human/types/src/human.d.ts

219 lines
8.7 KiB
TypeScript

/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
import { Env } from './util/env';
import * as tf from '../dist/tfjs.esm.js';
import * as draw from './util/draw';
import * as facemesh from './face/facemesh';
import * as match from './face/match';
import * as models from './models';
import type { Input, Tensor, DrawOptions, Config, Result, AnyCanvas } from './exports';
export * from './exports';
/** Instance of TensorFlow/JS used by Human
* - Can be TFJS that is bundled with `Human` or a manually imported TFJS library
* @external [API](https://js.tensorflow.org/api/latest/)
*/
export declare type TensorFlow = typeof tf;
/** **Human** library main class
*
* All methods and properties are available only as members of Human class
*
* - Configuration object definition: {@link Config}
* - Results object definition: {@link Result}
* - Possible inputs: {@link Input}
*
* @param userConfig: {@link Config}
* @returns instance of {@link Human}
*/
export declare class Human {
#private;
/** Current version of Human library in *semver* format */
version: string;
/** Current configuration
* - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)
*/
config: Config;
/** Last known result of detect run
* - Can be accessed anytime after initial detection
*/
result: Result;
/** Current state of Human library
* - Can be polled to determine operations that are currently executed
* - Progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
*/
state: string;
/** currenty processed image tensor and canvas */
process: {
tensor: Tensor | null;
canvas: AnyCanvas | null;
};
/** Instance of TensorFlow/JS used by Human
* - Can be embedded or externally provided
* @internal
*
* [TFJS API]<https://js.tensorflow.org/api/latest/>
*/
tf: TensorFlow;
/** Object containing environment information used for diagnostics */
env: Env;
/** Draw helper classes that can draw detected objects on canvas using specified draw
* @property options global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}
*/
draw: {
canvas: typeof draw.canvas;
face: typeof draw.face;
body: typeof draw.body;
hand: typeof draw.hand;
gesture: typeof draw.gesture;
object: typeof draw.object;
person: typeof draw.person;
all: typeof draw.all;
options: DrawOptions;
};
/** Currently loaded models
* @internal
* {@link Models}
*/
models: models.Models;
/** Container for events dispatched by Human
* {@type} EventTarget
* Possible events:
* - `create`: triggered when Human object is instantiated
* - `load`: triggered when models are loaded (explicitly or on-demand)
* - `image`: triggered when input image is processed
* - `result`: triggered when detection is complete
* - `warmup`: triggered when warmup is complete
* - `error`: triggered on some errors
*/
events: EventTarget | undefined;
/** Reference face triangualtion array of 468 points, used for triangle references between points */
faceTriangulation: typeof facemesh.triangulation;
/** Refernce UV map of 468 values, used for 3D mapping of the face mesh */
faceUVMap: typeof facemesh.uvmap;
/** Performance object that contains values for all recently performed operations */
performance: Record<string, number>;
/** WebGL debug info */
gl: Record<string, unknown>;
/** Constructor for **Human** library that is futher used for all operations
*
* @param {Config} userConfig
* @returns {Human}
*/
constructor(userConfig?: Partial<Config>);
/** @hidden */
analyze: (...msg: string[]) => void;
/** Reset configuration to default values */
reset(): void;
/** Validate current configuration schema */
validate(userConfig?: Partial<Config>): {
reason: string;
where: string;
expected?: string;
}[];
/** Exports face matching methods */
similarity: typeof match.similarity;
distance: typeof match.distance;
match: typeof match.match;
/** Utility wrapper for performance.now() */
now(): number;
/** Process input as return canvas and tensor
*
* @param input: {@link Input}
* @param {boolean} input.getTensor should image processing also return tensor or just canvas
* @returns { tensor, canvas }
*/
image(input: Input, getTensor?: boolean): Promise<{
tensor: Tensor<import("@tensorflow/tfjs-core").Rank> | null;
canvas: AnyCanvas | null;
}>;
/** Segmentation method takes any input and returns processed canvas with body segmentation
* - Segmentation is not triggered as part of detect process
*
* Returns:
*
* @param input: {@link Input}
* @param background?: {@link Input}
* - Optional parameter background is used to fill the background with specific input
* @returns {object}
* - `data` as raw data array with per-pixel segmentation values
* - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging
* - `alpha` as grayscale canvas that represents segmentation alpha values
*/
segmentation(input: Input, background?: Input): Promise<{
data: number[] | Tensor;
canvas: AnyCanvas | null;
alpha: AnyCanvas | null;
}>;
/** Enhance method performs additional enhacements to face image previously detected for futher processing
*
* @param input: Tensor as provided in human.result.face[n].tensor
* @returns Tensor
*/
enhance(input: Tensor): Tensor | null;
/** Compare two input tensors for pixel simmilarity
* - use `human.image` to process any valid input and get a tensor that can be used for compare
* - when passing manually generated tensors:
* - both input tensors must be in format [1, height, width, 3]
* - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor
* @returns {number}
* - return value is pixel similarity score normalized by input resolution and rgb channels
*/
compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise<number>;
/** Explicit backend initialization
* - Normally done implicitly during initial load phase
* - Call to explictly register and initialize TFJS backend without any other operations
* - Use when changing backend during runtime
*
* @returns {void}
*/
init(): Promise<void>;
/** Load method preloads all configured models on-demand
* - Not explicitly required as any required model is load implicitly on it's first run
*
* @param userConfig?: {@link Config}
* @return Promise<void>
*/
load(userConfig?: Partial<Config>): Promise<void>;
/** @hidden */
emit: (event: string) => void;
/** Runs interpolation using last known result and returns smoothened result
* Interpolation is based on time since last known result so can be called independently
*
* @param result?: {@link Result} optional use specific result set to run interpolation on
* @returns result: {@link Result}
*/
next(result?: Result): Result;
/** Warmup method pre-initializes all configured models for faster inference
* - can take significant time on startup
* - only used for `webgl` and `humangl` backends
* @param userConfig?: {@link Config}
* @returns result: {@link Result}
*/
warmup(userConfig?: Partial<Config>): Promise<Result | {
error: any;
}>;
/** Run detect with tensorflow profiling
* - result object will contain total exeuction time information for top-20 kernels
* - actual detection object can be accessed via `human.result`
*/
profile(input: Input, userConfig?: Partial<Config>): Promise<Record<string, number>>;
/** Main detection method
* - Analyze configuration: {@link Config}
* - Pre-process input: {@link Input}
* - Run inference for all configured models
* - Process and return result: {@link Result}
*
* @param input: {@link Input}
* @param userConfig?: {@link Config}
* @returns result: {@link Result}
*/
detect(input: Input, userConfig?: Partial<Config>): Promise<Result>;
}
/** Class Human as default export */
export { Human as default };