o8};function s8(r){let{inputs:e,backend:t}=r,{indices:n,values:o,denseShape:s,defaultValue:a}=e;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(a.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${a.shape}`);let i=t.data.get(n.dataId).values,l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=t.data.get(a.dataId).values[0],[p,m,f,d,h]=Bg(i,n.shape,n.dtype,l,o.dtype,u,c);return[t.makeTensorInfo(m,n.dtype,p),t.makeTensorInfo([m[0]],o.dtype,f),t.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),t.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var S2={kernelName:jc,backendName:"cpu",kernelFunc:s8};function i8(r){let{inputs:e,backend:t}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let a=Array.from(t.data.get(o.dataId).values),i=t.data.get(n.dataId).values,l=Array.from(t.data.get(s.dataId).values),[u,c,p]=Vg(i,n.shape,n.dtype,a,l);return[t.makeTensorInfo(c,n.dtype,u),t.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var T2={kernelName:Uc,backendName:"cpu",kernelFunc:i8};function a8(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=C.calculateShapes(s,o,i),f=!1,d=t.bufferSync(o),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Zg(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var A2={kernelName:Hc,backendName:"cpu",kernelFunc:a8};function l8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=uo({inputs:{x:o},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var E2={kernelName:Ys,backendName:"cpu",kernelFunc:l8};var u8=$e(ss,r=>Math.sqrt(r)),D2={kernelName:ss,backendName:"cpu",kernelFunc:u8};var $2={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,n=e;te(t,"square");let o=n.data.get(t.dataId).values,s=new Float32Array(o.length);for(let i=0;i<o.length;++i){let l=o[i];s[i]=l*l}return{dataId:n.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var c8=$e(Yn,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),R2={kernelName:Yn,backendName:"cpu",kernelFunc:c8};function p8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;te(o,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=Ze({inputs:{x:o},backend:t,attrs:{shape:x}}),_;if(f){let E=uo({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=Ze({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else{let E=t.bufferSync(w),D=Gg(b,E,h,d);_=t.makeTensorInfo(D.shape,D.dtype,D.values)}let I=Ze({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),I}var F2={kernelName:ia,backendName:"cpu",kernelFunc:p8};var m8=$e(cs,r=>Math.tan(r)),O2={kernelName:cs,backendName:"cpu",kernelFunc:m8};var f8=$e(ps,r=>Math.tanh(r)),P2={kernelName:ps,backendName:"cpu",kernelFunc:f8};function d8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;te(o,"tile");let a=Wg(t.bufferSync(o),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var M2={kernelName:Mn,backendName:"cpu",kernelFunc:d8};function h8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n;te(o,"topk");let i=t.data.get(o.dataId).values,[l,u]=jg(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var L2={kernelName:aa,backendName:"cpu",kernelFunc:h8};function y8(r){let{inputs:e,attrs:t,backend:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],_=x[2],I=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));I.fill(l);let E=n.data.get(o.dataId).values,D=n.data.get(s.dataId).values;for(let R=0;R<c;++R){let M=s.shape[0]===1?D:D.subarray(R*8,R*8+8);for(let G=0;G<d;++G)for(let j=0;j<h;++j)for(let U=0;U<f;++U){let H,q=M[6]*j+M[7]*G+1;if(q===0)continue;let X=(M[0]*j+M[1]*G+M[2])/q,ne=(M[3]*j+M[4]*G+M[5])/q,Y=z2(X,m,i),re=z2(ne,p,i);switch(a){case"nearest":H=g8(E,p,m,b,w,_,R,re,Y,U,l);break;case"bilinear":H=x8(E,p,m,b,w,_,R,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let ee=R*b+G*w+j*_+U;I[ee]=H}return n.makeTensorInfo(g,o.dtype,I)}return{dataId:n.write(I,g,o.dtype),shape:o.shape,dtype:o.dtype}}var B2={kernelName:la,backendName:"cpu",kernelFunc:y8};function z2(r,e,t){switch(t){case"reflect":return b8(r,e);case"wrap":return w8(r,e);case"nearest":return k8(r,e);case"constant":default:return _8(r,e)}}function b8(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=2*e;t<n&&(t=n*Math.trunc(-t/n)+t),t=t<-e?t+n:-t-1}else if(t>e-1)if(e<=1)t=0;else{let n=2*e;t-=n*Math.trunc(t/n),t>=e&&(t=n-t-1)}return y.clamp(0,t,e-1)}function w8(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=e-1;t+=e*(Math.trunc(-t/n)+1)}else if(t>e-1)if(e<=1)t=0;else{let n=e-1;t-=e*Math.trunc(t/n)}return y.clamp(0,t,e-1)}function _8(r,e){return r}function k8(r,e){return y.clamp(0,r,e-1)}function Af(r,e,t,n,o,s,a,i,l,u,c){let p=a*n+i*o+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function g8(r,e,t,n,o,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return Af(r,e,t,n,o,s,a,p,m,u,c)}function x8(r,e,t,n,o,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*Af(r,e,t,n,o,s,a,p,m,u,c)+(l-m)*Af(r,e,t,n,o,s,a,p,d,u,c),g=(d-l)*Af(r,e,t,n,o,s,a,f,m,u,c)+(l-m)*Af(r,e,t,n,o,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function v8(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;te(s,"unique");let a=n.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=Ug(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var V2={kernelName:qc,backendName:"cpu",kernelFunc:v8};function C8(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape.length,i=o.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=uo({inputs:{x:o},backend:t,attrs:{begin:c,size:p}});m[f]=Ze({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var G2={kernelName:Zs,backendName:"cpu",kernelFunc:C8};function I8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n;te(o,"unsortedSegmentSum");let i=o.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=Cp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=ok({inputs:{a:g,b:m},backend:t}),b=io({inputs:{x},backend:t,attrs:{dtype:"float32"}}),w=Du({inputs:{a:b,b:o},backend:t}),_=Ea({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(x),c.push(b),c.push(w),c.push(_)}let f=lk({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var W2={kernelName:ul,backendName:"cpu",kernelFunc:I8};var N8=[vA,U1,CA,IA,Y1,NA,SA,TA,AA,EA,DA,$A,RA,FA,OA,MA,LA,zA,BA,kA,VA,GA,WA,X1,Z1,jA,H1,UA,qA,XA,YA,KA,JA,QA,ZA,eE,tE,rE,nE,oE,sE,iE,aE,lE,uE,cE,mE,pE,Nf,dE,hA,hE,gE,xE,J1,yE,Q1,bE,wE,_E,eA,kE,vE,CE,IE,NE,tA,SE,q1,TE,HA,AE,EE,DE,gA,rA,$E,RE,nA,FE,OE,PE,ME,LE,zE,oA,VE,GE,WE,jE,HE,BE,qE,KE,sA,XE,YE,QE,iA,aA,e2,t2,r2,lA,n2,i2,a2,Yg,l2,xA,cA,u2,K1,c2,yA,bA,_A,p2,m2,f2,d2,h2,g2,x2,pA,y2,b2,w2,wA,_2,k2,v2,mA,ZE,I2,N2,S2,T2,A2,E2,D2,$2,fA,R2,F2,dA,fE,O2,P2,M2,L2,uA,B2,V2,G2,W2,o2];for(let r of N8)Kl(r);var H2={};We(H2,{assertNotComplex:()=>Cs,bindCanvasToFramebuffer:()=>P8,bindColorTextureToFramebuffer:()=>$f,bindTextureToProgramUniformSampler:()=>vk,bindTextureUnit:()=>X2,bindVertexBufferToProgramAttribute:()=>Jg,callAndCheck:()=>Ne,canBeRepresented:()=>pk,createFragmentShader:()=>fk,createFramebuffer:()=>wk,createProgram:()=>dk,createStaticIndexBuffer:()=>xk,createStaticVertexBuffer:()=>gk,createTexture:()=>yk,createVertexShader:()=>mk,getBatchDim:()=>$a,getExtensionOrThrow:()=>Ip,getFramebufferErrorMessage:()=>Y2,getMaxTexturesInShader:()=>Nk,getNumChannels:()=>F8,getProgramUniformLocation:()=>kk,getProgramUniformLocationOrThrow:()=>_k,getRowsCols:()=>Ra,getShapeAs3D:()=>Rf,getTextureShapeFromLogicalShape:()=>Ck,getWebGLDisjointQueryTimerVersion:()=>Sk,getWebGLErrorMessage:()=>q2,getWebGLMaxTextureSize:()=>Ik,hasExtension:()=>An,isCapableOfRenderingToFloatTexture:()=>Ak,isDownloadFloatTextureEnabled:()=>Ek,isReshapeFree:()=>_l,isWebGLFenceEnabled:()=>Dk,isWebGLVersionEnabled:()=>nx,linkProgram:()=>hk,resetMaxTextureSize:()=>M8,resetMaxTexturesInShader:()=>L8,unbindColorTextureFromFramebuffer:()=>Qg,unbindTextureUnit:()=>O8,validateFramebuffer:()=>Np,validateProgram:()=>Df,validateTextureSize:()=>bk});var Fu={},uk={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function ck(r,e){Fu[r]=e}function Vn(r){if(!(r in Fu)){let t=S8(r);if(t!==null)Fu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Fu[r];return e.isContextLost()?(delete Fu[r],Vn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Fu[r])}function T8(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function S8(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=T8(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Fu[r]},!1),r===1?e.getContext("webgl",uk)||e.getContext("experimental-webgl",uk):e.getContext("webgl2",uk)}var bl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(bl||(bl={}));var Pr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Pr||(Pr={}));var Ir;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Ir||(Ir={}));function Ou(r,e){return[e,r]}function j2(r,e){return r*e}function wl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function ui(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function U2(r,e){let[t,n]=ui(r,e);return t*n*4}function Ef(r,e){let t=r,n,o,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(n=t.R32F,o=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(n=r.RGBA,o=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ne(r,e){let t=e();return W().getBool("DEBUG")&&A8(r),t}function A8(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+q2(r,e))}var E8=596e-10,D8=65504;function pk(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||E8<Math.abs(r)&&Math.abs(r)<D8)}function q2(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function Ip(r,e){return Da(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function mk(r,e){let t=Da(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function fk(r,e){let t=Da(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw $8(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var R8=/ERROR: [0-9]+:([0-9]+):/g;function $8(r,e){let t=R8.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let n=+t[1],o=r.split(`
|
|
`),s=o.length.toString().length+2,a=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,n-1),u=a.slice(n-1,n),c=a.slice(n);console.log(l.join(`
|
|
`)),console.log(e.split(`
|
|
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function dk(r){return Da(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function hk(r,e){if(Ne(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Df(r,e){if(Ne(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function gk(r,e){let t=Da(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function xk(r,e){let t=Da(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function F8(){return W().getNumber("WEBGL_VERSION")===2?1:4}function yk(r){return Da(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function bk(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let n=`[${r}x${e}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>t||e>t){let n=`[${r}x${e}]`,o=`[${t}x${t}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function wk(r){return Da(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Jg(r,e,t,n,o,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),Ne(r,()=>r.vertexAttribPointer(i,o,r.FLOAT,!1,s,a)),Ne(r,()=>r.enableVertexAttribArray(i)),!0)}function X2(r,e,t){K2(r,t),Ne(r,()=>r.activeTexture(r.TEXTURE0+t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function O8(r,e){K2(r,e),Ne(r,()=>r.activeTexture(r.TEXTURE0+e)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function _k(r,e,t){return Da(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function kk(r,e,t){return r.getUniformLocation(e,t)}function vk(r,e,t,n){Ne(r,()=>X2(r,e,n)),Ne(r,()=>r.uniform1i(t,n))}function P8(r){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ne(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ne(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function $f(r,e,t){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Qg(r,e){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function Np(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Y2(r,e))}function Y2(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Da(r,e,t){let n=Ne(r,()=>e());if(n==null)throw new Error(t);return n}function K2(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=e+r.TEXTURE0;if(n<r.TEXTURE0||n>t){let o=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${o}.`)}}function $a(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Ra(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Rf(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[$a(r),...Ra(r)]),e}function Ck(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((o,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let n=y.sizeFromShape(r);if(r.length<=1&&n<=t)return[1,n];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let o=$a(r),s=2,a=2;return r.length&&([s,a]=Ra(r)),n=o*(s/2)*(a/2),y.sizeToSquarishShape(n).map(i=>i*2)}return y.sizeToSquarishShape(n)}function ex(r){return r%2==0}function _l(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],n=e.slice(-1)[0];if(t===n||ex(t)&&ex(n)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&ex(r[0])&&ex(e[0])}var tx,rx;function Ik(r){if(tx==null){let e=Vn(r);tx=e.getParameter(e.MAX_TEXTURE_SIZE)}return tx}function M8(){tx=null}function L8(){rx=null}function Nk(r){if(rx==null){let e=Vn(r);rx=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,rx)}function Sk(r){if(r===0)return 0;let e,t=Vn(r);return An(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:An(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function An(r,e){return r.getExtension(e)!=null}function nx(r){try{if(Vn(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function Ak(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!An(e,"OES_texture_float"))return!1}else if(!An(e,"EXT_color_buffer_float"))return!1;return Tk(e)}function Ek(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!An(e,"OES_texture_float")||!An(e,"WEBGL_color_buffer_float"))return!1}else{if(An(e,"EXT_color_buffer_float"))return Tk(e);let n="EXT_color_buffer_half_float";if(An(e,n)){let o=e.getExtension(n);return z8(e,o)}return!1}return Tk(e)}function Tk(r){let e=Ef(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,n,o,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function z8(r,e){let t=Ef(r,e),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,o,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(a),i}function Dk(r){return r!==2?!1:Vn(r).fenceSync!=null}function Cs(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Oe=W();Oe.registerFlag("HAS_WEBGL",()=>Oe.getNumber("WEBGL_VERSION")>0);Oe.registerFlag("WEBGL_VERSION",()=>nx(2)?2:nx(1)?1:0);Oe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Oe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Oe.get("WEBGL_VERSION")===2);Oe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Oe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Oe.registerFlag("WEBGL_PACK",()=>Oe.getBool("HAS_WEBGL"));Oe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_CLIP",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_PACK_REDUCE",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_CONV_IM2COL",()=>Oe.getBool("WEBGL_PACK"));Oe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Ik(Oe.getNumber("WEBGL_VERSION")));Oe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Nk(Oe.getNumber("WEBGL_VERSION")));Oe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Oe.getNumber("WEBGL_VERSION");return r===0?0:Sk(r)});Oe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Oe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Jl.isMobile());Oe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Ak(Oe.getNumber("WEBGL_VERSION")));Oe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Oe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Oe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Oe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Ek(Oe.getNumber("WEBGL_VERSION")));Oe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Dk(Oe.getNumber("WEBGL_VERSION")));Oe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Oe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Oe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Oe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Jl.isMobile()&&Oe.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Pt(){let r,e,t,n,o,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",n="in",o="texture",s="outputColor",a="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(r="",e="attribute",t="varying",n="varying",o="texture2D",s="gl_FragColor",a="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:r,attribute:e,varyingVs:t,varyingFs:n,texture2D:o,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Is(r,e,t="index"){let n=y.computeStrides(e);return n.map((o,s)=>{let a=`int ${r[s]} = ${t} / ${o}`,i=s===n.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${a}; ${i};`}).join("")}function Sp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
|
|
}
|
|
`}var ox=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;var $k=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=bl.DENSE;let t=wl(e),n=Pt();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Is(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};var Rk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=bl.DENSE;let t=wl(e),n=Pt();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Is(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};var Fk=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Pr.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
|
|
${ox}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Ok=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Pr.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
|
|
${ox}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Pk=class{constructor(e,t,n=!1){this.variableNames=["A"];let o=Pt(),[s,a]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Sp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${a};
|
|
int c = imod(flatIndex, ${a});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
vec4 values = ${o.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${o.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}};var Mk=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let o=Pt(),[s,a]=t;this.outputShape=e;let i="",l="result";n&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${c} < ${e[2]}) {
|
|
localCoords[2] += ${c};
|
|
if(localCoords[1] + ${u} < ${e[1]}) {
|
|
localCoords[1] += ${u};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${a};
|
|
c = imod(flatIndex, ${a});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
values = ${o.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${p}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${p}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${p}] = values[2];
|
|
} else {
|
|
result[${p}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Sp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${o.output} = ${l};
|
|
}
|
|
`}};var Z2={};We(Z2,{bindVertexProgramAttributeStreams:()=>Hk,createBufferFromOutputTexture:()=>Xk,createFloat16MatrixTexture:()=>Gk,createFloat16PackedMatrixTexture:()=>Uk,createFloat32MatrixTexture:()=>Vk,createIndexBuffer:()=>Bk,createPackedMatrixTexture:()=>jk,createUnsignedBytesMatrixTexture:()=>Wk,createVertexBuffer:()=>zk,createVertexShader:()=>Lk,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Zk,downloadFloat32MatrixFromBuffer:()=>Yk,downloadMatrixFromPackedOutputTexture:()=>Qk,downloadPackedMatrixFromBuffer:()=>Jk,getInternalFormatForFloat16MatrixTexture:()=>ix,getInternalFormatForFloat16PackedMatrixTexture:()=>ux,getInternalFormatForFloat32MatrixTexture:()=>sx,getInternalFormatForPackedMatrixTexture:()=>lx,getInternalFormatForUnsignedBytesMatrixTexture:()=>ax,uploadDenseMatrixToTexture:()=>qk,uploadPixelDataToTexture:()=>Kk});function Lk(r){let e=Pt(),t=`${e.version}
|
|
precision highp float;
|
|
${e.attribute} vec3 clipSpacePos;
|
|
${e.attribute} vec2 uv;
|
|
${e.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return mk(r,t)}function zk(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return gk(r,e)}function Bk(r){let e=new Uint16Array([0,1,2,2,1,3]);return xk(r,e)}function Ff(r,e,t,n,o,s){bk(e,t);let a=yk(r),i=r.TEXTURE_2D;return Ne(r,()=>r.bindTexture(i,a)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ne(r,()=>r.texImage2D(i,0,n,e,t,0,o,s,null)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function sx(r){return r.internalFormatFloat}function Vk(r,e,t,n){let[o,s]=Ou(e,t);return Ff(r,o,s,sx(n),n.textureFormatFloat,r.FLOAT)}function ix(r){return r.internalFormatHalfFloat}function Gk(r,e,t,n){let[o,s]=Ou(e,t);return Ff(r,o,s,ix(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function ax(r){return r.downloadTextureFormat}function Wk(r,e,t,n){let[o,s]=Ou(e,t);return Ff(r,o,s,ax(n),r.RGBA,r.UNSIGNED_BYTE)}function lx(r){return r.internalFormatPackedFloat}function jk(r,e,t,n){let[o,s]=ui(e,t);return Ff(r,o,s,lx(n),r.RGBA,r.FLOAT)}function ux(r){return r.internalFormatPackedHalfFloat}function Uk(r,e,t,n){let[o,s]=ui(e,t);return Ff(r,o,s,ux(n),r.RGBA,n.textureTypeHalfFloat)}function Hk(r,e,t){let n=0,o=3*4,s=3*4+2*4;return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Jg(r,e,"clipSpacePos",t,3,s,n)&&Jg(r,e,"uv",t,2,s,o)}function qk(r,e,t,n,o,s){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;o instanceof Uint8Array?(a=new Uint8Array(t*n*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*n*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(o),Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,n,0,r.RGBA,i,a)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Kk(r,e,t){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Xk(r,e,t,n){let o=r.createBuffer();Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let i=4*4*e*t;return Ne(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function Yk(r,e,t){let n=r,o=new Float32Array(t);return n.bindBuffer(n.PIXEL_PACK_BUFFER,e),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function Zk(r,e,t,n){let[o,s]=Ou(e,t),a=4,i=new Uint8Array(j2(e*t,a));return Ne(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function Jk(r,e,t,n,o,s,a,i){let l=r,u=new Float32Array(U2(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Qk(r,e,t){let n=new Float32Array(e*t*4);return Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,n)),n}var cx=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,ck(t,e)):this.gl=Vn(t);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Ip(this.gl,s),An(this.gl,a))this.textureHalfFloatExtension=Ip(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),An(this.gl,o))this.colorBufferHalfFloatExtension=Ip(this.gl,o);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",An(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(An(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=zk(this.gl),this.indexBuffer=Bk(this.gl),this.framebuffer=wk(this.gl),this.textureConfig=Ef(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ne(e,()=>e.finish()),Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ne(e,()=>e.deleteFramebuffer(this.framebuffer)),Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ne(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Vk(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Gk(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Wk(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Kk(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,o){this.throwIfDisposed(),qk(this.gl,e,t,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Uk(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),jk(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Qg(this.gl,this.framebuffer),this.outputTexture=null),Ne(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Zk(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,o,s,a){return Jk(this.gl,e,t,n,o,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Yk(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let o=Xk(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let o=e,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=o.clientWaitSync(s,0,0);return a===o.ALREADY_SIGNALED||a===o.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Qk(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=fk(t,e);this.vertexShader==null&&(this.vertexShader=Lk(t));let o=dk(t);return Ne(t,()=>t.attachShader(o,this.vertexShader)),Ne(t,()=>t.attachShader(o,n)),hk(t,o),this.debug&&Df(t,o),this.vertexAttrsAreBound||(this.setProgram(o),this.vertexAttrsAreBound=Hk(t,this.program,this.vertexBuffer)),o}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ne(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Df(this.gl,this.program),Ne(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?_k(this.gl,e,t):kk(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ne(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),vk(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[o,s]=ui(t,n);this.setOutputMatrixTextureDriver(e,o,s)}setOutputMatrixWriteRegion(e,t,n,o){this.setOutputMatrixWriteRegionDriver(n,e,o,t)}setOutputPackedMatrixWriteRegion(e,t,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Df(this.gl,this.program),Np(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ne(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ip(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=B8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),$f(this.gl,e,this.framebuffer),this.debug&&Np(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?($f(this.gl,this.outputTexture,this.framebuffer),this.debug&&Np(this.gl)):Qg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let o=this.gl;$f(o,e,this.framebuffer),this.debug&&Np(o),this.outputTexture=e,Ne(o,()=>o.viewport(0,0,t,n)),Ne(o,()=>o.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,o){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.scissor(e,t,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function B8(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:J2}=C;function Q2(r,e,t,n){let o=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?o.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(o.push(`uniform sampler2D ${d.name};`),o.push(`uniform int offset${d.name};`))});let s=o.join(`
|
|
`),a=r.map(d=>V8(d,e,n)).join(`
|
|
`),i=e.texShape,l=Pt(),u=j8(l),c,p,m=q8(l);return e.isPacked?(c=G8(e.logicalShape,i),p=H8(l)):(c=W8(e.logicalShape,i),p=U8(l)),n&&(m+=K8),[m,u,p,s,c,a,t].join(`
|
|
`)}function Tp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return X8(r);case 1:return Y8(r);case 2:return Z8(r);case 3:return J8(r);case 4:return Q8(r);case 5:return eX(r);case 6:return tX(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function eD(r){switch(r.shapeInfo.logicalShape.length){case 0:return rX(r);case 1:return nX(r);case 2:return oX(r);case 3:return sX(r);default:return iX(r)}}function V8(r,e,t=!1){let n="";t?n+=eD(r):n+=Tp(r);let o=r.shapeInfo.logicalShape,s=e.logicalShape;return o.length<=s.length&&(t?n+=aX(r,e):n+=lX(r,e)),n}function G8(r,e){switch(r.length){case 0:return tD();case 1:return uX(r,e);case 2:return mX(r,e);case 3:return cX(r,e);default:return pX(r,e)}}function W8(r,e){switch(r.length){case 0:return tD();case 1:return fX(r,e);case 2:return yX(r,e);case 3:return dX(r,e);case 4:return hX(r,e);case 5:return gX(r,e);case 6:return xX(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function j8(r){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${r.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function U8(r){return`
|
|
void setOutput(float val) {
|
|
${r.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function H8(r){return`
|
|
void setOutput(vec4 val) {
|
|
${r.output} = val;
|
|
}
|
|
`}function q8(r){return`${r.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${r.varyingFs} vec2 resultUV;
|
|
${r.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${r.defineSpecialNaN}
|
|
${r.defineSpecialInf}
|
|
${r.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${bX}
|
|
${wX}
|
|
${_X}
|
|
`}var bX=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,wX=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,_X=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,K8=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function tD(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function uX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
}
|
|
`}function fX(r,e){return e[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${e[1]}.0);
|
|
}
|
|
`:e[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${e[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
return resTexRC.x * ${e[1]} + resTexRC.y;
|
|
}
|
|
`}function cX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[2]/2),o=n*Math.ceil(r[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
int b = index / ${o};
|
|
index -= b * ${o};
|
|
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function dX(r,e){let t=Is(["r","c","d"],r);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function pX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[r.length-1]/2),o=n*Math.ceil(r[r.length-2]/2),s=o,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+a,i=`b${l}, `+i;return`
|
|
ivec${r.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${o};
|
|
index -= b * ${o};
|
|
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec${r.length}(${i});
|
|
}
|
|
`}function hX(r,e){let t=Is(["r","c","d","d2"],r);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function gX(r,e){let t=Is(["r","c","d","d2","d3"],r);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
|
|
${e[1]}));
|
|
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function xX(r,e){let t=Is(["r","c","d","d2","d3","d4"],r);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function mX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`;let n=Math.ceil(r[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function yX(r,e){return y.arraysEqual(r,e)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
|
|
}
|
|
`:r[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:r[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
int r = index / ${r[1]};
|
|
int c = index - r * ${r[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Pu(r){return`offset${r}`}function rX(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=Pt();return`
|
|
vec4 ${t}() {
|
|
return ${n.texture2D}(${e}, halfCR);
|
|
}
|
|
`}function X8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[n,o]=r.shapeInfo.texShape;if(n===1&&o===1)return`
|
|
float ${t}() {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let[s,a]=r.shapeInfo.texShape,i=Pu(e);return`
|
|
float ${t}() {
|
|
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function nX(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=r.shapeInfo.texShape,o=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],s=Pt();return`
|
|
vec4 ${t}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`}function Y8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
|
|
float ${t}(int index) {
|
|
${Ap(r)}
|
|
}
|
|
`;let n=r.shapeInfo.texShape,o=n[0],s=n[1];if(s===1&&o===1)return`
|
|
float ${t}(int index) {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let a=Pu(e);return s===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${o}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:o===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${t}(int index) {
|
|
vec2 uv = uvFromFlat(${o}, ${s}, index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function oX(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=o[0],a=o[1],i=Pt();if(o!=null&&y.arraysEqual(e,o))return`
|
|
vec4 ${n}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`;let l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=Math.ceil(e[1]/2);return`
|
|
vec4 ${n}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`}function Z8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape;if(o!=null&&y.arraysEqual(e,o)){let p=o[0],m=o[1];return`
|
|
float ${n}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=Ep(r,i),m=["row","col"];return`
|
|
${Tp(p)}
|
|
float ${n}(int row, int col) {
|
|
return ${n}(${Dp(m,a)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
|
|
${Ap(r)}
|
|
}
|
|
`;let l=o[0],u=o[1],c=Pu(t);return u===1?`
|
|
float ${n}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${n}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${e[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function sX(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=Ep(r,p),d=["b","row","col"];return`
|
|
${eD(f)}
|
|
vec4 ${n}(int b, int row, int col) {
|
|
return ${n}(${Dp(d,m)});
|
|
}
|
|
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Pt();return`
|
|
vec4 ${n}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${a}, ${i}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${t}, uv);
|
|
}
|
|
`}function J8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=Ep(r,l),h=["row","col","depth"];return`
|
|
${Tp(d)}
|
|
float ${n}(int row, int col, int depth) {
|
|
return ${n}(${Dp(h,i)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${o}, ${s}, 1)));
|
|
${Ap(r)}
|
|
}
|
|
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===o&&m==null)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(p===s&&m==null)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=Pu(t);return`
|
|
float ${n}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${s} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${c}, ${p}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function iX(r){let e=r.shapeInfo.logicalShape,t=e.length,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Pt();return`
|
|
vec4 ${o}(${p}) {
|
|
int index = ${m};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
|
|
return ${f.texture2D}(${n}, uv);
|
|
}
|
|
`}function Q8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[3],s=e[2]*o,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=Ep(r,i),h=["row","col","depth","depth2"];return`
|
|
${Tp(d)}
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
return ${n}(${Dp(h,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${s}, ${o}, 1)));
|
|
${Ap(r)}
|
|
}
|
|
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(m===o&&u==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${e[1]*e[2]}, ${e[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=Pu(t);return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} +
|
|
depth * ${o} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function eX(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[4],s=e[3]*o,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=Ep(r,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Tp(h)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${Dp(g,u)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${a}, ${s}, ${o})) +
|
|
depth3;
|
|
${Ap(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${a}, ${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(f===o&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]},
|
|
${e[2]*e[3]}, ${e[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let d=Pu(t);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${a} + depth * ${s} +
|
|
depth2 * ${o} + depth3 + ${d};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function tX(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(e);if(o.length<e.length){let g=Ep(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Tp(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${Dp(x,s)});
|
|
}
|
|
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${a}, 1)));
|
|
${Ap(r)}
|
|
}
|
|
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${a})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(d===a&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]*e[4]},
|
|
${e[2]*e[3]*e[4]},
|
|
${e[3]*e[4]},
|
|
${e[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let h=Pu(t);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
|
|
vec2 uv = uvFromFlat(${f}, ${d}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function Ap(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
|
|
for (int i = 0; i < ${t}; i++) {
|
|
if (i == index) {
|
|
return ${e}[i];
|
|
}
|
|
}
|
|
`}function aX(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=J2(r.shapeInfo.logicalShape,e.logicalShape),l=Ve(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
|
|
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(h&&!x)a===1?f=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:f=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${o}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${n}(${m});
|
|
${f}
|
|
}
|
|
`}function lX(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
|
|
float ${o}() {
|
|
return sampleTexture(${t}, resultUV);
|
|
}
|
|
`;let u=Ve(l),c=J2(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
|
|
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
|
|
float ${o}() {
|
|
${u} coords = getOutputCoords();
|
|
${m}
|
|
return get${n}(${d});
|
|
}
|
|
`}function Ve(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Ep(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Dp(r,e){return e.map(t=>r[t]).join(", ")}function rD(r,e,t,n){let o=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},l=Q2(s,i,o,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function nD(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,n)=>{let o=t.logicalShape,s=e[n],a=s.shape;if(!y.arraysEqual(o,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function oD(r,e,t,n,o){nD(e.inShapeInfos,t),nD([e.outShapeInfo],[n]);let s=n.texData.texture,a=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),o!=null&&o(r,e.webGLProgram),r.executeProgram()}function sD(r,e,t){let n="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;n+=`${a.shape}_${l}_${i}`});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o,s}var{addImpl:iD,bincountImpl:px,bincountReduceImpl:aD,ceilImpl:lD,concatImpl:uD,expImpl:cD,expm1Impl:pD,floorImpl:mD,gatherV2Impl:fD,greaterImpl:dD,lessImpl:hD,linSpaceImpl:gD,logImpl:xD,maxImpl:yD,maximumImpl:bD,minimumImpl:wD,multiplyImpl:_D,negImpl:kD,prodImpl:vD,rangeImpl:CD,rsqrtImpl:ID,simpleAbsImpl:mx,sliceImpl:ND,sparseFillEmptyRowsImpl:SD,sparseReshapeImpl:TD,stridedSliceImpl:AD,subImpl:ED,tileImpl:DD,topKImpl:$D,transposeImpl:Mu,uniqueImpl:RD}=Hg;function ev(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function jt(r,e){return e===1?[r]:ev(r,e)}function FD(r,e){if(r===1)return"rc";let t="";for(let n=0;n<r;n++)t+=e[n],n<r-1&&(t+=",");return t}var tv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=jt("rc",t),o=Ve(t),s=kX(t,e,n),a=vX(t,e[e.length-1],e[e.length-2],n),i=CX(e,n);this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function IX(r,e){let t=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function kX(r,e,t){if(r===1)return`rc > ${e[0]}`;let n="";for(let o=r-2;o<r;o++)n+=`${t[o]} >= ${e[o]}`,o<r-1&&(n+="||");return n}function vX(r,e,t,n){if(r===1)return"";let o=n.slice(-2);return`
|
|
int r = ${o[0]};
|
|
int c = ${o[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${e};
|
|
bool rEdge = rp1 >= ${t};
|
|
`}function CX(r,e){let t=r.length,n=IX(t,e);return t===1?`getA(rc),
|
|
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${n[0]}),
|
|
cEdge ? 0. : getA(${n[1]}),
|
|
rEdge ? 0. : getA(${n[2]}),
|
|
rEdge || cEdge ? 0. : getA(${n[3]})`}var Of=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2==1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
|
|
${s}
|
|
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${o}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${o>0?"}":""}
|
|
`}this.userCode=`
|
|
${NX(t)}
|
|
${Sp(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function NX(r){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Is(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var rv=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let o=PD(t,n),s=MD(e,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=OD(e,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return o===Ir.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):o===Ir.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):o===Ir.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):o===Ir.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):o===Ir.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,o){if(this.freeTextures==null)return;let s=PD(n,o),a=MD(t,s,o);a in this.freeTextures||(this.freeTextures[a]=[]);let i=OD(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function SX(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function OD(r,e,t,n,o){let s=TX(e,n),a;if(o){let[l,u]=ui(r[0],r[1]);a=l*u}else{let[l,u]=Ou(r[0],r[1]);a=l*u}let i=SX(t,s);return a*i}function TX(r,e){switch(r){case Ir.PACKED_2X2_FLOAT32:return lx(e);case Ir.PACKED_2X2_FLOAT16:return ux(e);case Ir.UNPACKED_FLOAT32:return sx(e);case Ir.UNPACKED_FLOAT16:return ix(e);case Ir.PACKED_4X1_UNSIGNED_BYTE:return ax(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function AX(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Ir.PACKED_2X2_FLOAT32:Ir.UNPACKED_FLOAT32:r?Ir.PACKED_2X2_FLOAT16:Ir.UNPACKED_FLOAT16}function PD(r,e){if(r===Pr.UPLOAD)return Ir.PACKED_2X2_FLOAT32;if(r===Pr.RENDER||r==null)return AX(e);if(r===Pr.DOWNLOAD||r===Pr.PIXELS)return Ir.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function MD(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var xn=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},br="if (isnan(x)) return x;",LD="return x;",nv="return abs(x);";var zD="return (x >= 0.0) ? x : (exp(x) - 1.0);",BD=br+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,VD=br+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Pf="return x;",GD="return 1.0 / (1.0 + exp(-1.0 * x));";var WD="return x;",jD=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,UD=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,HD=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,qD="return 1.0 / (1.0 + exp(-1.0 * x));",Ns=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}};var ov=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=jt("rc",t),o=Ve(t),s=FD(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}};var EX=Fr.whereImpl,DX=1e-7,$X=1e-4,fx={};function RX(r){return r in fx||(fx[r]={}),fx[r]}var FX=128,OX=600;function PX(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*OX/1024/1024}var Lu=class extends Ms{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vn(W().getNumber("WEBGL_VERSION"));this.binaryCache=RX(W().getNumber("WEBGL_VERSION")),this.gpgpu=new cx(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new rv(this.gpgpu),this.numMBBeforeWarning=PX(),this.texData=new Xa(this,hs())}nextDataId(){return Lu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:t,dtype:n,values:e,usage:Pr.UPLOAD,refCount:1}),o}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,o,s){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:o,values:t,usage:Pr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:o,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Ns(i,Pf):m=new xn(i,Pf);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(e);if(o==="string")return n;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=C.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:n,shape:o,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Ns(o,Pf):d=new xn(o,Pf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...wl(o))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=C.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&hs().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!pk(n))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:o}=this.texData.get(e),s=y.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...wl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&o===!0,i=a?Rf(t):t,l=a?new Ok(i):new Fk(i),u=this.runWebGLProgram(l,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,o&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:o,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(t,o,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=FX){return W().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return EX(e.shape,t)}packedUnaryOp(e,t,n){let o=new Ns(e.shape,t),s=this.compileAndRun(o,[e],n);return hs().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let o=mx(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,o)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,nv,e.dtype);let t=new xn(e.shape,nv),n=this.compileAndRun(t,[e]);return hs().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return this.texData.get(o).usage=null,{dataId:o,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:o}=this.makeTensorInfo(e,t,n);return hs().makeTensorFromDataId(o,e,t,this)}unpackTensor(e){let t=new ov(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new tv(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[$a(e.shape),...Ra(e.shape)],o={dtype:e.dtype,shape:n,dataId:e.dataId},s=[$a(t),...Ra(t)],a=new Of(s,n),i=!0,l=this.runWebGLProgram(a,[o],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:o,dtype:s}=t,a=Rf(o),i;n?i=new Rk(a):i=new $k(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:o,dataId:u.dataId}}runWebGLProgram(e,t,n,o,s=!1){let a=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===bl.DENSE){let g=wl(e.outputShape);i.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&y.sizeFromShape(g.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}else if(!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!_l(x.shape,g.shape)){let b=g,w=g.shape;g.shape=x.shape,g=this.packedReshape(g,w),l.push(g),x=this.texData.get(g.dataId),b.shape=w}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=sD(e,u,c),m=this.getAndSaveBinary(p,()=>rD(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),oD(this.gpgpu,m,u,c,o),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=W().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=y.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,n,o,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,o,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(ue(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?DX:$X}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:o,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=Ck(n,l),t.texShape=p),s!=null){let m=Rf(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=ui(p[0],p[1]),f=new Mk(m,[h,d],g)):f=new Pk(m,[h,d],g);let x=this.makeTensorInfo([h,d],o);g?this.texData.get(x.dataId).usage=Pr.PIXELS:this.texData.get(x.dataId).usage=Pr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[x],o,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,o,l);t.texture=m}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:o}=n;return this.releaseGPUData(e),t!=null&&(n.values=MX(t,o)),n.values}acquireTexture(e,t,n,o){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,o)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};Lu.nextDataId=0;function MX(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<t.length;++n)t[n]=Math.round(r[n]);return t}else throw new Error(`Unknown dtype ${e}`)}var sv="3.6.0";function KD(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}Jl.isBrowser()&&rp("webgl",()=>new Lu,2);var tYe={forceHalfFloat:KD};var dx=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`;var co=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}};var kl=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;var Ss=class{constructor(e,t,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length,a="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${Ve(s)} coords = getOutputCoords();
|
|
`,s===1)a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let l=jt("coords",s);a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Ut(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var XD={kernelName:Xn,backendName:"webgl",kernelFunc:Ut};function yn(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.makeTensorInfo(n.shape,"complex64"),a=t.texData.get(s.dataId),i=Ut({inputs:{x:n},backend:t}),l=Ut({inputs:{x:o},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var YD={kernelName:kc,backendName:"webgl",kernelFunc:yn};var iv="return (a < 0.) ? b * a : a;",av=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function LX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(av,o.shape,a.shape):new co(iv,o.shape,a.shape),l=t.runWebGLProgram(i,[o,a],o.dtype);return t.disposeIntermediateTensorInfo(a),l}var ZD={kernelName:Mo,backendName:"webgl",kernelFunc:LX};var lv="return (a < 0.) ? b * a : a;",uv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function zX(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(uv,n.shape,o.shape):new co(lv,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)}var JD={kernelName:Yo,backendName:"webgl",kernelFunc:zX};var hx="if (isnan(x)) return x;",QD=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,e$=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function _e({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:n}){return({inputs:o,backend:s})=>{let{x:a}=o,i=s,l=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Ns(a.shape,e):c=new xn(a.shape,r),i.runWebGLProgram(c,[a],l)}}function st({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(n&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,I]=w,E={dataId:_.dataId,dtype:_.dtype,shape:l.shape},D={dataId:I.dataId,dtype:I.dtype,shape:u.shape},$=new co(r,l.shape,u.shape);return c.runWebGLProgram($,[E,D],lr(_.dtype,I.dtype))}),b=yn({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||lr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&o!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=o(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Ss(e,l.shape,u.shape,t):f=new co(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function vl(r,e=!1){if(r==="linear")return e?WD:LD;if(r==="relu")return e?UD:BD;if(r==="elu")return e?jD:zD;if(r==="relu6")return e?HD:VD;if(r==="prelu")return e?uv:lv;if(r==="leakyrelu")return e?av:iv;if(r==="sigmoid")return e?qD:GD;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Mf=class{constructor(e,t,n,o=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=o?e[1]:e[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${g}
|
|
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${w};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${h[0]});
|
|
result += (${d[1]} * ${h[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${x}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};var cv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},gx=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}};var t$="return a * b;";function Lf(r){let{inputs:e,backend:t}=r,{a:n,b:o}=e,s=C.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),u=new gx(cv.REAL,n.shape,o.shape),c=new gx(cv.IMAG,n.shape,o.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:n.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:o.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:o.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=yn({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([n,o])){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),[u,c]=_D(n.shape,o.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Ss(t$,n.shape,o.shape):a=new co(t$,n.shape,o.shape),t.runWebGLProgram(a,[n,o],s)}var r$={kernelName:Ho,backendName:"webgl",kernelFunc:Lf};function n$(r,e,t){let n=[$a(r.shape),...Ra(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[$a(e),...Ra(e)],a=new Of(s,n),i=!0,l=t.runWebGLProgram(a,[o],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function ce(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=t,i=y.sizeFromShape(o.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(o.dataId);return c.isPacked&&!_l(o.shape,l)&&!(c.texture!==null&&_l(c.shape,l))?n$(o,l,a):(a.incRef(o.dataId),{dataId:o.dataId,shape:l,dtype:o.dtype})}var o$={kernelName:qs,backendName:"webgl",kernelFunc:ce};var xx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i=Math.floor(n/4)*4,l=n%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${l===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}};var pv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${l}(values, minMaxValue);
|
|
}
|
|
`,f="vec4";t==="all"?(i="1.0",m=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,f="bvec4"):t==="any"&&(i="0.0",m=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,f="bvec4");let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function BX(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],n=C.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:n,outSize:Math.ceil(t/n)})}return e}function En(r,e,t,n){let o=BX(r.shape),s=r;for(let a=0;a<o.length;a++){let{inSize:i,windowSize:l,outSize:u}=o[a],c,p;t==="mean"?c=a===0?new xx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new xx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new pv({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=n.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var mv=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let o=Ve(this.rank),s=VX(t);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function VX(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(e);for(let o=0;o<r.length;o++)n[r[o]]=t[o];return n.join()}var fv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Ve(this.rank),s=ev("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${l}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${l}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Cl(r,e,t){let n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fv(r.shape,e):new mv(r.shape,e);return t.runWebGLProgram(n,[r],r.dtype)}function s$(r,e,t,n){let o=e,s=r.shape.length,a=y.parseAxisParam(o,r.shape),i=a,l=C.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=Cl(r,l,n),i=C.getInnerMostAxes(i.length,s)),C.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=C.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=C.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=ce({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=Yl(r.dtype),w=En(x,b,"sum",n),_=ce({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),u&&n.disposeIntermediateTensorInfo(c),_}function zu(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;return s$(o,s,a,t)}var i$={kernelName:is,backendName:"webgl",kernelFunc:zu};function Rt(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{perm:s}=n,a=t,i=o.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=o.shape[s[c]];let u;if(a.shouldExecuteOnCPU([o])){let p=a.texData.get(o.dataId).values,m=Mu(p,o.shape,o.dtype,s,l);u=a.makeTensorInfo(l,o.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=Cl(o,s,a);return u}var a$={kernelName:ms,backendName:"webgl",kernelFunc:Rt};var dv=1e3;function Bu({a:r,b:e,transposeA:t,transposeB:n,backend:o,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=n?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=n?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),w=x===b||x===1||b===1;y.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let I=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${n} must match.`);let E=t?[x,p,f]:[x,f,p],D=n?[b,d,m]:[b,m,d],$=ce({inputs:{x:r},backend:o,attrs:{shape:E}}),R=ce({inputs:{x:e},backend:o,attrs:{shape:D}}),M=[$,R],G=Math.max(x,b),j=t?$.shape[1]:$.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?vl(l,!0):null,ne=U||H||q||X!=null,Y;if((f===1||d===1)&&j>dv&&ne===!1){let ee=$,ie=R;t&&(ee=Rt({inputs:{x:$},backend:o,attrs:{perm:[0,2,1]}}),M.push(ee)),n&&(ie=Rt({inputs:{x:R},backend:o,attrs:{perm:[0,2,1]}}),M.push(ie));let me=d!==1,ae=d===1,de=ee;me&&(de=ce({inputs:{x:ee},backend:o,attrs:{shape:[G,j,1]}}),M.push(de));let he=d===1?2:1,xe=ie;ae&&(xe=ce({inputs:{x:ie},backend:o,attrs:{shape:[G,1,j]}}),M.push(xe));let we=Lf({inputs:{a:de,b:xe},backend:o});Y=zu({inputs:{x:we},backend:o,attrs:{axis:he,keepDims:!0}}),M.push(we)}else{let ee=lr(r.dtype,e.dtype),ie=new Mf(E,D,[G,f,d],t,n,U,X,H,q),me=[$,R];if(s!=null&&me.push(s),H&&me.push(a),q){let ae=o.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));me.push(ae),M.push(ae)}Y=o.runWebGLProgram(ie,me,ee)}let re=ce({inputs:{x:Y},backend:o,attrs:{shape:I}});M.push(Y);for(let ee of M)o.disposeIntermediateTensorInfo(ee);return re}function GX(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n;return Bu({a:o,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var l$={kernelName:Qs,backendName:"webgl",kernelFunc:GX};var u$="return abs(x);";function WX(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=t.texData.get(n.dataId),a=mx(s.values);return t.makeTensorInfo(n.shape,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Ns(n.shape,u$):o=new xn(n.shape,u$),t.runWebGLProgram(o,[n],n.dtype)}var c$={kernelName:Bs,backendName:"webgl",kernelFunc:WX};var jX=br+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,UX=_e({opSnippet:jX}),p$={kernelName:ki,backendName:"webgl",kernelFunc:UX};var HX=br+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,qX=_e({opSnippet:HX}),m$={kernelName:vi,backendName:"webgl",kernelFunc:qX};var f$="return a + b;",KX=st({opSnippet:f$,packedOpSnippet:f$,supportsComplex:!0,cpuKernelImpl:iD}),d$={kernelName:Pn,backendName:"webgl",kernelFunc:KX};var hv=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};var gv=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};function yx(r){let{inputs:e,backend:t}=r,n=e;if(n.length===1)return Ut({inputs:{x:n[0]},backend:t});if(n.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(n.length/2),u=yx({inputs:n.slice(0,l),backend:t}),c=yx({inputs:n.slice(l),backend:t});return yx({inputs:[u,c],backend:t})}let o=n.map(l=>l.dtype).reduce((l,u)=>lr(l,u)),s=n.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new gv(n[0].shape,s):new hv(n[0].shape,s);return t.runWebGLProgram(i,n,o)}var h$={kernelName:_o,backendName:"webgl",kernelFunc:yx};function XX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=Rt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=En(h,h.dtype,"all",t),x;if(a){let b=C.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var g$={kernelName:Ci,backendName:"webgl",kernelFunc:XX};function YX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=Rt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=En(h,h.dtype,"any",t),x;if(a){let b=C.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var x$={kernelName:Ii,backendName:"webgl",kernelFunc:YX};var xv=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
int inIdx = ${l};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}};var yv=class{constructor(e,t,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),o||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Ve(l),c=jt("coords",l),p,m;if(a===1){m=l+1;let $=Ve(m);p=`
|
|
${$} sourceLocR = ${$}(${c.join()}, 0);
|
|
++${c[l-1]};
|
|
${$} sourceLocG = ${$}(${c.join()}, 0);
|
|
++${c[l-2]};
|
|
${$} sourceLocA = ${$}(${c.join()}, 0);
|
|
--${c[l-1]};
|
|
${$} sourceLocB = ${$}(${c.join()}, 0);
|
|
--${c[l-2]};`}else m=l,p=`
|
|
${u} sourceLocR = coords;
|
|
++${c[l-1]};
|
|
${u} sourceLocG = coords;
|
|
++${c[l-2]};
|
|
${u} sourceLocA = coords;
|
|
--${c[l-1]};
|
|
${u} sourceLocB = coords;
|
|
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map($=>"int "+$),g=jt("sourceLocR",m-1).concat("inIdx.r"),x=jt("sourceLocG",m-1).concat("inIdx.g"),b=jt("sourceLocB",m-1).concat("inIdx.b"),w=jt("sourceLocA",m-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",I=o?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${x.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
|
|
getAChannel(${g.join()}),
|
|
hasNextCol ? getAChannel(${x.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,D=o?"":`
|
|
float getBestIndicesAChannel(${h.join()}) {
|
|
return getChannel(getBestIndicesA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${h.join()}) {
|
|
return getChannel(getA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}
|
|
${D}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
|
|
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${E};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${I}
|
|
vec4 candidate = ${E};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function y$(r,e,t,n=null){let o=e.shape[0],s=e.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let a=C.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:o,outSize:Math.ceil(s/a)},l=new xv(i,t,n==null),u=[e];n!=null&&u.push(n);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=y$(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function b$(r,e,t,n=null){let o=n!=null?n.shape:e.shape,s=o[o.length-1],a=C.computeOptimalWindowSize(s),i=new yv(o,a,t,n==null),l=n==null?[e]:[e,n],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=b$(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function bx(r,e,t,n){let o=[t];if(C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=C.computeOutAndReduceShapes(e.shape,o),l=y.sizeFromShape(i),u=ce({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=y$(r,u,n);s.push(c);let p=ce({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return b$(r,e,n)}function ZX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Rt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=bx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var w$={kernelName:ko,backendName:"webgl",kernelFunc:ZX};function JX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Rt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=bx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var _$={kernelName:Ya,backendName:"webgl",kernelFunc:JX};var QX=br+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,e7=_e({opSnippet:QX}),k$={kernelName:Ni,backendName:"webgl",kernelFunc:e7};var t7=br+"return log(x + sqrt(x * x + 1.0));",r7=_e({opSnippet:t7}),v$={kernelName:Si,backendName:"webgl",kernelFunc:r7};var n7=br+`
|
|
return atan(x);
|
|
`,o7=_e({opSnippet:n7}),C$={kernelName:Ti,backendName:"webgl",kernelFunc:o7};var s7=QD+`
|
|
return atan(a, b);
|
|
`,i7=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+e$+`
|
|
return result;
|
|
`,a7=st({opSnippet:s7,packedOpSnippet:i7}),I$={kernelName:Ei,backendName:"webgl",kernelFunc:a7};var l7=br+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,u7=_e({opSnippet:l7}),N$={kernelName:Ai,backendName:"webgl",kernelFunc:u7};var ci=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let I=Math.floor(a/4)*4,E=a%4,D=`
|
|
if (${h}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${D}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${E===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
} else if (${E===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
} else if (${E===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},Vu=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),n){let M=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${m}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${M} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
|
|
wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let I="max",E=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(E="avgValue / count");let D=Math.floor(a/4)*4,$=a%4,R=`
|
|
if (${w}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${I}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${b});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${D}; wC += 4) {
|
|
int xC = xCCorner + wC * ${m};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
|
|
);
|
|
|
|
${R}
|
|
}
|
|
|
|
int xC = xCCorner + ${D};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
}
|
|
}
|
|
setOutput(${E});
|
|
}
|
|
}
|
|
`}};function c7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;Cs(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new ci(c,"avg",!1);return t.runWebGLProgram(p,[o],"float32")}var S$={kernelName:vo,backendName:"webgl",kernelFunc:c7};function p7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n,c=[1,1,1],p=C.computePool3DInfo(o.shape,s,a,c,i,l,u),m=new Vu(p,"avg",!1);return t.runWebGLProgram(m,[o],"float32")}var T$={kernelName:Za,backendName:"webgl",kernelFunc:p7};var bv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float avgMultiplier = float(${m});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*n*o);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${g});
|
|
const float avgMultiplier = float(${x});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${l}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function m7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=C.computePool3DInfo(a.shape,i,l,p,u,c),f=new wv(m);return t.runWebGLProgram(f,[o],a.dtype)}var A$={kernelName:wc,backendName:"webgl",kernelFunc:m7};function f7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;Cs([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=C.computePool2DInfo(a.shape,i,l,1,u),p=new bv(c);return t.runWebGLProgram(p,[o],a.dtype)}var E$={kernelName:bc,backendName:"webgl",kernelFunc:f7};function d7(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;return Bu({a:o,b:s,transposeA:a,transposeB:i,backend:t})}var D$={kernelName:Co,backendName:"webgl",kernelFunc:d7};var _v=class{constructor(e,t,n,o,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";o!=null&&(C.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${l};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}};var kv=class{constructor(e,t,n,o,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";o!=null&&(C.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${l};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}};var h7=({inputs:r,backend:e,attrs:t})=>{let{x:n,mean:o,variance:s,offset:a,scale:i}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[n,o,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new kv(n.shape,o.shape,s.shape,c,p,l):new _v(n.shape,o.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},$$={kernelName:Oo,backendName:"webgl",kernelFunc:h7};var vv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Ve(this.rank),n=`uniform int start[${this.rank}];`,o=g7(this.rank),s,a=e.map((i,l)=>`sourceLoc.${Cv[l]} = start[${l}] + coords.${Cv[l]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${o}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Cv=["x","y","z","w","u","v"];function g7(r){if(r===1)return"sourceLoc";if(r<=6)return Cv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var Iv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Ve(this.rank),n=jt("coords",this.rank),o=jt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,a=`getChannel(getSource(${o.join()}), ${s})`,i=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.y = ${a};
|
|
--${o[this.rank-1]};
|
|
}
|
|
`,l=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${o[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function x7(r,e,t,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(t,r.dtype),a=n.texData.get(s.dataId);Object.assign(a,o),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=or.computeFlatOffset(e,y.computeStrides(r.shape));o.slice&&(i+=o.slice.flatOffset),a.slice={flatOffset:i,origDataId:o.slice&&o.slice.origDataId||r.dataId};let l=n.dataRefCount.get(a.slice.origDataId)||1;return n.dataRefCount.set(a.slice.origDataId,l+1),s}function Fa(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n,[i,l]=or.parseSliceParams(o,s,a);if(or.assertParamsValid(o,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,o.dtype,[]);if(t.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=t.texData.get(o.dataId),m=ND(p.values,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,m)}let{isPacked:u}=t.texData.get(o.dataId),c=or.isSliceContinous(o.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Iv(l):new vv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[o],o.dtype,m)}return t.uploadToGPU(o.dataId),x7(o,i,l,t)}var R$={kernelName:Xs,backendName:"webgl",kernelFunc:Fa};var y7=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=C.getReshaped(o.shape,s,i),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(o.shape,s,i),p=C.getSliceBeginCoords(a,s.length),m=C.getSliceSize(c,a,s.length),f=[],d=ce({inputs:{x:o},backend:t,attrs:{shape:l}}),h=Rt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Fa({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},F$={kernelName:Ja,backendName:"webgl",kernelFunc:y7};function b7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.readSync(o.dataId),l=t.readSync(s.dataId),u=px(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var O$={kernelName:_c,backendName:"webgl",kernelFunc:b7};var w7="return float(a != b);",Nv=st({opSnippet:w7,dtype:"bool"}),P$={kernelName:Xi,backendName:"webgl",kernelFunc:Nv};function Oa(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.real},backend:t})}var M$={kernelName:Vc,backendName:"webgl",kernelFunc:Oa};var _7="return float(int(x));";function L$(r,e){let t=new xn(r.shape,_7),n=e.runWebGLProgram(t,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function Sv(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Ut({inputs:{x:o},backend:t});let a=ht(o.shape),i=Sv({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=yn({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=Oa({inputs:{input:o},backend:t}),i=Sv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Ut({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return L$(o,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=Nv({inputs:{a:o,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var z$={kernelName:qn,backendName:"webgl",kernelFunc:Sv};var B$="return ceil(x);",k7=_e({opSnippet:B$,packedOpSnippet:B$,cpuKernelImpl:lD}),V$={kernelName:Io,backendName:"webgl",kernelFunc:k7};var Tv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};var Av=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function v7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i;W().getBool("WEBGL_PACK_CLIP")?i=new Av(o.shape):i=new Tv(o.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[o],o.dtype,l)}var G$={kernelName:Kn,backendName:"webgl",kernelFunc:v7};var Ev=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function W$(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function C7(r){let{inputs:e,backend:t}=r,{x:n}=e,o=t.texData.get(n.dataId),s=new Ev(n.shape),a=[W$(n,o.complexTensorInfos.real),W$(n,o.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var j$={kernelName:Qa,backendName:"webgl",kernelFunc:C7};var Dv=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let o=t.length,s=t[t.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}};var $v=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,o=n.length,s=Ve(o),a=jt("coords",o),i=["x","y","z","w","u","v"].slice(0,o);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${c.join()}));
|
|
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
|
|
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
|
|
return getChannel(
|
|
getT${h}(${wx(i,u,g)}),
|
|
vec2(${wx(c,u,g)}));
|
|
}`}let f=l.length,d=l[l.length-1];m+=`
|
|
return getChannel(
|
|
getT${f}(${wx(i,u,d)}),
|
|
vec2(${wx(c,u,d)}));`,this.userCode=`
|
|
float getValue(${i.map(h=>"int "+h)}) {
|
|
${m}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[o-1]} = ${a[o-1]} + 1;
|
|
if (${a[o-1]} < ${n[o-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[o-2]} = ${a[o-2]} + 1;
|
|
if (${a[o-2]} < ${n[o-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[o-1]} = ${a[o-1]} - 1;
|
|
if (${a[o-2]} < ${n[o-2]} &&
|
|
${a[o-1]} < ${n[o-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function wx(r,e,t){let n=r.indexOf(e);return r.map((s,a)=>a===n?`${s} - ${t}`:s).join()}function Gu(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.imag},backend:t})}var U$={kernelName:Fc,backendName:"webgl",kernelFunc:Gu};function Wu(r,e,t){let n=r[0].dtype;if(n==="complex64"){let c=r.map(h=>Oa({inputs:{input:h},backend:t})),p=r.map(h=>Gu({inputs:{input:h},backend:t})),m=Wu(c,e,t),f=Wu(p,e,t),d=yn({inputs:{real:m,imag:f},backend:t});return c.forEach(h=>t.disposeIntermediateTensorInfo(h)),p.forEach(h=>t.disposeIntermediateTensorInfo(h)),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}let o=t.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let c=r.map(x=>{let b=y.sizeFromShape(x.shape.slice(e));return ce({inputs:{x},backend:t,attrs:{shape:[-1,b]}})}),p=c.map(x=>({vals:t.readSync(x.dataId),shape:x.shape})),m=C.computeOutShape(c.map(x=>x.shape),1),f=c[0].shape[0]===1,d=uD(p,m,n,f),h=C.computeOutShape(r.map(x=>x.shape),e),g=t.makeTensorInfo(h,n,d);return c.forEach(x=>t.disposeIntermediateTensorInfo(x)),g}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(r.length/2),p=Wu(r.slice(0,c),e,t),m=Wu(r.slice(c),e,t),f=Wu([p,m],e,t);return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let c=new $v(r.map(p=>p.shape),e);return t.runWebGLProgram(c,r,n)}let{tensors2D:s,outShape:a}=I7(r,e,t),i=new Dv(s.map(c=>c.shape)),l=t.runWebGLProgram(i,s,n);s.forEach(c=>t.disposeIntermediateTensorInfo(c));let u=ce({inputs:{x:l},attrs:{shape:a},backend:t});return t.disposeIntermediateTensorInfo(l),u}function I7(r,e,t){let n=C.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>ce({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:n}}function Rv(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=C.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Ut({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,s),Wu(i,s,t)}var H$={kernelName:Vs,backendName:"webgl",kernelFunc:Rv};var zf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,_="",I="";n&&(o?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,I="result = activation(result);");let E=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${l}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${w}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${x}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${h===1}) {
|
|
|
|
if (${g}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${h===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${h===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${E}
|
|
${I}
|
|
setOutput(result);
|
|
}
|
|
`}},Fv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,o=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${o});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${l};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${h===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${h===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${h===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};var Ov=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:o,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=n,{left:f,top:d}=l,h=s*o,g=Pt(),x=m==="channelsLast",b=x?0:1,w=x?1:2,_="";for(let I=0;I<=1;I++)for(let E=0;E<=1;E++)_+=`
|
|
blockIndex = rc.y + ${E};
|
|
pos = rc.x + ${I};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
|
|
d0 = offsetY + ${p} * (pos / ${h});
|
|
|
|
if(d0 < ${t[b]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
|
|
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
|
|
|
|
if(d1 < ${t[w]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${s}.));
|
|
|
|
if (${x}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${I*2+E}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${I*2+E}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${g.output} = result;
|
|
}
|
|
`}};function _x({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=n.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>dv,w=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],I=ce({inputs:{x:r},backend:n,attrs:{shape:[1,_,t.inChannels]}}),E=ce({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}}),D=Bu({a:I,b:E,transposeA:d,transposeB:h,backend:n,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=ce({inputs:{x:D},backend:n,attrs:{shape:t.outShape}}),x.push(I),x.push(E),x.push(D)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),I={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},E=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(_l(u.shape,I.shape),()=>`packed reshape ${u.shape} to ${I.shape} isn't free`);let D=ce({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(D);let $=Bu({a:I,b:D,backend:n,transposeA:d,transposeB:h,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),R=n.texData.get($.dataId);y.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=E,R.shape=t.outShape,g=Ut({inputs:{x:$},backend:n}),g.shape=t.outShape,x.push($)}for(let _ of x)n.disposeIntermediateTensorInfo(_);return g}function kx({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,w=!1,_=[],I=ce({inputs:{x:r},backend:n,attrs:{shape:r.shape.slice(1)}}),E=ce({inputs:{x:e},backend:n,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});_.push(I),_.push(E);let D=new Ov(x,I.shape,t),$=n.runWebGLProgram(D,[I],"float32"),R=ce({inputs:{x:$},backend:n,attrs:{shape:[1,x[0],x[1]]}});_.push($),_.push(R);let M=o!=null,G=s!=null,j=i==="leakyrelu",U=i?vl(i,!0):null,H=new Mf(R.shape,E.shape,[1,g,t.outChannels],b,w,M,U,G,j),q=[R,E];if(o&&q.push(o),G&&q.push(s),j){let re=n.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=n.runWebGLProgram(H,q,"float32"),ne=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=ce({inputs:{x:X},backend:n,attrs:{shape:ne}});_.push(X);for(let re of _)n.disposeIntermediateTensorInfo(re);return Y}function N7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=_x({x:o,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)f=kx({x:o,filter:s,convInfo:m,backend:t});else{let h=new zf(m);f=t.runWebGLProgram(h,[o,s],"float32")}let d=ce({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var q$={kernelName:No,backendName:"webgl",kernelFunc:N7};var Pv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Mv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=n-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Lv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},zv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=n-1-e.padInfo.top,c=o-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${l}, ${u}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function S7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n,p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),f=new Pv(m);return t.runWebGLProgram(f,[o,s],"float32")}var K$={kernelName:vc,backendName:"webgl",kernelFunc:S7};function T7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new Mv(m);return t.runWebGLProgram(f,[o,s],"float32")}var X$={kernelName:So,backendName:"webgl",kernelFunc:T7};function A7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=C.computeConv3DInfo(o.shape,s.shape,a,l,i),c=new Fv(u);return t.runWebGLProgram(c,[o,s],"float32")}var Y$={kernelName:el,backendName:"webgl",kernelFunc:A7};function E7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n,u=C.computeConv3DInfo(o.shape,l,a,1,i),c=new Lv(u);return t.runWebGLProgram(c,[o,s],"float32")}var Z$={kernelName:Cc,backendName:"webgl",kernelFunc:E7};function D7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n,u=C.computeConv3DInfo(l,s.shape,i,1,a),c=new zv(u);return t.runWebGLProgram(c,[o,s],"float32")}var J$={kernelName:Ic,backendName:"webgl",kernelFunc:D7};var $7=hx+`
|
|
return cos(x);
|
|
`,R7=_e({opSnippet:$7}),Q$={kernelName:To,backendName:"webgl",kernelFunc:R7};var F7=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,O7=_e({opSnippet:F7}),eR={kernelName:Di,backendName:"webgl",kernelFunc:O7};var Bv=class{constructor(e,t,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=n;this.outputShape=[c,p,m,u];let f=o==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,I]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
|
|
const float height_ratio = float(${g});
|
|
const float width_ratio = float(${w});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${x};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${I};
|
|
if( in_x < 0.0 || in_x > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${f} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}};var P7=r=>{let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,c=new Bv(o.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[o,s,a],"float32")},tR={kernelName:$i,backendName:"webgl",kernelFunc:P7};var vx=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let o=e.length,s=t?"0.0":`getX(${rR(o,"coords")})`,a=e[e.length-1],i="",l="";t?(i=n?`end != ${a-1}`:"end != 0",l=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",l=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${Ve(o)} coords = getOutputCoords();
|
|
int end = ${nR(o,"coords")};
|
|
float val = ${s};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${l};
|
|
${nR(o,"coords")} = idx;
|
|
val += getX(${rR(o,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function rR(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function nR(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function M7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length,u=C.getAxesPermutation([s],l),c=o;u!=null&&(c=Rt({inputs:{x:o},backend:t,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${o.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=Ut({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new vx(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new vx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=C.getUndoAxesPermutation(u),h=Rt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var oR={kernelName:Ao,backendName:"webgl",kernelFunc:M7};function L7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.readSync(o.dataId),u=t.readSync(s.dataId),c=px(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=aD(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var sR={kernelName:Nc,backendName:"webgl",kernelFunc:L7};var Vv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function z7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new Vv(d,s,a);return t.runWebGLProgram(h,[o],o.dtype)}var iR={kernelName:Ri,backendName:"webgl",kernelFunc:z7};var Bf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";n&&(o?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${g};
|
|
int q = d2 - d1 * ${g};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${m};
|
|
|
|
if (xR < 0 || xR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${f};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}};var Vf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,i=e.inHeight,l=e.inWidth,u=e.padInfo.top,c=e.padInfo.left,p=e.strideHeight,m=e.strideWidth,f=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,g=e.filterWidth,x=g,b=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let E=0;E<g;E++)b+=`
|
|
vec4 xTexelC${E*2};
|
|
int xTexelC${E*2}Ready;
|
|
vec4 xC${E};`;for(let E=0;E<h;E++){for(let D=0;D<g;D++)b+=`
|
|
xTexelC${D*2} = vec4(0.0);
|
|
xTexelC${D*2}Ready = 0;
|
|
xC${D} = vec4(0.0);`;b+=`
|
|
xR = xRCorner + ${E*f};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let D=0;D<(x+1)/2;D++){let $=D*2,R=$*d;if(b+=`
|
|
xC = xCCorner + ${R};
|
|
`,m===1){if($<g&&(c%2==1?(b+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${l} && xTexelC${R}Ready == 0) {
|
|
xTexelC${R} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${R}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R}Ready = 1;
|
|
}
|
|
`,d===1&&R>0?b+=`
|
|
xC${$} = vec4(xTexelC${R-2}.zw, xTexelC${R}.xy);
|
|
`:b+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${$} = vec4(previous.zw, xTexelC${R}.xy);
|
|
} else {
|
|
xC${$} = vec4(0.0, 0.0, xTexelC${R}.xy);
|
|
}
|
|
`):b+=`
|
|
if (xC >= 0 && xC < ${l} && xTexelC${R}Ready == 0) {
|
|
xTexelC${R} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${l}) {
|
|
xTexelC${R}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R}Ready = 1;
|
|
}
|
|
|
|
xC${$} = xTexelC${R};
|
|
`,R+1<g)){let M=c%2==0?y.nearestLargerEven(d):d;d%2==0&&c%2==1||d%2!=0&&c%2!=1?(b+=`
|
|
xCOffset = xC + ${c%2} + ${M};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l} && xTexelC${R+2}Ready == 0) {
|
|
xTexelC${R+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${R+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R+2}Ready = 1;
|
|
}
|
|
`,d>1&&(b+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${l} && xTexelC${R}Ready == 0) {
|
|
xTexelC${R} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${R}Ready = 1;
|
|
}
|
|
`),b+=`
|
|
xC${$+1} = vec4(xTexelC${R}.zw, xTexelC${R+2}.xy);
|
|
`):M===1?b+=`
|
|
xC${$+1} = xTexelC${R};
|
|
`:b+=`
|
|
xCOffset = xC + ${M};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l} && xTexelC${R+2}Ready == 0) {
|
|
xTexelC${R+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${R+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R+2}Ready = 1;
|
|
}
|
|
|
|
xC${$+1} = xTexelC${R+2};
|
|
`}}else R<g&&(c%2==1?(b+=`
|
|
xCOffset = xC + 1 - ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l} && xTexelC${R}Ready == 0) {
|
|
xTexelC${R} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${R}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${l} && xTexelC${R+2}Ready == 0) {
|
|
xTexelC${R+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${l}) {
|
|
xTexelC${R+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R+2}Ready = 1;
|
|
}
|
|
|
|
xC${$} = vec4(xTexelC${R}.zw, xTexelC${R+2}.zw);
|
|
`,R+1<g&&(b+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${$+1} = vec4(xTexelC${R+2}.xy, final.xy);
|
|
`)):(b+=`
|
|
if(xC >= 0 && xC < ${l} && xTexelC${R}Ready == 0) {
|
|
xTexelC${R} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${l}) {
|
|
xTexelC${R}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${R}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l} && xTexelC${R+2}Ready == 0) {
|
|
xTexelC${R+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${R+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${R+2}Ready = 1;
|
|
}
|
|
|
|
xC${$} = vec4(
|
|
xTexelC${R}.xy, xTexelC${R+2}.xy);
|
|
`,R+1<g&&(b+=`
|
|
xC${$+1} = vec4(xTexelC${R}.zw, xTexelC${R+2}.zw);
|
|
`)));$<g&&(b+=`
|
|
wTexel = getW(${E}, ${R}, d1, q);
|
|
dotProd += xC${$} * vec4(wTexel.xz, wTexel.xz);
|
|
`,R+1<g&&(b+=`
|
|
wTexel = getW(${E}, ${R+1}, d1, q);
|
|
dotProd += xC${$+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}b+=`
|
|
}
|
|
`}let w="",_="";n&&(o?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:w=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,_="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${w}
|
|
|
|
const ivec2 strides = ivec2(${p}, ${m});
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${b}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${I}
|
|
${_}
|
|
setOutput(result);
|
|
}
|
|
`}};function B7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n,c=l;c==null&&(c=[1,1]),y.assert(C.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=C.computeConv2DInfo(o.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new Vf(p):m=new Bf(p),t.runWebGLProgram(m,[o,s],"float32")}var aR={kernelName:Eo,backendName:"webgl",kernelFunc:B7};var Gv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Wv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${l}; dm++) {
|
|
int d2 = d1 * ${l} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function V7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n,p=C.computeConv2DInfo(o.shape,c,a,i,l,u,!0),m=new Gv(p);return t.runWebGLProgram(m,[o,s],"float32")}var lR={kernelName:Sc,backendName:"webgl",kernelFunc:V7};function G7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n,p=C.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new Wv(p);return t.runWebGLProgram(m,[o,s],"float32")}var uR={kernelName:Tc,backendName:"webgl",kernelFunc:G7};var jv=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function W7(r){let{inputs:e,backend:t}=r,{x:n}=e,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),a=ce({inputs:{x:n},backend:t,attrs:{shape:[s]}}),i=new jv(s),l=t.runWebGLProgram(i,[a],a.dtype),u=ce({inputs:{x:l},backend:t,attrs:{shape:o}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var cR={kernelName:Ac,backendName:"webgl",kernelFunc:W7};var Uv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:o,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=o;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${a});
|
|
const ivec2 pads = ivec2(${p}, ${m});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${l}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function j7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=C.computeDilation2DInfo(o.shape,s.shape,a,i,"NHWC",l),c,p=new Uv(u);c=t.runWebGLProgram(p,[o,s],"float32");let m=ce({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var pR={kernelName:tl,backendName:"webgl",kernelFunc:j7};function U7(r){let{inputs:e,backend:t,attrs:n}=r,{equation:o}=n,s=e,{allDims:a,summedDims:i,idDims:l}=C.decodeEinsumEquation(o,s.length);C.checkEinsumDimSizes(a.length,l,s);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,m=null,f=a.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=C.getEinsumPermutation(f,l[g]),w;C.isIdentityPermutation(x)?w=s[g]:(w=Rt({inputs:{x:s[g]},backend:t,attrs:{perm:x}}),d.push(w));let _=w.shape.slice();for(let I=0;I<b.length;++I)_.splice(b[I],0,1);y.arraysEqual(w.shape,_)||(w=ce({inputs:{x:w},backend:t,attrs:{shape:_}}),d.push(w)),m===null?m=w:(m=Lf({inputs:{a:w,b:m},backend:t}),d.push(m))}h<p-1&&(u[h]>=0&&(m=zu({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var mR={kernelName:Ec,backendName:"webgl",kernelFunc:U7};var H7="return (x >= 0.0) ? x : (exp(x) - 1.0);",q7=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,K7=_e({opSnippet:H7,packedOpSnippet:q7}),fR={kernelName:Fi,backendName:"webgl",kernelFunc:K7};var X7="return (b >= 1.0) ? a : a * (b + 1.0);",Y7=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Z7=r=>{let{inputs:e,backend:t}=r,{dy:n,y:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(Y7,n.shape,o.shape):new co(X7,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)},dR={kernelName:Dc,backendName:"webgl",kernelFunc:Z7};var J7=`
|
|
return vec4(equal(a, b));
|
|
`,Q7="return float(a == b);",eY=st({opSnippet:Q7,packedOpSnippet:J7,dtype:"bool"}),hR={kernelName:Pi,backendName:"webgl",kernelFunc:eY};var tY=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,rY=_e({opSnippet:tY}),gR={kernelName:Oi,backendName:"webgl",kernelFunc:rY};var xR="return exp(x);",Hv=_e({opSnippet:xR,packedOpSnippet:xR,cpuKernelImpl:cD}),yR={kernelName:$o,backendName:"webgl",kernelFunc:Hv};function Cx(r){let{inputs:e,attrs:t,backend:n}=r,{dim:o}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=o;return o<0&&(y.assert(-(a+1)<=o,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+o+1),i.splice(l,0,1),ce({inputs:{x:s},backend:n,attrs:{shape:i}})}var bR={kernelName:Gs,backendName:"webgl",kernelFunc:Cx};var wR="return exp(x) - 1.0;",nY=_e({opSnippet:wR,packedOpSnippet:wR,cpuKernelImpl:pD}),_R={kernelName:Mi,backendName:"webgl",kernelFunc:nY};var Ix=class{constructor(e,t,n){this.variableNames=["real","imag"];let o=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${o}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${o});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Nx(r,e,t){let n=t.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=o/s,i=ce({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new Ix("real",l,e),c=new Ix("imag",l,e),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=yn({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=ce({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function oY(r){let{inputs:e,backend:t}=r,{input:n}=e;return Nx(n,!1,t)}var kR={kernelName:$c,backendName:"webgl",kernelFunc:oY};var qv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Gf(r){let{backend:e,attrs:t}=r,{shape:n,value:o}=t,{dtype:s}=t;if(s=s||y.inferDtype(o),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(n));return a.fill(o),e.makeTensorInfo(n,s,a)}else{let a=new qv(n,o),i=a.getCustomSetupFunc(o);return e.runWebGLProgram(a,[],s,i)}}var vR={kernelName:rl,backendName:"webgl",kernelFunc:Gf};var Kv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var CR={kernelName:Li,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,n=e,o=new Kv(t.shape);return n.runWebGLProgram(o,[t],t.dtype)}};var IR="return floor(x);",sY=_e({opSnippet:IR,packedOpSnippet:IR,cpuKernelImpl:mD}),NR={kernelName:Ro,backendName:"webgl",kernelFunc:sY};var iY=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,aY=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,lY=st({opSnippet:iY,packedOpSnippet:aY,dtype:"int32"}),SR={kernelName:Fo,backendName:"webgl",kernelFunc:lY};var Xv=class{constructor(e){this.variableNames=["A"];let t=Pt(),[n,o]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}};var Yv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Pt(),[n,o]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${o}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}};var TR={kernelName:$m,backendName:"webgl",kernelFunc:uY},$p;function uY(r){let{inputs:e,backend:t,attrs:n}=r,{pixels:o}=e,{numChannels:s}=n,a=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[l,u]=a?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[u,l],p=[u,l,s];(i||a)&&($p==null&&($p=document.createElement("canvas").getContext("2d")),$p.canvas.width=l,$p.canvas.height=u,$p.drawImage(o,0,0,l,u),o=$p.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Pr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),o);let f=W().getBool("WEBGL_PACK")?new Yv(p):new Xv(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function cY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(o.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=_x({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)x=kx({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,I=i!=null,E=f==="leakyrelu",D=f?vl(f,!1):null,$=new zf(g,_,D,I,E),R=[o,s];if(a&&R.push(a),i&&R.push(i),E){let M=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));R.push(M),b.push(M)}x=t.runWebGLProgram($,R,"float32")}let w=ce({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var AR={kernelName:ei,backendName:"webgl",kernelFunc:cY};function pY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(C.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=C.computeConv2DInfo(o.shape,s.shape,l,h,u,p,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?vl(m,x):null,w=[o,s],_=a!=null,I=i!=null,E=m==="leakyrelu";if(_&&w.push(a),I&&w.push(i),E){let R=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(R),d.push(R)}let D;x?D=new Vf(g,_,b,I,E):D=new Bf(g,_,b,I,E);let $=t.runWebGLProgram(D,w,"float32");return d.forEach(R=>t.disposeIntermediateTensorInfo(R)),$}var ER={kernelName:ti,backendName:"webgl",kernelFunc:pY};var Zv=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let o=Ve(t.length),s=Ve(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${this.strides});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function mY(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=o.shape,a=s[s.length-1],[i,l,u,c]=C.prepareAndValidate(n,o),p=ce({inputs:{x:o},backend:t,attrs:{shape:[l,a]}}),m=ce({inputs:{x:n},backend:t,attrs:{shape:[y.sizeFromShape(n.shape)/u,u]}}),f=new Zv(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var DR={kernelName:zi,backendName:"webgl",kernelFunc:mY};var Jv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=Ve(this.rank),o=fY(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${o}));
|
|
}
|
|
`}};function fY(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("int(getIndices(resRC.x, resRC.z))"):n.push(`${t[o]}`);return n.join()}function dY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=ce({inputs:{x:o},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=ce({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=fD(w,b,d);return p.forEach(I=>t.disposeIntermediateTensorInfo(I)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Jv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=ce({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var $R={kernelName:Ws,backendName:"webgl",kernelFunc:dY};var hY="return float(a > b);",gY=`
|
|
return vec4(greaterThan(a, b));
|
|
`,xY=st({opSnippet:hY,packedOpSnippet:gY,cpuKernelImpl:dD,dtype:"bool"}),RR={kernelName:Bi,backendName:"webgl",kernelFunc:xY};var yY="return float(a >= b);",bY=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,wY=st({opSnippet:yY,packedOpSnippet:bY,dtype:"bool"}),FR={kernelName:Po,backendName:"webgl",kernelFunc:wY};function _Y(r){let{inputs:e,backend:t}=r,{input:n}=e;return Nx(n,!0,t)}var OR={kernelName:Rc,backendName:"webgl",kernelFunc:_Y};var kY="return float(!isnan(x) && !isinf(x));",vY=_e({opSnippet:kY,dtype:"bool"}),PR={kernelName:Vi,backendName:"webgl",kernelFunc:vY};var CY="return float(isinf(x));",IY=_e({opSnippet:CY,dtype:"bool"}),MR={kernelName:Gi,backendName:"webgl",kernelFunc:IY};var NY="return float(isnan(x));",SY=_e({opSnippet:NY,dtype:"bool"}),LR={kernelName:Wi,backendName:"webgl",kernelFunc:SY};var TY="return float(a < b);",AY=`
|
|
return vec4(lessThan(a, b));
|
|
`,EY=st({opSnippet:TY,packedOpSnippet:AY,cpuKernelImpl:hD,dtype:"bool"}),zR={kernelName:ji,backendName:"webgl",kernelFunc:EY};var DY="return float(a <= b);",$Y=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,RY=st({opSnippet:DY,packedOpSnippet:$Y,dtype:"bool"}),BR={kernelName:Ui,backendName:"webgl",kernelFunc:RY};function FY(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=gD(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var VR={kernelName:Oc,backendName:"webgl",kernelFunc:FY};var OY=`if (x < 0.0) return NAN;
|
|
return log(x);`,PY=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,MY=_e({opSnippet:OY,packedOpSnippet:PY,cpuKernelImpl:xD}),GR={kernelName:Lo,backendName:"webgl",kernelFunc:MY};var LY="return log(1.0 + x);",zY=_e({opSnippet:LY}),WR={kernelName:Hi,backendName:"webgl",kernelFunc:zY};var BY="return float(a >= 1.0 && b >= 1.0);",VY=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,GY=st({opSnippet:BY,packedOpSnippet:VY,dtype:"bool"}),jR={kernelName:qi,backendName:"webgl",kernelFunc:GY};var WY="return float(!(x >= 1.0));",jY=_e({opSnippet:WY}),UR={kernelName:Hl,backendName:"webgl",kernelFunc:jY};var UY="return float(a >= 1.0 || b >= 1.0);",HY=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,qY=st({opSnippet:UY,packedOpSnippet:HY,dtype:"bool"}),HR={kernelName:ql,backendName:"webgl",kernelFunc:qY};var Qv=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${l};
|
|
setOutput(val);
|
|
}
|
|
`}};var eC=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${l};
|
|
setOutput(result);
|
|
}
|
|
`}};var KY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new eC(o.shape,s,a,i,l):new Qv(o.shape,s,a,i,l);return t.runWebGLProgram(u,[o],o.dtype)},qR={kernelName:nl,backendName:"webgl",kernelFunc:KY};var tC=class{constructor(e,t,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${o}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${o})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};var XY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n,p=new tC(o.shape,i,l,u,c);return t.runWebGLProgram(p,[o,s,a],o.dtype)},KR={kernelName:Pc,backendName:"webgl",kernelFunc:XY};function XR(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=ce({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=En(i,r.dtype,"max",n),u=ce({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}function rC(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let D=0;D<_.length;D++)_[D]=o.shape[c[D]];let I=Mu(w,o.shape,o.dtype,c,_);f=t.makeTensorInfo(_,o.dtype);let E=t.texData.get(f.dataId);E.values=I}else f=Cl(o,c,t);u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("max",u,i);let[d,h]=C.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=C.expandShapeToKeepDim(d,l));let x;if(m){let w=t.texData.get(f.dataId).values,_=yD(w,y.sizeFromShape(h),g,o.dtype);x=t.makeTensorInfo(g,o.dtype);let I=t.texData.get(x.dataId);I.values=_}else x=XR(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var YR={kernelName:zo,backendName:"webgl",kernelFunc:rC};var YY=dx+`
|
|
return max(a, b);
|
|
`,ZY=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+kl+`
|
|
return result;
|
|
`,JY=st({opSnippet:YY,packedOpSnippet:ZY,cpuKernelImpl:bD}),ZR={kernelName:Bo,backendName:"webgl",kernelFunc:JY};function QY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;Cs(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new ci(c,"max",!1);return t.runWebGLProgram(p,[o],o.dtype)}var JR={kernelName:Vo,backendName:"webgl",kernelFunc:QY};function e9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=n,c=[1,1,1],p=C.computePool3DInfo(o.shape,s,a,c,i,u,l),m=new Vu(p,"max",!1);return t.runWebGLProgram(m,[o],o.dtype)}var QR={kernelName:ol,backendName:"webgl",kernelFunc:e9};var nC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,o=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},oC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${l};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function t9(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=C.computePool3DInfo(a.shape,i,l,p,u,c),f=new Vu(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new oC(m),g=t.runWebGLProgram(h,[o,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var eF={kernelName:Lc,backendName:"webgl",kernelFunc:t9};function r9(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;Cs([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=C.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new ci(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new nC(m),x=t.runWebGLProgram(g,[o,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var tF={kernelName:Mc,backendName:"webgl",kernelFunc:r9};function rF(r,e,t,n){let o=new ci(t,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new ci(t,"max",!0,!0,e);let a=n.runWebGLProgram(o,[r],"float32");return[s,a]}var nF={kernelName:zc,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];y.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(n.shape,o,s,u,a),[p,m]=rF(n,i,c,l);return[p,m]}};function oF(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=ce({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=En(i,"float32","mean",n),u=ce({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var sF={kernelName:Go,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{keepDims:o,axis:s}=e,a=t,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let _=a.texData.get(d.dataId).values,I=new Array(i);for(let $=0;$<I.length;$++)I[$]=n.shape[c[$]];let E=Mu(_,n.shape,n.dtype,c,I);d=a.makeTensorInfo(I,n.dtype);let D=a.texData.get(d.dataId);D.values=E}else d=Cl(n,c,a);f.push(d),u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=C.computeOutAndReduceShapes(d.shape,u),x=h;o&&(x=C.expandShapeToKeepDim(h,l));let b=oF(d,g,x,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function n9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=Rt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o.shape.length)),C.assertAxesAreInnerMostDims("min",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=En(h,h.dtype,"min",t),x;if(a){let b=C.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var iF={kernelName:Wo,backendName:"webgl",kernelFunc:n9};var o9=dx+`
|
|
return min(a, b);
|
|
`,s9=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+kl+`
|
|
return result;
|
|
`,i9=st({opSnippet:o9,packedOpSnippet:s9,cpuKernelImpl:wD}),aF={kernelName:jo,backendName:"webgl",kernelFunc:i9};var sC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let o=e.length,s=Ve(o),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),u=n==="reflect"?0:1;if(o===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${o}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
`}};var iC=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let o=e.length,s=Ve(o),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=jt("rc",o),u=jt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${m};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${m};
|
|
}
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`}else{let d=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${m}) +
|
|
gte * ((end - 1) * 2 - source + ${m});
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${l[o-2]} += 1;
|
|
if(${l[o-2]} < ${this.outputShape[o-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};var a9=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{paddings:o,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iC(n.shape,o,s):new sC(n.shape,o,s);return e.runWebGLProgram(a,[n],n.dtype)},lF={kernelName:Uo,backendName:"webgl",kernelFunc:a9};var l9=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,u9=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+kl+`
|
|
return result;
|
|
`,c9=st({opSnippet:l9,packedOpSnippet:u9}),uF={kernelName:Ki,backendName:"webgl",kernelFunc:c9};var aC=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var p9=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,m9=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,lC=st({opSnippet:p9,packedOpSnippet:m9,checkOutOfBounds:!0}),cF={kernelName:Do,backendName:"webgl",kernelFunc:lC};var pF="return a - b;",uC=st({opSnippet:pF,packedOpSnippet:pF,supportsComplex:!0,cpuKernelImpl:ED}),mF={kernelName:us,backendName:"webgl",kernelFunc:uC};function cC(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=y.parseAxisParam([s],o.shape),i=rC({inputs:{x:o},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,a),u=ce({inputs:{x:i},backend:t,attrs:{shape:l}}),c=uC({inputs:{a:o,b:u},backend:t}),p=Hv({inputs:{x:c},backend:t}),m=zu({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=ce({inputs:{x:m},backend:t,attrs:{shape:l}}),d=lC({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var fF={kernelName:as,backendName:"webgl",kernelFunc:cC};function f9(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n,l=i?o:cC({inputs:{logits:o},backend:t,attrs:{dim:o.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new aC(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var dF={kernelName:Bc,backendName:"webgl",kernelFunc:f9};var hF="return -x;";function d9(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])){let s=t.texData.get(n.dataId),[a,i]=kD(s.values,n.shape,n.dtype);return t.makeTensorInfo(i,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Ns(n.shape,hF):o=new xn(n.shape,hF),t.runWebGLProgram(o,[n],n.dtype)}var gF={kernelName:js,backendName:"webgl",kernelFunc:d9};var h9=Fr.nonMaxSuppressionV3Impl;function g9(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n,u=t.readSync(o.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=h9(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var xF={kernelName:Yi,backendName:"webgl",kernelFunc:g9};var x9=Fr.nonMaxSuppressionV4Impl;function y9(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=x9(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var yF={kernelName:Zi,backendName:"webgl",kernelFunc:y9};var b9=Fr.nonMaxSuppressionV5Impl;function w9(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=b9(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var bF={kernelName:Ji,backendName:"webgl",kernelFunc:w9};var pC=class{constructor(e,t,n,o){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${o}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}};var _9=r=>{let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=y.sizeFromShape(o.shape),u=new pC(l,s,a,i),c=ce({inputs:{x:o},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],o.dtype);t.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=ce({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},wF={kernelName:qo,backendName:"webgl",kernelFunc:_9};function Wf(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="complex64"){let o=Oa({inputs:{input:n},backend:t}),s=Wf({inputs:{x:o},backend:t}),a=Gu({inputs:{input:n},backend:t}),i=Wf({inputs:{x:a},backend:t}),l=yn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Gf({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:t})}var _F={kernelName:Js,backendName:"webgl",kernelFunc:Wf};function kF(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Oa({inputs:{input:n},backend:t}),s=kF({inputs:{x:o},backend:t}),a=Gu({inputs:{input:n},backend:t}),i=Wf({inputs:{x:a},backend:t}),l=yn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Gf({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:t})}var vF={kernelName:Us,backendName:"webgl",kernelFunc:kF};function k9(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return Cx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Cx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=Rv({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var CF={kernelName:Hs,backendName:"webgl",kernelFunc:k9};var mC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let o=e.length,s=Ve(o),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var fC=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let o=e.length,s=Ve(o),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=jt("rc",o),u=jt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[o-1]} += 1;
|
|
if(${c}) {
|
|
`,o===1?"":`}
|
|
rc = outputLoc;
|
|
${l[o-2]} += 1;
|
|
if(${l[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${l[o-1]} += 1;
|
|
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
|
|
${m[h]}
|
|
if (${f}) {
|
|
result[${h}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${h}] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`;d+=o===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var dC=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fC(o.shape,s,a):new mC(o.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[o],o.dtype,l)},IF={kernelName:Ko,backendName:"webgl",kernelFunc:dC};var v9=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,C9=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+kl+`
|
|
return result;
|
|
`,I9=st({opSnippet:v9,packedOpSnippet:C9}),NF={kernelName:Xo,backendName:"webgl",kernelFunc:I9};function N9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=[],u=y.parseAxisParam(s,o.shape),c=u,p=C.getAxesPermutation(c,i),m=o;p!=null&&(m=Rt({inputs:{x:o},backend:t,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(m)),C.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=vD(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=C.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=ce({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=Yl(o.dtype),w=En(x,b,"prod",t);f=ce({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(x),l.push(w)}if(a){l.push(f);let d=C.expandShapeToKeepDim(f.shape,u);f=ce({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var SF={kernelName:Qi,backendName:"webgl",kernelFunc:N9};var hC=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=CD(n,o,s,a);return e.makeTensorInfo([i.length],a,i)},TF={kernelName:sl,backendName:"webgl",kernelFunc:hC};var S9="return 1.0 / x;",T9=_e({opSnippet:S9}),AF={kernelName:ea,backendName:"webgl",kernelFunc:T9};var A9=br+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,E9=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,D9=_e({opSnippet:A9,packedOpSnippet:E9}),EF={kernelName:Zo,backendName:"webgl",kernelFunc:D9};var $9=br+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,R9=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,F9=_e({opSnippet:$9,packedOpSnippet:R9}),DF={kernelName:Qo,backendName:"webgl",kernelFunc:F9};var gC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var xC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
|
|
${l}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function O9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new xC(o.shape,l,u,s,a):new gC(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],"float32")}var $F={kernelName:Jo,backendName:"webgl",kernelFunc:O9};var yC=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function P9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new yC(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var RF={kernelName:Wc,backendName:"webgl",kernelFunc:P9};var bC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var wC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
|
|
${l}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function M9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new wC(o.shape,l,u,s,a):new bC(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],o.dtype)}var FF={kernelName:il,backendName:"webgl",kernelFunc:M9};var _C=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${l[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${l[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${o}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function L9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new _C(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var OF={kernelName:Gc,backendName:"webgl",kernelFunc:L9};var kC=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let o=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>o(l)).join(","),a=Ve(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}};var vC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let o=jt("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,i=Ve(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${l(o.slice())};
|
|
if(${s}){
|
|
result.g = ${u(o.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(o.slice())};
|
|
if(${s}) {
|
|
result.a = ${p(o.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function l(d){return m(d)}function u(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function z9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Ut({inputs:{x:o},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vC(o.shape,i):new kC(o.shape,i);return t.runWebGLProgram(l,[o],o.dtype)}var PF={kernelName:es,backendName:"webgl",kernelFunc:z9};var CC=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],o=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,o){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,n,o)}}};var MF={kernelName:ua,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=new CC(n.shape,s),[u,c]=C.getImageCenter(a,n.shape[1],n.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(o),Math.cos(o));return i.runWebGLProgram(l,[n],n.dtype,p)}};var B9=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,V9=_e({opSnippet:B9}),LF={kernelName:ts,backendName:"webgl",kernelFunc:V9};var G9="return inversesqrt(x);",W9=_e({opSnippet:G9,cpuKernelImpl:ID}),zF={kernelName:rs,backendName:"webgl",kernelFunc:W9};var jf=class{constructor(e,t,n,o,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Ve(s.length),u=Ve(a.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
|
|
${l} strides = ${l}(${s});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${f};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function j9(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(s,o,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,o.dtype);let f=ce({inputs:{x:o},backend:t,attrs:{shape:[l,i]}}),d=ce({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new jf(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=ce({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var BF={kernelName:ta,backendName:"webgl",kernelFunc:j9};var IC=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);o=l.join(),s=u.join()}let a=Ve(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${o});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function U9(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=new IC(n.shape.length,o.shape,o.shape.length);return t.runWebGLProgram(a,[n,o,s],lr(o.dtype,s.dtype))}var VF={kernelName:Ks,backendName:"webgl",kernelFunc:U9};var H9=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,q9=_e({opSnippet:H9}),GF={kernelName:ra,backendName:"webgl",kernelFunc:q9};var K9="return 1.0 / (1.0 + exp(-1.0 * x));",X9=_e({opSnippet:K9}),WF={kernelName:os,backendName:"webgl",kernelFunc:X9};var Y9=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Z9=_e({opSnippet:Y9}),jF={kernelName:oa,backendName:"webgl",kernelFunc:Z9};var J9=hx+`
|
|
return sin(x);
|
|
`,Q9=_e({opSnippet:J9}),UF={kernelName:ns,backendName:"webgl",kernelFunc:Q9};var eZ=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,tZ=_e({opSnippet:eZ}),HF={kernelName:na,backendName:"webgl",kernelFunc:tZ};var rZ=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,nZ=_e({opSnippet:rZ}),qF={kernelName:sa,backendName:"webgl",kernelFunc:nZ};var oZ=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<o.shape.length;++x)l.push([0,0]);let u=[],c=dC({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,s,i,!1),m=C.getPermuted(p.length,s.length,!1),f=C.getReshapedPermuted(c.shape,s,i,!1),d=ce({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Rt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},KF={kernelName:al,backendName:"webgl",kernelFunc:oZ};function sZ(r){let{inputs:e,backend:t}=r,{indices:n,values:o,denseShape:s,defaultValue:a}=e;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(a.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${a.shape}`);let i=t.readSync(n.dataId),l=t.readSync(o.dataId),u=t.readSync(s.dataId),c=t.readSync(a.dataId)[0],[p,m,f,d,h]=SD(i,n.shape,n.dtype,l,o.dtype,u,c);return[t.makeTensorInfo(m,n.dtype,p),t.makeTensorInfo([m[0]],o.dtype,f),t.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),t.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var XF={kernelName:jc,backendName:"webgl",kernelFunc:sZ};function iZ(r){let{inputs:e,backend:t}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let a=Array.from(t.readSync(o.dataId)),i=t.readSync(n.dataId),l=Array.from(t.readSync(s.dataId)),[u,c,p]=TD(i,n.shape,n.dtype,a,l);return[t.makeTensorInfo(c,n.dtype,u),t.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var YF={kernelName:Uc,backendName:"webgl",kernelFunc:iZ};function aZ(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=C.calculateShapes(s,o,i),m=!1,f=new jf(u,l,o.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,o,a],s.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var ZF={kernelName:Hc,backendName:"webgl",kernelFunc:aZ};function lZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=o.shape.length,c=new Array(u).fill(0),p=o.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Fa({inputs:{x:o},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var JF={kernelName:Ys,backendName:"webgl",kernelFunc:lZ};var uZ="return sqrt(x);",cZ=_e({opSnippet:uZ}),QF={kernelName:ss,backendName:"webgl",kernelFunc:cZ};var pZ="return x * x;",mZ=_e({opSnippet:pZ}),eO={kernelName:ll,backendName:"webgl",kernelFunc:mZ};var tO="return (a - b) * (a - b);",fZ=st({opSnippet:tO,packedOpSnippet:tO}),rO={kernelName:ls,backendName:"webgl",kernelFunc:fZ};function dZ({inputs:r,attrs:e,backend:t}){let{x:n}=r,o=br+`
|
|
return x > 0.0 ? 1.0 : float(${e.alpha});
|
|
`,s=new xn(n.shape,o);return t.runWebGLProgram(s,[n],n.dtype)}var nO={kernelName:Yn,backendName:"webgl",kernelFunc:dZ};var NC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Ve(n.length),a=Ve(n.length),i="";if(o===1)i="coords * strides + begin";else{let l=0;i=n.map((u,c)=>(l++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${e});
|
|
${s} strides = ${s}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function hZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=ce({inputs:{x:o},backend:t,attrs:{shape:x}}),_;if(f){let E=Fa({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=ce({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let $=t.texData.get(w.dataId).values,R=Ce(w.shape,w.dtype,$),M=AD(b,R,h,d);_=t.makeTensorInfo(b,w.dtype,M.values)}else{let D=new NC(d,h,b);_=t.runWebGLProgram(D,[w],w.dtype)}let I=ce({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),I}var oO={kernelName:ia,backendName:"webgl",kernelFunc:hZ};var gZ="return tan(x);",xZ=_e({opSnippet:gZ}),sO={kernelName:cs,backendName:"webgl",kernelFunc:xZ};var yZ=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,bZ=_e({opSnippet:yZ}),iO={kernelName:ps,backendName:"webgl",kernelFunc:bZ};var SC=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let o=Ve(this.rank),s=wZ(e);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function wZ(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${t[o]}, ${r[o]})`);return n.join()}function TC(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let l=t.readSync(o.dataId),u=o.dtype==="string"?l.map(m=>y.decodeString(m)):l,c=Ce(o.shape,o.dtype,u),p=DD(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new SC(o.shape,s);return t.runWebGLProgram(a,[o],o.dtype)}var aO={kernelName:Mn,backendName:"webgl",kernelFunc:TC};function _Z(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n,i=t.readSync(o.dataId),[l,u]=$D(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var lO={kernelName:aa,backendName:"webgl",kernelFunc:_Z};var AC=class{constructor(e,t,n,o,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,l;switch(o){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${l} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function kZ(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new AC(p,m,a,i,l,g);return t.runWebGLProgram(x,[o,s],"float32")}var uO={kernelName:la,backendName:"webgl",kernelFunc:kZ};function vZ(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;Cs(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=n.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=RD(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var cO={kernelName:qc,backendName:"webgl",kernelFunc:vZ};function CZ(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o,i=a.shape.length,l=o.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Fa({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=ce({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var pO={kernelName:Zs,backendName:"webgl",kernelFunc:CZ};var EC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,o=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/n);this.outputShape=[o,i];let l="0.0",u="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
|
|
sumValue += dot(values, segFilter);
|
|
`,f="";s%n>0&&(f=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${l};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${f}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function IZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n,i=o.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=o;c!=null&&(p=Rt({inputs:{x:o},backend:t,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let m=C.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=Yl(o.dtype),g=(_,I,E,D,$)=>{let R=_.shape[0],M=_.shape[1],G=C.segment_util.segOpComputeOptimalWindowSize(M,$),j={windowSize:G,inSize:M,batchSize:R,numSegments:$},U=new EC(j,I),H=t.compileAndRun(U,[_,E],D);if(l.push(H),H.shape[1]===$)return H;let q=hC({backend:t,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),X=TC({inputs:{x:q},backend:t,attrs:{reps:[M/G]}});return l.push(q),l.push(X),g(H,I,X,D,$)},x=g(d,"unsortedSegmentSum",s,h,a),b=ce({inputs:{x},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=C.getUndoAxesPermutation(c);w=Rt({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var mO={kernelName:ul,backendName:"webgl",kernelFunc:IZ};var NZ=[qR,KR,l$,c$,p$,m$,d$,h$,g$,x$,w$,_$,k$,v$,I$,C$,N$,T$,S$,A$,E$,D$,$$,F$,O$,z$,V$,G$,j$,YD,H$,K$,X$,q$,Z$,J$,Y$,Q$,eR,tR,oR,sR,iR,lR,uR,aR,cR,pR,mR,fR,dR,hR,gR,yR,bR,_R,kR,vR,CR,NR,SR,TR,AR,ER,DR,$R,RR,FR,XD,OR,U$,PR,MR,LR,ZD,zR,BR,VR,WR,GR,jR,UR,HR,YR,QR,JR,eF,tF,nF,ZR,sF,iF,aF,lF,uF,dF,r$,gF,xF,yF,bF,P$,wF,vF,CF,IF,NF,JD,SF,TF,M$,cF,AF,DF,EF,o$,$F,RF,FF,OF,PF,MF,LF,zF,BF,VF,GF,WF,jF,UF,HF,R$,fF,qF,KF,XF,YF,ZF,JF,QF,eO,rO,nO,oO,mF,i$,sO,iO,aO,lO,uO,a$,cO,pO,mO,_F];for(let r of NZ)Kl(r);var Ft;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Ft||(Ft={}));var Il;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid"})(Il||(Il={}));var fO;function SZ(r){fO=r.wasm.cwrap(Qs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function TZ(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let $=t.dataIdMap.get(a.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);d=$.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=Il[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?o.shape[2]:o.shape[1],b=u?s.shape[1]:s.shape[2],w=o.shape[0],_=t.makeOutput([w,x,b],o.dtype),I=t.dataIdMap.get(_.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),D=new Uint8Array(new Int32Array(s.shape).buffer);return fO(m,E,o.shape.length,f,D,s.shape.length,l,u,g,d,h,p||0,I),_}var dO={kernelName:Qs,backendName:"wasm",setupFunc:SZ,kernelFunc:TZ};function xt(r){let e;function t(o){e=o.wasm.cwrap(r,null,["number","number"])}function n(o){let{backend:s,inputs:{x:a}}=o,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:n}}var hO=xt(Bs);function yt(r,e,t){let n;function o(a){n=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=C.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>n(p,g,u.shape.length,m,x,c.shape.length,Ft[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=C.getBroadcastDims(u.shape,d),I=C.getBroadcastDims(c.shape,d),E=_.every(($,R)=>$===R),D=I.every(($,R)=>$===R);if(E&&D)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var AZ=!0,gO=yt(Pn,AZ);var xO;function EZ(r){xO=r.wasm.cwrap(_o,null,["array","number","number","number"])}function DZ(r){let{inputs:e,backend:t}=r,n=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),a=t.dataIdMap.get(n.dataId).id;return xO(s,o.length,Ft[n.dtype],a),n}var yO={kernelName:_o,backendName:"wasm",setupFunc:EZ,kernelFunc:DZ};function ju(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype),o=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(n).set(o),n}var bO={kernelName:Xn,backendName:"wasm",kernelFunc:ju};var wO;function $Z(r){wO=r.wasm.cwrap(ms,null,["number","array","number","number","number","array","number"])}function Rp(r){let{inputs:e,backend:t,attrs:n}=r,[o,s]=FZ(e.x.shape,n.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=RZ(e.x.shape,n.perm),l={dataId:e.x.dataId,shape:o,dtype:e.x.dtype};if(a){let d=ju({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return wO(c,f,l.shape.length,Ft[l.dtype],p,m,s.length),u}function RZ(r,e){let t=new Array(r.length);for(let n=0;n<t.length;n++)t[n]=r[e[n]];return t}function FZ(r,e){let t=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&t.push(r[o]),r[e[o]]!==1&&n.push(e[o]);for(let o=0;o<n.length;++o){let s=-1;for(let a=0;a<n.length;++a)n[a]>=o&&(s===-1||n[s]>n[a])&&(s=a);n[s]=o}return[t,n]}var _O={kernelName:ms,backendName:"wasm",kernelFunc:Rp,setupFunc:$Z};function tn(r,e,t){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(e,n),a=s,i=C.getAxesPermutation(a,o),l=null,u=!1;if(i!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[i[f]];a=C.getInnerMostAxes(a.length,o),l=Rp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var kO;function OZ(r){kO=r.wasm.cwrap(Ci,null,["number, number, number"])}function PZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("all",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;kO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var vO={kernelName:Ci,backendName:"wasm",setupFunc:OZ,kernelFunc:PZ};var CO;function MZ(r){CO=r.wasm.cwrap(Ii,null,["number, number, number"])}function LZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("any",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;CO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var IO={kernelName:Ii,backendName:"wasm",setupFunc:MZ,kernelFunc:LZ};var NO;function zZ(r){NO=r.wasm.cwrap(ko,null,["number","number","number","number","number"])}function BZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=tn(s,o,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return NO(i,Ft[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var SO={kernelName:ko,backendName:"wasm",kernelFunc:BZ,setupFunc:zZ};var TO;function VZ(r){TO=r.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function GZ(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=C.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=n.makeOutput(c.outShape,"float32"),I=n.dataIdMap.get(_.dataId).id;return TO(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,I),_}var AO={kernelName:vo,backendName:"wasm",setupFunc:VZ,kernelFunc:GZ};function Vr(r){let{inputs:e,attrs:t}=r,{x:n}=e,{shape:o}=t,s=y.sizeFromShape(n.shape),a=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:a,dtype:n.dtype}}var EO={kernelName:qs,backendName:"wasm",kernelFunc:Vr};var DO;function WZ(r){DO=r.wasm.cwrap(Co,null,["number","array","number","number","array","number","number","number","number"])}function jZ(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let I=a?[g,c,m]:[g,m,c],E=i?[x,f,p]:[x,p,f],D=Vr({inputs:{x:o},backend:t,attrs:{shape:I}}),$=Vr({inputs:{x:s},backend:t,attrs:{shape:E}}),R=t.dataIdMap.get(D.dataId).id,M=t.dataIdMap.get($.dataId).id,G=a?D.shape[2]:D.shape[1],j=i?$.shape[1]:$.shape[2],U=Math.max(g,x),H=t.makeOutput([U,G,j],D.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(D.shape).buffer),ne=new Uint8Array(new Int32Array($.shape).buffer);return DO(R,X,D.shape.length,M,ne,$.shape.length,a,i,q),t.disposeData(D.dataId),t.disposeData($.dataId),H.shape=_,H}var $O={kernelName:Co,backendName:"wasm",setupFunc:WZ,kernelFunc:jZ};function Uu(r){let{inputs:{x:e},attrs:{dtype:t},backend:n}=r,o=n.makeOutput(e.shape,t),s=n.typedArrayFromHeap(e);return n.typedArrayFromHeap(o).set(s),o}var RO={kernelName:qn,backendName:"wasm",kernelFunc:Uu};var FO=xt(Io);var OO;function UZ(r){OO=r.wasm.cwrap(Kn,null,["number","number","number","number"])}function HZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i=t.dataIdMap.get(o.dataId).id,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(l.dataId).id;return OO(i,s,a,u),l}var PO={kernelName:Kn,backendName:"wasm",setupFunc:UZ,kernelFunc:HZ};function DC(r){let{inputs:e,backend:t}=r,n=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],o=C.computeOutShape(e.map(f=>f.shape),n),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return ju({inputs:{x:s[0]},backend:t});let a=t.makeOutput(o,e[0].dtype);if(y.sizeFromShape(o)===0)return a;let i=s.map(f=>f.shape);if(C.assertParamsConsistent(i,n),s[0].dtype==="string"){let f=s.map(w=>{let _=y.sizeFromShape(w.shape.slice(n));return Vr({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));o=C.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Eu(d,o,e[0].dtype,h),x=C.computeOutShape(s.map(w=>w.shape),n);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=C.fromStringArrayToUint8(g),f.forEach(w=>t.disposeData(w.dataId)),a}let l=y.sizeFromShape(s[0].shape.slice(0,n)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var MO={kernelName:Vs,backendName:"wasm",kernelFunc:DC};var LO;function qZ(r){LO=r.wasm.cwrap(No,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=C.convertConv2DDataFormat(m),d=C.computeConv2DInfo(o.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,I=d.dilationHeight,E=d.dilationWidth,D=d.strideHeight,$=d.strideWidth,R=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let j=n.makeOutput(d.outShape,"float32"),U=n.dataIdMap.get(j.dataId).id;return LO(a,o.shape[0],o.shape[1],o.shape[2],i,h,g,x,b,w,_,G,I,E,D,$,R,M,U),j}var zO={kernelName:No,backendName:"wasm",setupFunc:qZ,kernelFunc:KZ};var BO;function XZ(r){BO=r.wasm.cwrap(So,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function YZ(r){let{backend:e,inputs:t,attrs:n}=r,{dy:o,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=n,p=1,m=C.convertConv2DDataFormat(l),f=C.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:_,outHeight:I,outWidth:E,strideHeight:D,strideWidth:$}=f,R=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",j=y.computeStrides(f.inShape),U=y.computeStrides(o.shape),[H,q,X]=y.computeStrides(s.shape),ne=j[0],Y=G?j[1]:j[2],re=G?j[2]:1,ee=G?1:j[1],ie=U[0],me=G?U[1]:U[2],ae=G?U[2]:1,de=G?1:U[1],he=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(he.dataId).id,we=e.dataIdMap.get(o.dataId).id,De=e.dataIdMap.get(s.dataId).id;return BO(we,De,d,h,g,b,w,x,I,E,_,D,$,R,M,H,q,X,ne,Y,re,ee,ie,me,ae,de,xe),he}var VO={kernelName:So,backendName:"wasm",setupFunc:XZ,kernelFunc:YZ};var GO=xt(To);var $C;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})($C||($C={}));var WO;function ZZ(r){WO=r.wasm.cwrap($i,null,["number","number","number","number","array","number","number","number","number","number"])}function JZ(r){let{backend:e,inputs:t,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:a}=n,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=Uu({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,I=new Uint8Array(new Int32Array(i.shape).buffer);return WO(g,x,b,c,I,p,m,$C[o],s,_),h!=null&&e.disposeData(h.dataId),w}var jO={kernelName:$i,backendName:"wasm",setupFunc:ZZ,kernelFunc:JZ};var UO;function QZ(r){UO=r.wasm.cwrap(Ao,null,["number","number","number","number","number","number"])}function eJ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=o;u!==null&&(c=Rp({inputs:{x:o},attrs:{perm:u},backend:t}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;UO(d,a?1:0,i?1:0,f,h,Ft[o.dtype]);let g=m;if(u!==null){let x=C.getUndoAxesPermutation(u);g=Rp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var HO={kernelName:Ao,backendName:"wasm",setupFunc:QZ,kernelFunc:eJ};var qO;function tJ(r){qO=r.wasm.cwrap(Ri,null,["number","number","number","array","number","array","array","number","number"])}function rJ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),I=e.dataIdMap.get(h.dataId).id;return qO(x,s,a==="NHWC"?1:0,b,o.shape.length-1,w,_,d.length,I),h}var KO={kernelName:Ri,backendName:"wasm",setupFunc:tJ,kernelFunc:rJ};var XO;function nJ(r){XO=r.wasm.cwrap(Eo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oJ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=C.computeConv2DInfo(o.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,I=f.dilationWidth,E=f.strideHeight,D=f.strideWidth,$=f.inChannels,R=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(f.outShape,"float32"),j=n.dataIdMap.get(G.dataId).id;return XO(a,o.shape[0],o.shape[1],o.shape[2],i,d,h,g,x,b,w,M,_,I,E,D,$,R,j),G}var YO={kernelName:Eo,backendName:"wasm",setupFunc:nJ,kernelFunc:oJ};var sJ=!1,ZO=yt(Pi,sJ,"bool");var JO=xt($o);function Sx(r){let{inputs:e,attrs:t,backend:n}=r,{input:o}=e,{dim:s}=t,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Vr({inputs:{x:o},backend:n,attrs:{shape:i}})}var QO={kernelName:Gs,backendName:"wasm",kernelFunc:Sx};function iJ(r){let{attrs:{shape:e,value:t,dtype:n},backend:o}=r,s=o.makeOutput(e,n);return o.typedArrayFromHeap(s).fill(t),s}var eP={kernelName:rl,backendName:"wasm",kernelFunc:iJ};var tP;function aJ(r){tP=r.wasm.cwrap(Li,null,["number","number","number","number","number","number"])}function lJ(r){let{inputs:e,backend:t}=r,{image:n}=e,o=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,[i,l,u,c]=n.shape;return tP(s,i,l,u,c,a),o}var rP={kernelName:Li,backendName:"wasm",kernelFunc:lJ,setupFunc:aJ};var nP=xt(Ro);var uJ=!1,oP=yt(Fo,uJ);var sP;function cJ(r){sP=r.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number"])}function pJ(r){let{backend:e,inputs:t,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return sP(c,p,m,f,d,o,g),h}var iP={kernelName:Oo,backendName:"wasm",setupFunc:cJ,kernelFunc:pJ};var aP;function mJ(r){aP=r.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fJ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=C.computeConv2DInfo(o.shape,s.shape,l,c,u,m),g=Il[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let I=h.filterHeight,E=h.filterWidth,D=h.padInfo.top,$=h.padInfo.right,R=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(ee.dataId).id,me=i==null?0:n.dataIdMap.get(i.dataId).id;return aP(x,ne,Y,re,b,I,E,_,D,$,R,M,X,G,j,U,H,q,w,g,me,d||0,ie),ee}var lP={kernelName:ei,backendName:"wasm",setupFunc:mJ,kernelFunc:fJ};var uP;function dJ(r){uP=r.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hJ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=C.computeConv2DInfo(o.shape,s.shape,l,c,u,m,!0),g=Il[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let I=h.filterHeight,E=h.filterWidth,D=h.padInfo.top,$=h.padInfo.right,R=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(ee.dataId).id,me=i==null?0:n.dataIdMap.get(i.dataId).id;return uP(x,ne,Y,re,b,I,E,_,D,$,R,M,X,G,j,U,H,q,w,g,me,d||0,ie),ee}var cP={kernelName:ti,backendName:"wasm",setupFunc:dJ,kernelFunc:hJ};var pP;function gJ(r){pP=r.wasm.cwrap(zi,null,["number","number","number","number","number","number","array","number"])}function xJ(r){let{backend:e,inputs:t}=r,{params:n,indices:o}=t,[s,a,i,l]=cg.prepareAndValidate(n,o),u=e.makeOutput(s,n.dtype);if(a===0)return u;let c=o.shape,p=c[c.length-1],f=e.dataIdMap.get(n.dataId).id,h=e.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return pP(f,Ft[n.dtype],h,a,p,i,g,x),u}var mP={kernelName:zi,backendName:"wasm",setupFunc:gJ,kernelFunc:xJ};var fP;function yJ(r){fP=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function bJ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o,indices:s}=t,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=Vr({inputs:{x:o},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Vr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,o.dtype);if(y.sizeFromShape(o.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,I=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),E=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return fP(x,Ft[o.dtype],I,h,w,u.batchSize,E,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var dP={kernelName:Ws,backendName:"wasm",setupFunc:yJ,kernelFunc:bJ};var wJ=!1,hP=yt(Bi,wJ,"bool");var _J=!1,gP=yt(Po,_J,"bool");var xP;function kJ(r){xP=r.wasm.cwrap(Mo,null,["number","number","number"])}function vJ(r){let{inputs:{x:e},attrs:{alpha:t},backend:n}=r,o=n.dataIdMap.get(e.dataId).id,s=n.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=n.dataIdMap.get(s.dataId).id;xP(o,t,a)}return s}var yP={kernelName:Mo,backendName:"wasm",setupFunc:kJ,kernelFunc:vJ};var CJ=!1,bP=yt(ji,CJ,"bool");var IJ=!1,wP=yt(Ui,IJ,"bool");var _P=xt(Lo);var NJ=!1,kP=yt(qi,NJ,"bool");var vP;function SJ(r){vP=r.wasm.cwrap(zo,null,["number, number, number"])}function TJ(r){let{backend:e,inputs:t,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("max",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;vP(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var CP={kernelName:zo,backendName:"wasm",setupFunc:SJ,kernelFunc:TJ};var AJ=!1,IP=yt(Bo,AJ);var NP;function EJ(r){NP=r.wasm.cwrap(Vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function DJ(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=C.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,I=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let D=n.makeOutput(c.outShape,"float32"),$=n.dataIdMap.get(D.dataId).id;return NP(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,_,I,E,$),D}var SP={kernelName:Vo,backendName:"wasm",setupFunc:EJ,kernelFunc:DJ};var TP;function $J(r){TP=r.wasm.cwrap(Go,null,["number, number, number"])}function RJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Uu({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;TP(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var AP={kernelName:Go,backendName:"wasm",setupFunc:$J,kernelFunc:RJ};var EP;function FJ(r){EP=r.wasm.cwrap(Wo,null,["number, number, number"])}function OJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;C.assertAxesAreInnerMostDims("min",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;EP(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var DP={kernelName:Wo,backendName:"wasm",setupFunc:FJ,kernelFunc:OJ};var PJ=!1,$P=yt(jo,PJ);var RC;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(RC||(RC={}));var RP;function MJ(r){RP=r.wasm.cwrap(Uo,null,["number","array","number","number","array","array","number","number"])}function LJ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return RP(a,u,e.shape.length,Ft[e.dtype],m,f,RC[o],l),i}var FP={kernelName:Uo,backendName:"wasm",kernelFunc:LJ,setupFunc:MJ};var zJ=!0,OP=yt(Ho,zJ);var PP=xt(js);function Fp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),n=t[0],o=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:a}}var MP;function BJ(r){MP=r.wasm.cwrap(Yi,"number",["number","number","number","number","number"])}function VJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a}=n,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=MP(u,c,s,o,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Fp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var LP={kernelName:Yi,backendName:"wasm",setupFunc:BJ,kernelFunc:VJ};var zP;function GJ(r){zP=r.wasm.cwrap(Zi,"number",["number","number","number","number","number","bool"])}function WJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=zP(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Fp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var BP={kernelName:Zi,backendName:"wasm",setupFunc:GJ,kernelFunc:WJ};var VP;function jJ(r){VP=r.wasm.cwrap(Ji,"number",["number","number","number","number","number","number"])}function UJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=VP(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Fp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var GP={kernelName:Ji,backendName:"wasm",setupFunc:jJ,kernelFunc:UJ};var HJ=!1,WP=yt(Xi,HJ,"bool");var jP;function qJ(r){jP=r.wasm.cwrap(qo,null,["number","number","number","number","number"])}function KJ(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=t.makeOutput([...o.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(o.dataId).id;return jP(p,s,a,i,u),l}var UP={kernelName:qo,backendName:"wasm",setupFunc:qJ,kernelFunc:KJ};function XJ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(1),n}var HP={kernelName:Us,backendName:"wasm",kernelFunc:XJ};function YJ(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return Sx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Sx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=DC({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeData(c.dataId)),u}var qP={kernelName:Hs,backendName:"wasm",kernelFunc:YJ};var KP;function ZJ(r){KP=r.wasm.cwrap(Ko,null,["number","array","number","number","array","array","number","number"])}function JJ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,constantValue:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return KP(a,u,e.shape.length,Ft[e.dtype],m,f,o,l),i}var XP={kernelName:Ko,backendName:"wasm",kernelFunc:JJ,setupFunc:ZJ};var QJ=!1,YP=yt(Xo,QJ);var ZP;function eQ(r){ZP=r.wasm.cwrap(Yo,null,["number","number","number"])}function tQ(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,i=t.makeOutput(n.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return ZP(s,a,l),i}var JP={kernelName:Yo,backendName:"wasm",setupFunc:eQ,kernelFunc:tQ};var QP;function rQ(r){QP=r.wasm.cwrap(Qi,null,["number","number","number","number"])}function nQ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;QP(l,x,Ft[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var eM={kernelName:Qi,backendName:"wasm",setupFunc:rQ,kernelFunc:nQ};var oQ=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=$u(n,o,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},tM={kernelName:sl,backendName:"wasm",kernelFunc:oQ};var sQ=!0,rM=yt(Do,sQ);var nM=xt(Zo);var oM=xt(Qo);var sM;function iQ(r){sM=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number"])}function aQ(r){let{backend:e,inputs:t,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,[c,p,m,f]=o.shape,d=[c,l,u,f],h=e.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=Uu({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return sM(x,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var iM={kernelName:Jo,backendName:"wasm",setupFunc:iQ,kernelFunc:aQ};var aM;function lQ(r){aM=r.wasm.cwrap(es,null,["number","array","number","array","number","number"])}function uQ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return ju({inputs:{x:o},backend:t});let i=t.makeOutput(o.shape,o.dtype),l=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);aM(l,c,a.length,p,o.shape.length,u);let m=Vr({inputs:{x:i},attrs:{shape:o.shape},backend:t});return t.disposeData(i.dataId),m}var lM={kernelName:es,backendName:"wasm",kernelFunc:uQ,setupFunc:lQ};var uM;function cQ(r){uM=r.wasm.cwrap(ua,null,["number","number","number","number","number","number","number","number","array","number","number"])}function pQ(r){let{inputs:e,backend:t,attrs:n}=r,{image:o}=e,{radians:s,fillValue:a,center:i}=n,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=o.shape,[h,g]=C.getImageCenter(i,m,f),x=a===0,b=255,w=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return uM(u,p,m,f,d,s,h,g,_,w.length,c),l}var cM={kernelName:ua,backendName:"wasm",kernelFunc:pQ,setupFunc:cQ};var pM=xt(ts);var mM=xt(rs);var fM;function mQ(r){fM=r.wasm.cwrap(ta,null,["number","number","number","number","number","number","array","number","number"])}function fQ(r){let{backend:e,inputs:t,attrs:n}=r,{indices:o,updates:s}=t,{shape:a}=n,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=pg.calculateShapes(s,o,a),d=e.dataIdMap.get(o.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return fM(d,g,Ft[s.dtype],l,u,c,x,m,b),i}var dM={kernelName:ta,backendName:"wasm",setupFunc:mQ,kernelFunc:fQ};var hM;function dQ(r){hM=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function hQ(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=t.dataIdMap.get(n.dataId).id,i=t.dataIdMap.get(o.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(o.shape,o.dtype),c=t.dataIdMap.get(u.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return hM(a,i,l,f,c),u}var gM={kernelName:Ks,backendName:"wasm",kernelFunc:hQ,setupFunc:dQ};var xM;function gQ(r){xM=r.wasm.cwrap(os,null,["number","number"])}function xQ(r){let{backend:e,inputs:{x:t}}=r,n=e.dataIdMap.get(t.dataId).id,o=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||xM(n,s),o}var yM={kernelName:"Sigmoid",backendName:"wasm",setupFunc:gQ,kernelFunc:xQ};var bM=xt(ns);function Hu(r){let{inputs:{x:e},attrs:{begin:t,size:n},backend:o}=r,[s,a]=or.parseSliceParams(e,t,n),i=or.isSliceContinous(e.shape,s,a),l=o.readSync(e.dataId),u=o.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=o.dataIdMap.get(u.dataId);if(i){let d=or.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):o.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=Ru(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=o.typedArrayFromHeap(u),f=e.shape.length;if(f===2)yQ(l,c[0],m,s,a);else if(f===3)bQ(l,c[0],c[1],m,s,a);else if(f===4)wQ(l,c[0],c[1],c[2],m,s,a);else{let d=Ru(l,s,a,e.shape,e.dtype);m.set(d)}return u}function yQ(r,e,t,n,o){let s=0,a=n[0],i=n[1],l=a+o[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function bQ(r,e,t,n,o,s){let a=0,i=o[0],l=o[1],u=o[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;n.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function wQ(r,e,t,n,o,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let b=h*e+g*t+x*n+d;o.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var wM={kernelName:Xs,backendName:"wasm",kernelFunc:Hu};var _M;function _Q(r){_M=r.wasm.cwrap(as,null,["number","number","number","number"])}function kQ(r){let{backend:e,inputs:{logits:t},attrs:{dim:n}}=r,o=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[n],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||_M(o,a,i,l),s}var kM={kernelName:as,backendName:"wasm",setupFunc:_Q,kernelFunc:kQ};function vQ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Hu({inputs:{x:o},attrs:{begin:u,size:m},backend:n});return u[i]+=p,f})}var vM={kernelName:Ys,backendName:"wasm",kernelFunc:vQ};var CM=xt(ss);var IM=xt(ll);var CQ=!0,NM=yt(ls,CQ);var SM;function IQ(r){SM=r.wasm.cwrap(Yn,null,["number","number","number"])}function NQ(r){let{backend:e,inputs:t,attrs:n}=r,{alpha:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return SM(a,o,l),i}var TM={kernelName:Yn,backendName:"wasm",setupFunc:IQ,kernelFunc:NQ};var AM;function SQ(r){AM=r.wasm.cwrap(ia,null,["number","array","number","array","array","array","array","array","number","number"])}function TQ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{begin:s,end:a,strides:i}=n;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,f=C.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=o.shape.length-s.length,h=C.slice_util.maskToAxes(p),g=o.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let x=Vr({inputs:{x:o},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=C.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let I=C.slice_util.maskToAxes(m);I.forEach(G=>{a[G]=s[G]+1,i[G]=1});let E=C.slice_util.computeOutShape(s,a,i),D=E.filter((G,j)=>I.indexOf(j)===-1);if(i.every(G=>G===1)){let G=Hu({inputs:{x},attrs:{begin:s,size:E},backend:e});e.disposeData(x.dataId);let j=Vr({inputs:{x:G},attrs:{shape:D},backend:e});return e.disposeData(G.dataId),j}let R=e.makeOutput(D,"float32");if(!D.some(G=>G===0)){let G=e.dataIdMap.get(x.dataId).id,j=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(D).buffer),ne=new Uint8Array(new Int32Array(y.computeStrides(D)).buffer),Y=e.dataIdMap.get(R.dataId).id;AM(G,j,x.shape.length,U,H,q,X,ne,D.length,Y)}e.disposeData(x.dataId);let M=Vr({inputs:{x:R},attrs:{shape:D},backend:e});return e.disposeData(R.dataId),M}var EM={kernelName:ia,backendName:"wasm",setupFunc:SQ,kernelFunc:TQ};var AQ=!0,DM=yt(us,AQ);var $M;function EQ(r){$M=r.wasm.cwrap(is,null,["number, number, number"])}function DQ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;$M(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var RM={kernelName:is,backendName:"wasm",setupFunc:EQ,kernelFunc:DQ};var FM=xt(cs);var OM=xt(ps);var PM;function $Q(r){PM=r.wasm.cwrap(Mn,null,["number","array","number","array","number","number"])}function RQ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,s=t.dataIdMap.get(o.dataId).id,{reps:a}=n,i=new Array(o.shape.length);for(let m=0;m<i.length;m++)i[m]=o.shape[m]*a[m];let l=new Uint8Array(new Int32Array(o.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,o.dtype),p=t.dataIdMap.get(c.dataId).id;return PM(s,l,o.shape.length,u,i.length,Ft[c.dtype],p),c}var MM={kernelName:Mn,backendName:"wasm",setupFunc:$Q,kernelFunc:RQ};var LM;function FQ(r){LM=r.wasm.cwrap(aa,null,["number","array","number","number","number","bool","number","number"])}var OQ=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{k:o,sorted:s}=t,a=e.dataIdMap.get(n.dataId).id,i=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=o;let u=e.makeOutput(l,n.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return LM(a,i,n.shape.length,Ft[n.dtype],o,s,c,m),[u,p]},zM={kernelName:aa,backendName:"wasm",setupFunc:FQ,kernelFunc:OQ};var BM;function PQ(r){BM=r.wasm.cwrap(la,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function MQ(r){let{backend:e,inputs:t,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=e.makeOutput(g,o.dtype),w=e.dataIdMap.get(b.dataId).id,I=e.dataIdMap.get(o.dataId).id,D=e.dataIdMap.get(s.dataId).id,$=a==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return BM(I,D,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,$,R,l,w),b}var VM={kernelName:la,backendName:"wasm",setupFunc:PQ,kernelFunc:MQ};function LQ(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape[s],i=o.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Hu({inputs:{x:o},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var GM={kernelName:Zs,backendName:"wasm",kernelFunc:LQ};function zQ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(0),n}var WM={kernelName:Js,backendName:"wasm",kernelFunc:zQ};var BQ=[hO,gO,yO,vO,IO,SO,AO,$O,RO,FO,PO,MO,zO,VO,GO,jO,HO,KO,YO,ZO,JO,QO,eP,rP,nP,oP,dO,iP,lP,cP,mP,dP,hP,gP,bO,yP,bP,wP,_P,kP,CP,IP,SP,AP,DP,$P,FP,OP,PP,LP,BP,GP,WP,UP,HP,qP,XP,YP,JP,eM,tM,rM,nM,oM,EO,iM,lM,cM,mM,pM,dM,gM,yM,bM,wM,kM,vM,CM,IM,NM,TM,EM,DM,RM,FM,OM,MM,zM,VM,_O,GM,WM];for(let r of BQ)Kl(r);var FC=W();FC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));FC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(FC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var zC=dc(HM());var qM='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var XM=dc(KM());var Ex=class extends Ms{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Xa(this,hs())}write(e,t,n){let o={id:this.dataIdNextNumber++};return this.move(o,e,t,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,n,o,s){let a=this.dataIdNextNumber++;if(o==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(n),l=i*y.bytesPerElement(o),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:o,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(o)*y.bytesPerElement(n));return VQ(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let o;if(n==null)o=this.write(null,e,t);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:o,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(o,s,a);case"int32":return new Int32Array(o,s,a);case"bool":return new Uint8Array(o,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function GQ(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||e.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,e).then(s=>{t(s.instance,s.module)})})}),{})}function YM(r,e,t){if(Dx!=null)return Dx;let n="tfjs-backend-wasm.wasm";return r&&e?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),Uf!=null&&Uf[n]!=null?Uf[n]:t+n}async function ZM(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,n)=>{let o={};o.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=qM,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?YM(r,e,Hf!=null?Hf:l):l+i},BC&&(o.instantiateWasm=GQ(YM(r,e,Hf!=null?Hf:"")));let s=!1;o.onAbort=()=>{if(s||qf)return;qf=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&Dx==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+zC.default.toString()],{type:"text/javascript"}),a=(0,zC.default)(o)):a=(0,XM.default)(o),a.then(i=>{s=!0,qf=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function VQ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var WQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dx=null,Hf=null,Uf={},qf=!1,BC=!1;function jQ(r,e=!1){if(Bw("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),qf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dx=r,BC=e}function UQ(r,e=!1){if(qf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Hf=r;else{Uf=r;let t=WQ.filter(n=>Uf[n]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}BC=e}var VC="3.6.0";var HQ=2;rp("wasm",async()=>{let{wasm:r}=await ZM();return new Ex(r)},HQ);P().prototype.abs=function(){return this.throwIfDisposed(),Tt(this)};P().prototype.acos=function(){return this.throwIfDisposed(),Vm(this)};P().prototype.acosh=function(){return this.throwIfDisposed(),Gm(this)};P().prototype.add=function(r){return this.throwIfDisposed(),J(this,r)};P().prototype.all=function(r,e){return this.throwIfDisposed(),tu(this,r,e)};P().prototype.any=function(r,e){return this.throwIfDisposed(),dl(this,r,e)};P().prototype.argMax=function(r){return this.throwIfDisposed(),hl(this,r)};P().prototype.argMin=function(r){return this.throwIfDisposed(),Wm(this,r)};P().prototype.asScalar=function(){return this.throwIfDisposed(),T(this.size===1,()=>"The array must have only 1 element."),L(this,[])};P().prototype.asType=function(r){return this.throwIfDisposed(),oe(this,r)};P().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};P().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};P().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};P().prototype.as4D=function(r,e,t,n){return this.throwIfDisposed(),L(this,[r,e,t,n])};P().prototype.as5D=function(r,e,t,n,o){return this.throwIfDisposed(),L(this,[r,e,t,n,o])};P().prototype.asin=function(){return this.throwIfDisposed(),jm(this)};P().prototype.asinh=function(){return this.throwIfDisposed(),Um(this)};P().prototype.atan=function(){return this.throwIfDisposed(),Hm(this)};P().prototype.atan2=function(r){return this.throwIfDisposed(),qm(this,r)};P().prototype.atanh=function(){return this.throwIfDisposed(),Km(this)};P().prototype.avgPool=function(r,e,t,n){return this.throwIfDisposed(),ha(this,r,e,t,n)};P().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),ga(this,r,e)};P().prototype.batchNorm=function(r,e,t,n,o){return this.throwIfDisposed(),Jn(this,r,e,t,n,o)};P().prototype.broadcastTo=function(r){return this.throwIfDisposed(),xa(this,r)};P().prototype.cast=function(r){return this.throwIfDisposed(),oe(this,r)};P().prototype.ceil=function(){return this.throwIfDisposed(),Zm(this)};P().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ur(this,r,e)};P().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Pe&&(r=[r]),Qe([this,...r],e)};P().prototype.conv1d=function(r,e,t,n,o,s){return this.throwIfDisposed(),ou(this,r,e,t,n,o,s)};P().prototype.conv2dTranspose=function(r,e,t,n,o){return this.throwIfDisposed(),su(this,r,e,t,n,o)};P().prototype.conv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Jr(this,r,e,t,n,o,s)};P().prototype.cos=function(){return this.throwIfDisposed(),ya(this)};P().prototype.cosh=function(){return this.throwIfDisposed(),iu(this)};P().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),au(this,r,e,t)};P().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Qm(this,r,e)};P().prototype.depthwiseConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),xs(this,r,e,t,n,o,s)};P().prototype.dilation2d=function(r,e,t,n,o){return this.throwIfDisposed(),ef(this,r,e,t,n,o)};P().prototype.divNoNan=function(r){return this.throwIfDisposed(),tf(this,r)};P().prototype.div=function(r){return this.throwIfDisposed(),pe(this,r)};P().prototype.dot=function(r){return this.throwIfDisposed(),e_(this,r)};P().prototype.elu=function(){return this.throwIfDisposed(),ys(this)};P().prototype.equal=function(r){return this.throwIfDisposed(),Sn(this,r)};P().prototype.erf=function(){return this.throwIfDisposed(),rf(this)};P().prototype.exp=function(){return this.throwIfDisposed(),Qt(this)};P().prototype.expandDims=function(r){return this.throwIfDisposed(),cr(this,r)};P().prototype.expm1=function(){return this.throwIfDisposed(),nf(this)};P().prototype.fft=function(){return this.throwIfDisposed(),Na(this)};P().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};P().prototype.floor=function(){return this.throwIfDisposed(),ws(this)};P().prototype.floorDiv=function(r){return this.throwIfDisposed(),eu(this,r)};P().prototype.gather=function(r,e){return this.throwIfDisposed(),Qn(this,r,e)};P().prototype.greaterEqual=function(r){return this.throwIfDisposed(),hn(this,r)};P().prototype.greater=function(r){return this.throwIfDisposed(),Vt(this,r)};P().prototype.ifft=function(){return this.throwIfDisposed(),si(this)};P().prototype.irfft=function(){return this.throwIfDisposed(),_u(this)};P().prototype.isFinite=function(){return this.throwIfDisposed(),r_(this)};P().prototype.isInf=function(){return this.throwIfDisposed(),n_(this)};P().prototype.isNaN=function(){return this.throwIfDisposed(),of(this)};P().prototype.leakyRelu=function(r){return this.throwIfDisposed(),ba(this,r)};P().prototype.lessEqual=function(r){return this.throwIfDisposed(),gn(this,r)};P().prototype.less=function(r){return this.throwIfDisposed(),uu(this,r)};P().prototype.localResponseNormalization=function(r,e,t,n){return this.throwIfDisposed(),sf(this,r,e,t,n)};P().prototype.logSigmoid=function(){return this.throwIfDisposed(),s_(this)};P().prototype.logSoftmax=function(r){return this.throwIfDisposed(),pu(this,r)};P().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),lf(this,r,e)};P().prototype.log=function(){return this.throwIfDisposed(),pr(this)};P().prototype.log1p=function(){return this.throwIfDisposed(),cu(this)};P().prototype.logicalAnd=function(r){return this.throwIfDisposed(),yr(this,r)};P().prototype.logicalNot=function(){return this.throwIfDisposed(),wa(this)};P().prototype.logicalOr=function(r){return this.throwIfDisposed(),mu(this,r)};P().prototype.logicalXor=function(r){return this.throwIfDisposed(),u_(this,r)};P().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),ze(this,r,e,t)};P().prototype.maxPool=function(r,e,t,n){return this.throwIfDisposed(),_a(this,r,e,t,n)};P().prototype.max=function(r,e){return this.throwIfDisposed(),mr(this,r,e)};P().prototype.maximum=function(r){return this.throwIfDisposed(),en(this,r)};P().prototype.mean=function(r,e){return this.throwIfDisposed(),dt(this,r,e)};P().prototype.min=function(r,e){return this.throwIfDisposed(),oi(this,r,e)};P().prototype.minimum=function(r){return this.throwIfDisposed(),_s(this,r)};P().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),cf(this,r,e)};P().prototype.mod=function(r){return this.throwIfDisposed(),pf(this,r)};P().prototype.mul=function(r){return this.throwIfDisposed(),O(this,r)};P().prototype.neg=function(){return this.throwIfDisposed(),qe(this)};P().prototype.norm=function(r,e,t){return this.throwIfDisposed(),cp(this,r,e,t)};P().prototype.notEqual=function(r){return this.throwIfDisposed(),ro(this,r)};P().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),ds(this,r,e,t)};P().prototype.onesLike=function(){return this.throwIfDisposed(),sr(this)};P().prototype.pad=function(r,e){return this.throwIfDisposed(),Lr(this,r,e)};P().prototype.pool=function(r,e,t,n,o){return this.throwIfDisposed(),m_(this,r,e,t,n,o)};P().prototype.pow=function(r){return this.throwIfDisposed(),zr(this,r)};P().prototype.prelu=function(r){return this.throwIfDisposed(),va(this,r)};P().prototype.prod=function(r,e){return this.throwIfDisposed(),fu(this,r,e)};P().prototype.reciprocal=function(){return this.throwIfDisposed(),mf(this)};P().prototype.relu=function(){return this.throwIfDisposed(),$r(this)};P().prototype.relu6=function(){return this.throwIfDisposed(),hu(this)};P().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};P().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};P().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),Rg(this,r,e,t)};P().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),Fg(this,r,e,t)};P().prototype.reverse=function(r){return this.throwIfDisposed(),Kt(this,r)};P().prototype.rfft=function(){return this.throwIfDisposed(),Sa(this)};P().prototype.round=function(){return this.throwIfDisposed(),gu(this)};P().prototype.rsqrt=function(){return this.throwIfDisposed(),xu(this)};P().prototype.selu=function(){return this.throwIfDisposed(),yu(this)};P().prototype.separableConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),ff(this,r,e,t,n,o,s)};P().prototype.sigmoid=function(){return this.throwIfDisposed(),Dr(this)};P().prototype.sign=function(){return this.throwIfDisposed(),df(this)};P().prototype.sin=function(){return this.throwIfDisposed(),bu(this)};P().prototype.sinh=function(){return this.throwIfDisposed(),wu(this)};P().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};P().prototype.softmax=function(r){return this.throwIfDisposed(),Ia(this,r)};P().prototype.softplus=function(){return this.throwIfDisposed(),eo(this)};P().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),ka(this,r,e)};P().prototype.split=function(r,e){return this.throwIfDisposed(),tr(this,r,e)};P().prototype.sqrt=function(){return this.throwIfDisposed(),gt(this)};P().prototype.square=function(){return this.throwIfDisposed(),Me(this)};P().prototype.squaredDifference=function(r){return this.throwIfDisposed(),ku(this,r)};P().prototype.squeeze=function(r){return this.throwIfDisposed(),Tn(this,r)};P().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Pe?[this,r]:[this,...r];return Gt(t,e)};P().prototype.step=function(r){return this.throwIfDisposed(),vs(this,r)};P().prototype.stridedSlice=function(r,e,t,n,o,s,a,i){return this.throwIfDisposed(),xf(this,r,e,t,n,o,s,a,i)};P().prototype.sub=function(r){return this.throwIfDisposed(),le(this,r)};P().prototype.sum=function(r,e){return this.throwIfDisposed(),fe(this,r,e)};P().prototype.tan=function(){return this.throwIfDisposed(),yf(this)};P().prototype.tanh=function(){return this.throwIfDisposed(),gs(this)};P().prototype.tile=function(r){return this.throwIfDisposed(),Bn(this,r)};P().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};P().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};P().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};P().prototype.topk=function(r,e){return this.throwIfDisposed(),bf(this,r,e)};P().prototype.transpose=function(r){return this.throwIfDisposed(),Ue(this,r)};P().prototype.unique=function(r){return this.throwIfDisposed(),up(this,r)};P().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),wf(this,r,e)};P().prototype.unstack=function(r){return this.throwIfDisposed(),fr(this,r)};P().prototype.where=function(r,e){return this.throwIfDisposed(),vt(r,this,e)};P().prototype.zerosLike=function(){return this.throwIfDisposed(),Ie(this)};var $x={kernelName:Bs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,vs(oe(t,"float32"),-1))}}};var JM={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=Me(oe(t,"float32")),o=gt(le(ue(1),n));return qe(pe(r,o))}}}};var QM={kernelName:vi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=gt(le(Me(oe(t,"float32")),1));return pe(r,n)}}}};var eL={kernelName:Pn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=kt(t.shape,o);return l.length>0&&(i=fe(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(n.shape,o);return l.length>0&&(i=fe(i,l)),L(i,n.shape)}}}};var tL={kernelName:_o,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((n,o)=>{t[o]=()=>r.clone()}),t}};var rL={kernelName:ko,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var nL={kernelName:Ya,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var oL={kernelName:Ni,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,gt(le(ue(1),Me(oe(t,"float32")))))}}};var sL={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=gt(J(ue(1),Me(oe(t,"float32"))));return pe(r,n)}}}};var iL={kernelName:Ei,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=J(Me(t),Me(n)),l=O(r,pe(n,i)),u=kt(t.shape,o);return u.length>0&&(l=fe(l,u)),L(l,t.shape)},b:()=>{let i=J(Me(t),Me(n)),l=qe(O(r,pe(t,i))),u=kt(n.shape,o);return u.length>0&&(l=fe(l,u)),L(l,n.shape)}}}};var aL={kernelName:Ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,J(Me(oe(t,"float32")),1))}}};var lL={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,le(ue(1),Me(oe(t,"float32"))))}}};function qQ(r,e,t,n,o,s){let a=k(r,"dy","avgPool3dGrad"),i=k(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),T(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),T(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&T(ot(o),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${o}.`);let p={dy:l,input:u},m={filterSize:t,strides:n,pad:o,dimRoundingMode:s},f=A.runKernel(wc,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var uL=S({avgPool3dGrad_:qQ});var cL={kernelName:Za,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>uL(r,n,o,s,a,i)}}};function KQ(r,e,t,n,o){let s=k(r,"dy","avgPoolGrad"),a=k(e,"input","avgPoolGrad");T(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),T(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:n,pad:o},m=A.runKernel(bc,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pL=S({avgPoolGrad_:KQ});var mL={kernelName:vo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a}=t;return{x:()=>pL(r,n,o,s,a)}}};var fL={kernelName:Co,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[n,o]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>ze(r,o,!1,!0),b:()=>ze(n,r,!0,!1)}:!s&&a?{a:()=>ze(r,o,!1,!1),b:()=>ze(r,n,!0,!1)}:s&&!a?{a:()=>ze(o,r,!1,!0),b:()=>ze(n,r,!1,!1)}:{a:()=>ze(o,r,!0,!0),b:()=>ze(r,n,!0,!0)}}};var dL={kernelName:Ja,gradFunc:(r,e,t)=>{let{blockShape:n,crops:o}=t;return{x:()=>ka(r,n,o)}}};var hL={kernelName:SS,gradFunc:(r,e,t)=>{let n=t,o=n.inputShape,s=n.shape,a=Array.from(s);for(let l=o.length-1;l>=0;l--)if(o[l]===s[l])a[l]=1;else if(o[l]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>fe(r,i,!0)}}};var gL={kernelName:qn,gradFunc:r=>({x:()=>r.clone()})};var xL={kernelName:Io,gradFunc:r=>({x:()=>Ie(r)})};var yL={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{clipValueMin:o,clipValueMax:s}=t;return{x:()=>vt(yr(hn(n,o),gn(n,s)),r,Ie(r))}}};var bL={kernelName:Qa,inputsToSave:["x"],gradFunc:$x.gradFunc};var wL={kernelName:Vs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let n=e.map(l=>l.shape),{axis:o}=t,s=nr(o,e[0].shape)[0],a=n.map(l=>l[s]);return tr(r,a,s).map(l=>()=>l)}};var _L={kernelName:No,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return T(zn(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>op(n.shape,r,o,a,i,l),filter:()=>pp(n,r,o.shape,a,i,l)}}};var kL={kernelName:So,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Jr(r,o,s,a,i,1,l),filter:()=>pp(r,n,o.shape,s,a,i,l)}}};function XQ(r,e,t,n,o){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),T(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),T(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),T(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),T(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),T(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:n,pad:o,filterShape:t};return A.runKernel(Cc,i,l)}var vL=S({conv3DBackpropFilter_:XQ});var CL={kernelName:el,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s}=t;T(zn(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[a,i]=e;return{x:()=>gg(a.shape,r,i,o,s),filter:()=>vL(a,r,i.shape,o,s)}}};var IL={kernelName:To,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(qe(bu(oe(t,"float32"))),r)}}};var NL={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(wu(oe(t,"float32")),r)}}};var SL={kernelName:Ao,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o,exclusive:s,reverse:a}=t;return{x:()=>{let i=l_([o],n.rank),l=au(r,o,s,!a);return i!=null&&(l=Ue(l,i)),l}}}};var TL={kernelName:Eo,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:a}=t,i=n==null?[1,1]:n;T(zn(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return T(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),T(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),T(Cr(o,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'.`),a!=null&&T(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>Sg(l.shape,r,u,o,s,n,a),filter:()=>Ng(l,r,u.shape,o,s,n,a)}}};var AL={kernelName:tl,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,s={x:n,filter:o,dy:r},a={x:n,filter:o,dy:r};return{x:()=>A.runKernel(Em,s,t),filter:()=>A.runKernel(Dm,a,t)}}};var EL={kernelName:Fi,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,n={dy:r,y:t};return{x:()=>A.runKernel(Dc,n)}}};var DL={kernelName:Oi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=O(Qt(qe(Me(t))),2/Math.sqrt(Math.PI));return{x:()=>O(r,n)}}};var $L={kernelName:$o,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,t)}}};var RL={kernelName:Gs,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var FL={kernelName:Mi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Qt(t))}}};var OL={kernelName:Ro,gradFunc:r=>({x:()=>Ie(r)})};var PL={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=pe(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(fe(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=kt(n.shape,o);l.length>0&&(i=L(fe(i,l),n.shape));let u=Me(n);return qe(pe(i,oe(u,"float32")))}}}};var ML={kernelName:Oo,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:n}=t,[o,s,a,i]=e,l=i==null?ue(1):i,u=kt(s.shape,o.shape),c=[];if(s.rank===1){for(let _=0;_<o.shape.length-1;++_)c.push(o.shape[_]);c.push(1)}let p=le(o,s),m=O(r,l),f=xu(J(a,ue(n))),d=O(O(O(f,f),f),ue(-.5));return{x:()=>s.rank===1?L(O(O(r,Bn(L(f,[1,1,1,s.shape[0]]),c)),l),o.shape):L(O(O(r,f),l),o.shape),mean:()=>{let _=O(O(f,ue(-1)),m);return s.rank===1&&(_=fe(_,u)),L(_,s.shape)},variance:()=>{let _=O(O(d,p),m);return s.rank===1&&(_=fe(_,u)),L(_,s.shape)},scale:()=>{let _=O(p,f),I=O(r,_);return s.rank===1&&(I=fe(I,u)),L(I,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=fe(_,u)),L(_,s.shape)}}}};var BL={kernelName:Ws,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[n,o]=e,{axis:s}=t,a=nr(s,n.shape)[0];return{x:()=>{let l=n.shape,u=o.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=LL(0,p),h=LL(p+1,p+1+f),g=zL([c,[u],m]),x=L(r,g),b=L(o,[u]),w=zL([[p],d,h]),_=Ue(x,w),I=wf(_,b,n.shape[a]),E=af(w);return I=Ue(I,E),I},indices:()=>o}}};function LL(r,e){let t=[];for(let n=r;n<e;++n)t.push(n);return t}function zL(r){let e=[];for(let t=0;t<r.length;++t)for(let n=0;n<r[t].length;++n)e.push(r[t][n]);return e}var VL={kernelName:Po,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>Ie(t),b:()=>Ie(n)}}};var GL={kernelName:Xn,gradFunc:r=>({x:()=>oe(r,"float32")})};var WL={kernelName:Vi,gradFunc:r=>({x:()=>Ie(r)})};var jL={kernelName:Gi,gradFunc:r=>({x:()=>Ie(r)})};var UL={kernelName:Wi,gradFunc:r=>({x:()=>Ie(r)})};var HL={kernelName:Mo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{alpha:o}=t,s=Vt(n,0);return{x:()=>vt(s,r,O(r,o))}}};var qL={kernelName:Hi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,J(t,1))}}};var KL={kernelName:Lo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,oe(t,"float32"))}}};var XL={kernelName:TS,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t;return{logits:()=>{let s=!0,a=Qt(n);return le(r,O(fe(r,o,s),a))}}}};function YQ(r,e,t,n=5,o=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:n,bias:o,alpha:s,beta:a};return A.runKernel(Pc,i,l)}var YL=S({localResponseNormalizationBackprop_:YQ});var ZL={kernelName:nl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>YL(n,o,r,s,a,i,l)}}};function Rx(r,e,t,n){return e.rank<t.rank&&(e=L(e,to(e.shape,n))),r.rank<t.rank&&(r=L(r,to(r.shape,n))),{x:()=>O(r,oe(Sn(t,e),r.dtype))}}var GC={kernelName:zo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{reductionIndices:o}=n,s=e[0],a=e[1],i=nr(o,s.shape),l=Rx(r,a,s,i);return{x:()=>l.x()}}};var JL={kernelName:Bo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>O(r,oe(hn(t,n),"float32")),b:()=>O(r,oe(uu(t,n),"float32"))}}};function ZQ(r,e,t,n,o,s,a){let i=k(r,"dy","maxPool3dGrad"),l=k(e,"input","maxPool3dGrad"),u=k(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),T(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),T(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),T(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&T(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:a},g=A.runKernel(Lc,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QL=S({maxPool3dGrad_:ZQ});var ez={kernelName:ol,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>QL(r,n,o,s,a,i,l)}}};function JQ(r,e,t,n,o,s,a){let i=k(r,"dy","maxPoolGrad"),l=k(e,"input","maxPoolGrad"),u=k(t,"output","maxPoolGrad");T(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),T(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),T(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&T(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:n,strides:o,pad:s,dimRoundingMode:a};return A.runKernel(Mc,c,p)}var tz=S({maxPoolGrad_:JQ});var rz={kernelName:Vo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>tz(r,n,o,s,a,i)}}};var nz={kernelName:Go,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t,s=nr(o,n.shape),i=a_(n.shape,s)[1],l=nt(i);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return pe(O(p,er(n.shape,"float32")),l)}}}};var oz={kernelName:Wo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{axis:o}=n,[s,a]=e,i=nr(o,s.shape),l=Rx(r,a,s,i);return{x:()=>l.x()}}};var sz={kernelName:jo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>O(r,oe(gn(t,n),"float32")),b:()=>O(r,oe(Vt(t,n),"float32"))}}};var iz={kernelName:Uo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Re(r,s,n.shape)}}};var az={kernelName:Ki,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=kt(t.shape,o);return i.length>0?L(fe(r,i),t.shape):r},b:()=>{let i=O(r,qe(ws(pe(t,n)))),l=kt(n.shape,o);return l.length>0?L(fe(i,l),n.shape):i}}}};var lz={kernelName:Ho,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=O(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(fe(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=kt(n.shape,o);return l.length>0?L(fe(i,l),n.shape):i}}}};var uz={kernelName:js,gradFunc:r=>({x:()=>qe(r)})};var cz={kernelName:qo,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>ht(t.shape,"float32")}}};var pz={kernelName:Us,gradFunc:r=>({x:()=>Ie(r)})};var mz={kernelName:Hs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:n}=t;return fr(r,n).map(s=>()=>s)}};var WC={kernelName:Ko,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Re(r,s,n.shape)}}};var fz={kernelName:Xo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,n,o]=e,s=t,a=n,i=Be(s.shape,a.shape);return{a:()=>{let c=oe(a,"float32"),p=O(r,O(c,zr(s,le(c,ue(1))))),m=kt(s.shape,i);return m.length>0&&(p=fe(p,m)),L(p,s.shape)},b:()=>{let c=Vt(s,0),p=vt(c,pr(s),Ie(s)),m=O(r,O(o,p)),f=kt(a.shape,i);return f.length>0&&(m=fe(m,f)),L(m,a.shape)}}}};var dz={kernelName:Yo,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,n]=e,o=Vt(t,0);return{x:()=>vt(o,r,O(r,n)),alpha:()=>{let s=vt(o,Ie(r),O(r,t)),a=kt(n.shape,r.shape);return a.length>0&&(s=fe(s,a)),L(s,n.shape)}}}};var hz={kernelName:Do,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=pe(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(fe(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=kt(n.shape,o);l.length>0&&(i=L(fe(i,l),n.shape));let u=Me(n);return qe(pe(i,oe(u,"float32")))}}}};var gz={kernelName:ea,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,qe(Me(t)))}}};var xz={kernelName:Qo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=O(gn(t,6),vs(t));return{x:()=>O(r,oe(n,"float32"))}}};var yz={kernelName:Zo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,oe(vs(t),"float32"))}}};var bz={kernelName:qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var wz={kernelName:Jo,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>A.runKernel(Wc,o,t)}}};var _z={kernelName:il,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>A.runKernel(Gc,o,t)}}};var kz={kernelName:es,gradFunc:(r,e,t)=>{let{dims:n}=t,o=nr(n,r.shape);return{x:()=>Kt(r,o)}}};var vz={kernelName:ts,gradFunc:r=>({x:()=>Ie(r)})};var Cz={kernelName:rs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>qe(pe(r,O(zr(t,1.5),2)))}}};var Iz={kernelName:Ks,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>oe(Ie(t),"float32"),t:()=>O(r,oe(t,r.dtype)),e:()=>O(r,oe(wa(t),r.dtype))}}};var Nz={kernelName:ra,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=Vt(t,ue(0)),o=ue(N_),s=ue(S_),a=O(r,s),i=O(O(r,o),Qt(oe(t,"float32")));return vt(n,a,i)}}}};var Sz={kernelName:os,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(t,le(ue(1),t)))}}};var Tz={kernelName:oa,gradFunc:r=>({x:()=>Ie(r)})};var Az={kernelName:ns,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(ya(oe(t,"float32")),r)}}};var Ez={kernelName:na,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(iu(oe(t,"float32")),r)}}};var Dz={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{begin:o,size:s}=t,a=n.shape,[i,l]=Pw(n,o,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Lr(r,u)}}};var $z={kernelName:as,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{dim:o}=t,s=!0,a=O(r,n);return{logits:()=>le(a,O(fe(a,[o],s),n))}}};var Rz={kernelName:sa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Dr(t))}}};var jC={kernelName:al,gradFunc:(r,e,t)=>{let{blockShape:n,paddings:o}=t;return{x:()=>ga(r,n,o)}}};var UC={kernelName:Ys,gradFunc:(r,e,t)=>{let{axis:n}=t;return{x:()=>Qe(r,n)}}};var Fz={kernelName:ss,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,O(gt(oe(t,"float32")),2))}}};var Oz={kernelName:ll,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(oe(t,"float32"),2))}}};var Pz={kernelName:ls,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ue(2);return{a:()=>O(r,O(o,le(t,n))),b:()=>O(r,O(o,le(n,t)))}}};var Mz={kernelName:Yn,gradFunc:r=>({x:()=>Ie(r)})};var Lz={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=kt(t.shape,o);return l.length>0&&(i=fe(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(n.shape,o);return l.length>0&&(i=fe(i,l)),L(qe(i),n.shape)}}}};var zz={kernelName:is,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,o=n.shape.slice(),{axis:s}=t;nr(s,n.shape).forEach(u=>{o[u]=1});let i=L(r,o),l=O(i,er(n.shape,"float32"));return{x:()=>l}}};var Bz={kernelName:cs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>pe(r,Me(ya(t)))}}};var Vz={kernelName:ps,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(le(ue(1),Me(t)),r)}}};var Gz={kernelName:Mn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{reps:o}=t;return{x:()=>{let a=Ie(n);if(n.rank===1)for(let i=0;i<o[0];++i)a=J(a,Re(r,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)a=J(a,Re(r,[i*n.shape[0],l*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)a=J(a,Re(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)for(let c=0;c<o[3];++c)a=J(a,Re(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return a}}}};var Wz={kernelName:ms,gradFunc:(r,e,t)=>{let n=t,{perm:o}=n,s=af(o);return{x:()=>Ue(r,s)}}};var jz={kernelName:Zs,gradFunc:(r,e,t)=>{let n=t,{axis:o}=n;return{value:()=>Gt(r,o)}}};var Uz={kernelName:ul,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>QQ(r,t)}}};function QQ(r,e){let t=en(e,Ie(e)),n=Qn(r,t),o=hn(e,ue(0,"int32")),s=n.rank-o.rank;for(let i=0;i<s;++i)o=cr(o,i+1);o=yr(o,er(n.shape,"bool"));let a=Ie(n);return vt(o,n,a)}var Hz={kernelName:Js,gradFunc:r=>({x:()=>Ie(r)})};var eee=[$x,JM,QM,eL,tL,rL,nL,oL,sL,iL,aL,lL,cL,mL,fL,dL,hL,gL,xL,yL,bL,wL,kL,_L,CL,IL,NL,SL,TL,AL,hz,EL,DL,$L,RL,FL,PL,OL,ML,BL,VL,GL,WL,jL,UL,HL,qL,KL,XL,ZL,GC,GC,JL,ez,rz,nz,oz,sz,iz,az,lz,uz,cz,pz,mz,WC,WC,fz,dz,gz,xz,yz,bz,wz,_z,kz,vz,Cz,Iz,Nz,Sz,Tz,Az,Ez,Dz,$z,Rz,jC,jC,UC,UC,Fz,Pz,Oz,Mz,Lz,zz,Bz,Vz,Gz,Wz,jz,Uz,Hz];for(let r of eee)AS(r);var Jz={};We(Jz,{maxNorm:()=>ree,minMaxNorm:()=>see,nonNeg:()=>oee,unitNorm:()=>nee});var HC;function rr(){return HC==null&&(HC=MT().epsilon()),HC}function rn(){return"channelsLast"}var Dn=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Dn.prototype)}},Gr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Gr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},Kf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Kf.prototype)}};function po(r,e){if(Array.isArray(r)){let t=[];for(let n=0;n<e;n++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Gn(r,e){if(!r)throw new Kf(e)}function qC(r,e){let t=0;for(let n of r)n===e&&t++;return t}function wr(r){return r.length===1?r[0]:r}function bt(r){return Array.isArray(r)?r:[r]}function mo(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Pa(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var fo={};function Pp(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function KC(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>KC(e));else{let e=Object.keys(r);for(let t of e){let n=r[t];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[t]=n.value:KC(n))}}}function pi(r,e={},t={},n="object",o=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in fo)a=fo[s];else if(a=e[s],a==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in fo?[i,l]=fo.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${n}: ${a}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(fo))u[f]=fo[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},fo);for(let f of Object.keys(t))fo[f]=t[f];KC(s.config);let m=l(i,s.config,t,o);return fo=Object.assign({},p),m}else{let u=Object.assign({},fo);for(let p of Object.keys(t))fo[p]=t[p];let c=new i(s.config);return fo=Object.assign({},u),c}}}function tee(r,e){return r<e?-1:r>e?1:0}function Xf(r,e){return-1*tee(r,e)}function ho(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function qz(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function mi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function Fx(r,e,t=0,n=Infinity){return Gn(t>=0),Gn(n>=t),Array.isArray(r)&&r.length>=t&&r.length<=n&&r.every(o=>typeof o===e)}function Ht(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,n)=>Ht(t,`element ${n+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${Kz(r)}.`)}function Kz(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>Kz(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function Xz(r,e){let t=y.now(),n;return(...s)=>{let a=y.now();return a-t<e||(t=a,n=r(...s)),n}}function Ox(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function XC(r,e){return V(()=>gt(fe(O(r,r),e,!0)))}var Mp=class extends Q.Serializable{getConfig(){return{}}},Yf=class extends Mp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=XC(e,this.axis),n=ur(t,0,this.maxValue);return O(e,pe(n,J(rr(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Yf.className="MaxNorm";Q.registerClass(Yf);var Zf=class extends Mp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>pe(e,J(rr(),XC(e,this.axis))))}getConfig(){return{axis:this.axis}}};Zf.className="UnitNorm";Q.registerClass(Zf);var Jf=class extends Mp{apply(e){return $r(e)}};Jf.className="NonNeg";Q.registerClass(Jf);var Qf=class extends Mp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=XC(e,this.axis),n=J(O(this.rate,ur(t,this.minValue,this.maxValue)),O(1-this.rate,t));return O(e,pe(n,J(rr(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Qf.className="MinMaxNorm";Q.registerClass(Qf);var Yz={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Mt(r){return Pp(r)}function Zz(r,e={}){return pi(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Lt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in Yz?Yz[r]:r,config:{}};return Zz(t)}else return r instanceof Mp?r:Zz(r)}function ree(r){return new Yf(r)}function nee(r){return new Zf(r)}function oee(){return new Jf}function see(r){return new Qf(r)}var b3={};We(b3,{constant:()=>fee,glorotNormal:()=>wee,glorotUniform:()=>bee,heNormal:()=>_ee,heUniform:()=>kee,identity:()=>xee,leCunNormal:()=>vee,leCunUniform:()=>Cee,ones:()=>mee,orthogonal:()=>Iee,randomNormal:()=>hee,randomUniform:()=>dee,truncatedNormal:()=>gee,varianceScaling:()=>yee,zeros:()=>pee});var Qz=["channelsFirst","channelsLast"],e3=["nearest","bilinear"],t3=["valid","same","causal"],r3=["max","avg"],n3=["sum","mul","concat","ave"];var Lp=new Map;function Ot(r){mi(Qz,"DataFormat",r)}function o3(r){mi(e3,"InterpolationFormat",r)}function nn(r){mi(t3,"PaddingMode",r)}function YC(r){mi(r3,"PoolMode",r)}var ed=[],s3="/";function Ts(r,e){ed.push(r);try{let t=e();return ed.pop(),t}catch(t){throw ed.pop(),t}}function iee(){return ed.length===0?"":ed.join(s3)+s3}function Px(r){if(!i3(r))throw new Error("Not a valid tensor name: '"+r+"'");return iee()+r}function Mx(r){if(!i3(r))throw new Error("Not a valid tensor name: '"+r+"'");Lp.has(r)||Lp.set(r,0);let e=Lp.get(r);if(Lp.set(r,Lp.get(r)+1),e>0){let t=`${r}_${e}`;return Lp.set(t,1),t}else return r}var aee=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function i3(r){return!!r.match(aee)}function a3(r){return r===parseInt(r.toString(),10)}function go(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let n=1;for(let o=e;o<t;++o)n*=r[o];return n}function l3(r){return r=Array.isArray(r)?new Float32Array(r):r,Ct(r)}function qu(r){return oi(l3(r)).dataSync()[0]}function As(r){return mr(l3(r)).dataSync()[0]}function Wr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let n=r;n<e;++n)t.push(n);return t}function Ma(r,e){return r.asType(e)}function La(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function u3(r,e){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=La(r,1);return Lx(t,[1,e,1])})}function c3(r){let e=[go(r.shape)];return r.reshape(e)}function p3(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],go(r.shape,1)];return r.reshape(e)}function za(r,e,t){return V(()=>{switch(r.rank){case 1:return hf(r,e,t);case 2:return kg(r,[e,0],[t,r.shape[1]]);case 3:return gf(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return lp(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function ZC(r,e,t){return V(()=>{switch(r.rank){case 1:return hf(r,e,t);case 2:return kg(r,[0,e],[r.shape[0],t]);case 3:return gf(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return lp(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function td(r,e,t,n){return V(()=>{switch(r.rank){case 1:return hf(r,e,t);case 2:switch(n){case 1:return za(r,e,t);case 2:return ZC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return za(r,e,t);case 2:return gf(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return ZC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return za(r,e,t);case 2:return lp(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return lp(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return ZC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function zp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Qe(r,e)}function JC(r,e){switch(r.rank){case 1:return Kw([r,e]);case 2:return Xw([r,e],0);case 3:return Yw([r,e],0);case 4:return Zw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Lx(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Bn(r,e)}function Bp(r,e=0,t=1,n,o){return _g(r,e,t,n,o)}function xo(r,e,t,n){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let o=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(o!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let o=!1,s=!1;return no.matMul({a:r,b:e,transposeA:o,transposeB:s,bias:n?QC(r.rank,n,rn()):null,activation:t})}else{let o=r.shape.slice(),s=o.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...o,...u],m=!1,f=!1;return no.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:n?QC(r.rank,n,rn()):null,activation:t}).reshape(p)}}function zx(r,e,t){return V(()=>(Array.isArray(e)?e=Ct(e,"int32"):e=e.toInt(),Qn(r,e,t)))}function Ku(r){return O(r,r)}function QC(r,e,t){let n=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1,1]):e.reshape([1,n[3],n[0],n[1],n[2]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===4){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1]):e.reshape([1,n[2],n[0],n[1]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===3){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1]):e.reshape([1,n[1],n[0]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,n[0]]):e.reshape([1].concat(n))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function on(r,e,t){return V(()=>(t==null&&(t=rn()),Ot(t),r.add(QC(r.rank,e,t))))}function m3(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return ys(r)}function f3(r){return V(()=>pe(r,Tt(r).add(1)))}function Bx(r,e,t,n){return V(()=>a1(r,e,t,n))}function d3(r){return V(()=>{let e=J(.5,O(.2,r));return ur(e,0,1)})}function Nl(r,e,t=!1){return t?r():e()}var h3=["fanIn","fanOut","fanAvg"],g3=["normal","uniform","truncatedNormal"];function lee(r){mi(h3,"FanMode",r)}function uee(r){mi(g3,"Distribution",r)}var bn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},rd=class extends bn{apply(e,t){return ht(e,t)}};rd.className="Zeros";Q.registerClass(rd);var Xu=class extends bn{apply(e,t){return er(e,t)}};Xu.className="Ones";Q.registerClass(Xu);var nd=class extends bn{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>O(ue(this.value),er(e,t)))}getConfig(){return{value:this.value}}};nd.className="Constant";Q.registerClass(nd);var od=class extends bn{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ks(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};od.className="RandomUniform";Q.registerClass(od);var sd=class extends bn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Bp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};sd.className="RandomNormal";Q.registerClass(sd);var id=class extends bn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return vu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};id.className="TruncatedNormal";Q.registerClass(id);var ad=class extends bn{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,sp(e[0]))})}getConfig(){return{gain:this.gain}}};ad.className="Identity";Q.registerClass(ad);function cee(r,e="channelsLast"){let t,n;if(Ot(e),r.length===2)t=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let o=go(r,2);t=r[1]*o,n=r[0]*o}else if(e==="channelsLast"){let o=go(r,0,r.length-2);t=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=go(r);t=Math.sqrt(o),n=Math.sqrt(o)}return[t,n]}var jr=class extends bn{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,lee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,uee(this.distribution),this.seed=e.seed}apply(e,t){let n=cee(e),o=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,o):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(o+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return vu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return ks(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};jr.className="VarianceScaling";Q.registerClass(jr);var Vp=class extends jr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return jr.className}};Vp.className="GlorotUniform";Q.registerClass(Vp);var Gp=class extends jr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return jr.className}};Gp.className="GlorotNormal";Q.registerClass(Gp);var Wp=class extends jr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return jr.className}};Wp.className="HeNormal";Q.registerClass(Wp);var jp=class extends jr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return jr.className}};jp.className="HeUniform";Q.registerClass(jp);var Up=class extends jr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return jr.className}};Up.className="LeCunNormal";Q.registerClass(Up);var Hp=class extends jr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return jr.className}};Hp.className="LeCunNormal";Q.registerClass(Hp);var ld=class extends bn{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,o=Bp(n,0,1,"float32"),s=V1.gramSchmidt(o);return e[0]>e[1]&&(s=s.transpose()),O(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};ld.className="Orthogonal";Q.registerClass(ld);var x3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function y3(r,e={}){return pi(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function It(r){return Pp(r)}function pt(r){if(typeof r=="string"){let e=r in x3?x3[r]:r;if(e==="GlorotNormal")return new Gp;if(e==="GlorotUniform")return new Vp;if(e==="HeNormal")return new Wp;if(e==="HeUniform")return new jp;if(e==="LeCunNormal")return new Up;if(e==="LeCunUniform")return new Hp;{let t={};return t.className=e,t.config={},y3(t)}}else return r instanceof bn?r:y3(r)}function pee(){return new rd}function mee(){return new Xu}function fee(r){return new nd(r)}function dee(r){return new od(r)}function hee(r){return new sd(r)}function gee(r){return new id(r)}function xee(r){return new ad(r)}function yee(r){return new jr(r)}function bee(r){return new Vp(r)}function wee(r){return new Gp(r)}function _ee(r){return new Wp(r)}function kee(r){return new jp(r)}function vee(r){return new Up(r)}function Cee(r){return new Hp(r)}function Iee(r){return new ld(r)}var Y3={};We(Y3,{Layer:()=>Le,RNN:()=>$n,RNNCell:()=>Ol,activation:()=>Kte,add:()=>nre,alphaDropout:()=>Bre,average:()=>ore,averagePooling1d:()=>B0,averagePooling2d:()=>V0,averagePooling3d:()=>G0,avgPool1d:()=>fre,avgPool2d:()=>hre,avgPool3d:()=>xre,avgPooling1d:()=>dre,avgPooling2d:()=>gre,avgPooling3d:()=>yre,batchNormalization:()=>cre,bidirectional:()=>$re,concatenate:()=>sre,conv1d:()=>zte,conv2d:()=>Bte,conv2dTranspose:()=>Vte,conv3d:()=>Gte,conv3dTranspose:()=>Wte,convLstm2d:()=>Tre,convLstm2dCell:()=>Are,cropping2D:()=>Ute,dense:()=>Xte,depthwiseConv2d:()=>qte,dot:()=>ure,dropout:()=>Yte,elu:()=>Rte,embedding:()=>rre,flatten:()=>Jte,gaussianDropout:()=>zre,gaussianNoise:()=>Lre,globalAveragePooling1d:()=>bre,globalAveragePooling2d:()=>wre,globalMaxPool1d:()=>Fre,globalMaxPool2d:()=>Ore,globalMaxPooling1d:()=>Z3,globalMaxPooling2d:()=>J3,gru:()=>kre,gruCell:()=>vre,input:()=>m0,inputLayer:()=>$te,layerNormalization:()=>pre,leakyReLU:()=>Ote,lstm:()=>Cre,lstmCell:()=>Ire,masking:()=>Vre,maxPool1d:()=>Pre,maxPool2d:()=>Mre,maxPooling1d:()=>Q3,maxPooling2d:()=>eB,maxPooling3d:()=>_re,maximum:()=>ire,minimum:()=>are,multiply:()=>lre,permute:()=>tre,prelu:()=>Pte,reLU:()=>Fte,repeatVector:()=>Qte,reshape:()=>ere,rnn:()=>Ere,separableConv2d:()=>jte,simpleRNN:()=>Nre,simpleRNNCell:()=>Sre,softmax:()=>Mte,spatialDropout1d:()=>Zte,stackedRNNCells:()=>Dre,thresholdedReLU:()=>Lte,timeDistributed:()=>Rre,upSampling2d:()=>Hte,zeroPadding2d:()=>mre});var Nee=0;function Vx(){return Nee++}var Gx={};function Sl(r=""){return r in Gx||(Gx[r]=0),Gx[r]+=1,r+Gx[r].toString()}function Wx(r){return Array.isArray(r)&&Array.isArray(r[0])}function qp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Xe(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Kp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((n,o)=>n*o);return e}var w3="Variable",jx=class{constructor(e,t="float32",n=w3,o=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Vx(),n=n==null?w3:n,this.originalName=Px(n),this.name=Mx(this.originalName),this.trainable_=o,this.constraint=s,this.val=C_(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),See(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function See(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function ud(r){return r.map(e=>e.read())}function Xp(r){r.forEach(e=>{e[0].write(e[1])})}var Nt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},sn=class{constructor(e,t,n,o,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=i,this.id=Vx(),a!=null&&(this.originalName=Px(a),this.name=Mx(this.originalName)),this.rank=t.length}},Tee=0,Tl=class{constructor(e,t){this.callArgs=t,this.id=Tee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Aee=0,Le=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Aee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=mo(n)+"_"+Sl(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let o=e.dtype;o==null&&(o=e.inputDType),o==null&&(o="float32"),this.dtype=o}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Gr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return wr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return wr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Dn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Dn(`Layer ${this.name} is not connected, no input to return.`);return wr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Dn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Dn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return wr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let o=e[n],s=t[n];if(s==null)continue;let a=o.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let i=o.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=o.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),o=!0;for(let a of n)if(!(a instanceof sn)){o=!1;break}let s=!0;for(let a of n)if(a instanceof sn){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ts(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of bt(e))a.push(i.shape);this.build(wr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=bt(a),l=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=wr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=Eee(e),i=this.computeOutputShape(a),l,u=Dee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new sn(u,c,this,bt(e),t,this.name,p)):l=new sn(u,i,this,bt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&e[o]!=null&&e[o]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Dn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Dn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Gr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ud(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],o=ud(t);for(let s=0;s<o.length;++s){let a=o[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);n.push([i,l])}Xp(n)})}addWeight(e,t,n,o,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=pt("zeros"));let l=o.apply(t,n),u=new jx(l,n,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,o,s,a,i=null){let l=bt(e);t=bt(t),n=bt(n),o=bt(o),s=qp(s),a=qp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new Tl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Eee(r){r=bt(r);let e=[];for(let t of r)e.push(t.shape);return wr(e)}function Dee(r){return"float32"}function e0(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let n=e.inboundNodes[t];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let a=n.inputTensors[s],i=n.inboundLayers[s],l=n.nodeIndices[s],u=e0(a,i,l);for(let c of u)o.indexOf(c)===-1&&o.push(c)}return o}}}var fi=class extends Le{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Sl("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let o=new sn(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};fi.className="InputLayer";Q.registerClass(fi);function Ux(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new fi({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function di(r){if(r==null)return;let e=[],t=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(o),n.push(a)}}if(e.length>0){let o=await Promise.all(e);for(let s=0;s<o.length;++s)r[t[s]]=o[s][0];Ee(n)}}function Hx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var _3;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(_3||(_3={}));var $ee=125,Al=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},t0=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},k3=class extends Al{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let o in t){let s=t[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let a;o in this.totals?a=this.totals[o]:this.totals[o]=0;let i=V(()=>J(this.totals[o],O(s,n)));this.totals[o]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let o=O(pe(1,this.seen),this.totals[n]);t[n]=o,this.totals[n].dispose(),$t(t[n])}))}},r0=class extends Al{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),n.push(i)}}let o=await Promise.all(e);for(let s=0;s<o.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=o[s][0]}},n0=class extends Al{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=$ee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=Xz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let o=[];this.yield!=null&&(await di(n),o.push(this.yield(e,t,n))),o.push(kf()),await Promise.all(o)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await di(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await di(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(kf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await di(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await di(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(kf()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await di(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await di(e),await this.trainEnd(e))}};function qx(r,e){return r==null&&(r={}),r instanceof Al?[r]:Array.isArray(r)&&r[0]instanceof Al?r:bt(r).map(n=>new n0(n,e))}var wn=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),wn.checkForDuplicate(t),wn.constructors[e]==null&&(wn.constructors[e]=[]),wn.constructors[e].push(t)}static checkForDuplicate(e){for(let t in wn.constructors)wn.constructors[+t].forEach(o=>{if(o===e)throw new z("Duplicate callback constructor.")})}static clear(){wn.constructors={}}static createCallbacks(e){let t=[];for(let n in wn.constructors){let o=+n;e>=o&&t.push(...wn.constructors[o])}return t.map(n=>new n)}};wn.constructors={};function Kx(r,e,t,n,o,s,a,i,l){let u=new r0,c=[new k3,...wn.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new t0(c);return p.setParams({epochs:t,initialEpoch:n,samples:o,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function an(r,e={},t=!1){return pi(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function cd(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=fe(Ku(r),e,!0),n=bs(t.shape,rr()),o=gt(en(t,n));return pe(r,o)})}function hi(r,e){return V(()=>dt(Ku(le(e,r)),-1))}function Yp(r,e){return V(()=>dt(Tt(le(e,r)),-1))}function El(r,e){return V(()=>{let t=le(r,e),n=ur(Tt(r),rr(),Number.MAX_VALUE),o=Tt(pe(t,n));return O(100,dt(o,-1))})}function Ree(r,e){return V(()=>{let t=ur(e,rr(),Number.MAX_VALUE),n=pr(J(1,t)),o=ur(r,rr(),Number.MAX_VALUE),s=pr(J(1,o));return dt(Ku(le(n,s)),-1)})}function Fee(r,e){return V(()=>{let t=en(0,le(1,O(r,e)));return dt(Ku(t),-1)})}function Oee(r,e){return V(()=>{let t=en(0,le(1,O(r,e)));return dt(t,-1)})}function Pee(r,e){return V(()=>{let t=fe(O(r,e),-1),n=mr(O(le(1,r),e),-1);return en(0,J(1,le(n,t)))})}function Mee(r,e){return V(()=>{let t=Math.log(2),n=le(e,r),o=le(J(n,eo(O(-2,n))),t);return dt(o,-1)})}function Yu(r,e,t=!1){return V(()=>{if(t)e=Ia(e);else{let n=fe(e,e.shape.length-1,!0);e=pe(e,n)}return e=ur(e,rr(),1-rr()),qe(fe(O(r.toFloat(),pr(e)),e.shape.length-1))})}function Zp(r,e,t=!1){return V(()=>{let n=ws(c3(r)).toInt();e=ur(e,rr(),1-rr());let o=e.shape,s=ds(n,o[o.length-1]).reshape(o);return Yu(s,e,t)})}function Lee(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),n=e.abs().neg();return t.sub(e.mul(r)).add(n.exp().log1p())})}function Jp(r,e){return V(()=>{let t;return t=ur(e,rr(),1-rr()),t=pr(pe(t,le(1,t))),dt(Lee(r,t),-1)})}function zee(r,e){return V(()=>{let t=ur(r,rr(),1),n=ur(e,rr(),1);return fe(O(r,pr(pe(t,n))),-1)})}function Bee(r,e){return V(()=>{let t=pr(J(rr(),e));return dt(le(e,O(r,t)),-1)})}function pd(r,e){return V(()=>{let t=cd(r,-1),n=cd(e,-1),o=O(t,n);return qe(fe(o,-1))})}var md={meanSquaredError:hi,meanAbsoluteError:Yp,meanAbsolutePercentageError:El,meanSquaredLogarithmicError:Ree,squaredHinge:Fee,hinge:Oee,categoricalHinge:Pee,logcosh:Mee,categoricalCrossentropy:Yu,sparseCategoricalCrossentropy:Zp,binaryCrossentropy:Jp,kullbackLeiblerDivergence:zee,poisson:Bee,cosineProximity:pd};function Xx(r){if(typeof r=="string"){if(r in md)return md[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function fd(r,e){return V(()=>{let t=O(.5,sr(e)),n=Ma(Vt(e,t),r.dtype);return dt(Sn(r,n),-1)})}function dd(r,e){return V(()=>Ma(Sn(hl(r,-1),hl(e,-1)),"float32"))}function v3(r,e){return V(()=>yr(r.equal(1),e.equal(1)).sum().cast("float32"))}function Vee(r,e){return V(()=>yr(r.equal(1),e.equal(0)).sum().cast("float32"))}function Gee(r,e){return V(()=>yr(r.equal(0),e.equal(1)).sum().cast("float32"))}function o0(r,e){return V(()=>{let t=v3(r,e),n=Gee(r,e),o=t.add(n);return vt(Vt(o,0),t.div(o),0).cast("float32")})}function C3(r,e){return V(()=>{let t=v3(r,e),n=Vee(r,e),o=t.add(n);return vt(Vt(o,0),t.div(o),0).cast("float32")})}function Yx(r,e){return Jp(r,e)}function Zx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Sn(r,e).asType("float32")}var Wee=hi,jee=hi,Uee=Yp,Hee=Yp,qee=El,Kee=El,hd=Yu,Xee=pd,s0=Zp,Jx={binaryAccuracy:fd,categoricalAccuracy:dd,precision:o0,categoricalCrossentropy:hd,sparseCategoricalCrossentropy:s0,mse:Wee,MSE:jee,mae:Uee,MAE:Hee,mape:qee,MAPE:Kee,cosine:Xee};function I3(r){if(typeof r=="string"&&r in Jx)return Jx[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function gd(r){if(Gn(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(md))if(md[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Jx))if(Jx[t]===r){e=t;break}return e!==void 0?e:r.name}}function N3(r){let e={Adagrad:()=>Tu.adagrad(.01),Adadelta:()=>Tu.adadelta(1,.95,rr()),Adam:()=>Tu.adam(.001,.9,.999,rr()),Adamax:()=>Tu.adamax(.002,.9,.999,rr(),0),RMSProp:()=>Tu.rmsprop(.001,.9,0,rr()),SGD:()=>Tu.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var S3=1*1024*1024;function a0(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!i0(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let n=JSON.stringify(r);n.length>S3&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${S3}.`)}}function i0(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!i0(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!i0(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function T3(r,e,t,n=console.log){let o=Zee(r),s=["Layer (type)","Output shape","Param #"];o?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!o){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}n("_".repeat(e)),Qx(s,t,n),n("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)o?Jee(i[c],t,n):Qee(i[c],t,a,n),n((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=Yee(r),u=Kp(r.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(e))}function Yee(r){let e;return r.collectedTrainableWeights!=null?e=Kp(r.collectedTrainableWeights):e=Kp(r.trainableWeights),e}function Zee(r){let e=!0,t=[],n=[];for(let o in r.nodesByDepth)t.push(r.nodesByDepth[o]);for(let o of t){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){e=!1;break}n.push(...o)}if(e)for(let o of r.layers){let s=!1;for(let a of o.inboundNodes)if(n.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Qx(r,e,t=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,e[o]),n+=" ".repeat(e[o]-n.length);t(n)}function Jee(r,e,t){let n;try{n=JSON.stringify(r.outputShape)}catch(i){n="multiple"}let o=r.name,s=r.getClassName(),a=[`${o} (${s})`,n,r.countParams().toString()];Qx(a,e,t)}function Qee(r,e,t,n){let o;try{o=JSON.stringify(r.outputShape)}catch(c){o="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,o,r.countParams().toString(),l];Qx(u,e,n);for(let c=1;c<s.length;++c)Qx(["","","",s[c]],e,n)}function A3(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Zu(r,e){if(r===null)return null;if(typeof r=="string")return Pa(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];A3(e,o,s)?t.push(s):t.push(Zu(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")t[n]=o;else{let s=Pa(n);t[s]=Zu(o,s)}}return t}}function ey(r,e){if(r==null)return null;if(typeof r=="string")return mo(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];A3(e,o,s)?t.push(s):t.push(ey(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n],s=mo(n);(n==="name"||n==="className")&&typeof o=="string"?t[s]=o:t[s]=ey(o,n)}return t}}var xd="3.6.0";function ete(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return oe(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Es=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Es)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=ete(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof sn){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof sn){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},l0={},E3={};function Ju(r,e,t,n){let o=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);n!=null&&(n.maxNumTensors=-Infinity,n.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(l0[c]==null){let d=tte(a,e);p=d.sorted,m=d.recipientCounts,l0[c]=p,E3[c]=m}p=l0[c],m={},o||Object.assign(m,E3[c]);let f=new Es(e);for(let d=0;d<p.length;++d){if(n!=null){let R=Bm().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let h=p[d],g=h.sourceLayer;if(g instanceof fi)continue;let x=[],b=[],w=[],_=!1;for(let R of h.inputs){let M=f.getValue(R),G=f.getMask(R);x.push(M),b.push(G),G!=null&&(_=!0),o||(m[R.name]--,m[R.name]===0&&!e.hasKey(R)&&i.indexOf(R.name)===-1&&!M.isDisposed&&R.sourceLayer.stateful!==!0&&w.push(M))}_&&(t=t||{},t.mask=b[0]);let I=bt(g.apply(x,t)),E=null;g.supportsMasking&&(E=g.computeMask(x,b));let D=rte(h),$=Array.isArray(D)?D:[D];for(let R=0;R<$.length;++R){f.hasKey($[R])||f.add($[R],I[R],Array.isArray(E)?E[0]:E);let M=i.indexOf($[R].name);M!==-1&&(l[M]=I[R])}o||Ee(w)}return f.disposeMasks(),s?l:l[0]}function tte(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],n={};if(r.length===1){let o=D3(r[0],e);t=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:a,recipientMap:i}=D3(s,e);for(let l of a)o.has(l.name)||(t.push(l),o.add(l.name));for(let l in i)n[l]==null&&(n[l]=new Set),i[l].forEach(u=>n[l].add(u))}}return{sorted:t,recipientCounts:nte(n)}}function nte(r){let e={};for(let t in r)e[t]=r[t].size;return e}function D3(r,e){let t=new Set,n=[],o={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),n.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)o[u.name]==null&&(o[u.name]=new Set),o[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:o}}function rte(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){t=n;break}e=r.sourceLayer.getOutputAt(t)}return e}var Wn=class extends Le{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Sl(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ho(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);ho(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,I=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(I)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,I=b.tensorIndex;Gn(_===0,"input layer has >1 nodes"),Gn(I===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(I)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof fi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},o={},s={},a={},i=[],l=(b,w,_,I,E,D)=>{(I==null||E==null||D==null)&&(I=b.sourceLayer,E=b.nodeIndex,D=b.tensorIndex);let $=I.inboundNodes[E];if(_.indexOf($)!==-1)throw new Gr(`The tensor ${b.name} at layer "${I.name}" is part of a cycle.`);if(w.indexOf($)!==-1)return;this.containerNodes.add(Wn.nodeKey(I,E)),I.id in a||(a[I.id]=Object.keys(a).length),_.indexOf($)===-1&&_.push($);let R=$.inboundLayers.length;for(let M=0;M<R;M++){let G=$.inputTensors[M],j=$.inboundLayers[M],U=$.nodeIndices[M],H=$.tensorIndices[M];l(G,w,_,j,U,H)}for(w.push($);_.indexOf($)>=0;)_.splice(_.indexOf($),1);i.push($)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,_),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let I=0;I<b.inboundLayers.length;I++){let E=b.inboundLayers[I],D=b.nodeIndices[I],$=E.inboundNodes[D],R=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(w+1,R),n[$.id]=$}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Xf);this.layers=[];for(let b of d){let w=f[b];w.sort((_,I)=>{let E=a[_.id],D=a[I.id];return E<D?-1:E>D?1:0});for(let _ of w)_ instanceof Wn&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Xf);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let I of w.inputTensors)if(h.indexOf(I)===-1)throw new Gr(`Graph disconnected: cannot obtain value for tensor ${I} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let I of w.outputTensors)h.push(I);g.push(_.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(_=>_===b).length;if(w!==1)throw new Gr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},o=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,o++}let s=[];for(let a in e){let i=a;if(n[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(n[i]!=null)s.push([n[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new z(`${a.length} of ${o} weights are not set: ${a}`)}Xp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xd}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ey(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=bt(e);let n=new Es;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],e[o]);return Ju(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=bt(e);let n;return t==null?n=po(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=qp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";n[c]=u}let o=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Xf);if(o.length>1)for(let i of o){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${x}_${b}`,_=n[w];p.push(_)}let m=c.computeOutputShape(wr(p)),f=qp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Gn(l in n),s.push(n[l])}return wr(s)}runInternalGraph(e,t){t==null&&(t=po(null,e.length));let n={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];n[u.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Xf);for(let l of o){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,I]=d[0];h.mask==null&&(h.mask=I),b=bt(p.call(_,h)),w=bt(p.computeMask(_,I)),g=[_],x=[I]}else g=d.map(_=>_[0]),x=d.map(_=>_[1]),h.mask==null&&(h.mask=x),b=bt(p.call(g,h)),w=bt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let I=f[_],E=b[_],D=w[_];n[I.id]=[E,D]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Gn(l.id in n,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=n[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},n;for(let o of this.layers){n=o instanceof Wn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let a=Wn.nodeKey(o,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new z(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let o=Wn.nodeKey(t,n);this.containerNodes.has(o)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Wn.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=Wn.nodeKey(x,b),I=t[_];I==null&&(I=0),h.push([x.name,I,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,n.push(c)}e.layers=n;let o=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];o.push([i.name,c,p])}e.inputLayers=o;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,n={},o=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let b=[],w;for(let _ of x){let I=_[0],E=_[1],D=_[2];if(w=_[3]==null?{}:_[3],!(I in s)){i(g,x);return}let $=s[I];if($.inboundNodes.length<=E){i(g,x);return}let R=$.inboundNodes[E];b.push(R.outputTensors[D])}b.length>0&&g.apply(wr(b),w)}function u(g){let x=g.name,b=an(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!qz(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let w of b)l(x,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];Gn(x in s);let I=s[x].inboundNodes[b].outputTensors;m.push(I[w])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];Gn(x in s);let I=s[x].inboundNodes[b].outputTensors;f.push(I[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function ote(r,e,t){let n=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return e.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${t} must be either an array with ${n} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function ty(r,e){return ote(r,e,"classWeight")}async function ry(r,e,t,n){if(e!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let o=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Ee(o);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Ct(a,"float32")}else return null}function $3(r,e){return O(r,e)}var ste=32;function F3(r,e){let t,n,o=e;t=o.xs,n=o.ys,y.assert(t!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=R3("input",r.inputNames,t),a=R3("output",r.outputNames,n),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function R3(r,e,t){if(t instanceof Pe)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let n=[];for(let o of e){if(t[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(t[o])}return n}}function ite(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function P3(r,e,t){let n=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!n||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=t.validationData!=null,s,a;if(o)if(O3(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=ite(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;o?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=qx(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Kx(c,p,t.epochs,null,null,ate(e,t),null,o,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(n||(h=await e.iterator());n?x<t.batchesPerEpoch:!0;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:I}=F3(r,w.value),E={};E.batch=b,E.size=_[0].shape[0],await m.onBatchBegin(b,E);let D=[];if(t.classWeight!=null){let M=ty(t.classWeight,r.outputNames);for(let G=0;G<M.length;++G)D.push(await ry(I[G],null,M[G]))}let $=_.concat(I).concat(D),R=i($);Ee($);for(let M=0;M<l.length;++M){let G=l[M],j=R[M];E[G]=j,$t(j)}await m.onBatchEnd(b,E),Hx(E),b++,x++}if(n?x>=t.batchesPerEpoch:w.done){if(o){let _;O3(t.validationData)?_=bt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=bt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?ste:t.validationBatchSize,verbose:0}));for(let I=0;I<r.metricsNames.length;++I)g[`val_${r.metricsNames[I]}`]=_[I]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function ate(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function O3(r){return typeof r.iterator=="function"}function lte(r){return typeof r.next=="function"}async function M3(r,e,t){t=t||{};let n=t.batches!=null,o=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!n||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=lte(e)?e:await e.iterator(),i=0,l=0;for(;n?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=F3(r,u.value),m=c.concat(p),f=V(()=>o(m));if(Ee(m),l===0)for(let h=0;h<f.length;++h)s.push(ue(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=V(()=>J(s[h],O(d,g))),l>0&&Ee(x)}Ee(f),i+=d,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=pe(s[u],i),Ee(c)}return wr(s)}function ny(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Qp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(n=>za(n,e,t-e)):za(r,e,t-e)}function oy(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>oy(t,e)):zx(r,e.dtype==="int32"?e:e.toInt()))}function sy(r,e){let t=[],n=0,o=null;for(;n<r;)o=n+e,o>=r&&(o=r),t.push([n,o]),n=o;return t}async function ute(r,e,t,n,o,s,a,i,l,u,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,o,f,"steps_per_epoch"),x;g!=null&&(x=Wr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=Kx(i,a,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let I={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let E=Ct(x),D=sy(g,o);for(let $=0;$<D.length;++$){let R={};if(await b.onBatchBegin($,R),V(()=>{let M=D[$][0],G=D[$][1],j=za(E,M,G-M);R.batch=$,R.size=G-M;let U=oy(t,j),H=e(U);for(let q=0;q<n.length;++q){let X=n[q],ne=H[q];R[X]=ne,$t(ne)}if($===D.length-1&&h){let q=r.testLoop(l,u,o);for(let X=0;X<n.length;++X){let ne=n[X],Y=q[X];$t(Y),I["val_"+ne]=Y}}}),await b.onBatchEnd($,R),Hx(R),r.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(_,I),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function L3(r,e,t,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,a,i,l,u,c;try{let p=n.batchSize==null?32:n.batchSize;ny(p);let m=!1,f=await r.standardizeUserData(e,t,n.sampleWeight,n.classWeight,m,p);o=f[0],s=f[1],c=f[2];let d=!1,h;if(n.validationData!=null&&n.validationData.length>0){if(d=!0,n.validationData.length===2)a=n.validationData[0],i=n.validationData[1];else throw n.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let D=!0,$=await r.standardizeUserData(a,i,null,null,D,p);l=$[0],u=$[1],h=l.concat(u)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){d=!0;let D=Math.floor(o[0].shape[0]*(1-n.validationSplit)),$=o[0].shape[0];l=Qp(o,D,$),o=Qp(o,0,D),u=Qp(s,D,$),s=Qp(s,0,D),h=l.concat(u)}else n.validationSteps!=null&&(d=!0);let g=o.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map(D=>"val_"+D))):(w=null,h=[],_=b.slice());let I=qx(n.callbacks,n.yieldEvery);return await ute(r,x,g,b,p,n.epochs,n.verbose,I,w,h,n.shuffle,_,n.initialEpoch,null,null)}finally{r.isTraining=!1,Dl(o,e),Dl(s,t),Dl(l,a),Dl(u,i),c!=null&&Ee(c)}}function u0(r){let e=[];r instanceof Pe&&(r=[r]);for(let t=0;t<r.length;++t){let n=r[t];if(n.rank===1)e.push(La(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(n)}}return e}function Dl(r,e){if(r==null)return;let t=[];if(e instanceof Pe)t.push(e.id);else if(Array.isArray(e))e.forEach(o=>t.push(o.id));else if(e!=null)for(let o in e){let s=e[o];t.push(s.id)}let n=[];if(r instanceof Pe)t.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{t.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];t.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function cte(r){return r instanceof Pe}function c0(r){return Array.isArray(r)}function z3(r){return!cte(r)&&!c0(r)}function B3(r,e,t,n=!0,o=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(c0(r)&&r.length>0)a=!0;else if(z3(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(z3(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(c0(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${o} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=u0(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function pte(r,e,t){let n=ho(r.map(s=>s.shape[0]));n.sort();let o=ho(e.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function mte(r,e,t){let n=[hi,Jp,Yu];for(let o=0;o<r.length;++o){let s=r[o],a=e[o],i=t[o];if(a!=null){if(a===Yu&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function V3(r,e,t,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function fte(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(n=>t);{let n=[];for(let o of e){let s=t.hasOwnProperty(o)?t[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var dte="layers-model",jn=class extends Wn{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");T3(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=N3(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Br))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Xx(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Xx(i))}else{let a=Xx(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ts("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let o=fte(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Ts("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=o[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Jp?["accuracy","acc"].indexOf(d)!==-1?m=fd:["crossentropy","ce"].indexOf(d)!==-1&&(m=Yx):this.lossFunctions[a]===Zp?["accuracy","acc"].indexOf(d)!==-1?m=Zx:["crossentropy","ce"].indexOf(d)!==-1&&(m=s0):["accuracy","acc"].indexOf(d)!==-1?m=dd:["crossentropy","ce"].indexOf(d)!==-1&&(m=hd);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=I3(d),p=c+gd(d);let h;Ts(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let o=n.batchSize==null?32:n.batchSize;ny(o);let s=!0,a=this.standardizeUserDataXY(e,t,s,o);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,o,n.verbose,n.steps);return wr(u)}finally{Dl(a[0],e),Dl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),M3(this,e,t)}checkNumSamples(e,t,n,o="steps"){let s;if(n!=null){if(s=null,t!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),o=n?t:[t],s=this.retrieveSymbolicTensors(o),a=new Es;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Ju(s,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=po(null,e.length),n=e.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw t.forEach((s,a)=>{s==null&&o.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let o=this.checkNumSamples(e);if(n)throw new Se("Verbose predictLoop() is not implemented yet.");let s=sy(o,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=Qp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Es(m);return Ju(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return wr(a.map(i=>Qe(i,0)))})}predict(e,t={}){let n=u0(e);V3(n,this.inputNames,this.feedInputShapes,!1);try{let o=t.batchSize==null?32:t.batchSize;return ny(o),this.predictLoop(n,o)}finally{Dl(n,e)}}predictOnBatch(e){V3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,o){if(this.optimizer_==null)throw new Gr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Zp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=B3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=B3(t,this.feedOutputNames,s,!1,"target"),pte(e,t,null),mte(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&e[0].shape[0]%o!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,o,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(o!=null){let c=ty(o,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await ry(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,n,o=0,s){return V(()=>{let a=this.checkNumSamples(t,n,s,"steps"),i=[];if(o>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=sy(a,n),u=Ct(Wr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=za(u,p,m-p),d=oy(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(ue(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=J(i[g],O(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=pe(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let o=e[n],s=o;qC(e,o)>1&&(s+=`_${qC(e.slice(0,n),o)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),o=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new Es(p),f=Ju(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](o[h],f[h]);s[h]!=null&&(x=$3(x,s[h]));let b=dt(x);t.push(b),h===0?d=x:d=J(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=dt(x(o[b],f[b]))}$t(g),a.push(g)}return d=dt(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,o=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:o[u]});let i=new Es(a),l=Ju(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=dt(c(s[u],l[u]));u===0?n=p:n=J(n,p),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=dt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,n={}){return L3(this,e,t,n)}async fitDataset(e,t){return P3(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),o=n[0],s=n[1],i=this.makeTrainFunction()(o.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ee(i),wr(l)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<o.length;++a)n&&!o[a].trainable||t.push({name:o[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Bm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Bm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=mo(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>mo(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let o of t)if(typeof n[o]=="string")e[o]=mo(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[mo(gd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>mo(gd(e)));{let e={};for(let t in this.metrics)e[t]=mo(gd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Zu(e.optimizer_config),n=an(t),o;if(typeof e.loss=="string")o=Pa(e.loss);else if(Array.isArray(e.loss))o=e.loss.map(a=>Pa(a));else if(e.loss!=null){o={};for(let a in e.loss)o[a]=Pa(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Pa(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Pa(e.metrics[a])}this.compile({loss:o,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=Er.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Er.encodeWeights(this.getNamedWeights(t)),o=!1,s=null,i={modelTopology:this.toJSON(s,o),format:dte,generatedBy:`TensorFlow.js tfjs-layers v${xd}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Er.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...p),n.data=Er.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let u=!0;a0(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){a0(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};jn.className="Model";Q.registerClass(jn);var p0=class extends jn{};p0.className="Functional";Q.registerClass(p0);async function G3(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let n=Zu(t),o=an(n,e);if(r.weightsManifest!=null){let s=await Er.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(i=>i.originalName)),a={};for(let i of o.weights)a[i.originalName]=s[i.originalName];o.loadWeights(a),Ee(s)}return o}async function W3(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Er.getLoadHandlers(r,e);if(t.length===0)t.push(Er.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return hte(r,void 0,e)}async function hte(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=t.strict==null?!0:t.strict,a=n.weightData!=null&&n.weightSpecs!=null&&s,i=an(Zu(o),e,a),l=n.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),n.userDefinedMetadata!=null&&i.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=gte(n.weightData,n.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ee(u),Ee(c.map(p=>p.tensor))}return i}function gte(r,e){let t=Er.decodeWeights(r,e),n={},o=[];return e.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:t[s.name]}):n[s.name]=t[s.name]}),{modelWeights:n,optimizerWeights:o}}var Ba=class extends jn{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Sl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ba||e instanceof jn,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Ux({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(o)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=e0(this.outputs[0])}this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:po(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=e.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Xe(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new jn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},o=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Ba))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=an(l,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ba.className="Sequential";Q.registerClass(Ba);function xte(r){return new jn(r)}function yte(r){return new Ba(r)}function bte(r,e){return e==null&&(e={}),W3(r,e)}function m0(r){return Ux(r)}function wte(r,e){wn.registerCallbackConstructor(r,e)}var ln=class extends Q.Serializable{getConfig(){return{}}},f0=class extends ln{apply(e,t=1){return m3(e,t)}};f0.className="elu";Q.registerClass(f0);var d0=class extends ln{apply(e){return yu(e)}};d0.className="selu";Q.registerClass(d0);var h0=class extends ln{apply(e){return $r(e)}};h0.className="relu";Q.registerClass(h0);var g0=class extends ln{apply(e){return V(()=>_s(6,$r(e)))}};g0.className="relu6";Q.registerClass(g0);var x0=class extends ln{apply(e){return e}};x0.className="linear";Q.registerClass(x0);var y0=class extends ln{apply(e){return Dr(e)}};y0.className="sigmoid";Q.registerClass(y0);var b0=class extends ln{apply(e){return d3(e)}};b0.className="hardSigmoid";Q.registerClass(b0);var w0=class extends ln{apply(e){return eo(e)}};w0.className="softplus";Q.registerClass(w0);var _0=class extends ln{apply(e){return f3(e)}};_0.className="softsign";Q.registerClass(_0);var k0=class extends ln{apply(e){return gs(e)}};k0.className="tanh";Q.registerClass(k0);var yd=class extends ln{apply(e,t=-1){return Ia(e,t)}};yd.className="softmax";Q.registerClass(yd);var v0=class extends ln{apply(e,t=-1){return pu(e,t)}};v0.className="logSoftmax";Q.registerClass(v0);var C0=class extends ln{apply(e,t=1){return V(()=>Dr(e.mul(t)).mul(e))}};C0.className="swish";Q.registerClass(C0);var I0=class extends ln{apply(e){return V(()=>O(e,gs(eo(e))))}};I0.className="mish";Q.registerClass(I0);function Ds(r){return r.getClassName()}function N0(r,e={}){return pi(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function $s(r){if(r==null){let e={};return e.className="linear",e.config={},N0(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},N0(e)}else return r instanceof ln?r:N0(r)}function S0(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var T0=class extends Q.Serializable{},Qu=class extends T0{constructor(e){super();S0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=ht([1]);return this.hasL1&&(t=J(t,fe(O(this.l1,Tt(e))))),this.hasL2&&(t=J(t,fe(O(this.l2,Ku(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Qu.className="L1L2";Q.registerClass(Qu);function j3(r){return S0(r),new Qu({l1:r!=null?r.l1:null,l2:0})}function U3(r){return S0(r),new Qu({l2:r!=null?r.l2:null,l1:0})}var H3={l1l2:"L1L2"};function it(r){return Pp(r)}function q3(r,e={}){return pi(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function wt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in H3?H3[r]:r,config:{}};return q3(t)}else return r instanceof T0?r:q3(r)}var bd=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let n=$r(e);return this.maxValue!=null&&(n=ur(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};bd.className="ReLU";Q.registerClass(bd);var wd=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Fe(e);return ba(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};wd.className="LeakyReLU";Q.registerClass(wd);var _d=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Xe(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)t[o-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<e.length;++o)n[o]=e[o];this.inputSpec=[new Nt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Fe(e),va(e,this.alpha.read())}getConfig(){let e={alphaInitializer:It(this.alphaInitializer),alphaRegularizer:it(this.alphaRegularizer),alphaConstraint:Mt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};_d.className="PReLU";Q.registerClass(_d);var kd=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Fe(e);return ys(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};kd.className="ELU";Q.registerClass(kd);var vd=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Fe(e);return n.mul(Ma(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};vd.className="ThresholdedReLU";Q.registerClass(vd);var Cd=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new yd().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Fe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cd.className="Softmax";Q.registerClass(Cd);function $l(r,e,t){if(typeof r=="number")return po(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let n=0;n<e;++n){let o=r[n];if(!a3(o))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function _n(r,e,t,n,o=1){if(r==null)return r;let s=e+(e-1)*(o-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+n-1)/n)}function Rs(r,e,t,n){if(r==null)return null;if(n==="valid")r=r*e+As([t-e,0]);else if(n==="same")r=r*e;else throw new z(`Unsupport padding mode: ${n}.`);return r}function Id(r,e){return V(()=>(Ot(e),e==="channelsFirst"?Ue(r,[0,2,3,1]):r))}function A0(r,e){return V(()=>(Ot(e),e==="channelsFirst"?Ue(r,[0,2,3,4,1]):r))}function _te(r,e,t,n=1,o="valid",s,a=1){return V(()=>{if(s==null&&(s=rn()),Ot(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ue(r,[0,2,1])),o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=ou(r,e,n,o==="same"?"same":"valid","NWC",a);return t!=null&&(i=on(i,t)),i})}function K3(r,e,t,n=[1,1],o="valid",s,a,i=null){return V(()=>{if(s==null&&(s=rn()),Ot(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=Id(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=no.conv2d({x:l,filter:e,strides:n,pad:o==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function kte(r,e,t,n=[1,1,1],o="valid",s,a){return V(()=>{if(s==null&&(s=rn()),Ot(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=A0(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Jm(i,e,n,o==="same"?"same":"valid","NDHWC",a),t!=null&&(i=on(i,t)),s==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var em=class extends Le{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",em.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=$l(t.kernelSize,e,"kernelSize"),this.strides=$l(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,nn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=$s(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=$l(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Gn("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Fx(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ds(this.activation),useBias:this.useBias,biasInitializer:It(this.biasInitializer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ec=class extends em{constructor(e,t){super(e,t);this.kernel=null,ec.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let n,o=this.bias==null?null:this.bias.read(),s=Ox(this.activation.getClassName());if(s!=null&&this.rank===2)n=K3(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=_te(e,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=K3(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=kte(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Xe(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=_n(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let o=[e[0]];return this.dataFormat==="channelsLast"?(o=o.concat(t),o.push(this.filters)):(o.push(this.filters),o=o.concat(t)),o}getConfig(){let e={filters:this.filters,kernelInitializer:It(this.kernelInitializer),kernelRegularizer:it(this.kernelRegularizer),kernelConstraint:Mt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Rl=class extends ec{constructor(e){super(2,e);Rl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Fx(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Rl.className="Conv2D";Q.registerClass(Rl);var Fl=class extends ec{constructor(e){super(3,e);Fl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Fl.className="Conv3D";Q.registerClass(Fl);var Nd=class extends Rl{constructor(e){super(e);if(this.inputSpec=[new Nt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Xe(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Nt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Fe(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=o[a],u=o[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Rs(l,m,c,this.padding),h=Rs(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,1]));let x=su(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ue(x,[0,3,1,2])),this.bias!=null&&(x=on(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Xe(e);let t=e.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[o]=Rs(t[o],l,a,this.padding),t[s]=Rs(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Nd.className="Conv2DTranspose";Q.registerClass(Nd);var Sd=class extends Fl{constructor(e){super(e);if(this.inputSpec=[new Nt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Xe(e),e.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Nt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Fe(e);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i,l;this.dataFormat==="channelsFirst"?(l=2,a=3,i=4):(l=1,a=2,i=3);let u=o[l],c=o[a],p=o[i],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=Rs(u,h,m,this.padding),w=Rs(c,g,f,this.padding),_=Rs(p,x,d,this.padding),I=[s,b,w,_,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,4,1]));let E=Jw(n,this.kernel.read(),I,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(E=Ue(E,[0,4,1,2,3])),this.bias!==null&&(E=on(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(e){e=Xe(e);let t=e.slice(),n,o,s,a;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,a=4):(n=4,o=1,s=2,a=3);let i=this.kernelSize[0],l=this.kernelSize[1],u=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return t[n]=this.filters,t[o]=Rs(t[o],c,i,this.padding),t[s]=Rs(t[s],p,l,this.padding),t[a]=Rs(t[a],m,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sd.className="Conv3DTranspose";Q.registerClass(Sd);var E0=class extends ec{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=Xe(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Nt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let n;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),n=ff(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ue(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=It(this.depthwiseInitializer),e.pointwiseInitializer=It(this.pointwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.pointwiseRegularizer=it(this.pointwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseConstraint),e.pointwiseConstraint=Mt(this.pointwiseConstraint),e}};E0.className="SeparableConv";var Td=class extends E0{constructor(e){super(2,e)}};Td.className="SeparableConv2D";Q.registerClass(Td);var tc=class extends ec{constructor(e){super(1,e);tc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Fx(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};tc.className="Conv1D";Q.registerClass(tc);var Ad=class extends Le{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let n=td(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return td(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=td(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return td(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ad.className="Cropping2D";Q.registerClass(Ad);var Ed=class extends Le{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,o3(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=Fe(e),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Ue(n,[0,2,3,1]);let s=this.size[0]*o[2],a=this.size[1]*o[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a]);return Ue(i,[0,3,1,2])}else{let s=this.size[0]*o[1],a=this.size[1]*o[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ed.className="UpSampling2D";Q.registerClass(Ed);function vte(r,e,t=[1,1],n="valid",o,s){return V(()=>{o==null&&(o=rn()),Ot(o);let a=Id(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=xs(a,e,t,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}var Dd=class extends em{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=Xe(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Fe(e);let n=vte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=_n(t,this.kernelSize[0],this.padding,this.strides[0]),a=_n(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],o,s,a]:[e[0],s,a,o]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=It(this.depthwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseRegularizer),e}};Dd.className="DepthwiseConv2D";Q.registerClass(Dd);function D0(r,e,t,n){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(t=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return e=o(e),t=o(t),{inputs:r,initialState:e,constants:t}}function $0(r,e,t,n=!1,o,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Wr(2,l));if(e=Ue(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=o.asType("bool").asType("float32"),o.rank===l-1&&(o=cr(o,-1)),o=Ue(o,u)),n&&(e=Kt(e,0),o!=null&&(o=Kt(o,0)));let c=[],p,m=t,f=e.shape[0],d=fr(e),h;o!=null&&(h=fr(o));for(let x=0;x<f;++x){let b=d[x],w=V(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let _=V(()=>{let I=h[x],E=sr(I).sub(I),D=w[0].mul(I).add(m[0].mul(E)),$=m.map((R,M)=>w[1][M].mul(I).add(R.mul(E)));return{output:D,newStates:$}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Gt(c,1)),[p,g,m]})}var $n=class extends Le{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new tm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Nt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Wx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],o;if(this.returnSequences?o=[e[0],e[1],n]:o=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[o].concat(s)}else return o}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Wx(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,o=e.slice(2);this.inputSpec[0]=new Nt({shape:[n,null,...o]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Nt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Dn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ht([n,o])):this.states_=[ht([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ht([n,o])):this.states_[0]=ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let o=0;o<this.states_.length;++o){let s=e[o],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,i=[n,a];if(!y.arraysEqual(s.shape,i))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>$t(o.clone()))})}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=D0(e,n,o,this.numConstants);e=s.inputs,n=s.initialState,o=s.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Nt({shape:u.shape}));i=i.concat(this.stateSpec)}if(o!=null&&(t.constants=o,a=a.concat(o),this.numConstants=o.length),a[0]instanceof sn){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:o},u=$0((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=ht(e.shape);return t=fe(t,[1,2]),t=La(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Lx(t,[1,n]):t):this.cell.stateSize>1?[Lx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===$n.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let o=t.cell,s=an(o,n);return new e(Object.assign(t,{cell:s}))}};$n.className="RNN";Q.registerClass($n);var Ol=class extends Le{},rm=class extends Ol{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=$s(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=qu([1,As([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,As([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Xe(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let o=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Va({ones:()=>sr(e),rate:this.dropout,training:o})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Va({ones:()=>sr(n),rate:this.recurrentDropout,training:o}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=xo(O(e,a),this.kernel.read()):s=xo(e,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),i!=null&&(n=O(n,i));let l=J(s,xo(n,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};rm.className="SimpleRNNCell";Q.registerClass(rm);var $d=class extends $n{constructor(e){e.cell=new rm(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return new e(t)}};$d.className="SimpleRNN";Q.registerClass($d);var nm=class extends Ol{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=$s(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$s(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=qu([1,As([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,As([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Xe(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,o=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Va({ones:()=>sr(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Va({ones:()=>sr(o),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=O(e,s[0]));let c=xo(e,this.kernel.read());this.useBias&&(c=on(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=O(o,a[0]));let p=this.recurrentKernel.read(),[m,f]=tr(p,[2*this.units,this.units],p.rank-1),d=xo(o,m),[h,g,x]=tr(c,3,c.rank-1),[b,w]=tr(d,2,d.rank-1);i=this.recurrentActivation.apply(J(h,b)),l=this.recurrentActivation.apply(J(g,w));let _=xo(O(l,o),f);u=this.activation.apply(J(x,_));let I=J(O(i,o),O(J(1,qe(i)),u));return[I,I]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),recurrentActivation:Ds(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};nm.className="GRUCell";Q.registerClass(nm);var Rd=class extends $n{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new nm(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Rd.className="GRU";Q.registerClass(Rd);var Pl=class extends Ol{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=$s(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$s(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=qu([1,As([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,As([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Xe(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;o=new(t=class extends bn{apply(l,u){let c=s.apply([a]),p=new Xu().apply([a]),m=s.apply([a*2]);return JC(JC(c,p),m)}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Va({ones:()=>sr(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Va({ones:()=>sr(o),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=O(e,a[0]));let m=xo(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=O(o,i[0])),m=J(m,xo(o,this.recurrentKernel.read())),this.useBias&&(m=on(m,this.bias.read()));let[f,d,h,g]=tr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=J(O(u,s),O(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=O(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),recurrentActivation:Ds(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Pl.className="LSTMCell";Q.registerClass(Pl);var Fd=class extends $n{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Pl(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fd.className="LSTM";Q.registerClass(Fd);var tm=class extends Ol{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),o=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?o.push(n.splice(0,i.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];n=o[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=l.call(a,t),s.push(a.slice(1))}n=[];for(let i of s.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){Wx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,o)=>{Ts(`RNNCell_${o}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(t)};return Object.assign({},e,o)}static fromConfig(e,t,n={}){let o=[];for(let s of t.cells)o.push(an(s,n));return new e({cells:o})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ud(e)}setWeights(e){let t=[];for(let n of this.cells){let o=n.weights.length,s=e.splice(o);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}Xp(t)}};tm.className="StackedRNNCells";Q.registerClass(tm);function Va(r){let{ones:e,rate:t,training:n=!1,count:o=1}=r,s=()=>Bx(e(),t),a=()=>Nl(s,e,n);return!o||o<=1?$t(a().clone()):Array(o).fill(void 0).map(a).map(l=>$t(l.clone()))}var Cte=function(r,e){var t={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&e.indexOf(n)<0&&(t[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)e.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(t[n[o]]=r[n[o]]);return t};var R0=class extends $n{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Nt({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],a=ht(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Dn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_=[ht(s)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_[0]=ht(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>$t(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:o,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=_n(u,o[0],s,a[0],i[0]),m=_n(c,o[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[n,p,m]:[p,m,n]]}};R0.className="ConvRNN2D";var om=class extends Pl{constructor(e){let{filters:t,kernelSize:n,strides:o,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=$l(n,2,"kernelSize"),this.kernelSize.forEach(l=>Ht(l,"kernelSize")),this.strides=$l(o||1,2,"strides"),this.strides.forEach(l=>Ht(l,"strides")),this.padding=s||"valid",nn(this.padding),this.dataFormat=a||"channelsLast",Ot(this.dataFormat),this.dilationRate=$l(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Ht(l,"dilationRate"))}build(e){var t;e=Xe(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let o=e[n],s=4,a=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends bn{apply(m,f){let d=u.apply([c]),h=er([c]),g=u.apply([c*2]);return zp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,o=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Va({ones:()=>sr(o),rate:this.dropout,training:n,count:i}));let l=this.dropoutMask,u=(ee,ie,me)=>!ie||!ie[me]?ee:O(ie[me],ee),c=u(o,l,0),p=u(o,l,1),m=u(o,l,2),f=u(o,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Va({ones:()=>sr(s),rate:this.recurrentDropout,training:n,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),w=3,[_,I,E,D]=tr(this.kernel.read(),i,w),[$,R,M,G]=this.useBias?tr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,$,this.padding),p=this.inputConv(p,I,R,this.padding),m=this.inputConv(m,E,M,this.padding),f=this.inputConv(f,D,G,this.padding);let[j,U,H,q]=tr(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,j),g=this.recurrentConv(g,U),x=this.recurrentConv(x,H),b=this.recurrentConv(b,q);let X=this.recurrentActivation.apply(J(c,h)),ne=this.recurrentActivation.apply(J(p,g)),Y=J(O(ne,a),O(X,this.activation.apply(J(m,x)))),re=O(this.recurrentActivation.apply(J(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Cte(e,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(e,t,n,o){let s=Jr(e,t,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?on(s,n,this.dataFormat):s}recurrentConv(e,t){return Jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};om.className="ConvLSTM2DCell";Q.registerClass(om);var Od=class extends R0{constructor(e){let t=new om(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Od.className="ConvLSTM2D";Q.registerClass(Od);var sm=class extends Le{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?t[o]:this.noiseShape[o]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);if(0<this.rate&&this.rate<1){let o=t.training==null?!1:t.training,s=this.getNoiseShape(n);return Nl(()=>Bx(n,this.rate,s,this.seed),()=>n,o)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};sm.className="Dropout";Q.registerClass(sm);var Pd=class extends sm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Pd.className="SpatialDropout1D";Q.registerClass(Pd);var Md=class extends Le{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=$s(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Xe(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Xe(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=Ox(this.activation.getClassName()),s;return o!=null?s=xo(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=xo(n,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ds(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Md.className="Dense";Q.registerClass(Md);var Ld=class extends Le{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Xe(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],go(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=n.transpose(o)}return p3(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ld.className="Flatten";Q.registerClass(Ld);var zd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.activation=$s(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ds(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};zd.className="Activation";Q.registerClass(zd);var Bd=class extends Le{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Fe(e),u3(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Bd.className="RepeatVector";Q.registerClass(Bd);var Vd=class extends Le{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",o=t.slice(),s=1,a=null;for(let l=0;l<o.length;++l){let u=o[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=go(e);if(a!==null){if(s===0||i%s!=0)throw new z(n);o[a]=i/s}else if(i!==s)throw new z(n);return o}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return n.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Vd.className="Reshape";Q.registerClass(Vd);var Gd=class extends Le{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Wr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Nt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Xe(e);let t=e.slice();return this.dims.forEach((n,o)=>{t[o+1]=e[n]}),t}call(e,t){return Ue(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Gd.className="Permute";Q.registerClass(Gd);var Wd=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Fe(e),o=-1;return dl(ro(n,this.maskValue),o)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=-1,s=!0,a=dl(ro(n,this.maskValue),o,s);return n.mul(a.asType(n.dtype))})}};Wd.className="Masking";Q.registerClass(Wd);var jd=class extends Le{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Fe(e),ro(e,Ie(e))):null)}computeOutputShape(e){if(e=Xe(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let o=0;o<t.length;++o){let s=t[o],a=e[o+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);return n.dtype!=="int32"&&(n=Ma(n,"int32")),zx(this.embeddings.read(),n.as1D()).reshape(Xe(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:It(this.embeddingsInitializer),embeddingsRegularizer:it(this.embeddingsRegularizer),activityRegularizer:it(this.activityRegularizer),embeddingsConstraint:Mt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jd.className="Embedding";Q.registerClass(jd);var Ml=class extends Le{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let o=0;o<t.length;++o){let s=e[e.length-t.length+o],a=t[o];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Xe(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=ho(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let o=e.map(s=>s.length);e.indexOf(null)===-1&&ho(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],o=e.map(s=>s.rank);if(o.indexOf(null)===-1){let s=As(o);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=La(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(go(c.slice(1))));f=Ue(f,[1,0]),f=f.reshape(m),n.push(f),s=!0}else if(u>1){let c=Wr(1,u).concat([0]);n.push(Ue(l,c)),s=!0}else n.push(l)}let a=this.mergeFunction(n),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ue(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Wr(0,i-1));a=Ue(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let o=1;o<e.length;++o){let s=e[o]==null?null:e[o].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let o of e)o!=null&&o[0]!==null&&n.push(o[0]);return n=ho(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(o=>o==null))return null;t=t.map(o=>o==null?o:cr(o,0));let n=t[0];for(let o=1;o<t.length-1;++o)n=yr(n,t[o]);return n})}},Ud=class extends Ml{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Ud.className="Add";Q.registerClass(Ud);var Hd=class extends Ml{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=O(t,e[n]);return t})}};Hd.className="Multiply";Q.registerClass(Hd);var qd=class extends Ml{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return O(1/e.length,t)})}};qd.className="Average";Q.registerClass(qd);var Kd=class extends Ml{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=en(t,e[n]);return t})}};Kd.className="Maximum";Q.registerClass(Kd);var Xd=class extends Ml{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_s(t,e[n]);return t})}};Xd.className="Minimum";Q.registerClass(Xd);var Yd=class extends Ml{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let o of e)if(o!=null){t=!1;break}if(t)return;let n=[];for(let o=0;o<e.length;++o){let s=e[o].slice();s.splice(this.axis,1);let a=!1;for(let i of n)if(y.arraysEqual(i,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>zp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let o=[];for(let a=0;a<e.length;++a)t[a]==null?o.push(sr(e[a]).asType("bool")):t[a].rank<e[a].rank?o.push(cr(t[a],-1)):o.push(t[a]);let s=Qe(o,this.axis);return tu(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Yd.className="Concatenate";Q.registerClass(Yd);function Zd(r,e){for(;r<0;)r+=e;return r}function Ite(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=e.shape.length;t==null&&(t=[n-1,o-2]);let s=t;return V(()=>{let a;if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;n>o?l=n+o-3:l=n-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var Jd=class extends Ml{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);if(t[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${t[o[0]]} !== ${n[o[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,a)=>Zd(s,e[a].shape.length)):o=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=cd(t,o[0]),n=cd(n,o[1])),Ite(t,n,o)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);t.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Jd.className="Dot";Q.registerClass(Jd);var Qd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);return Nl(()=>Bp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Qd.className="GaussianNoise";Q.registerClass(Qd);var eh=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Fe(e);return this.rate>0&&this.rate<1?Nl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return n.mul(Bp(n.shape,1,s))},()=>n,t.training||!1):n})}};eh.className="GaussianDropout";Q.registerClass(eh);var th=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Nl(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=hn(ks(n),this.rate);u=Ma(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};th.className="AlphaDropout";Q.registerClass(th);function rh(r,e,t,n,o,s=.001){let a;if(r.rank===2)a=Uw(r,e,t,n,o,s);else if(r.rank===3)a=Hw(r,e,t,n,o,s);else if(r.rank===4)a=qw(r,e,t,n,o,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function Nte(r,e,t,n,o=.001){return V(()=>{let s=ip(r,n),a=s.mean,i=s.variance;return[rh(r,a,i,t,e,o),a,i]})}function Ste(r,e,t,n,o=.001){return V(()=>{let s=ip(r,n),a=s.mean,i=s.variance,l=[];for(let d of Wr(0,r.rank))n.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[rh(r,u,c,m,p,o),a,i]})}function Tte(r,e,t,n,o=.001){return y.arraysEqual(n.slice().sort(),Wr(0,r.rank-1))?Nte(r,e,t,n,o):Ste(r,e,t,n,o)}var nh=class extends Le{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=Xe(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Nt({ndim:e.length,axes:{[t]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,o=Fe(e),s=o.shape,a=s.length,i=Wr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=po(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Wr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,I=this.scale?this.gamma.read().reshape(u):null;return rh(o,b,w,_,I,this.epsilon)}else return rh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=Tte(o,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let I=1-_,E=b.read(),D=E.sub(w).mul(I);b.write(E.sub(D))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),movingMeanInitializer:It(this.movingMeanInitializer),movingVarianceInitializer:It(this.movingVarianceInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer),betaConstraint:Mt(this.betaConstraint),gammaConstraint:Mt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};nh.className="BatchNormalization";Q.registerClass(nh);var oh=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Xe(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==ho(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(e,t){let n=Fe(e),o=n.shape,s=o.length;return V(()=>{let a=!0,{mean:i,variance:l}=ip(n,this.axis,a),u=po(1,s);for(let h of this.axis)u[h]=o[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),rh(n,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};oh.className="LayerNormalization";Q.registerClass(oh);function Ate(r,e,t){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=rn()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return t==="channelsFirst"?n=[[0,0],[0,0],e[0],e[1]]:n=[[0,0],e[0],e[1],[0,0]],Lr(r,n)})}var sh=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?rn():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Nt({ndim:4})]}computeOutputShape(e){e=Xe(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>Ate(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};sh.className="ZeroPadding2D";Q.registerClass(sh);function iy(r,e,t,n,o,s){return V(()=>{Ot(o),YC(s),nn(n),t==null&&(t=[1,1]),n==null&&(n="valid"),o==null&&(o=rn()),s==null&&(s="max"),r=Id(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=_a(r,e,t,i):a=ha(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}function X3(r,e,t,n,o,s){return V(()=>{Ot(o),YC(s),nn(n),t==null&&(t=[1,1,1]),n==null&&(n="valid"),o==null&&(o=rn()),s==null&&(s="max"),r=A0(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=uf(r,e,t,i):a=Xm(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,4,1,2,3])),a})}var F0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,nn(this.padding),this.inputSpec=[new Nt({ndim:3})]}computeOutputShape(e){e=Xe(e);let t=_n(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=La(Fe(e),2);let n=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Tn(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ih=class extends F0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),iy(e,t,n,o,s,"max")}};ih.className="MaxPooling1D";Q.registerClass(ih);var ah=class extends F0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),iy(e,t,n,o,s,"avg")}};ah.className="AveragePooling1D";Q.registerClass(ah);var O0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),nn(this.padding),this.inputSpec=[new Nt({ndim:4})]}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=_n(t,this.poolSize[0],this.padding,this.strides[0]),n=_n(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},lh=class extends O0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),iy(e,t,n,o,s,"max")}};lh.className="MaxPooling2D";Q.registerClass(lh);var uh=class extends O0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),iy(e,t,n,o,s,"avg")}};uh.className="AveragePooling2D";Q.registerClass(uh);var P0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),nn(this.padding),this.inputSpec=[new Nt({ndim:5})]}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=_n(t,this.poolSize[0],this.padding,this.strides[0]),n=_n(n,this.poolSize[1],this.padding,this.strides[1]),o=_n(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,o]:[e[0],t,n,o,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ch=class extends P0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),X3(e,t,n,o,s,"max")}};ch.className="MaxPooling3D";Q.registerClass(ch);var ph=class extends P0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ot(s),nn(o),X3(e,t,n,o,s,"avg")}};ph.className="AveragePooling3D";Q.registerClass(ph);var M0=class extends Le{constructor(e){super(e);this.inputSpec=[new Nt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},mh=class extends M0{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Fe(e);return dt(n,1)})}};mh.className="GlobalAveragePooling1D";Q.registerClass(mh);var fh=class extends M0{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Fe(e);return mr(n,1)})}};fh.className="GlobalMaxPooling1D";Q.registerClass(fh);var L0=class extends Le{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Nt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},dh=class extends L0{call(e,t){return V(()=>{let n=Fe(e);return this.dataFormat==="channelsLast"?dt(n,[1,2]):dt(n,[2,3])})}};dh.className="GlobalAveragePooling2D";Q.registerClass(dh);var hh=class extends L0{call(e,t){return V(()=>{let n=Fe(e);return this.dataFormat==="channelsLast"?mr(n,[1,2]):mr(n,[2,3])})}};hh.className="GlobalMaxPooling2D";Q.registerClass(hh);var z0=class extends Le{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let o=t.layer,s=an(o,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},gh=class extends z0{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Xe(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Xe(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),o=e[1];return[n[0],o].concat(n.slice(1))}call(e,t){return V(()=>(e=Fe(e),$0((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};gh.className="TimeDistributed";Q.registerClass(gh);function Ete(r){mi(n3,"BidirectionalMergeMode",r)}var Dte="concat",xh=class extends z0{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=an(n),t.goBackwards=t.goBackwards!==!0;let o={};if(o.className=e.layer.getClassName(),o.config=t,this.backwardLayer=an(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Dte:e.mergeMode,Ete(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,o,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):wr(o)}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=D0(e,n,o,this.numConstants);if(e=s.inputs,n=s.initialState,o=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&o==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(p=>new Nt({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(o!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof sn;for(let u of a)if(u instanceof sn!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,o,s;if(n==null)o=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=n.slice(0,n.length/2),u=n.slice(n.length/2);o=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(o)&&(a=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=Kt(s,1));let i;return this.mergeMode==="concat"?i=zp([o,s]):this.mergeMode==="sum"?i=J(o,s):this.mergeMode==="ave"?i=O(.5,J(o,s)):this.mergeMode==="mul"?i=O(o,s):this.mergeMode==null&&(i=[o,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ts(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ts(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=an(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=t;return o.layer=n,new e(o)}};xh.className="Bidirectional";Q.registerClass(xh);function $te(r){return new fi(r)}function Rte(r){return new kd(r)}function Fte(r){return new bd(r)}function Ote(r){return new wd(r)}function Pte(r){return new _d(r)}function Mte(r){return new Cd(r)}function Lte(r){return new vd(r)}function zte(r){return new tc(r)}function Bte(r){return new Rl(r)}function Vte(r){return new Nd(r)}function Gte(r){return new Fl(r)}function Wte(r){return new Sd(r)}function jte(r){return new Td(r)}function Ute(r){return new Ad(r)}function Hte(r){return new Ed(r)}function qte(r){return new Dd(r)}function Kte(r){return new zd(r)}function Xte(r){return new Md(r)}function Yte(r){return new sm(r)}function Zte(r){return new Pd(r)}function Jte(r){return new Ld(r)}function Qte(r){return new Bd(r)}function ere(r){return new Vd(r)}function tre(r){return new Gd(r)}function rre(r){return new jd(r)}function nre(r){return new Ud(r)}function ore(r){return new qd(r)}function sre(r){return new Yd(r)}function ire(r){return new Kd(r)}function are(r){return new Xd(r)}function lre(r){return new Hd(r)}function ure(r){return new Jd(r)}function cre(r){return new nh(r)}function pre(r){return new oh(r)}function mre(r){return new sh(r)}function B0(r){return new ah(r)}function fre(r){return B0(r)}function dre(r){return B0(r)}function V0(r){return new uh(r)}function hre(r){return V0(r)}function gre(r){return V0(r)}function G0(r){return new ph(r)}function xre(r){return G0(r)}function yre(r){return G0(r)}function bre(r){return new mh(r)}function wre(r){return new dh(r)}function Z3(r){return new fh(r)}function J3(r){return new hh(r)}function Q3(r){return new ih(r)}function eB(r){return new lh(r)}function _re(r){return new ch(r)}function kre(r){return new Rd(r)}function vre(r){return new nm(r)}function Cre(r){return new Fd(r)}function Ire(r){return new Pl(r)}function Nre(r){return new $d(r)}function Sre(r){return new rm(r)}function Tre(r){return new Od(r)}function Are(r){return new om(r)}function Ere(r){return new $n(r)}function Dre(r){return new tm(r)}function $re(r){return new xh(r)}function Rre(r){return new gh(r)}var Fre=Z3,Ore=J3,Pre=Q3,Mre=eB;function Lre(r){return new Qd(r)}function zre(r){return new eh(r)}function Bre(r){return new th(r)}function Vre(r){return new Wd(r)}var tB={};We(tB,{MAPE:()=>Jre,MSE:()=>tne,binaryAccuracy:()=>Gre,binaryCrossentropy:()=>Wre,categoricalAccuracy:()=>Ure,categoricalCrossentropy:()=>Hre,cosineProximity:()=>Xre,mape:()=>Qre,meanAbsoluteError:()=>Yre,meanAbsolutePercentageError:()=>Zre,meanSquaredError:()=>ene,mse:()=>rne,precision:()=>qre,recall:()=>Kre,sparseCategoricalAccuracy:()=>jre});function Gre(r,e){return fd(r,e)}function Wre(r,e){return Yx(r,e)}function jre(r,e){return Zx(r,e)}function Ure(r,e){return dd(r,e)}function Hre(r,e){return hd(r,e)}function qre(r,e){return o0(r,e)}function Kre(r,e){return C3(r,e)}function Xre(r,e){return pd(r,e)}function Yre(r,e){return Yp(r,e)}function Zre(r,e){return El(r,e)}function Jre(r,e){return El(r,e)}function Qre(r,e){return El(r,e)}function ene(r,e){return hi(r,e)}function tne(r,e){return hi(r,e)}function rne(r,e){return hi(r,e)}var rB={};We(rB,{modelFromJSON:()=>G3});var nB={};We(nB,{l1:()=>one,l1l2:()=>nne,l2:()=>sne});function nne(r){return new Qu(r)}function one(r){return j3(r)}function sne(r){return U3(r)}var W0=class extends Al{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof jn))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function ay(r,e){return r<e}function oB(r,e){return r>e}var j0=class extends W0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=ay:this.mode==="max"?this.monitorFunc=oB:this.monitor.indexOf("acc")!==-1?this.monitorFunc=oB:this.monitorFunc=ay,this.monitorFunc===ay&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===ay?Infinity:-Infinity}async onEpochEnd(e,t){await di(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function ine(r){return new j0(r)}var ane={earlyStopping:ine};var yo;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(yo||(yo={}));var sB;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(sB||(sB={}));var U0={};function lne(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};U0[r]=t}function ly(r){return U0[r]}function une(r){delete U0[r]}function v(r,e,t,n,o){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return hr(e.inputNames[s.inputIndexStart],t,n,o);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>hr(m,t,n,o));let u=hr(e.inputNames.slice(i)[0],t,n,o),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function hr(r,e,t,n){let[o,s]=un(r);if(n!=null){let i=n.getHashTableHandleByName(o);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[uy(o,i)]);return a!==void 0?e[uy(o,a)][s]:void 0}function iB(r,e,t){return e[uy(r,t.currentContextId)]}function Fs(r,e){let[t,n]=un(r);return[uy(t,e&&e.currentContextId),n]}function uy(r,e){return e?`${r}-${e}`:r}function un(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function yh(r,e,t){let n=v("pad",r,e,t);if(n==="explicit"){n=v("explicitPaddings",r,e,t);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function Os(r){return r.kept?r:Ln(r)}var H0={};We(H0,{json:()=>cne});var cne=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var q0={};We(q0,{json:()=>pne});var pne=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var K0={};We(K0,{json:()=>mne});var mne=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var X0={};We(X0,{json:()=>fne});var fne=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var Y0={};We(Y0,{json:()=>dne});var dne=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var Z0={};We(Z0,{json:()=>hne});var hne=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var J0={};We(J0,{json:()=>gne});var gne=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var Q0={};We(Q0,{json:()=>xne});var xne=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var eI={};We(eI,{json:()=>yne});var yne=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var tI={};We(tI,{json:()=>bne});var bne=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var rI={};We(rI,{json:()=>wne});var wne=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var nI={};We(nI,{json:()=>_ne});var _ne=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}];var oI={};We(oI,{json:()=>kne});var kne=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var sI={};We(sI,{json:()=>vne});var vne=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var iI={};We(iI,{json:()=>Cne});var Cne=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var aI={};We(aI,{json:()=>Ine});var Ine=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var lI={};We(lI,{json:()=>Nne});var Nne=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var cy=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[H0,q0,K0,X0,Y0,Z0,J0,rI,tI,Q0,nI,oI,sI,iI,aI,lI,eI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(e,t={}){let n=e.node,o=[],s=[],a=[],i=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=Fs(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Fs(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Fs(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=o;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:o,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=ly(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(o=>o.startsWith("^")?o.substr(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((o,s)=>{let a=s.type,i;switch(s.type){case"string":i=py(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=py(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=yy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=yy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=fy(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=fy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=xy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=xy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=my(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=my(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=wy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=wy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=gy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=gy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=by(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=by(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=dy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=dy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=hy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=hy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=aB(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=aB(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return o[s.name]={value:i,type:a},o},{})),n}mapFunction(e){let t=e.nodeDef,n=[],o=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Fs(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:uI(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Fs(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Fs(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:o,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Sne(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function lB(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):Sne(r);return e?t:t.toLowerCase()}function py(r,e,t,n=!1){let o=r[e];return o!=null?lB(o.s,n):t}function my(r,e,t){let n=r[e];return n?n.b:t}function fy(r,e,t){let n=r[e]||{},o=n.i!=null?n.i:n.f!=null?n.f:t;return typeof o=="number"?o:parseInt(o,10)}function uI(r){switch(typeof r=="string"&&(r=yo[r]),r){case yo.DT_FLOAT:return"float32";case yo.DT_INT32:case yo.DT_INT64:case yo.DT_INT8:case yo.DT_UINT8:return"int32";case yo.DT_BOOL:return"bool";case yo.DT_DOUBLE:return"float32";case yo.DT_STRING:return"string";default:return null}}function aB(r,e,t){let n=r[e];return n&&n.func?n.func.name:t}function dy(r,e,t){let n=r[e];return n&&n.type?uI(n.type):t}function hy(r,e,t){let n=r[e];return n&&n.list&&n.list.type?n.list.type.map(o=>uI(o)):t}function uB(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function gy(r,e,t){let n=r[e];return n&&n.shape?uB(n.shape):t}function xy(r,e,t){let n=r[e];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):t}function yy(r,e,t,n=!1){let o=r[e];return o&&o.list&&o.list.s?o.list.s.map(s=>lB(s,n)):t}function by(r,e,t){let n=r[e];return n&&n.list&&n.list.shape?n.list.shape.map(o=>uB(o)):t}function wy(r,e,t){let n=r[e];return n&&n.list&&n.list.b?n.list.b:t}var cI=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(o=>this.getInput(o)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(e){return hr(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return hr(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return fy(this.node.rawAttrs,e,t);if(n.s!=null)return py(this.node.rawAttrs,e,t);if(n.b!=null)return my(this.node.rawAttrs,e,t);if(n.shape!=null)return gy(this.node.rawAttrs,e,t);if(n.type!=null)return dy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return xy(this.node.rawAttrs,e,t);if(n.list.s!=null)return yy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return by(this.node.rawAttrs,e,t);if(n.list.b!=null)return wy(this.node.rawAttrs,e,t);if(n.list.type!=null)return hy(this.node.rawAttrs,e,t)}return t}};var cB=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[J(v("a",r,e,t),v("b",r,e,t))];case"AddN":return[Vw(v("tensors",r,e,t))];case"FloorMod":case"Mod":return[pf(v("a",r,e,t),v("b",r,e,t))];case"Mul":return[O(v("a",r,e,t),v("b",r,e,t))];case"RealDiv":case"Div":return[pe(v("a",r,e,t),v("b",r,e,t))];case"DivNoNan":return[tf(v("a",r,e,t),v("b",r,e,t))];case"FloorDiv":return[eu(v("a",r,e,t),v("b",r,e,t))];case"Sub":return[le(v("a",r,e,t),v("b",r,e,t))];case"Minimum":return[_s(v("a",r,e,t),v("b",r,e,t))];case"Maximum":return[en(v("a",r,e,t),v("b",r,e,t))];case"Pow":return[zr(v("a",r,e,t),v("b",r,e,t))];case"SquaredDifference":return[ku(v("a",r,e,t),v("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var pB=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Tt(v("x",r,e,t))];case"Acos":return[Vm(v("x",r,e,t))];case"Acosh":return[Gm(v("x",r,e,t))];case"Asin":return[jm(v("x",r,e,t))];case"Asinh":return[Um(v("x",r,e,t))];case"Atan":return[Hm(v("x",r,e,t))];case"Atan2":return[qm(v("x",r,e,t),v("y",r,e,t))];case"Atanh":return[Km(v("x",r,e,t))];case"Ceil":return[Zm(v("x",r,e,t))];case"Complex":return[Nn(v("real",r,e,t),v("imag",r,e,t))];case"Cos":return[ya(v("x",r,e,t))];case"Cosh":return[iu(v("x",r,e,t))];case"Elu":return[ys(v("x",r,e,t))];case"Erf":return[rf(v("x",r,e,t))];case"Exp":return[Qt(v("x",r,e,t))];case"Expm1":return[nf(v("x",r,e,t))];case"Floor":return[ws(v("x",r,e,t))];case"Log":return[pr(v("x",r,e,t))];case"Log1p":return[cu(v("x",r,e,t))];case"Imag":return[lu(v("x",r,e,t))];case"Neg":return[qe(v("x",r,e,t))];case"Reciprocal":return[mf(v("x",r,e,t))];case"Real":return[gl(v("x",r,e,t))];case"Relu":return[$r(v("x",r,e,t))];case"Round":return[gu(v("x",r,e,t))];case"Selu":return[yu(v("x",r,e,t))];case"Sigmoid":return[Dr(v("x",r,e,t))];case"Sin":return[bu(v("x",r,e,t))];case"Sign":return[df(v("x",r,e,t))];case"Sinh":return[wu(v("x",r,e,t))];case"Softplus":return[eo(v("x",r,e,t))];case"Sqrt":return[gt(v("x",r,e,t))];case"Square":return[Me(v("x",r,e,t))];case"Tanh":return[gs(v("x",r,e,t))];case"Tan":return[yf(v("x",r,e,t))];case"ClipByValue":return[ur(v("x",r,e,t),v("clipValueMin",r,e,t),v("clipValueMax",r,e,t))];case"Relu6":return[hu(v("x",r,e,t))];case"Rsqrt":return[xu(hr(r.inputNames[0],e,t))];case"Prod":return[fu(v("x",r,e,t),v("axes",r,e,t))];case"LeakyRelu":return[ba(v("x",r,e,t),v("alpha",r,e,t))];case"Prelu":return[va(v("x",r,e,t),v("alpha",r,e,t))];case"IsNan":return[of(hr(r.inputNames[0],e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Rn(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=e[n];y.assert(o<0||s<0||o===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function mB(r){return!(typeof r=="number"||r.some(e=>e<0))}function im(r,e,t){let n=_y(r,t),o=!mB(n);if(o&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&e.forEach(s=>{n=_y(s.shape,n)}),!mB(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function _y(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let n=0;n<r.length;++n){let o=r[n],s=e[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[n]=o>=0?o:s}return t}var pI=class{constructor(e,t,n,o,s,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ue(0),$t(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Rn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,$t(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,o)=>this.write(n,t[o]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let o=0;o<this.size();o++)e.push(o)}if(e.length===0)return vr([],[0].concat(this.elementShape));let n=this.readMany(e);return Rn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Gt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return vr([],[0].concat(this.elementShape));let t=[];for(let o=0;o<this.size();o++)t.push(o);let n=this.readMany(t);return Rn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,fr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,o=e.map(l=>(n+=l,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];V(()=>{t=L(t,[1,n,s]);for(let l=0;l<e.length;++l){let u=l===0?0:o[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var rc=class{constructor(e,t,n,o=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Rn(t,s.shape,"TensorList shape mismatch: "),$t(s)}),this.idTensor=ue(0),this.maxNumElements=o,$t(this.idTensor)}get id(){return this.idTensor.id}copy(){return new rc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Rn(e,this.elementShape,"TensorList shape mismatch: ");let o=im(this.elementShape,this.tensors,e);return V(()=>{let s=this.tensors.map(a=>L(a,o));return Gt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=im(this.elementShape,this.tensors,e),o=this.tensors.pop();return Rn(o.shape,e,"TensorList shape mismatch: "),L(o,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Rn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");$t(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Rn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let o=im(this.elementShape,this.tensors,t);return L(this.tensors[e],o)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Rn(this.elementShape,t.shape,"TensorList shape mismatch: "),$t(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Rn(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let o=im(this.elementShape,this.tensors,n);return e.length===0?vr([],[0].concat(o)):V(()=>{let s=e.map(a=>L(this.tensors[a],o));return Gt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Rn(this.elementShape,t,"TensorList shape mismatch: ");let n=im(this.elementShape,this.tensors,t);return this.size()===0?vr([],[0].concat(n)):V(()=>{let o=this.tensors.map(s=>L(s,n));return Qe(o,0)})}};function fB(r,e,t){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let o=r.shape.slice(1);Rn(o,e,"TensorList shape mismatch: ");let s=fr(r);return new rc(s,e,n)}function dB(r,e,t){return new rc([],r,e,t)}function hB(r,e,t,n){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let o=Math.max(...e);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new rc([],t,r.dtype,n),a=fr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function gB(r,e,t){let n=0,o=e.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=_y(s,t),i=n===0?0:r.size/n,l=V(()=>{let c=[];r=L(r,[1,n,i]);for(let p=0;p<e.length;++p){let m=p===0?0:o[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new rc([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var xB=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let n=v("thenBranch",r,e,t),o=v("elseBranch",r,e,t),s=v("cond",r,e,t),a=v("args",r,e,t);return(await s.data())[0]?t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let n=v("body",r,e,t),o=v("cond",r,e,t),s=v("args",r,e,t),a=await t.functionMap[o].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let n=v("pred",r,e,t);return[Os(n)]}case"Switch":{let n=v("pred",r,e,t),o=v("data",r,e,t);return o.kept||(o=Os(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>hr(o,e,t)!==void 0);if(n){let o=hr(n,e,t);return[Os(o)]}return}case"Enter":{let n=v("frameName",r,e,t),o=v("tensor",r,e,t);return t.enterFrame(n),[Os(o)]}case"Exit":{let n=v("tensor",r,e,t);return t.exitFrame(),[Os(n)]}case"NextIteration":{let n=v("tensor",r,e,t);return t.nextIteration(),[Os(n)]}case"TensorArrayV3":{let n=v("size",r,e,t),o=v("dtype",r,e,t),s=v("elementShape",r,e,t),a=v("dynamicSize",r,e,t),i=v("clearAfterRead",r,e,t),l=v("identicalElementShapes",r,e,t),u=v("name",r,e,t),c=new pI(u,o,n,s,l,a,i);return t.addTensorArray(c),[c.idTensor,ue(1)]}case"TensorArrayWriteV3":{let n=v("tensorArrayId",r,e,t),o=v("index",r,e,t),s=v("tensor",r,e,t),a=t.getTensorArray(n.id);return a.write(o,s),[a.idTensor]}case"TensorArrayReadV3":{let n=v("tensorArrayId",r,e,t),o=v("index",r,e,t);return[t.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=v("tensorArrayId",r,e,t),o=v("indices",r,e,t),s=v("dtype",r,e,t);return[t.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=v("tensorArrayId",r,e,t),o=v("indices",r,e,t),s=v("tensor",r,e,t),a=t.getTensorArray(n.id);return a.scatter(o,s),[a.idTensor]}case"TensorArrayConcatV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id),s=v("dtype",r,e,t);return[o.concat(s)]}case"TensorArraySplitV3":{let n=v("tensorArrayId",r,e,t),o=v("tensor",r,e,t),s=v("lengths",r,e,t),a=t.getTensorArray(n.id);return a.split(s,o),[a.idTensor]}case"TensorArraySizeV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return[ue(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=v("tensorListId",r,e,t),o=v("index",r,e,t),s=v("tensor",r,e,t),a=t.getTensorList(n.id);return a.setItem(o,s),[a.idTensor]}case"TensorListGetItem":{let n=v("tensorListId",r,e,t),o=v("index",r,e,t),s=v("elementShape",r,e,t),a=v("elementDType",r,e,t);return[t.getTensorList(n.id).getItem(o,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let n=v("indices",r,e,t),o=v("tensor",r,e,t),s=v("elementShape",r,e,t),a=v("numElements",r,e,t),i=hB(o,n,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=v("elementShape",r,e,t),o=v("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=v(s,r,e,t),i=dB(n,o,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let n=v("tensorListId",r,e,t),o=v("indices",r,e,t),s=v("elementShape",r,e,t),a=v("elementDType",r,e,t);return[t.getTensorList(n.id).gather(o,a,s)]}case"TensorListStack":{let n=v("tensorListId",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t),a=v("numElements",r,e,t);return[t.getTensorList(n.id).stack(o,s,a)]}case"TensorListFromTensor":{let n=v("tensor",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t),a=fB(n,o,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let n=v("tensorListId",r,e,t),o=t.getTensorList(n.id),s=v("dtype",r,e,t),a=v("elementShape",r,e,t);return[o.concat(s,a)]}case"TensorListPushBack":{let n=v("tensorListId",r,e,t),o=v("tensor",r,e,t),s=t.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=v("tensorListId",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t);return[t.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=v("tensor",r,e,t),o=v("elementShape",r,e,t),s=v("lengths",r,e,t),a=gB(n,s,o);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function yB(r,e,t){let[n,o]=v("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=n==="fusedbatchnorm",l=v("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=v("strides",r,e,t),c=yh(r,e,t),p=v("dataFormat",r,e,t).toUpperCase(),m=v("dilations",r,e,t),[f,d]=v("args",r,e,t),h=v("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:o,leakyreluAlpha:h}}var bB=(r,e,t)=>{switch(r.op){case"Conv1D":{let n=v("stride",r,e,t),o=v("pad",r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilation",r,e,t);return[ou(v("x",r,e,t),v("filter",r,e,t),n,o,s,a)]}case"Conv2D":{let n=v("strides",r,e,t),o=yh(r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilations",r,e,t);return[Jr(v("x",r,e,t),v("filter",r,e,t),[n[1],n[2]],o,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=yB(r,e,t);return[no.conv2d({x:v("x",r,e,t),filter:v("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=yB(r,e,t);return[no.depthwiseConv2d({x:v("x",r,e,t),filter:v("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=v("outputShape",r,e,t),o=v("strides",r,e,t),s=yh(r,e,t);return[su(v("x",r,e,t),v("filter",r,e,t),n,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=v("strides",r,e,t),o=yh(r,e,t),s=v("dilations",r,e,t),a=v("dataFormat",r,e,t).toUpperCase();return[xs(v("input",r,e,t),v("filter",r,e,t),[n[1],n[2]],o,a,[s[1],s[2]])]}case"Conv3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilations",r,e,t);return[Jm(v("x",r,e,t),v("filter",r,e,t),[n[1],n[2],n[3]],o,s,[a[1],a[2],a[3]])]}case"AvgPool":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[ha(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPool":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[_a(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPoolWithArgmax":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t),a=v("includeBatchInIndex",r,e,t),{result:i,indexes:l}=c_(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o,a);return[i,l]}case"AvgPool3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[Xm(v("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"MaxPool3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[uf(v("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"Dilation2D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("dilations",r,e,t),a=n[1],i=n[2],l=s[1],u=s[2];return[ef(v("x",r,e,t),v("filter",r,e,t),[a,i],o,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var wB=(r,e,t)=>{switch(r.op){case"Fill":{let n=v("shape",r,e,t),o=v("dtype",r,e,t),s=v("value",r,e,t);return[bs(n,s,o)]}case"LinSpace":{let n=v("start",r,e,t),o=v("stop",r,e,t),s=v("num",r,e,t);return[o_(n,o,s)]}case"Multinomial":{let n=v("logits",r,e,t),o=v("numSamples",r,e,t),s=v("seed",r,e,t);return[p_(n,o,s)]}case"OneHot":{let n=v("indices",r,e,t),o=v("depth",r,e,t),s=v("onValue",r,e,t),a=v("offValue",r,e,t);return[ds(n,o,s,a)]}case"Ones":return[er(v("shape",r,e,t),v("dtype",r,e,t))];case"OnesLike":return[sr(v("x",r,e,t))];case"RandomUniform":return[ks(v("shape",r,e,t),v("minval",r,e,t),v("maxval",r,e,t),v("dtype",r,e,t))];case"Range":{let n=v("start",r,e,t),o=v("stop",r,e,t),s=v("step",r,e,t);return[Ca(n,o,s,v("dtype",r,e,t))]}case"TruncatedNormal":{let n=v("shape",r,e,t),o=v("mean",r,e,t),s=v("stdDev",r,e,t),a=v("seed",r,e,t);return[vu(n,o,s,v("dtype",r,e,t),a)]}case"Zeros":return[ht(v("shape",r,e,t),v("dtype",r,e,t))];case"ZerosLike":return[Ie(v("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function mI(r,e,t){let n=v("boxes",r,e,t),o=v("scores",r,e,t),s=v("maxOutputSize",r,e,t),a=v("iouThreshold",r,e,t),i=v("scoreThreshold",r,e,t),l=v("softNmsSigma",r,e,t);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var _B=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=mI(r,e,t),u=await ai.nonMaxSuppressionWithScoreAsync(n,o,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=mI(r,e,t),l=v("padToMaxOutputSize",r,e,t),u=await ai.nonMaxSuppressionPaddedAsync(n,o,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=mI(r,e,t);return[await ai.nonMaxSuppressionAsync(n,o,s,a,i)]}case"Where":{let n=oe(v("condition",r,e,t),"bool"),o=[await _f(n)];return n.dispose(),o}case"ListDiff":return v_(v("x",r,e,t),v("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kB=(r,e,t)=>{switch(r.op){case"TopKV2":{let n=v("x",r,e,t),o=v("k",r,e,t),s=v("sorted",r,e,t),a=bf(n,o,s);return[a.values,a.indices]}case"Unique":{let n=v("x",r,e,t),o=up(n);return[o.values,o.indices]}case"UniqueV2":{let n=v("x",r,e,t),o=v("axis",r,e,t),s=up(n,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vB=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let n=v("default",r,e,t);return[hr(r.name,e,t)||n];case"Placeholder":return[hr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=v("x",r,e,t);return[Os(u)]}case"IdentityN":return v("x",r,e,t).map(u=>Os(u));case"Snapshot":let o=v("x",r,e,t);return[Os(o)];case"Shape":return[Ct(v("x",r,e,t).shape,"int32")];case"ShapeN":return v("x",r,e,t).map(u=>Ct(u.shape));case"Size":return[ue(v("x",r,e,t).size,"int32")];case"Rank":return[ue(v("x",r,e,t).rank,"int32")];case"NoOp":return[ue(1)];case"Print":let s=v("x",r,e,t),a=v("data",r,e,t),i=v("message",r,e,t),l=v("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var fI=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ue(0),this.tensorMap=new Map,$t(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ue(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),V(()=>{let o=fr(t),s=n.length,a=o.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=n[i],u=o[i];$t(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let o=[];for(let s=0;s<n.length;s++){let a=n[s],i=this.findWithDefault(a,t);o.push(i)}return Gt(o)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var CB=async(r,e,t,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=v("keyDType",r,e,t),s=v("valueDType",r,e,t),a=new fI(o,s);return n.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=v("tableHandle",r,e,t,n),s=v("keys",r,e,t),a=v("values",r,e,t);return[await n.getHashTableById(o.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let o=v("tableHandle",r,e,t,n),s=v("keys",r,e,t),a=v("defaultValue",r,e,t);return[await n.getHashTableById(o.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=v("tableHandle",r,e,t,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var IB=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let n=v("images",r,e,t),o=v("size",r,e,t),s=v("alignCorners",r,e,t),a=v("halfPixelCenters",r,e,t);return[ai.resizeBilinear(n,[o[0],o[1]],s,a)]}case"ResizeNearestNeighbor":{let n=v("images",r,e,t),o=v("size",r,e,t),s=v("alignCorners",r,e,t),a=v("halfPixelCenters",r,e,t);return[ai.resizeNearestNeighbor(n,[o[0],o[1]],s,a)]}case"CropAndResize":{let n=v("image",r,e,t),o=v("boxes",r,e,t),s=v("boxInd",r,e,t),a=v("cropSize",r,e,t),i=v("method",r,e,t),l=v("extrapolationValue",r,e,t);return[ai.cropAndResize(n,o,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var NB=(r,e,t)=>{switch(r.op){case"Equal":return[Sn(v("a",r,e,t),v("b",r,e,t))];case"NotEqual":return[ro(v("a",r,e,t),v("b",r,e,t))];case"Greater":return[Vt(v("a",r,e,t),v("b",r,e,t))];case"GreaterEqual":return[hn(v("a",r,e,t),v("b",r,e,t))];case"Less":return[uu(v("a",r,e,t),v("b",r,e,t))];case"LessEqual":return[gn(v("a",r,e,t),v("b",r,e,t))];case"LogicalAnd":return[yr(v("a",r,e,t),v("b",r,e,t))];case"LogicalNot":return[wa(v("a",r,e,t))];case"LogicalOr":return[mu(v("a",r,e,t),v("b",r,e,t))];case"Select":case"SelectV2":return[vt(v("condition",r,e,t),v("a",r,e,t),v("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var SB=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(v("a",r,e,t),v("b",r,e,t),v("transposeA",r,e,t),v("transposeB",r,e,t))];case"Einsum":return[t_(v("equation",r,e,t),...v("tensors",r,e,t))];case"Transpose":return[Ue(v("x",r,e,t),v("perm",r,e,t))];case"_FusedMatMul":let[n,o]=v("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=v("numArgs",r,e,t),l=v("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=v("args",r,e,t);return[no.matMul({a:v("a",r,e,t),b:v("b",r,e,t),transposeA:v("transposeA",r,e,t),transposeB:v("transposeB",r,e,t),bias:u,activation:o,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var TB=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Jn(v("x",r,e,t),v("mean",r,e,t),v("variance",r,e,t),v("offset",r,e,t),v("scale",r,e,t),v("epsilon",r,e,t))];case"FusedBatchNormV3":return[Jn(v("x",r,e,t),v("mean",r,e,t),v("variance",r,e,t),v("offset",r,e,t),v("scale",r,e,t),v("epsilon",r,e,t))];case"LRN":return[sf(v("x",r,e,t),v("radius",r,e,t),v("bias",r,e,t),v("alpha",r,e,t),v("beta",r,e,t))];case"Softmax":return[Ia(v("x",r,e,t))];case"LogSoftmax":return[pu(v("x",r,e,t))];case"SparseToDense":return[Cg(v("sparseIndices",r,e,t),v("outputShape",r,e,t),v("sparseValues",r,e,t),v("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var AB=(r,e,t)=>{switch(r.op){case"Max":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[mr(v("x",r,e,t),a,i)]}case"Mean":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[dt(v("x",r,e,t),a,i)]}case"Min":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[oi(v("x",r,e,t),a,i)]}case"Sum":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[fe(v("x",r,e,t),a,i)]}case"All":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[tu(v("x",r,e,t),a,i)]}case"Any":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[dl(v("x",r,e,t),a,i)]}case"ArgMax":{let a=v("axis",r,e,t);return[hl(v("x",r,e,t),a)]}case"ArgMin":{let a=v("axis",r,e,t);return[Wm(v("x",r,e,t),a)]}case"Prod":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[fu(v("x",r,e,t),a,i)]}case"Cumsum":{let a=v("axis",r,e,t),i=v("exclusive",r,e,t),l=v("reverse",r,e,t);return[au(v("x",r,e,t),a,i,l)]}case"Bincount":let n=v("x",r,e,t),o=v("weights",r,e,t),s=v("size",r,e,t);return[Ym(n,o,s)];case"DenseBincount":{let a=v("x",r,e,t),i=v("weights",r,e,t),l=v("size",r,e,t),u=v("binaryOutput",r,e,t);return[Qw(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var EB=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=v("n",r,e,t),o=v("axis",r,e,t),s=v("tensors",r,e,t);return s=s.slice(0,n),[Qe(s,o)]}case"Gather":{let n=v("x",r,e,t),o=v("indices",r,e,t);return[Qn(n,oe(o,"int32"),0)]}case"GatherV2":{let n=v("axis",r,e,t),o=v("batchDims",r,e,t),s=v("x",r,e,t),a=v("indices",r,e,t);return[Qn(s,oe(a,"int32"),n,o)]}case"Reverse":{let n=v("dims",r,e,t),o=[];for(let a=0;a<n.length;a++)n[a]&&o.push(a);let s=v("x",r,e,t);return[Kt(s,o)]}case"ReverseV2":{let n=v("axis",r,e,t),o=v("x",r,e,t);return[Kt(o,n)]}case"Slice":{let n=v("begin",r,e,t),o=v("size",r,e,t);return[Re(v("x",r,e,t),n,o)]}case"StridedSlice":{let n=v("begin",r,e,t),o=v("end",r,e,t),s=v("strides",r,e,t),a=v("beginMask",r,e,t),i=v("endMask",r,e,t),l=v("ellipsisMask",r,e,t),u=v("newAxisMask",r,e,t),c=v("shrinkAxisMask",r,e,t),p=v("x",r,e,t);return[xf(p,n,o,s,a,i,l,u,c)]}case"Pack":return V(()=>{let n=v("axis",r,e,t),o=v("tensors",r,e,t),s=o[0].shape,a=Tn(o[0]).shape,i=o.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(Tn(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Gt(i,n)]});case"Unpack":{let n=v("axis",r,e,t),o=v("tensor",r,e,t);return fr(o,n)}case"Tile":{let n=v("reps",r,e,t);return[Bn(v("x",r,e,t),n)]}case"Split":case"SplitV":{let n=v("axis",r,e,t),o=v("numOrSizeSplits",r,e,t),s=v("x",r,e,t);return tr(s,o,n)}case"ScatterNd":{let n=v("indices",r,e,t),o=v("values",r,e,t),s=v("shape",r,e,t);return[n1(n,o,s)]}case"GatherNd":{let n=v("x",r,e,t),o=v("indices",r,e,t);return[s1(n,o)]}case"SparseToDense":{let n=v("sparseIndices",r,e,t),o=v("outputShape",r,e,t),s=v("sparseValues",r,e,t),a=v("defaultValue",r,e,t);return[Cg(n,s,o,s.dtype===a.dtype?a:oe(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var DB=(r,e,t)=>{switch(r.op){case"SparseReshape":{let{outputIndices:n,outputShape:o}=G1.sparseReshape(v("inputIndices",r,e,t),v("inputShape",r,e,t),v("newShape",r,e,t));return[n,o]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var $B=(r,e,t)=>{switch(r.op){case"FFT":return[Na(v("x",r,e,t))];case"IFFT":return[si(v("x",r,e,t))];case"RFFT":return[Sa(v("x",r,e,t))];case"IRFFT":return[_u(v("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var RB=(r,e,t)=>{switch(r.op){case"Cast":return[oe(v("x",r,e,t),v("dtype",r,e,t))];case"ExpandDims":{let n=v("axis",r,e,t);return[cr(v("x",r,e,t),n)]}case"Squeeze":{let n=v("axis",r,e,t);return[Tn(v("x",r,e,t),n)]}case"Reshape":return[L(v("x",r,e,t),v("shape",r,e,t))];case"MirrorPad":return[cf(v("x",r,e,t),v("padding",r,e,t),v("mode",r,e,t))];case"PadV2":case"Pad":return[Lr(v("x",r,e,t),v("padding",r,e,t),v("constantValue",r,e,t))];case"SpaceToBatchND":{let n=v("blockShape",r,e,t),o=v("paddings",r,e,t);return[ka(v("x",r,e,t),n,o)]}case"BatchToSpaceND":{let n=v("blockShape",r,e,t),o=v("crops",r,e,t);return[ga(v("x",r,e,t),n,o)]}case"DepthToSpace":{let n=v("blockSize",r,e,t),o=v("dataFormat",r,e,t).toUpperCase();return[Qm(v("x",r,e,t),n,o)]}case"BroadcastTo":return[xa(v("x",r,e,t),v("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function dI(r,e,t,n){let o=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>cB(s,a,i));case"basic_math":return V(()=>pB(s,a,i));case"control":return xB(s,a,i);case"convolution":return V(()=>bB(s,a,i));case"creation":return V(()=>wB(s,a,i));case"dynamic":return _B(s,a,i);case"evaluation":return V(()=>kB(s,a,i));case"image":return V(()=>IB(s,a,i));case"graph":return V(()=>vB(s,a,i));case"logical":return V(()=>NB(s,a,i));case"matrices":return V(()=>SB(s,a,i));case"normalization":return V(()=>TB(s,a,i));case"reduction":return V(()=>AB(s,a,i));case"slice_join":return V(()=>EB(s,a,i));case"sparse":return V(()=>DB(s,a,i));case"spectral":return V(()=>$B(s,a,i));case"transformation":return V(()=>RB(s,a,i));case"hash_table":return CB(s,a,i,n);case"custom":let l=ly(s.op);if(l&&l.customExecutor)return l.customExecutor(new cI(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(o)?o.then(s=>[].concat(s)):[].concat(o)}var ky=class{constructor(e={},t={},n={},o={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function gI(r,e,t,n){let o=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>un(m)[0]),c=[];n!=null&&(c=n.map(m=>un(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((hI(m)||Tne(m)||Ane(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:o,missingInputs:s,dynamicNode:a,syncInputs:i}}function FB(r,e,t){let{usedNodes:n,inputs:o}=t,s=[],a=Object.keys(o).map(c=>un(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{n.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var Ene=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Dne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],$ne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function hI(r){return Ene.indexOf(r.op)>=0}function Tne(r){return Dne.indexOf(r.op)>=0}function Ane(r){return $ne.indexOf(r.op)>=0}var am=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new am(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(o=>o.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),o=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(e,t){let n=gI(e,t,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(o.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${o}]`)}return FB(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let o=n.map(p=>this.graph.nodes[un(p)[0]]),s=t.map(p=>un(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(o,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new ky(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=un(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=dI(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>hr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(o=>o.id)));return new Set(t)}checkTensorForDisposal(e,t,n,o,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=iB(l.name,n,o);u!=null&&u.forEach(c=>{if(c&&!c.kept&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,o={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new ky(this.weightMap,o,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,n),l=t.map(m=>hr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,n){let o=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(o,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,o){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[un(w)[0]]),i=n.map(w=>un(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=gI(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,I]=un(w),E=[];E[I]=e[w],d[_]=E});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let w=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!hI(w)&&!hr(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,n,o,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&v("isConstant",p.node,o,n)&&([m]=Fs(p.node.name,n)),o[p.node.name]==null){let f=dI(p.node,o,n,this._resourceManager);m||([m]=Fs(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u))}else this.processChildNodes(p.node,t,n,o,s,u)}return c}processChildNodes(e,t,n,o,s,a){e.children.forEach(i=>{let[l]=Fs(i.name,n);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!hr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!hr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[o]=un(t),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];t[o.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[o]=un(n);return this.graph.nodes[o]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=un(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}};var xI=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var Rne="?tfjs-format=file",Fne="model.json",yI=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new xI}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Er.browserHTTPRequest(e,this.loadOptions);else{let t=Er.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Er.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let o=Er.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new am(cy.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=cy.Instance.transformGraph(e.modelInitializer);this.initializer=new am(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Er.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,o)=>(t[n]=e[o],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function One(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${Fne}${Rne}`);let t=new yI(r,e);return await t.load(),t}var Pne="3.6.0";var RI={};We(RI,{CSVDataset:()=>vh,Dataset:()=>gi,FileDataSource:()=>Th,TextLineDataset:()=>_h,URLDataSource:()=>Ah,array:()=>xV,csv:()=>SV,func:()=>TV,generator:()=>AV,microphone:()=>DV,version_data:()=>$V,webcam:()=>EV,zip:()=>yV});var gV=dc(II());var tV=dc(II());function YB(r,e){return Cy(r,e)}function Cy(r,e,t=new Map,n=new Set){if(r==null)return null;if(n.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(Ll(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let a in r){let i=r[a],l=Cy(i,e,t,n);s[a]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,o.value),o.value}function JB(r,e=NI){return ZB(r,e)}function ZB(r,e,t=new Set){let n=r[0];if(t.has(n))throw new Error("Circular references are not supported.");let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(Ll(n)){let s=Array.isArray(n)?[]:{};t.add(n);for(let a in n){let i=r.map(u=>u[a]),l=ZB(i,e,t);s[a]=l}return t.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function NI(r){return r===null?null:Ll(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Iy(r,e){let t=new Map;Cy(r,e,t);for(let o of Array.from(t.keys())){let s=t.get(o);if(y.isPromise(s)){let a=await s;t.set(o,a)}}return Cy(r,e,t)}function Ll(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Pe))}function QB(r){return r==null||Wne(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Pe||y.isTypedArray(r)}function Wne(r){return r===null||typeof r!="object"&&typeof r!="function"}function eV(r){return YB(r,jne)}function jne(r){return r instanceof Pe?{value:r.clone(),recurse:!1}:Ll(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var bh=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}};var lm=class extends bh{constructor(){super(lm.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let o=0;o<n;o++)t[o]=this.get(this.wrap(this.begin+o));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};lm.INITIAL_CAPACITY=32;function SI(r){return new rV(r)}function wh(r){return new nV(r)}function oV(r,e){return new TI(r,e)}function iV(r,e=Ga.FAIL){return new sV(r,e)}var Yt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new fV(this,e)}filter(e){return new pV(this,e)}map(e){return new mV(this,e)}mapAsync(e){return new AI(this,e)}serialMapAsync(e){return new AI(this,e).serial()}flatmap(e){return new dV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new cV(this,e,t)}columnMajorBatch(e,t=!0,n=NI){return this.rowMajorBatch(e,t).map(s=>JB(s,n))}concatenate(e,t){return new TI(SI([this,e]),t)}take(e){return e<0||e==null?this:new uV(this,e)}skip(e){return e<0||e==null?this:new lV(this,e)}prefetch(e){return new EI(this,e)}shuffle(e,t){return new hV(this,e,t)}serial(){return new aV(this)}},rV=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:eV(e),done:!1}}},nV=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},aV=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},lV=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},uV=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},cV=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},pV=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},mV=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Zn.getTensorsInContainer(e.value),n=this.transform(e.value),o=Zn.getTensorsInContainer(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},fV=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},AI=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Zn.getTensorsInContainer(e.value),n=await this.transform(e.value),o=Zn.getTensorsInContainer(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},um=class extends Yt{constructor(){super();this.outputQueue=new lm,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},dV=class extends um{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Zn.getTensorsInContainer(e.value),n=this.transform(e.value),o=Zn.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return!0}},TI=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ga;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Ga||(Ga={}));var sV=class extends Yt{constructor(e,t=Ga.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function o(a){return a instanceof Yt?{value:a.next().then(l=>(t++,l.done&&n++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Iy(this.iterators,o);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ga.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ga.SHORTEST:return{value:null,done:!0};case Ga.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},EI=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new bh(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},hV=class extends EI{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=tV.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var gi=class{constructor(){this.size=null}batch(e,t=!0){let n=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let o;return this.size===Infinity||this.size==null?o=this.size:t?o=Math.ceil(this.size/e):o=Math.floor(this.size/e),kn(async()=>(await n.iterator()).columnMajorBatch(e,t,Une),o)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,kn(async()=>(await t.iterator()).filter(o=>V(()=>e(o))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return kn(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,kn(async()=>{let o=wh(async()=>({value:await t.iterator(),done:!1}));return oV(o.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,kn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=gV.alea(t||y.now().toString());return kn(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await o.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};gi.MAX_BUFFER_SIZE=1e4;function kn(r,e=null){return new class extends gi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function xV(r){return kn(async()=>SI(r),r.length)}function yV(r){if(!Ll(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return kn(async()=>{let t=await Iy(r,n=>{if(n instanceof gi)return{value:n.iterator(),recurse:!1};if(Ll(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iV(t,Ga.SHORTEST)},e)}function Une(r){if(r===null)return null;let e=r[0];return QB(e)?{value:Hne(r),recurse:!1}:{value:null,recurse:!0}}function Hne(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Pe?Gt(r):vr(r)}var _h=class extends gi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var Ny='"',kh=Symbol("out"),bV=Symbol("field"),Sy=Symbol("quote"),DI=Symbol("quoteafterquote"),wV=Symbol("quoteinquote"),vh=class extends gi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new _h(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(t).filter(o=>t[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?o[a]=u:n[a]=u}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],o=0,s=e.length,a=kh;for(let i=0;i<s;i++)switch(a){case kh:switch(e.charAt(i)){case Ny:o=i+1,a=Sy;break;case this.delimiter:if(o=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=kh;break;default:a=bV,o=i;break}break;case bV:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i)),a=kh,o=i+1;break;default:}break;case Sy:switch(e.charAt(i)){case Ny:a=DI;break;default:}break;case DI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i-1)),a=kh,o=i+1;break;case Ny:a=Sy;break;default:a=wV;break}break;case wV:switch(e.charAt(i)){case Ny:a=Sy;break;default:}break;default:}if(a===DI?n.push(e.substring(o,s-1)):n.push(e.substring(o)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var Ch=class extends Yt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Ch(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&o({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((o,s)=>n.set(o,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(y.sizeFromShape(t));return n.set(e,n.length-e.length),vr(n,t)}};var Ih=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ct([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-o)/2,i=s+n,l=o+a;this.cropBox=ii([a,s,l,i],[1,4])}else this.cropBox=ii([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new Ih(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ug.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=cr(oe(e,"float32"),0),n;n=ai.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return L(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Nh=class{};var Ty=class extends Yt{split(e){return new _V(this,e)}},_V=class extends Ty{constructor(e,t){super();this.upstream=e,this.impl=new kV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},kV=class extends um{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}};var $I=class extends Yt{decodeUTF8(){return new CV(this)}},CV=class extends Ty{constructor(e){super();this.upstream=e,this.impl=new IV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},IV=class extends um{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=vV();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return W().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}};var Sh=class extends $I{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>n(new Error("Aborted")),s.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,o);s.readAsArrayBuffer(a)}this.offset=o}),done:!1}}};async function NV(r,e={}){let t,n;typeof r=="string"?t=r:(t=r.url,n=qne(r));let o=await y.fetch(t,n);if(o.ok){let s=new Uint8Array(await o.arrayBuffer());return new Sh(s,e)}else throw new Error(o.statusText)}var qne=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Ay(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Th=class extends Nh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Ay(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Sh(this.input,this.options)}};var Ah=class extends Nh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Ay(this.url)?new Th(this.url,this.fileOptions).iterator():NV(this.url,this.fileOptions)}};function SV(r,e={}){return new vh(new Ah(r),e)}function TV(r){let e=wh(r);return kn(async()=>e)}function AV(r){return kn(async()=>{let e=await r();return wh(()=>e.next())})}async function EV(r,e){return Ih.create(r,e)}async function DV(r){return Ch.create(r)}var $V="3.6.0";var H4t={tfjs:(_m==null?void 0:_m.version)||void 0,"tfjs-core":(km==null?void 0:km.version)||void 0,"tfjs-data":(vm==null?void 0:vm.version)||void 0,"tfjs-layers":(Cm==null?void 0:Cm.version)||void 0,"tfjs-converter":(Im==null?void 0:Im.version)||void 0,"tfjs-backend-cpu":K_||void 0,"tfjs-backend-webgl":sv||void 0,"tfjs-backend-wasm":VC||void 0};export{Bs as Abs,ki as Acos,vi as Acosh,mp as AdadeltaOptimizer,fp as AdagradOptimizer,dp as AdamOptimizer,hp as AdamaxOptimizer,Pn as Add,_o as AddN,Ci as All,Ii as Any,ko as ArgMax,Ya as ArgMin,Ni as Asin,Si as Asinh,Ti as Atan,Ei as Atan2,Ai as Atanh,vo as AvgPool,Za as AvgPool3D,wc as AvgPool3DGrad,bc as AvgPoolGrad,Ex as BackendWasm,Co as BatchMatMul,Ja as BatchToSpaceND,_c as Bincount,SS as BroadcastTo,W0 as Callback,t0 as CallbackList,qn as Cast,Io as Ceil,Kn as ClipByValue,kc as Complex,Qa as ComplexAbs,Vs as Concat,No as Conv2D,vc as Conv2DBackpropFilter,So as Conv2DBackpropInput,el as Conv3D,Cc as Conv3DBackpropFilterV2,Ic as Conv3DBackpropInputV2,To as Cos,Di as Cosh,$i as CropAndResize,Ao as Cumsum,n0 as CustomCallback,Xa as DataStorage,Nc as DenseBincount,Ri as DepthToSpace,Eo as DepthwiseConv2dNative,Sc as DepthwiseConv2dNativeBackpropFilter,Tc as DepthwiseConv2dNativeBackpropInput,Ac as Diag,tl as Dilation2D,Dm as Dilation2DBackpropFilter,Em as Dilation2DBackpropInput,sw as ENV,j0 as EarlyStopping,Ec as Einsum,Fi as Elu,Dc as EluGrad,Qh as Environment,Pi as Equal,Oi as Erf,$o as Exp,Gs as ExpandDims,Mi as Expm1,$c as FFT,rl as Fill,Li as FlipLeftRight,Ro as Floor,Fo as FloorDiv,$m as FromPixels,Oo as FusedBatchNorm,ei as FusedConv2D,ti as FusedDepthwiseConv2D,cx as GPGPUContext,zi as GatherNd,Ws as GatherV2,yI as GraphModel,Bi as Greater,Po as GreaterEqual,r0 as History,Rc as IFFT,Xn as Identity,Fc as Imag,Nt as InputSpec,Vi as IsFinite,Gi as IsInf,Wi as IsNan,Ms as KernelBackend,nl as LRN,Pc as LRNGrad,jx as LayerVariable,jn as LayersModel,Mo as LeakyRelu,ji as Less,Ui as LessEqual,Oc as LinSpace,Lo as Log,Hi as Log1p,TS as LogSoftmax,qi as LogicalAnd,Hl as LogicalNot,ql as LogicalOr,Au as MathBackendCPU,Lu as MathBackendWebGL,zo as Max,Vo as MaxPool,ol as MaxPool3D,Lc as MaxPool3DGrad,Mc as MaxPoolGrad,zc as MaxPoolWithArgmax,Bo as Maximum,Go as Mean,Wo as Min,jo as Minimum,Uo as MirrorPad,Ki as Mod,gp as MomentumOptimizer,Bc as Multinomial,Ho as Multiply,js as Neg,Yi as NonMaxSuppressionV3,Zi as NonMaxSuppressionV4,Ji as NonMaxSuppressionV5,Xi as NotEqual,GS as OP_SCOPE_SUFFIX,qo as OneHot,Us as OnesLike,Br as Optimizer,Hs as Pack,Ko as PadV2,toe as Pool,Xo as Pow,Yo as Prelu,Qi as Prod,xp as RMSPropOptimizer,$n as RNN,sl as Range,mw as Rank,Vc as Real,Do as RealDiv,ea as Reciprocal,Wt as Reduction,Zo as Relu,Qo as Relu6,qs as Reshape,Jo as ResizeBilinear,Wc as ResizeBilinearGrad,il as ResizeNearestNeighbor,Gc as ResizeNearestNeighborGrad,es as Reverse,ua as RotateWithOffset,ts as Round,rs as Rsqrt,xl as SGDOptimizer,ta as ScatterNd,Ks as Select,ra as Selu,Ba as Sequential,os as Sigmoid,oa as Sign,ns as Sin,na as Sinh,Xs as Slice,as as Softmax,sa as Softplus,al as SpaceToBatchND,jc as SparseFillEmptyRows,Uc as SparseReshape,Hc as SparseToDense,Ys as SplitV,ss as Sqrt,ll as Square,ls as SquaredDifference,Yn as Step,ia as StridedSlice,us as Sub,is as Sum,sn as SymbolicTensor,cs as Tan,ps as Tanh,Pe as Tensor,ut as TensorBuffer,Mn as Tile,aa as TopK,la as Transform,ms as Transpose,qc as Unique,Zs as Unpack,ul as UnsortedSegmentSum,pl as Variable,Js as ZerosLike,Qs as _FusedMatMul,Tt as abs,Vm as acos,Gm as acosh,J as add,Vw as addN,tu as all,dl as any,hl as argMax,Wm as argMin,jm as asin,Um as asinh,Hm as atan,qm as atan2,Km as atanh,ha as avgPool,Xm as avgPool3d,MT as backend,C as backend_util,Vj as basicLSTMCell,Jn as batchNorm,Uw as batchNorm2d,Hw as batchNorm3d,qw as batchNorm4d,ga as batchToSpaceND,Ym as bincount,IIe as booleanMaskAsync,xa as broadcastTo,ug as browser,Ce as buffer,ane as callbacks,oe as cast,Zm as ceil,ur as clipByValue,Ln as clone,Nn as complex,Qe as concat,Kw as concat1d,Xw as concat2d,Yw as concat3d,Zw as concat4d,Jz as constraints,ou as conv1d,Jr as conv2d,su as conv2dTranspose,Jm as conv3d,Jw as conv3dTranspose,aoe as copyRegisteredKernels,ya as cos,iu as cosh,Ig as cosineWindow,au as cumsum,Qr as customGrad,RI as data,Qw as denseBincount,Bw as deprecationWarn,Qm as depthToSpace,xs as depthwiseConv2d,une as deregisterOp,Jl as device_util,h4 as diag,ef as dilation2d,Lae as disableDeprecationWarnings,Ee as dispose,zae as disposeVariables,pe as div,tf as divNoNan,e_ as dot,a1 as dropout,t_ as einsum,ys as elu,Mae as enableDebugMode,Pae as enableProdMode,l1 as enclosingPowerOfTwo,hs as engine,W as env,Sn as equal,rf as erf,Qt as exp,cr as expandDims,nf as expm1,sp as eye,Na as fft,bs as fill,Uae as findBackend,Hae as findBackendFactory,ws as floor,eu as floorDiv,KD as forceHalfFloat,no as fused,Qn as gather,s1 as gatherND,cg as gather_util,Wae as getBackend,uw as getGradient,Fm as getKernel,eg as getKernelsForBackend,Z2 as gpgpu_util,U4 as grad,H4 as grads,Vt as greater,hn as greaterEqual,si as ifft,lu as imag,ai as image,ONe as inTopKAsync,b3 as initializers,m0 as input,Er as io,_u as irfft,r_ as isFinite,n_ as isInf,of as isNaN,$t as keep,Fr as kernel_impls,Y3 as layers,ba as leakyRelu,uu as less,gn as lessEqual,V1 as linalg,o_ as linspace,One as loadGraphModel,bte as loadLayersModel,sf as localResponseNormalization,pr as log,cu as log1p,s_ as logSigmoid,pu as logSoftmax,lf as logSumExp,yr as logicalAnd,wa as logicalNot,mu as logicalOr,u_ as logicalXor,ROe as losses,ze as matMul,wT as math,mr as max,_a as maxPool,uf as maxPool3d,c_ as maxPoolWithArgmax,en as maximum,dt as mean,Bm as memory,dU as meshgrid,tB as metrics,oi as min,_s as minimum,cf as mirrorPad,pf as mod,xte as model,rB as models,ip as moments,ZIe as movingAverage,O as mul,kU as multiRNNCell,p_ as multinomial,qe as neg,kf as nextFrame,cp as norm,ro as notEqual,ds as oneHot,er as ones,sr as onesLike,S as op,SU as outerProduct,Lr as pad,EU as pad1d,$U as pad2d,FU as pad3d,PU as pad4d,m_ as pool,zr as pow,va as prelu,Ew as print,fu as prod,Bae as profile,UU as rand,QU as randomGamma,_g as randomNormal,ks as randomUniform,Ca as range,Gae as ready,gl as real,mf as reciprocal,rp as registerBackend,wte as registerCallbackConstructor,AS as registerGradient,Kl as registerKernel,lne as registerOp,nB as regularizers,$r as relu,hu as relu6,jae as removeBackend,L as reshape,Kt as reverse,lH as reverse1d,cH as reverse2d,mH as reverse3d,dH as reverse4d,Sa as rfft,gu as round,xu as rsqrt,ue as scalar,n1 as scatterND,pg as scatter_util,yu as selu,ff as separableConv2d,yte as sequential,Q as serialization,uj as setBackend,qae as setPlatform,jQ as setWasmPath,UQ as setWasmPaths,ck as setWebGLContext,v_ as setdiff1dAsync,Hg as shared,Dr as sigmoid,df as sign,$Oe as signal,bu as sin,wu as sinh,Re as slice,hf as slice1d,kg as slice2d,gf as slice3d,lp as slice4d,or as slice_util,Ia as softmax,eo as softplus,ka as spaceToBatchND,G1 as sparse,Cg as sparseToDense,DOe as spectral,tr as split,gt as sqrt,Me as square,ku as squaredDifference,Tn as squeeze,Gt as stack,vs as step,xf as stridedSlice,le as sub,fe as sum,Yl as sumOutType,yf as tan,gs as tanh,vr as tensor,Ct as tensor1d,ii as tensor2d,Fw as tensor3d,BH as tensor4d,VH as tensor5d,GH as tensor6d,Zn as tensor_util,FT as test_util,V as tidy,Bn as tile,Vae as time,bf as topk,Tu as train,Ue as transpose,vu as truncatedNormal,up as unique,ioe as unregisterGradient,soe as unregisterKernel,wf as unsortedSegmentSum,fr as unstack,lr as upcastType,y as util,q4 as valueAndGrad,K4 as valueAndGrads,C_ as variable,yg as variableGrads,H4t as version,Pne as version_converter,lj as version_core,K_ as version_cpu,xd as version_layers,VC as version_wasm,sv as version_webgl,tYe as webgl,H2 as webgl_util,vt as where,_f as whereAsync,ht as zeros,Ie as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=tfjs.esm.js.map
|