human/dist/human.js

8047 lines
1.5 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var Yg=Object.defineProperty;var qN=(e,t,n)=>t in e?Yg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var XN=e=>Yg(e,"__esModule",{value:!0});var wa=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var jc=(e,t)=>{XN(e);for(var n in t)Yg(e,n,{get:t[n],enumerable:!0})};var de=(e,t,n)=>(qN(e,typeof t!="symbol"?t+"":t,n),n),x5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var qc=(e,t,n)=>(x5(e,t,"read from private field"),n?n.call(e):t.get(e)),Xc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Kc=(e,t,n,s)=>(x5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var R2e={};jc(R2e,{Human:()=>KT,default:()=>KT,defaults:()=>ka,env:()=>ge});function Ze(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function se(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var ce=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Jg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Jg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&se("invalid configuration",s),s}function $n(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=$n(a,o):n[r]=o}),n),{})}var ka={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Pl={};jc(Pl,{Abs:()=>di,Acos:()=>su,Acosh:()=>ru,AdadeltaOptimizer:()=>Ef,AdagradOptimizer:()=>Rf,AdamOptimizer:()=>$f,AdamaxOptimizer:()=>_f,Add:()=>Hr,AddN:()=>Ta,All:()=>au,Any:()=>ou,ArgMax:()=>Na,ArgMin:()=>iu,Asin:()=>lu,Asinh:()=>uu,Atan:()=>cu,Atan2:()=>pu,Atanh:()=>du,AvgPool:()=>Ea,AvgPool3D:()=>Qc,AvgPool3DGrad:()=>Ah,AvgPoolGrad:()=>gh,BackendWasm:()=>M6,BatchMatMul:()=>Ra,BatchToSpaceND:()=>pi,Bincount:()=>yh,BroadcastArgs:()=>xh,BroadcastTo:()=>F5,Callback:()=>jk,CallbackList:()=>Pw,Cast:()=>$a,Ceil:()=>_a,ClipByValue:()=>jr,Complex:()=>ed,ComplexAbs:()=>td,Concat:()=>hi,Conv2D:()=>Da,Conv2DBackpropFilter:()=>bh,Conv2DBackpropInput:()=>Pa,Conv3D:()=>nd,Conv3DBackpropFilterV2:()=>vh,Conv3DBackpropInputV2:()=>wh,Cos:()=>Fa,Cosh:()=>Oa,CropAndResize:()=>mi,Cumsum:()=>fi,CustomCallback:()=>Ow,DataStorage:()=>Zc,DenseBincount:()=>kh,DepthToSpace:()=>gi,DepthwiseConv2dNative:()=>Ma,DepthwiseConv2dNativeBackpropFilter:()=>Sh,DepthwiseConv2dNativeBackpropInput:()=>Ih,Diag:()=>Ch,Dilation2D:()=>sd,Dilation2DBackpropFilter:()=>Nh,Dilation2DBackpropInput:()=>Th,ENV:()=>Ir,EarlyStopping:()=>Xk,Einsum:()=>rd,Elu:()=>La,EluGrad:()=>Eh,Environment:()=>D5,Equal:()=>Ai,Erf:()=>hu,Exp:()=>Ba,ExpandDims:()=>yi,Expm1:()=>xi,FFT:()=>Rh,Fill:()=>fu,FlipLeftRight:()=>bi,Floor:()=>Wa,FloorDiv:()=>Va,FromPixels:()=>hd,FusedBatchNorm:()=>Ua,FusedConv2D:()=>bo,FusedDepthwiseConv2D:()=>vo,GPGPUContext:()=>Om,GatherNd:()=>wi,GatherV2:()=>vi,GraphModel:()=>C7,Greater:()=>ki,GreaterEqual:()=>Ga,History:()=>Fw,IFFT:()=>$h,Identity:()=>Ha,Imag:()=>ad,InputSpec:()=>Zt,IsFinite:()=>mu,IsInf:()=>gu,IsNan:()=>Au,KernelBackend:()=>eu,LRN:()=>id,LRNGrad:()=>Dh,LayerVariable:()=>Ew,LayersModel:()=>ta,LeakyRelu:()=>Si,Less:()=>Ii,LessEqual:()=>Ci,LinSpace:()=>_h,Log:()=>ja,Log1p:()=>yu,LogSoftmax:()=>O5,LogicalAnd:()=>Ti,LogicalNot:()=>xu,LogicalOr:()=>od,MathBackendCPU:()=>Py,MathBackendWebGL:()=>hp,Max:()=>qa,MaxPool:()=>Ka,MaxPool3D:()=>ld,MaxPool3DGrad:()=>Fh,MaxPoolGrad:()=>Ph,MaxPoolWithArgmax:()=>Oh,Maximum:()=>Xa,Mean:()=>Za,Min:()=>Ya,Minimum:()=>Ja,MirrorPad:()=>Qa,Mod:()=>bu,MomentumOptimizer:()=>Df,Multinomial:()=>Mh,Multiply:()=>eo,Neg:()=>Ni,NonMaxSuppressionV3:()=>Ri,NonMaxSuppressionV4:()=>vu,NonMaxSuppressionV5:()=>$i,NotEqual:()=>Ei,OP_SCOPE_SUFFIX:()=>Y5,OneHot:()=>Di,OnesLike:()=>_i,Optimizer:()=>Jr,OptimizerConstructors:()=>Do,Pack:()=>Pi,PadV2:()=>to,Pool:()=>OE,Pow:()=>no,Prelu:()=>so,Prod:()=>Fi,RMSPropOptimizer:()=>Pf,RNN:()=>na,Range:()=>wu,Rank:()=>u2,Real:()=>ud,RealDiv:()=>za,Reciprocal:()=>ku,Reduction:()=>Vn,Relu:()=>ro,Relu6:()=>oo,Reshape:()=>Oi,ResizeBilinear:()=>ao,ResizeBilinearGrad:()=>Lh,ResizeNearestNeighbor:()=>Su,ResizeNearestNeighborGrad:()=>zh,Reverse:()=>Mi,RotateWithOffset:()=>Yi,Round:()=>zi,Rsqrt:()=>io,SGDOptimizer:()=>Md,ScatterNd:()=>Li,Select:()=>Bi,Selu:()=>Iu,Sequential:()=>am,Sigmoid:()=>uo,Sign:()=>Cu,Sin:()=>lo,Sinh:()=>Vi,Slice:()=>Wi,Softmax:()=>ho,Softplus:()=>Tu,SpaceToBatchND:()=>Ui,SparseFillEmptyRows:()=>Bh,SparseReshape:()=>Wh,SparseSegmentMean:()=>Vh,SparseSegmentSum:()=>Uh,SparseToDense:()=>cd,SplitV:()=>Gi,Sqrt:()=>co,Square:()=>Nu,SquaredDifference:()=>fo,Step:()=>yo,StridedSlice:()=>Hi,StringNGrams:()=>dd,StringSplit:()=>Gh,StringToHashBucketFast:()=>Hh,Sub:()=>mo,Sum:()=>po,SymbolicTensor:()=>fr,Tan:()=>ji,Tanh:()=>go,Tensor:()=>Je,TensorBuffer:()=>tn,Tile:()=>qr,TopK:()=>qi,Transform:()=>Xi,Transpose:()=>Ao,Unique:()=>jh,Unpack:()=>Ki,UnsortedSegmentSum:()=>pd,Variable:()=>vd,ZerosLike:()=>Zi,_FusedMatMul:()=>xo,abs:()=>nn,acos:()=>M3,acosh:()=>z3,add:()=>le,addN:()=>rf,all:()=>V2,any:()=>af,argMax:()=>js,argMin:()=>L3,asin:()=>B3,asinh:()=>W3,atan:()=>V3,atan2:()=>U3,atanh:()=>G3,avgPool:()=>lf,avgPool3d:()=>H2,backend:()=>Nr,backend_util:()=>E,basicLSTMCell:()=>k$,batchNorm:()=>Ou,batchNorm2d:()=>X3,batchNorm3d:()=>K3,batchNorm4d:()=>Z3,batchToSpaceND:()=>uf,bincount:()=>j2,booleanMaskAsync:()=>FP,broadcastArgs:()=>Y3,broadcastTo:()=>Td,broadcast_util:()=>sl,browser:()=>Hs,buffer:()=>ze,callbacks:()=>ZV,cast:()=>pe,ceil:()=>J3,clipByValue:()=>ps,clone:()=>Bn,complex:()=>So,concat:()=>vt,concat1d:()=>Q3,concat2d:()=>Mu,concat3d:()=>ev,concat4d:()=>tv,constraints:()=>lw,conv1d:()=>q2,conv2d:()=>Eo,conv2dTranspose:()=>K2,conv3d:()=>Z2,conv3dTranspose:()=>sv,copyRegisteredKernels:()=>BE,cos:()=>cf,cosh:()=>Y2,cosineWindow:()=>w1,cumsum:()=>J2,customGrad:()=>Rr,data:()=>T7,denseBincount:()=>rv,deprecationWarn:()=>B2,depthToSpace:()=>av,depthwiseConv2d:()=>Nd,deregisterOp:()=>QV,device_util:()=>$u,diag:()=>Q$,dilation2d:()=>ov,disableDeprecationWarnings:()=>LR,dispose:()=>ne,disposeVariables:()=>BR,div:()=>he,divNoNan:()=>iv,dot:()=>o_,dropout:()=>Ov,einsum:()=>lv,elu:()=>Ed,enableDebugMode:()=>zR,enableProdMode:()=>F3,enclosingPowerOfTwo:()=>Mv,engine:()=>ss,env:()=>K,equal:()=>Ts,erf:()=>uv,exp:()=>Ns,expandDims:()=>Xt,expm1:()=>cv,eye:()=>Q2,fft:()=>vf,fill:()=>zu,findBackend:()=>W2,findBackendFactory:()=>GR,floor:()=>Rd,floorDiv:()=>sf,forceHalfFloat:()=>s4,fused:()=>_o,gather:()=>Lu,gatherND:()=>Fv,gather_util:()=>_2,getBackend:()=>Cs,getGradient:()=>a2,getKernel:()=>qh,getKernelsForBackend:()=>Xr,getThreadsCount:()=>Cge,gpgpu_util:()=>RI,grad:()=>$_,grads:()=>__,greater:()=>hs,greaterEqual:()=>ll,ifft:()=>Pd,imag:()=>df,image:()=>$e,inTopKAsync:()=>jP,initializers:()=>mw,input:()=>ak,io:()=>ns,irfft:()=>g1,isFinite:()=>v_,isInf:()=>k_,isNaN:()=>dv,keep:()=>gn,kernel_impls:()=>Ks,layers:()=>Cw,leakyRelu:()=>pf,less:()=>e1,lessEqual:()=>ul,linalg:()=>qv,linspace:()=>pv,loadGraphModel:()=>Xe,loadLayersModel:()=>iW,localResponseNormalization:()=>hv,log:()=>Es,log1p:()=>hf,logSigmoid:()=>z_,logSoftmax:()=>t1,logSumExp:()=>yv,logicalAnd:()=>lr,logicalNot:()=>mf,logicalOr:()=>r1,logicalXor:()=>Z_,losses:()=>RO,matMul:()=>Ue,math:()=>m3,max:()=>An,maxPool:()=>gf,maxPool3d:()=>a1,maxPoolWithArgmax:()=>xv,maximum:()=>Zr,mean:()=>Wt,memory:()=>tf,meshgrid:()=>nD,metrics:()=>Uk,min:()=>Ro,minimum:()=>$d,mirrorPad:()=>bv,mod:()=>_d,model:()=>aW,models:()=>Gk,moments:()=>Af,movingAverage:()=>zP,mul:()=>L,multiRNNCell:()=>cD,multinomial:()=>vv,neg:()=>Ot,nextFrame:()=>Xv,norm:()=>b1,notEqual:()=>Wu,oneHot:()=>Id,ones:()=>fs,onesLike:()=>Rs,op:()=>V,outerProduct:()=>mD,pad:()=>Xs,pad1d:()=>yD,pad2d:()=>bD,pad3d:()=>wD,pad4d:()=>SD,pool:()=>ED,pow:()=>$o,prelu:()=>xf,print:()=>u3,prod:()=>o1,profile:()=>WR,rand:()=>PD,randomGamma:()=>zD,randomNormal:()=>wv,randomUniform:()=>Vu,range:()=>Uu,ready:()=>nf,real:()=>Dd,reciprocal:()=>kv,registerBackend:()=>ol,registerCallbackConstructor:()=>lW,registerGradient:()=>M5,registerKernel:()=>ar,registerOp:()=>JV,regularizers:()=>Hk,relu:()=>$r,relu6:()=>u1,removeBackend:()=>UR,reshape:()=>G,reverse:()=>$s,reverse1d:()=>qD,reverse2d:()=>KD,reverse3d:()=>YD,reverse4d:()=>QD,rfft:()=>wf,round:()=>c1,rsqrt:()=>d1,scalar:()=>Re,scatterND:()=>Pv,scatter_util:()=>D2,selu:()=>p1,separableConv2d:()=>Sv,sequential:()=>oW,serialization:()=>ue,setBackend:()=>O3,setPlatform:()=>HR,setThreadsCount:()=>Ige,setWasmPath:()=>Sge,setWasmPaths:()=>L6,setWebGLContext:()=>Tm,setdiff1dAsync:()=>Iv,shared:()=>vm,sigmoid:()=>ds,sign:()=>Cv,signal:()=>EO,sin:()=>h1,sinh:()=>f1,slice:()=>De,slice1d:()=>bf,slice2d:()=>m1,slice3d:()=>dl,slice4d:()=>pl,slice_util:()=>Ft,softmax:()=>Gu,softplus:()=>Bu,spaceToBatchND:()=>yf,sparse:()=>Od,sparseToDense:()=>v1,spectral:()=>NO,split:()=>sn,sqrt:()=>Dn,square:()=>gt,squaredDifference:()=>A1,squeeze:()=>ot,stack:()=>yn,step:()=>Fd,stridedSlice:()=>Tv,string:()=>Nf,sub:()=>me,sum:()=>Se,sumOutType:()=>wd,tan:()=>Nv,tanh:()=>Fu,tensor:()=>Pt,tensor1d:()=>Kt,tensor2d:()=>ur,tensor3d:()=>A3,tensor4d:()=>IP,tensor5d:()=>CP,tensor6d:()=>TP,tensor_util:()=>or,test_util:()=>_3,tidy:()=>q,tile:()=>qs,time:()=>VR,topk:()=>Ev,train:()=>hl,transpose:()=>Qe,truncatedNormal:()=>kf,unique:()=>y1,unregisterGradient:()=>LE,unregisterKernel:()=>zE,unsortedSegmentSum:()=>Rv,unstack:()=>rs,upcastType:()=>Ln,util:()=>v,valueAndGrad:()=>D_,valueAndGrads:()=>P_,variable:()=>$v,variableGrads:()=>fv,version:()=>W6,version_converter:()=>nG,version_core:()=>Tp,version_cpu:()=>VH,version_layers:()=>rA,version_wasm:()=>Tge,version_webgl:()=>mQ,webgl:()=>gQ,webgl_util:()=>eI,webgpu:()=>LC,where:()=>Wn,whereAsync:()=>x1,zeros:()=>Gt,zerosLike:()=>et});var Ql=(e=>typeof wa!="undefined"?wa:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof wa!="undefined"?wa:t)[n]}):e)(function(e){if(typeof wa!="undefined")return wa.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),KN=Object.create,ch=Object.defineProperty,ZN=Object.getOwnPropertyDescriptor,YN=Object.getOwnPropertyNames,JN=Object.getPrototypeOf,QN=Object.prototype.hasOwnProperty,b5=e=>ch(e,"__esModule",{value:!0}),Vs=(e=>typeof Ql!="undefined"?Ql:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Ql!="undefined"?Ql:t)[n]}):e)(function(e){if(typeof Ql!="undefined")return Ql.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),ts=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Oe=(e,t)=>{b5(e);for(var n in t)ch(e,n,{get:t[n],enumerable:!0})},eE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of YN(t))!QN.call(e,s)&&s!=="default"&&ch(e,s,{get:()=>t[s],enumerable:!(n=ZN(t,s))||n.enumerable});return e},li=e=>eE(b5(ch(e!=null?KN(JN(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),tE=ts({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,T,M){this.low=P|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,T){var M,U,j;return T?(P>>>=0,(j=0<=P&&P<256)&&(U=o[P],U)?U:(M=c(P,(P|0)<0?-1:0,!0),j&&(o[P]=M),M)):(P|=0,(j=-128<=P&&P<128)&&(U=a[P],U)?U:(M=c(P,P<0?-1:0,!1),j&&(a[P]=M),M))}s.fromInt=i;function l(P,T){if(isNaN(P))return T?b:y;if(T){if(P<0)return b;if(P>=g)return R}else{if(P<=-A)return F;if(P+1>=A)return N}return P<0?l(-P,T).neg():c(P%m|0,P/m|0,T)}s.fromNumber=l;function c(P,T,M){return new s(P,T,M)}s.fromBits=c;var u=Math.pow;function d(P,T,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return y;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var U;if((U=P.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(P.substring(1),T,M).neg();for(var j=l(u(M,8)),z=y,X=0;X<P.length;X+=8){var Z=Math.min(8,P.length-X),J=parseInt(P.substring(X,X+Z),M);if(Z<8){var ee=l(u(M,Z));z=z.mul(ee).add(l(J))}else z=z.mul(j),z=z.add(l(J))}return z.unsigned=T,z}s.fromString=d;function p(P,T){return typeof P=="number"?l(P,T):typeof P=="string"?d(P,T):c(P.low,P.high,typeof T=="boolean"?T:P.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,x=i(f),y=i(0);s.ZERO=y;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var C=i(-1);s.NEG_ONE=C;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var R=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=R;var F=c(0,2147483648|0,!1);s.MIN_VALUE=F;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(F)){var M=l(T),U=this.div(M),j=U.mul(M).sub(this);return U.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,Z="";;){var J=X.div(z),ee=X.sub(J.mul(z)).toInt()>>>0,re=ee.toString(T);if(X=J,X.isZero())return re+Z;for(;re.length<6;)re="0"+re;Z=""+re+Z}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq(F)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)==1},_.isEven=function(){return(this.low&1)==0},_.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},_.eq=_.equals,_.notEquals=function(T){return!this.eq(T)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(T){return this.comp(T)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(T){return this.comp(T)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(T){return this.comp(T)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(T){return this.comp(T)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),U=T.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq(F)?F:this.not().add(w)},_.neg=_.negate,_.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,U=this.high&65535,j=this.low>>>16,z=this.low&65535,X=T.high>>>16,Z=T.high&65535,J=T.low>>>16,ee=T.low&65535,re=0,Q=0,te=0,oe=0;return oe+=z+ee,te+=oe>>>16,oe&=65535,te+=j+J,Q+=te>>>16,te&=65535,Q+=U+Z,re+=Q>>>16,Q&=65535,re+=M+X,re&=65535,c(te<<16|oe,re<<16|Q,this.unsigned)},_.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},_.sub=_.subtract,_.multiply=function(T){if(this.isZero())return y;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return y;if(this.eq(F))return T.isOdd()?F:y;if(T.eq(F))return this.isOdd()?F:y;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,z=this.low>>>16,X=this.low&65535,Z=T.high>>>16,J=T.high&65535,ee=T.low>>>16,re=T.low&65535,Q=0,te=0,oe=0,fe=0;return fe+=X*re,oe+=fe>>>16,fe&=65535,oe+=z*re,te+=oe>>>16,oe&=65535,oe+=X*ee,te+=oe>>>16,oe&=65535,te+=j*re,Q+=te>>>16,te&=65535,te+=z*ee,Q+=te>>>16,te&=65535,te+=X*J,Q+=te>>>16,te&=65535,Q+=U*re+j*ee+z*J+X*Z,Q&=65535,c(oe<<16|fe,Q<<16|te,this.unsigned)},_.mul=_.multiply,_.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var U,j,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(F)){if(T.eq(w)||T.eq(C))return F;if(T.eq(F))return w;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(y)?T.isNegative()?w:C:(j=this.sub(T.mul(U)),z=U.add(j.div(T)),z)}else if(T.eq(F))return this.unsigned?b:y;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=y}for(j=this;j.gte(T);){U=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Z=Math.ceil(Math.log(U)/Math.LN2),J=Z<=48?1:u(2,Z-48),ee=l(U),re=ee.mul(T);re.isNegative()||re.gt(j);)U-=J,ee=l(U,this.unsigned),re=ee.mul(T);ee.isZero()&&(ee=w),z=z.add(ee),j=j.sub(re)}return z},_.div=_.divide,_.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return c(~this.low,~this.high,this.unsigned)},_.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},_.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},_.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},_.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var U=this.low;return c(U>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},_.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},_.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,U){return U?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),nE=ts({"(disabled):node-fetch"(){}}),sE=ts({"(disabled):util"(){}}),rE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cE=ts({"(disabled):crypto"(){}}),dE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,C){var N=[];k=k==!0?{entropy:!0}:k||{};var R=x(A(k.entropy?[w,b(s)]:w==null?y():w,3),N),F=new m(N),_=function(){for(var P=F.g(o),T=c,M=0;P<u;)P=(P+M)*a,T*=a,M=F.g(1);for(;P>=d;)P/=2,T/=2,M>>>=1;return(P+M)/T};return _.int32=function(){return F.g(4)|0},_.quick=function(){return F.g(4)/4294967296},_.double=_,x(b(F.S),s),(k.pass||C||function(P,T,M,U){return U&&(U.S&&g(U,F),P.state=function(){return g(F,{})}),M?(r[l]=P,T):P})(_,R,"global"in k?k.global:this==r,k.state)}function m(w){var k,C=w.length,N=this,R=0,F=N.i=N.j=0,_=N.S=[];for(C||(w=[C++]);R<a;)_[R]=R++;for(R=0;R<a;R++)_[R]=_[F=p&F+w[R%C]+(k=_[R])],_[F]=k;(N.g=function(P){for(var T,M=0,U=N.i,j=N.j,z=N.S;P--;)T=z[U=p&U+1],M=M*a+z[p&(z[U]=z[j=p&j+T])+(z[j]=T)];return N.i=U,N.j=j,M})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function A(w,k){var C=[],N=typeof w,R;if(k&&N=="object")for(R in w)try{C.push(A(w[R],k-1))}catch(F){}return C.length?C:N=="string"?w:w+"\0"}function x(w,k){for(var C=w+"",N,R=0;R<C.length;)k[p&R]=p&(N^=k[p&R]*19)+C.charCodeAt(R++);return b(k)}function y(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(N){var k=n.navigator,C=k&&k.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=cE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),dh=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=rE(),s=aE(),r=oE(),a=iE(),o=lE(),i=uE(),l=dE();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),v5=ts({"(disabled):src/node_modules/string_decoder/index.js"(){}}),pE=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return te.buffer!=Ct&&Sn(te.buffer),_t}function o(){return te.buffer!=Ct&&Sn(te.buffer),ks}function i(){return te.buffer!=Ct&&Sn(te.buffer),Fn}function l(){return te.buffer!=Ct&&Sn(te.buffer),us}function c(){return te.buffer!=Ct&&Sn(te.buffer),Ss}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(I,$){d=I,p=$});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(I,$){throw $},x=!1,y=!1,b=!1,w=!1;x=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!x&&!b&&!y;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ct=u.buffer);var C="";function N(I){return u.locateFile?u.locateFile(I,C):C+I}var R,F,_,P,T,M;if(b){y?C=Vs("path").dirname(C)+"/":C=__dirname+"/",R=function($,B){return T||(T=Vs("fs")),M||(M=Vs("path")),$=M.normalize($),T.readFileSync($,B?null:"utf8")},_=function($){var B=R($,!0);return B.buffer||(B=new Uint8Array(B)),we(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Hc))throw I}),process.on("unhandledRejection",Vr),A=function(I){process.exit(I)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Vs("worker_threads")}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(R=function($){return read($)}),_=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),we(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(x||y)&&(y?C=self.location.href:typeof document!="undefined"&&document.currentScript&&(C=document.currentScript.src),typeof s!="undefined"&&s&&(C=s),C.indexOf("blob:")!==0?C=C.substr(0,C.lastIndexOf("/")+1):C="",b?(R=function($,B){return T||(T=Vs("fs")),M||(M=Vs("path")),$=M.normalize($),T.readFileSync($,B?null:"utf8")},_=function($){var B=R($,!0);return B.buffer||(B=new Uint8Array(B)),we(B.buffer),B}):(R=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.send(null),$.responseText},y&&(_=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),F=function(I,$,B){var Y=new XMLHttpRequest;Y.open("GET",I,!0),Y.responseType="arraybuffer",Y.onload=function(){if(Y.status==200||Y.status==0&&Y.response){$(Y.response);return}B()},Y.onerror=B,Y.send(null)}),P=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=Vs("perf_hooks").performance);var j=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(I){X.shown||(X.shown={}),X.shown[I]||(X.shown[I]=1,z(I))}var Z=Atomics.load,J=Atomics.store,ee=Atomics.compareExchange,re;u.wasmBinary&&(re=u.wasmBinary);var Q=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Vr("no native wasm support detected");var te,oe,fe=!1,be;function we(I,$){I||Vr("Assertion failed: "+$)}function Ce(I){var $=u["_"+I];return we($,"Cannot call unknown function "+I+", make sure it is exported"),$}function Me(I,$,B,Y,xe){var Ae={string:function(On){var Jl=0;if(On!=null&&On!==0){var y5=(On.length<<2)+1;Jl=Kl(y5),dt(On,Jl,y5)}return Jl},array:function(On){var Jl=Kl(On.length);return wt(On,Jl),Jl}};function ye(On){return $==="string"?qe(On):$==="boolean"?Boolean(On):On}var Te=Ce(I),ut=[],hn=0;if(Y)for(var en=0;en<Y.length;en++){var va=Ae[B[en]];va?(hn===0&&(hn=Gc()),ut[en]=va(Y[en])):ut[en]=Y[en]}var Yl=Te.apply(null,ut);return Yl=ye(Yl),hn!==0&&Xl(hn),Yl}function We(I,$,B,Y){B=B||[];var xe=B.every(function(ye){return ye==="number"}),Ae=$!=="string";return Ae&&xe&&!Y?Ce(I):function(){return Me(I,$,B,arguments,Y)}}function He(I,$,B){for(var Y=$+B,xe="";!($>=Y);){var Ae=I[$++];if(!Ae)return xe;if(!(Ae&128)){xe+=String.fromCharCode(Ae);continue}var ye=I[$++]&63;if((Ae&224)==192){xe+=String.fromCharCode((Ae&31)<<6|ye);continue}var Te=I[$++]&63;if((Ae&240)==224?Ae=(Ae&15)<<12|ye<<6|Te:Ae=(Ae&7)<<18|ye<<12|Te<<6|I[$++]&63,Ae<65536)xe+=String.fromCharCode(Ae);else{var ut=Ae-65536;xe+=String.fromCharCode(55296|ut>>10,56320|ut&1023)}}return xe}function qe(I,$){return I?He(o(),I,$):""}function ct(I,$,B,Y){if(!(Y>0))return 0;for(var xe=B,Ae=B+Y-1,ye=0;ye<I.length;++ye){var Te=I.charCodeAt(ye);if(Te>=55296&&Te<=57343){var ut=I.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|ut&1023}if(Te<=127){if(B>=Ae)break;$[B++]=Te}else if(Te<=2047){if(B+1>=Ae)break;$[B++]=192|Te>>6,$[B++]=128|Te&63}else if(Te<=65535){if(B+2>=Ae)break;$[B++]=224|Te>>12,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}else{if(B+3>=Ae)break;$[B++]=240|Te>>18,$[B++]=128|Te>>12&63,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}}return $[B]=0,B-xe}function dt(I,$,B){return ct(I,o(),$,B)}function rt(I){for(var $=0,B=0;B<I.length;++B){var Y=I.charCodeAt(B);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|I.charCodeAt(++B)&1023),Y<=127?++$:Y<=2047?$+=2:Y<=65535?$+=3:$+=4}return $}function wt(I,$){a().set(I,$)}function ft(I,$){return I%$>0&&(I+=$-I%$),I}var Ct,_t,ks,kn,sr,Fn,us,Bs,Ss;function Sn(I){Ct=I,u.HEAP8=_t=new Int8Array(I),u.HEAP16=kn=new Int16Array(I),u.HEAP32=Fn=new Int32Array(I),u.HEAPU8=ks=new Uint8Array(I),u.HEAPU16=sr=new Uint16Array(I),u.HEAPU32=us=new Uint32Array(I),u.HEAPF32=Bs=new Float32Array(I),u.HEAPF64=Ss=new Float64Array(I)}var wr=u.INITIAL_MEMORY||16777216;if(k)te=u.wasmMemory,Ct=u.buffer;else if(u.wasmMemory)te=u.wasmMemory;else if(te=new WebAssembly.Memory({initial:wr/65536,maximum:2147483648/65536,shared:!0}),!(te.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");te&&(Ct=te.buffer),wr=Ct.byteLength,Sn(Ct);var Rn,kr=[],Sr=[],ma=[],Pc=[],rr=[],Lp=!1,E0=!1;k||Sr.push({func:function(){sh()}});function Bp(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)R0(u.preRun.shift());Hl(kr)}}function Wp(){Lp=!0,!k&&Hl(Sr)}function Vp(){k||Hl(ma)}function Qn(){k||(E0=!0)}function Up(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)$0(u.postRun.shift());Hl(rr)}}function R0(I){kr.unshift(I)}function $0(I){rr.unshift(I)}var Ws=0,Fc=null,ri=null;function _0(I){we(!k,"addRunDependency cannot be used in a pthread worker"),Ws++,u.monitorRunDependencies&&u.monitorRunDependencies(Ws)}function D0(I){if(Ws--,u.monitorRunDependencies&&u.monitorRunDependencies(Ws),Ws==0&&(Fc!==null&&(clearInterval(Fc),Fc=null),ri)){var $=ri;ri=null,$()}}u.preloadedImages={},u.preloadedAudios={};function Vr(I){u.onAbort&&u.onAbort(I),k&&console.error("Pthread aborting at "+new Error().stack),I+="",z(I),fe=!0,be=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(I);throw p($),$}function ai(I,$){return String.prototype.startsWith?I.startsWith($):I.indexOf($)===0}var P0="data:application/octet-stream;base64,";function Gp(I){return ai(I,P0)}var F0="file://";function Hp(I){return ai(I,F0)}var es="tfjs-backend-wasm-threaded-simd.wasm";Gp(es)||(es=N(es));function O0(I){try{if(I==es&&re)return new Uint8Array(re);if(_)return _(I);throw"both async and sync fetching of the wasm failed"}catch($){Vr($)}}function jp(){if(!re&&(x||y)){if(typeof fetch=="function"&&!Hp(es))return fetch(es,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+es+"'";return I.arrayBuffer()}).catch(function(){return O0(es)});if(F)return new Promise(function(I,$){F(es,function(B){I(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return O0(es)})}function M0(){var I={a:Eg};function $(ye,Te){var ut=ye.exports;if(u.asm=ut,Rn=u.asm.kb,oe=Te,!k){var hn=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(en){Ee.loadWasmModuleToWorker(en,function(){--hn||D0("wasm-instantiate")})})}}k||_0("wasm-instantiate");function B(ye){$(ye.instance,ye.module)}function Y(ye){return jp().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(ye,function(Te){z("failed to asynchronously prepare wasm: "+Te),Vr(Te)})}function xe(){return!re&&typeof WebAssembly.instantiateStreaming=="function"&&!Gp(es)&&!Hp(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,I);return Te.then(B,function(ut){return z("wasm streaming compile failed: "+ut),z("falling back to ArrayBuffer instantiation"),Y(B)})}):Y(B)}if(u.instantiateWasm)try{var Ae=u.instantiateWasm(I,$);return Ae}catch(ye){return z("Module.instantiateWasm callback failed with error: "+ye),!1}return xe().catch(p),{}}var qp={10072:function(){throw"Canceled!"},10090:function(I,$){setTimeout(function(){p5(I,$)},0)}};function z0(){Ee.initRuntime()}function Hl(I){for(;I.length>0;){var $=I.shift();if(typeof $=="function"){$(u);continue}var B=$.func;typeof B=="number"?$.arg===void 0?Rn.get(B)():Rn.get(B)($.arg):B($.arg===void 0?null:$.arg)}}var ga={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Oc(I,$){if(I<=0||I>a().length||I&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=1/0);var B=Atomics.load(i(),Zl>>2),Y=0;if(B==I){var xe=Atomics.compareExchange(i(),Zl>>2,B,0);if(xe==B&&(--$,Y=1,$<=0))return 1}var Ae=Atomics.notify(i(),I>>2,$);if(Ae>=0)return Ae+Y;throw"Atomics.notify returned an unexpected value "+Ae}u._emscripten_futex_wake=Oc;function L0(I){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";i()[I+12>>2]=0;var $=Ee.pthreads[I];$.worker.terminate(),Ee.freeThreadData($),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function B0(I){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ee.pthreads[I];$.worker.postMessage({cmd:"cancel"})}function Xp(I){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";var $=Ee.pthreads[I];if($){i()[I+12>>2]=0;var B=$.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,$=0;$<I;++$)Ee.allocateUnusedWorker()},initRuntime:function(){for(var I=ii(228),$=0;$<228/4;++$)l()[I/4+$]=0;i()[I+12>>2]=I;var B=I+152;i()[B>>2]=B;for(var Y=ii(512),$=0;$<128;++$)l()[Y/4+$]=0;Atomics.store(l(),I+100>>2,Y),Atomics.store(l(),I+40>>2,I),Kg(I,!y,1),c5(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();k&&ba()&&u5()},runExitHandlersAndDeinitThread:function(I,$){Atomics.store(l(),I+56>>2,1),Atomics.store(l(),I+60>>2,0),Ee.runExitHandlers(),Atomics.store(l(),I+4>>2,$),Atomics.store(l(),I+0>>2,1),Oc(I+0,2147483647),Kg(0,0,0)},threadExit:function(I){var $=ba();$&&(Ee.runExitHandlersAndDeinitThread($,I),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlersAndDeinitThread(ba(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ee.pthreads){var $=Ee.pthreads[I];$&&$.worker&&Ee.returnWorkerToPool($.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var Y=Ee.unusedWorkers[B];Y.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var Y=Ee.runningWorkers[B],$=Y.pthread;Ee.freeThreadData($),Y.terminate()}Ee.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var $=i()[I.threadInfoStruct+100>>2];i()[I.threadInfoStruct+100>>2]=0,Uc($),Uc(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Uc(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[I.pthread.threadInfoStruct],Ee.unusedWorkers.push(I),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(I),1),Ee.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){i()[A5>>2]=0;try{I()}finally{i()[A5>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,$){I.onmessage=function(B){var Y=B.data,xe=Y.cmd;if(I.pthread&&(Ee.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=ba()){var Ae=Ee.pthreads[Y.targetThread];Ae?Ae.worker.postMessage(B.data,Y.transferList):console.error('Internal error! Worker sent a message "'+xe+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(xe==="processQueuedMainThreadWork")lh();else if(xe==="spawnThread")th(B.data);else if(xe==="cleanupThread")Xp(Y.thread);else if(xe==="killThread")L0(Y.thread);else if(xe==="cancelThread")B0(Y.thread);else if(xe==="loaded")I.loaded=!0,$&&$(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(xe==="print")j("Thread "+Y.threadId+": "+Y.text);else if(xe==="printErr")z("Thread "+Y.threadId+": "+Y.text);else if(xe==="alert")alert("Thread "+Y.threadId+": "+Y.text);else if(xe==="exit"){var ye=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(I)}else if(xe==="exitProcess")try{jN(Y.returnCode)}catch(Te){if(Te instanceof Hc)return;throw Te}else xe==="cancelDone"?Ee.returnWorkerToPool(I):xe==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?I.postMessage(B.data):z("worker sent an unknown command "+xe);Ee.currentProxiedOperationCallerThread=void 0},I.onerror=function(B){z("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(I.on("message",function(B){I.onmessage({data:B})}),I.on("error",function(B){I.onerror(B)}),I.on("exit",function(B){})),I.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:te,wasmModule:oe})},allocateUnusedWorker:function(){var I=N("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(I){for(var $=performance.now()+I;performance.now()<$;);}};function W0(I,$){m5(I,$),Xl(I)}u.establishStackSpace=W0;function V0(){return Q}u.getNoExitRuntime=V0;function U0(I,$){return Rn.get(I)($)}u.invokeEntryPoint=U0;function G0(I,$,B,Y){Vr("Assertion failed: "+qe(I)+", at: "+[$?qe($):"unknown filename",B,Y?qe(Y):"unknown function"])}function H0(I,$){var B=_main(I,$)}var oi;b?oi=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:k?oi=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?oi=dateNow:oi=function(){return performance.now()};function j0(I){return i()[i5()>>2]=I,I}function q0(I,$){if(k)return Aa(1,1,I,$)}function X0(I,$){if(I==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var B=Ee.pthreads[I],Y=B&&B.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function K0(){Vr()}function Z0(I,$,B){var Y=eg($,B);return qp[I].apply(null,Y)}function Y0(I,$){}function Kp(I,$,B){if(I<=0||I>a().length||I&!0)return-28;if(x){if(Atomics.load(i(),I>>2)!=$)return-6;for(var xe=performance.now(),Ae=xe+B,ye=Atomics.exchange(i(),Zl>>2,I);;){if(xe=performance.now(),xe>Ae)return ye=Atomics.exchange(i(),Zl>>2,0),-73;if(ye=Atomics.exchange(i(),Zl>>2,0),ye==0)break;if(lh(),Atomics.load(i(),I>>2)!=$)return-6;ye=Atomics.exchange(i(),Zl>>2,I)}return 0}else{var Y=Atomics.wait(i(),I>>2,$,B);if(Y==="timed-out")return-73;if(Y==="not-equal")return-6;if(Y==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Y}}function J0(I,$,B){o().copyWithin(I,$,$+B)}function Q0(){return b?Vs("os").cpus().length:navigator.hardwareConcurrency}function Aa(I,$){for(var B=arguments.length-2,Y=Gc(),xe=B,Ae=Kl(xe*8),ye=Ae>>3,Te=0;Te<B;Te++){var ut=arguments[2+Te];c()[ye+Te]=ut}var hn=f5(I,xe,Ae,$);return Xl(Y),hn}var Mc=[],zc=[];function eg(I,$){zc.length=0;var B;for($>>=2;B=o()[I++];){var Y=B<105;Y&&$&1&&$++,zc.push(Y?c()[$++>>1]:i()[$]),++$}return zc}function tg(I,$,B){Mc.length=$;for(var Y=B>>3,xe=0;xe<$;xe++)Mc[xe]=c()[Y+xe];var Ae=I<0,ye=Ae?qp[-I-1]:Ng[I];return ye.apply(null,Mc)}function ng(){return o().length}function sg(I){try{return te.grow(I-Ct.byteLength+65535>>>16),Sn(te.buffer),1}catch($){}}function rg(I){var $=ng();if(I<=$)return!1;var B=2147483648;if(I>B)return!1;for(var Y=1;Y<=4;Y*=2){var xe=$*(1+.2/Y);xe=Math.min(xe,I+100663296);var Ae=Math.min(B,ft(Math.max(I,xe),65536)),ye=sg(Ae);if(ye)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ve.eventHandlers.length-1;I>=0;--I)Ve._removeHandler(I);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(Pc.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,$,B){function Y(ye,Te){if(ye.length!=Te.length)return!1;for(var ut in ye)if(ye[ut]!=Te[ut])return!1;return!0}for(var xe in Ve.deferredCalls){var Ae=Ve.deferredCalls[xe];if(Ae.targetFunction==I&&Y(Ae.argsList,B))return}Ve.deferredCalls.push({targetFunction:I,precedence:$,argsList:B}),Ve.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var $=0;$<Ve.deferredCalls.length;++$)Ve.deferredCalls[$].targetFunction==I&&(Ve.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ve.canPerformEventHandlerRequests())for(var I=0;I<Ve.deferredCalls.length;++I){var $=Ve.deferredCalls[I];Ve.deferredCalls.splice(I,1),--I,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,$){for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==I&&(!$||$==Ve.eventHandlers[B].eventTypeString)&&Ve._removeHandler(B--)},_removeHandler:function(I){var $=Ve.eventHandlers[I];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ve.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var $=function(xe){++Ve.inEventHandler,Ve.currentEventHandler=I,Ve.runDeferredCalls(),I.handlerFunc(xe),Ve.runDeferredCalls(),--Ve.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=$,I.target.addEventListener(I.eventTypeString,$,I.useCapture),Ve.eventHandlers.push(I),Ve.registerRemoveEventListeners();else for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==I.target&&Ve.eventHandlers[B].eventTypeString==I.eventTypeString&&Ve._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(I,$,B,Y,xe){var Ae=Gc(),ye=Kl(12);i()[ye>>2]=B,i()[ye+4>>2]=Y,i()[ye+8>>2]=xe,Xg(0,I,637534208,$,Y,ye),Xl(Ae)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ag(I){var $=rt(I)+1,B=ii($);return dt(I,B,$),B}function og(I,$,B,Y){var xe=Gc(),Ae=Kl(12),ye=0;$&&(ye=ag($)),i()[Ae>>2]=ye,i()[Ae+4>>2]=B,i()[Ae+8>>2]=Y,Xg(0,I,657457152,0,ye,Ae),Xl(xe)}function ig(I,$,B,Y){$=$?qe($):"",og(I,$,B,Y)}function lg(I){return I>2?qe(I):I}var ug=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function cg(I){I=lg(I);var $=ug[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return $}function Lc(I){return cg(I)}function Zp(I,$,B){var Y=Lc(I);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=$,i()[Y.canvasSharedPtr+4>>2]=B),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var xe=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var Ae=Y.GLctxObject.GLctx.getParameter(2978);xe=Ae[0]===0&&Ae[1]===0&&Ae[2]===Y.width&&Ae[3]===Y.height}Y.width=$,Y.height=B,xe&&Y.GLctxObject.GLctx.viewport(0,0,$,B)}else if(Y.canvasSharedPtr){var ye=i()[Y.canvasSharedPtr+8>>2];return ig(ye,I,$,B),1}else return-4;return 0}function Yp(I,$,B){return k?Aa(2,1,I,$,B):Zp(I,$,B)}function dg(I,$,B){var Y=Lc(I);return Y?Zp(I,$,B):Yp(I,$,B)}function pg(I){}function hg(I,$){}function fg(I){var $=I.getExtension("ANGLE_instanced_arrays");if($)return I.vertexAttribDivisor=function(B,Y){$.vertexAttribDivisorANGLE(B,Y)},I.drawArraysInstanced=function(B,Y,xe,Ae){$.drawArraysInstancedANGLE(B,Y,xe,Ae)},I.drawElementsInstanced=function(B,Y,xe,Ae,ye){$.drawElementsInstancedANGLE(B,Y,xe,Ae,ye)},1}function mg(I){var $=I.getExtension("OES_vertex_array_object");if($)return I.createVertexArray=function(){return $.createVertexArrayOES()},I.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},I.bindVertexArray=function(B){$.bindVertexArrayOES(B)},I.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function gg(I){var $=I.getExtension("WEBGL_draw_buffers");if($)return I.drawBuffers=function(B,Y){$.drawBuffersWEBGL(B,Y)},1}function Ag(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){lt.lastError||(lt.lastError=$)},getNewId:function(I){for(var $=lt.counter++,B=I.length;B<$;B++)I[B]=null;return $},getSource:function(I,$,B,Y){for(var xe="",Ae=0;Ae<$;++Ae){var ye=Y?i()[Y+Ae*4>>2]:-1;xe+=qe(i()[B+Ae*4>>2],ye<0?void 0:ye)}return xe},createContext:function(I,$){var B=I.getContext("webgl",$);if(!B)return 0;var Y=lt.registerContext(B,$);return Y},registerContext:function(I,$){var B=ii(8);i()[B+4>>2]=ba();var Y={handle:B,attributes:$,version:$.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=Y),lt.contexts[B]=Y,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&lt.initExtensions(Y),B},makeContextCurrent:function(I){return lt.currentContext=lt.contexts[I],u.ctx=ya=lt.currentContext&&lt.currentContext.GLctx,!(I&&!ya)},getContext:function(I){return lt.contexts[I]},deleteContext:function(I){lt.currentContext===lt.contexts[I]&&(lt.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(lt.contexts[I].GLctx.canvas),lt.contexts[I]&&lt.contexts[I].GLctx.canvas&&(lt.contexts[I].GLctx.canvas.GLctxObject=void 0),Uc(lt.contexts[I].handle),lt.contexts[I]=null},initExtensions:function(I){if(I||(I=lt.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var $=I.GLctx;fg($),mg($),gg($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Ag($);var B=$.getSupportedExtensions()||[];B.forEach(function(Y){Y.indexOf("lose_context")<0&&Y.indexOf("debug")<0&&$.getExtension(Y)})}},populateUniformTable:function(I){for(var $=lt.programs[I],B=lt.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Y=B.uniforms,xe=ya.getProgramParameter($,35718),Ae=0;Ae<xe;++Ae){var ye=ya.getActiveUniform($,Ae),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var ut=ya.getUniformLocation($,Te);if(ut){var hn=lt.getNewId(lt.uniforms);Y[Te]=[ye.size,hn],lt.uniforms[hn]=ut;for(var en=1;en<ye.size;++en){var va=Te+"["+en+"]";ut=ya.getUniformLocation($,va),hn=lt.getNewId(lt.uniforms),lt.uniforms[hn]=ut}}}}},yg=["default","low-power","high-performance"];function xg(I,$){var B=$>>2,Y=i()[B+(24>>2)],xe={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:yg[Y],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},Ae=Lc(I);if(!Ae||xe.explicitSwapControl)return 0;var ye=lt.createContext(Ae,xe);return ye}function bg(I,$){return xg(I,$)}var jl={mappings:{},buffers:[null,[],[]],printChar:function(I,$){var B=jl.buffers[I];$===0||$===10?((I===1?j:z)(He(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){jl.varargs+=4;var I=i()[jl.varargs-4>>2];return I},getStr:function(I){var $=qe(I);return $},get64:function(I,$){return I}};function Jp(I){return k?Aa(3,1,I):0}function Qp(I,$,B,Y,xe){if(k)return Aa(4,1,I,$,B,Y,xe)}function eh(I,$,B,Y){if(k)return Aa(5,1,I,$,B,Y);for(var xe=0,Ae=0;Ae<B;Ae++){for(var ye=i()[$+Ae*8>>2],Te=i()[$+(Ae*8+4)>>2],ut=0;ut<Te;ut++)jl.printChar(I,o()[ye+ut]);xe+=Te}return i()[Y>>2]=xe,0}function vg(I){var $=Ee.threadExitHandlers.pop();I&&$()}function wg(I,$){Ee.threadExitHandlers.push(function(){Rn.get(I)($)})}function th(I){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ee.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push($);for(var B=ii(128*4),Y=0;Y<128;++Y)i()[B+Y*4>>2]=0;var xe=I.stackBase+I.stackSize,Ae=Ee.pthreads[I.pthread_ptr]={worker:$,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ye=Ae.threadInfoStruct>>2;Atomics.store(l(),ye+(64>>2),I.detached),Atomics.store(l(),ye+(100>>2),B),Atomics.store(l(),ye+(40>>2),Ae.threadInfoStruct),Atomics.store(l(),ye+(80>>2),I.stackSize),Atomics.store(l(),ye+(76>>2),xe),Atomics.store(l(),ye+(104>>2),I.stackSize),Atomics.store(l(),ye+(104+8>>2),xe),Atomics.store(l(),ye+(104+12>>2),I.detached);var Te=l5(),ut=Te+40;Atomics.store(l(),ye+(172>>2),ut),$.pthread=Ae;var hn={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};$.runPthread=function(){hn.time=performance.now(),$.postMessage(hn,I.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function kg(I,$,B,Y){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return z("pthread_create called with a null thread pointer!"),28;var xe=[],Ae=0;if(k&&(xe.length===0||Ae))return h5(687865856,I,$,B,Y);if(Ae)return Ae;var ye=0,Te=0,ut=0;$&&$!=-1?(ye=i()[$>>2],ye+=81920,Te=i()[$+8>>2],ut=i()[$+12>>2]!==0):ye=2097152;var hn=Te==0;hn?Te=g5(16,ye):(Te-=ye,we(Te>0));for(var en=ii(228),va=0;va<228>>2;++va)l()[(en>>2)+va]=0;i()[I>>2]=en,i()[en+12>>2]=en;var Yl=en+152;i()[Yl>>2]=Yl;var On={stackBase:Te,stackSize:ye,allocatedOwnStack:hn,detached:ut,startRoutine:B,pthread_ptr:en,arg:Y,transferList:xe};return k?(On.cmd="spawnThread",postMessage(On,xe)):th(On),0}function Sg(){if(!!k){var I=ba();if(!!I){var $=Atomics.load(l(),I+56>>2);if(!$){var B=Atomics.load(l(),I+0>>2);if(B==2)throw"Canceled!"}}}}function Ig(){b||y||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Cg(I,$,B){if(!I)return z("pthread_join attempted on a null thread pointer!"),ga.ESRCH;if(k&&ba()==I)return z("PThread "+I+" is attempting to join to itself!"),ga.EDEADLK;if(!k&&d5()==I)return z("Main thread "+I+" is attempting to join to itself!"),ga.EDEADLK;var Y=i()[I+12>>2];if(Y!==I)return z("pthread_join attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),ga.ESRCH;var xe=Atomics.load(l(),I+64>>2);if(xe)return z("Attempted to join thread "+I+", which was already detached!"),ga.EINVAL;for(B&&Ig();;){var Ae=Atomics.load(l(),I+0>>2);if(Ae==1){var ye=Atomics.load(l(),I+4>>2);return $&&(i()[$>>2]=ye),Atomics.store(l(),I+64>>2,1),k?postMessage({cmd:"cleanupThread",thread:I}):Xp(I),0}if(!B)return ga.EBUSY;Sg(),k||lh(),Kp(I+0,Ae,k?100:1)}}function Tg(I,$){return Cg(I,$,!0)}function nh(I){if(k)return Aa(6,1,I);switch(I){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return j0(28),-1}k||Ee.initMainThreadBlock();var ya,Ng=[null,q0,Yp,Jp,Qp,eh,nh],Eg={e:G0,r:H0,x:X0,b:K0,y:Z0,j:Y0,d:Kp,c:Oc,f:oi,p:J0,A:Q0,u:tg,q:rg,v:dg,i:pg,s:hg,w:bg,l:Jp,n:Qp,g:eh,o:z0,a:te||u.wasmMemory,z:vg,k:wg,h:kg,m:Tg,t:nh},o5=M0(),sh=u.___wasm_call_ctors=function(){return(sh=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},Rg=u._init=function(){return(Rg=u._init=u.asm.C).apply(null,arguments)},$g=u._init_with_threads_count=function(){return($g=u._init_with_threads_count=u.asm.D).apply(null,arguments)},_g=u._get_threads_count=function(){return(_g=u._get_threads_count=u.asm.E).apply(null,arguments)},Dg=u._register_tensor=function(){return(Dg=u._register_tensor=u.asm.F).apply(null,arguments)},Pg=u._dispose_data=function(){return(Pg=u._dispose_data=u.asm.G).apply(null,arguments)},Fg=u._dispose=function(){return(Fg=u._dispose=u.asm.H).apply(null,arguments)},Og=u._Abs=function(){return(Og=u._Abs=u.asm.I).apply(null,arguments)},Mg=u._Add=function(){return(Mg=u._Add=u.asm.J).apply(null,arguments)},zg=u._AddN=function(){return(zg=u._AddN=u.asm.K).apply(null,arguments)},Lg=u._All=function(){return(Lg=u._All=u.asm.L).apply(null,arguments)},Bg=u._Any=function(){return(Bg=u._Any=u.asm.M).apply(null,arguments)},Wg=u._ArgMax=function(){return(Wg=u._ArgMax=u.asm.N).apply(null,arguments)},Vg=u._AvgPool=function(){return(Vg=u._AvgPool=u.asm.O).apply(null,arguments)},Ug=u._BatchMatMul=function(){return(Ug=u._BatchMatMul=u.asm.P).apply(null,arguments)},Gg=u._Ceil=function(){return(Gg=u._Ceil=u.asm.Q).apply(null,arguments)},Hg=u._ClipByValue=function(){return(Hg=u._ClipByValue=u.asm.R).apply(null,arguments)},jg=u._Conv2D=function(){return(jg=u._Conv2D=u.asm.S).apply(null,arguments)},rh=u._Conv2DBackpropInput=function(){return(rh=u._Conv2DBackpropInput=u.asm.T).apply(null,arguments)},ah=u._Cos=function(){return(ah=u._Cos=u.asm.U).apply(null,arguments)},Bc=u._Cosh=function(){return(Bc=u._Cosh=u.asm.V).apply(null,arguments)},ql=u._CropAndResize=function(){return(ql=u._CropAndResize=u.asm.W).apply(null,arguments)},qg=u._Cumsum=function(){return(qg=u._Cumsum=u.asm.X).apply(null,arguments)},Wc=u._DepthToSpace=function(){return(Wc=u._DepthToSpace=u.asm.Y).apply(null,arguments)},ae=u._DepthwiseConv2dNative=function(){return(ae=u._DepthwiseConv2dNative=u.asm.Z).apply(null,arguments)},ie=u._Elu=function(){return(ie=u._Elu=u.asm._).apply(null,arguments)},ke=u._Equal=function(){return(ke=u._Equal=u.asm.$).apply(null,arguments)},at=u._Exp=function(){return(at=u._Exp=u.asm.aa).apply(null,arguments)},Lt=u._FlipLeftRight=function(){return(Lt=u._FlipLeftRight=u.asm.ba).apply(null,arguments)},Tt=u._Floor=function(){return(Tt=u._Floor=u.asm.ca).apply(null,arguments)},Ke=u._FloorDiv=function(){return(Ke=u._FloorDiv=u.asm.da).apply(null,arguments)},Ye=u._FusedBatchNorm=function(){return(Ye=u._FusedBatchNorm=u.asm.ea).apply(null,arguments)},In=u._FusedConv2D=function(){return(In=u._FusedConv2D=u.asm.fa).apply(null,arguments)},Ur=u._FusedDepthwiseConv2D=function(){return(Ur=u._FusedDepthwiseConv2D=u.asm.ga).apply(null,arguments)},Gr=u._Gather=function(){return(Gr=u._Gather=u.asm.ha).apply(null,arguments)},oh=u._GatherNd=function(){return(oh=u._GatherNd=u.asm.ia).apply(null,arguments)},Vc=u._Greater=function(){return(Vc=u._Greater=u.asm.ja).apply(null,arguments)},cs=u._GreaterEqual=function(){return(cs=u._GreaterEqual=u.asm.ka).apply(null,arguments)},xa=u._LeakyRelu=function(){return(xa=u._LeakyRelu=u.asm.la).apply(null,arguments)},ih=u._Less=function(){return(ih=u._Less=u.asm.ma).apply(null,arguments)},ZT=u._LessEqual=function(){return(ZT=u._LessEqual=u.asm.na).apply(null,arguments)},YT=u._Log=function(){return(YT=u._Log=u.asm.oa).apply(null,arguments)},JT=u._LogicalAnd=function(){return(JT=u._LogicalAnd=u.asm.pa).apply(null,arguments)},QT=u._Max=function(){return(QT=u._Max=u.asm.qa).apply(null,arguments)},eN=u._MaxPool=function(){return(eN=u._MaxPool=u.asm.ra).apply(null,arguments)},tN=u._Maximum=function(){return(tN=u._Maximum=u.asm.sa).apply(null,arguments)},nN=u._Mean=function(){return(nN=u._Mean=u.asm.ta).apply(null,arguments)},sN=u._Min=function(){return(sN=u._Min=u.asm.ua).apply(null,arguments)},rN=u._Minimum=function(){return(rN=u._Minimum=u.asm.va).apply(null,arguments)},aN=u._MirrorPad=function(){return(aN=u._MirrorPad=u.asm.wa).apply(null,arguments)},oN=u._Multiply=function(){return(oN=u._Multiply=u.asm.xa).apply(null,arguments)},iN=u._Neg=function(){return(iN=u._Neg=u.asm.ya).apply(null,arguments)},lN=u._NonMaxSuppressionV3=function(){return(lN=u._NonMaxSuppressionV3=u.asm.za).apply(null,arguments)},uN=u._NonMaxSuppressionV4=function(){return(uN=u._NonMaxSuppressionV4=u.asm.Aa).apply(null,arguments)},cN=u._NonMaxSuppressionV5=function(){return(cN=u._NonMaxSuppressionV5=u.asm.Ba).apply(null,arguments)},dN=u._NotEqual=function(){return(dN=u._NotEqual=u.asm.Ca).apply(null,arguments)},pN=u._OneHot=function(){return(pN=u._OneHot=u.asm.Da).apply(null,arguments)},hN=u._PadV2=function(){return(hN=u._PadV2=u.asm.Ea).apply(null,arguments)},fN=u._Pow=function(){return(fN=u._Pow=u.asm.Fa).apply(null,arguments)},mN=u._Prelu=function(){return(mN=u._Prelu=u.asm.Ga).apply(null,arguments)},gN=u._Prod=function(){return(gN=u._Prod=u.asm.Ha).apply(null,arguments)},AN=u._RealDiv=function(){return(AN=u._RealDiv=u.asm.Ia).apply(null,arguments)},yN=u._Relu=function(){return(yN=u._Relu=u.asm.Ja).apply(null,arguments)},xN=u._Relu6=function(){return(xN=u._Relu6=u.asm.Ka).apply(null,arguments)},bN=u._ResizeBilinear=function(){return(bN=u._ResizeBilinear=u.asm.La).apply(null,arguments)},vN=u._Reverse=function(){return(vN=u._Reverse=u.asm.Ma).apply(null,arguments)},wN=u._RotateWithOffset=function(){return(wN=u._RotateWithOffset=u.asm.Na).apply(null,arguments)},kN=u._Round=function(){return(kN=u._Round=u.asm.Oa).apply(null,arguments)},SN=u._Rsqrt=function(){return(SN=u._Rsqrt=u.asm.Pa).apply(null,arguments)},IN=u._ScatterNd=function(){return(IN=u._ScatterNd=u.asm.Qa).apply(null,arguments)},CN=u._SelectV2=function(){return(CN=u._SelectV2=u.asm.Ra).apply(null,arguments)},TN=u._Sigmoid=function(){return(TN=u._Sigmoid=u.asm.Sa).apply(null,arguments)},NN=u._Sin=function(){return(NN=u._Sin=u.asm.Ta).apply(null,arguments)},EN=u._Softmax=function(){return(EN=u._Softmax=u.asm.Ua).apply(null,arguments)},RN=u._Sqrt=function(){return(RN=u._Sqrt=u.asm.Va).apply(null,arguments)},$N=u._Square=function(){return($N=u._Square=u.asm.Wa).apply(null,arguments)},_N=u._SquaredDifference=function(){return(_N=u._SquaredDifference=u.asm.Xa).apply(null,arguments)},DN=u._Step=function(){return(DN=u._Step=u.asm.Ya).apply(null,arguments)},PN=u._StridedSlice=function(){return(PN=u._StridedSlice=u.asm.Za).apply(null,arguments)},FN=u._Sub=function(){return(FN=u._Sub=u.asm._a).apply(null,arguments)},ON=u._Sum=function(){return(ON=u._Sum=u.asm.$a).apply(null,arguments)},MN=u._Tan=function(){return(MN=u._Tan=u.asm.ab).apply(null,arguments)},zN=u._Tanh=function(){return(zN=u._Tanh=u.asm.bb).apply(null,arguments)},LN=u._Tile=function(){return(LN=u._Tile=u.asm.cb).apply(null,arguments)},BN=u._TopK=function(){return(BN=u._TopK=u.asm.db).apply(null,arguments)},WN=u._Transform=function(){return(WN=u._Transform=u.asm.eb).apply(null,arguments)},VN=u._Transpose=function(){return(VN=u._Transpose=u.asm.fb).apply(null,arguments)},UN=u.__FusedMatMul=function(){return(UN=u.__FusedMatMul=u.asm.gb).apply(null,arguments)},ii=u._malloc=function(){return(ii=u._malloc=u.asm.hb).apply(null,arguments)},Uc=u._free=function(){return(Uc=u._free=u.asm.ib).apply(null,arguments)},i5=u.___errno_location=function(){return(i5=u.___errno_location=u.asm.jb).apply(null,arguments)},l5=u._emscripten_get_global_libc=function(){return(l5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},ba=u._pthread_self=function(){return(ba=u._pthread_self=u.asm.mb).apply(null,arguments)},u5=u.___pthread_tsd_run_dtors=function(){return(u5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},lh=u._emscripten_main_thread_process_queued_calls=function(){return(lh=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},GN=u._emscripten_current_thread_process_queued_calls=function(){return(GN=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},c5=u._emscripten_register_main_browser_thread_id=function(){return(c5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},d5=u._emscripten_main_browser_thread_id=function(){return(d5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},p5=u.__emscripten_do_dispatch_to_thread=function(){return(p5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},h5=u._emscripten_sync_run_in_main_thread_4=function(){return(h5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},f5=u._emscripten_run_in_main_runtime_thread_js=function(){return(f5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Xg=u.__emscripten_call_on_thread=function(){return(Xg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},HN=u._emscripten_tls_init=function(){return(HN=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Kg=u.__emscripten_thread_init=function(){return(Kg=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},Gc=u.stackSave=function(){return(Gc=u.stackSave=u.asm.yb).apply(null,arguments)},Xl=u.stackRestore=function(){return(Xl=u.stackRestore=u.asm.zb).apply(null,arguments)},Kl=u.stackAlloc=function(){return(Kl=u.stackAlloc=u.asm.Ab).apply(null,arguments)},m5=u._emscripten_stack_set_limits=function(){return(m5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},g5=u._memalign=function(){return(g5=u._memalign=u.asm.Cb).apply(null,arguments)},A5=u.__emscripten_allow_main_runtime_queued_calls=10064,Zl=u.__emscripten_main_thread_futex=10268;u.cwrap=We,u.PThread=Ee,u.PThread=Ee,u.wasmMemory=te,u.ExitStatus=Hc;var uh;function Hc(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}ri=function I(){uh||Zg(),uh||(ri=I)};function Zg(I){if(I=I||m,Ws>0)return;if(k){d(u),Wp(),postMessage({cmd:"loaded"});return}if(Bp(),Ws>0)return;function $(){uh||(uh=!0,u.calledRun=!0,!fe&&(Wp(),Vp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Up()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),$()},1)):$()}u.run=Zg;function jN(I,$){if(!($&&Q&&I===0)){if(!$&&k)throw postMessage({cmd:"exitProcess",returnCode:I}),new Hc(I);Q||(Ee.terminateAllThreads(),be=I,Qn(),u.onExit&&u.onExit(I),fe=!0),A(I,new Hc(I))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(Q=!1,Ee.initWorker()),Zg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),hE=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(ae,ie){o=ae,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(ae,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function x(ae){return a.locateFile?a.locateFile(ae,A):A+ae}var y,b,w,k,C,N;m?(f?A=Vs("path").dirname(A)+"/":A=__dirname+"/",y=function(ie,ke){return C||(C=Vs("fs")),N||(N=Vs("path")),ie=N.normalize(ie),C.readFileSync(ie,ke?null:"utf8")},w=function(ie){var ke=y(ie,!0);return ke.buffer||(ke=new Uint8Array(ke)),j(ke.buffer),ke},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(ae){if(!(ae instanceof qg))throw ae}),process.on("unhandledRejection",rr),p=function(ae){process.exit(ae)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(y=function(ie){return read(ie)}),w=function(ie){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(ke=read(ie,"binary"),j(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(ae){quit(ae)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",y=function(ae){var ie=new XMLHttpRequest;return ie.open("GET",ae,!1),ie.send(null),ie.responseText},f&&(w=function(ae){var ie=new XMLHttpRequest;return ie.open("GET",ae,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(ae,ie,ke){var at=new XMLHttpRequest;at.open("GET",ae,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){ie(at.response);return}ke()},at.onerror=ke,at.send(null)},k=function(ae){document.title=ae});var R=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var _;a.wasmBinary&&(_=a.wasmBinary);var P=a.noExitRuntime||!0;typeof WebAssembly!="object"&&rr("no native wasm support detected");var T,M=!1,U;function j(ae,ie){ae||rr("Assertion failed: "+ie)}function z(ae){var ie=a["_"+ae];return j(ie,"Cannot call unknown function "+ae+", make sure it is exported"),ie}function X(ae,ie,ke,at,Lt){var Tt={string:function(cs){var xa=0;if(cs!=null&&cs!==0){var ih=(cs.length<<2)+1;xa=Bc(ih),te(cs,xa,ih)}return xa},array:function(cs){var xa=Bc(cs.length);return oe(cs,xa),xa}};function Ke(cs){return ie==="string"?re(cs):ie==="boolean"?Boolean(cs):cs}var Ye=z(ae),In=[],Ur=0;if(at)for(var Gr=0;Gr<at.length;Gr++){var oh=Tt[ke[Gr]];oh?(Ur===0&&(Ur=rh()),In[Gr]=oh(at[Gr])):In[Gr]=at[Gr]}var Vc=Ye.apply(null,In);return Vc=Ke(Vc),Ur!==0&&ah(Ur),Vc}function Z(ae,ie,ke,at){ke=ke||[];var Lt=ke.every(function(Ke){return Ke==="number"}),Tt=ie!=="string";return Tt&&Lt&&!at?z(ae):function(){return X(ae,ie,ke,arguments,at)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ee(ae,ie,ke){for(var at=ie+ke,Lt=ie;ae[Lt]&&!(Lt>=at);)++Lt;if(Lt-ie>16&&ae.subarray&&J)return J.decode(ae.subarray(ie,Lt));for(var Tt="";ie<Lt;){var Ke=ae[ie++];if(!(Ke&128)){Tt+=String.fromCharCode(Ke);continue}var Ye=ae[ie++]&63;if((Ke&224)==192){Tt+=String.fromCharCode((Ke&31)<<6|Ye);continue}var In=ae[ie++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|Ye<<6|In:Ke=(Ke&7)<<18|Ye<<12|In<<6|ae[ie++]&63,Ke<65536)Tt+=String.fromCharCode(Ke);else{var Ur=Ke-65536;Tt+=String.fromCharCode(55296|Ur>>10,56320|Ur&1023)}}return Tt}function re(ae,ie){return ae?ee(Ce,ae,ie):""}function Q(ae,ie,ke,at){if(!(at>0))return 0;for(var Lt=ke,Tt=ke+at-1,Ke=0;Ke<ae.length;++Ke){var Ye=ae.charCodeAt(Ke);if(Ye>=55296&&Ye<=57343){var In=ae.charCodeAt(++Ke);Ye=65536+((Ye&1023)<<10)|In&1023}if(Ye<=127){if(ke>=Tt)break;ie[ke++]=Ye}else if(Ye<=2047){if(ke+1>=Tt)break;ie[ke++]=192|Ye>>6,ie[ke++]=128|Ye&63}else if(Ye<=65535){if(ke+2>=Tt)break;ie[ke++]=224|Ye>>12,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}else{if(ke+3>=Tt)break;ie[ke++]=240|Ye>>18,ie[ke++]=128|Ye>>12&63,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}}return ie[ke]=0,ke-Lt}function te(ae,ie,ke){return Q(ae,Ce,ie,ke)}function oe(ae,ie){we.set(ae,ie)}function fe(ae,ie){return ae%ie>0&&(ae+=ie-ae%ie),ae}var be,we,Ce,Me,We,He,qe,ct,dt;function rt(ae){be=ae,a.HEAP8=we=new Int8Array(ae),a.HEAP16=Me=new Int16Array(ae),a.HEAP32=He=new Int32Array(ae),a.HEAPU8=Ce=new Uint8Array(ae),a.HEAPU16=We=new Uint16Array(ae),a.HEAPU32=qe=new Uint32Array(ae),a.HEAPF32=ct=new Float32Array(ae),a.HEAPF64=dt=new Float64Array(ae)}var wt=a.INITIAL_MEMORY||16777216,ft,Ct=[],_t=[],ks=[],kn=[],sr=!1;_t.push({func:function(){jp()}});function Fn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Sn(a.preRun.shift());Ws(Ct)}function us(){sr=!0,Ws(_t)}function Bs(){Ws(ks)}function Ss(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)wr(a.postRun.shift());Ws(kn)}function Sn(ae){Ct.unshift(ae)}function wr(ae){kn.unshift(ae)}var Rn=0,kr=null,Sr=null;function ma(ae){Rn++,a.monitorRunDependencies&&a.monitorRunDependencies(Rn)}function Pc(ae){if(Rn--,a.monitorRunDependencies&&a.monitorRunDependencies(Rn),Rn==0&&(kr!==null&&(clearInterval(kr),kr=null),Sr)){var ie=Sr;Sr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function rr(ae){a.onAbort&&a.onAbort(ae),ae+="",F(ae),M=!0,U=1,ae="abort("+ae+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(ae);throw i(ie),ie}function Lp(ae,ie){return String.prototype.startsWith?ae.startsWith(ie):ae.indexOf(ie)===0}var E0="data:application/octet-stream;base64,";function Bp(ae){return Lp(ae,E0)}var Wp="file://";function Vp(ae){return Lp(ae,Wp)}var Qn="tfjs-backend-wasm.wasm";Bp(Qn)||(Qn=x(Qn));function Up(ae){try{if(ae==Qn&&_)return new Uint8Array(_);if(w)return w(ae);throw"both async and sync fetching of the wasm failed"}catch(ie){rr(ie)}}function R0(){if(!_&&(h||f)){if(typeof fetch=="function"&&!Vp(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(ae){if(!ae.ok)throw"failed to load wasm binary file at '"+Qn+"'";return ae.arrayBuffer()}).catch(function(){return Up(Qn)});if(b)return new Promise(function(ae,ie){b(Qn,function(ke){ae(new Uint8Array(ke))},ie)})}return Promise.resolve().then(function(){return Up(Qn)})}function $0(){var ae={a:es};function ie(Ke,Ye){var In=Ke.exports;a.asm=In,T=a.asm.h,rt(T.buffer),ft=a.asm.Sa,Pc("wasm-instantiate")}ma("wasm-instantiate");function ke(Ke){ie(Ke.instance)}function at(Ke){return R0().then(function(Ye){return WebAssembly.instantiate(Ye,ae)}).then(Ke,function(Ye){F("failed to asynchronously prepare wasm: "+Ye),rr(Ye)})}function Lt(){return!_&&typeof WebAssembly.instantiateStreaming=="function"&&!Bp(Qn)&&!Vp(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(Ke){var Ye=WebAssembly.instantiateStreaming(Ke,ae);return Ye.then(ke,function(In){return F("wasm streaming compile failed: "+In),F("falling back to ArrayBuffer instantiation"),at(ke)})}):at(ke)}if(a.instantiateWasm)try{var Tt=a.instantiateWasm(ae,ie);return Tt}catch(Ke){return F("Module.instantiateWasm callback failed with error: "+Ke),!1}return Lt().catch(i),{}}function Ws(ae){for(;ae.length>0;){var ie=ae.shift();if(typeof ie=="function"){ie(a);continue}var ke=ie.func;typeof ke=="number"?ie.arg===void 0?ft.get(ke)():ft.get(ke)(ie.arg):ke(ie.arg===void 0?null:ie.arg)}}function Fc(){rr()}function ri(ae,ie,ke){Ce.copyWithin(ae,ie,ie+ke)}function _0(){return Ce.length}function D0(ae){try{return T.grow(ae-be.byteLength+65535>>>16),rt(T.buffer),1}catch(ie){}}function Vr(ae){var ie=_0(),ke=2147483648;if(ae>ke)return!1;for(var at=1;at<=4;at*=2){var Lt=ie*(1+.2/at);Lt=Math.min(Lt,ae+100663296);var Tt=Math.min(ke,fe(Math.max(ae,Lt),65536)),Ke=D0(Tt);if(Ke)return!0}return!1}var ai={mappings:{},buffers:[null,[],[]],printChar:function(ae,ie){var ke=ai.buffers[ae];ie===0||ie===10?((ae===1?R:F)(ee(ke,0)),ke.length=0):ke.push(ie)},varargs:void 0,get:function(){ai.varargs+=4;var ae=He[ai.varargs-4>>2];return ae},getStr:function(ae){var ie=re(ae);return ie},get64:function(ae,ie){return ae}};function P0(ae){return 0}function Gp(ae,ie,ke,at,Lt){}function F0(ae,ie,ke,at){for(var Lt=0,Tt=0;Tt<ke;Tt++){for(var Ke=He[ie+Tt*8>>2],Ye=He[ie+(Tt*8+4)>>2],In=0;In<Ye;In++)ai.printChar(ae,Ce[Ke+In]);Lt+=Ye}return He[at>>2]=Lt,0}function Hp(){return 28}var es={a:Fc,d:ri,e:Vr,f:P0,c:Gp,b:F0,g:Hp},O0=$0(),jp=a.___wasm_call_ctors=function(){return(jp=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},M0=a._init=function(){return(M0=a._init=a.asm.j).apply(null,arguments)},qp=a._init_with_threads_count=function(){return(qp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},z0=a._get_threads_count=function(){return(z0=a._get_threads_count=a.asm.l).apply(null,arguments)},Hl=a._register_tensor=function(){return(Hl=a._register_tensor=a.asm.m).apply(null,arguments)},ga=a._dispose_data=function(){return(ga=a._dispose_data=a.asm.n).apply(null,arguments)},Oc=a._dispose=function(){return(Oc=a._dispose=a.asm.o).apply(null,arguments)},L0=a._Abs=function(){return(L0=a._Abs=a.asm.p).apply(null,arguments)},B0=a._Add=function(){return(B0=a._Add=a.asm.q).apply(null,arguments)},Xp=a._AddN=function(){return(Xp=a._AddN=a.asm.r).apply(null,arguments)},Ee=a._All=function(){return(Ee=a._All=a.asm.s).apply(null,arguments)},W0=a._Any=function(){return(W0=a._Any=a.asm.t).apply(null,arguments)},V0=a._ArgMax=function(){return(V0=a._ArgMax=a.asm.u).apply(null,arguments)},U0=a._AvgPool=function(){return(U0=a._AvgPool=a.asm.v).apply(null,arguments)},G0=a._BatchMatMul=function(){return(G0=a._BatchMatMul=a.asm.w).apply(null,arguments)},H0=a._Ceil=function(){return(H0=a._Ceil=a.asm.x).apply(null,arguments)},oi=a._ClipByValue=function(){return(oi=a._ClipByValue=a.asm.y).apply(null,arguments)},j0=a._Conv2D=function(){return(j0=a._Conv2D=a.asm.z).apply(null,arguments)},q0=a._Conv2DBackpropInput=function(){return(q0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},X0=a._Cos=function(){return(X0=a._Cos=a.asm.B).apply(null,arguments)},K0=a._Cosh=function(){return(K0=a._Cosh=a.asm.C).apply(null,arguments)},Z0=a._CropAndResize=function(){return(Z0=a._CropAndResize=a.asm.D).apply(null,arguments)},Y0=a._Cumsum=function(){return(Y0=a._Cumsum=a.asm.E).apply(null,arguments)},Kp=a._DepthToSpace=function(){return(Kp=a._DepthToSpace=a.asm.F).apply(null,arguments)},J0=a._DepthwiseConv2dNative=function(){return(J0=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Q0=a._Elu=function(){return(Q0=a._Elu=a.asm.H).apply(null,arguments)},Aa=a._Equal=function(){return(Aa=a._Equal=a.asm.I).apply(null,arguments)},Mc=a._Exp=function(){return(Mc=a._Exp=a.asm.J).apply(null,arguments)},zc=a._FlipLeftRight=function(){return(zc=a._FlipLeftRight=a.asm.K).apply(null,arguments)},eg=a._Floor=function(){return(eg=a._Floor=a.asm.L).apply(null,arguments)},tg=a._FloorDiv=function(){return(tg=a._FloorDiv=a.asm.M).apply(null,arguments)},ng=a._FusedBatchNorm=function(){return(ng=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},sg=a._FusedConv2D=function(){return(sg=a._FusedConv2D=a.asm.O).apply(null,arguments)},rg=a._FusedDepthwiseConv2D=function(){return(rg=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Ve=a._Gather=function(){return(Ve=a._Gather=a.asm.Q).apply(null,arguments)},ag=a._GatherNd=function(){return(ag=a._GatherNd=a.asm.R).apply(null,arguments)},og=a._Greater=function(){return(og=a._Greater=a.asm.S).apply(null,arguments)},ig=a._GreaterEqual=function(){return(ig=a._GreaterEqual=a.asm.T).apply(null,arguments)},lg=a._LeakyRelu=function(){return(lg=a._LeakyRelu=a.asm.U).apply(null,arguments)},ug=a._Less=function(){return(ug=a._Less=a.asm.V).apply(null,arguments)},cg=a._LessEqual=function(){return(cg=a._LessEqual=a.asm.W).apply(null,arguments)},Lc=a._Log=function(){return(Lc=a._Log=a.asm.X).apply(null,arguments)},Zp=a._LogicalAnd=function(){return(Zp=a._LogicalAnd=a.asm.Y).apply(null,arguments)},Yp=a._Max=function(){return(Yp=a._Max=a.asm.Z).apply(null,arguments)},dg=a._MaxPool=function(){return(dg=a._MaxPool=a.asm._).apply(null,arguments)},pg=a._Maximum=function(){return(pg=a._Maximum=a.asm.$).apply(null,arguments)},hg=a._Mean=function(){return(hg=a._Mean=a.asm.aa).apply(null,arguments)},fg=a._Min=function(){return(fg=a._Min=a.asm.ba).apply(null,arguments)},mg=a._Minimum=function(){return(mg=a._Minimum=a.asm.ca).apply(null,arguments)},gg=a._MirrorPad=function(){return(gg=a._MirrorPad=a.asm.da).apply(null,arguments)},Ag=a._Multiply=function(){return(Ag=a._Multiply=a.asm.ea).apply(null,arguments)},lt=a._Neg=function(){return(lt=a._Neg=a.asm.fa).apply(null,arguments)},yg=a._NonMaxSuppressionV3=function(){return(yg=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},xg=a._NonMaxSuppressionV4=function(){return(xg=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},bg=a._NonMaxSuppressionV5=function(){return(bg=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},jl=a._NotEqual=function(){return(jl=a._NotEqual=a.asm.ja).apply(null,arguments)},Jp=a._OneHot=function(){return(Jp=a._OneHot=a.asm.ka).apply(null,arguments)},Qp=a._PadV2=function(){return(Qp=a._PadV2=a.asm.la).apply(null,arguments)},eh=a._Pow=function(){return(eh=a._Pow=a.asm.ma).apply(null,arguments)},vg=a._Prelu=function(){return(vg=a._Prelu=a.asm.na).apply(null,arguments)},wg=a._Prod=function(){return(wg=a._Prod=a.asm.oa).apply(null,arguments)},th=a._RealDiv=function(){return(th=a._RealDiv=a.asm.pa).apply(null,arguments)},kg=a._Relu=function(){return(kg=a._Relu=a.asm.qa).apply(null,arguments)},Sg=a._Relu6=function(){return(Sg=a._Relu6=a.asm.ra).apply(null,arguments)},Ig=a._ResizeBilinear=function(){return(Ig=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Cg=a._Reverse=function(){return(Cg=a._Reverse=a.asm.ta).apply(null,arguments)},Tg=a._RotateWithOffset=function(){return(Tg=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},nh=a._Round=function(){return(nh=a._Round=a.asm.va).apply(null,arguments)},ya=a._Rsqrt=function(){return(ya=a._Rsqrt=a.asm.wa).apply(null,arguments)},Ng=a._ScatterNd=function(){return(Ng=a._ScatterNd=a.asm.xa).apply(null,arguments)},Eg=a._SelectV2=function(){return(Eg=a._SelectV2=a.asm.ya).apply(null,arguments)},o5=a._Sigmoid=function(){return(o5=a._Sigmoid=a.asm.za).apply(null,arguments)},sh=a._Sin=function(){return(sh=a._Sin=a.asm.Aa).apply(null,arguments)},Rg=a._Softmax=function(){return(Rg=a._Softmax=a.asm.Ba).apply(null,arguments)},$g=a._Sqrt=function(){return($g=a._Sqrt=a.asm.Ca).apply(null,arguments)},_g=a._Square=function(){return(_g=a._Square=a.asm.Da).apply(null,arguments)},Dg=a._SquaredDifference=function(){return(Dg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Pg=a._Step=function(){return(Pg=a._Step=a.asm.Fa).apply(null,arguments)},Fg=a._StridedSlice=function(){return(Fg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Og=a._Sub=function(){return(Og=a._Sub=a.asm.Ha).apply(null,arguments)},Mg=a._Sum=function(){return(Mg=a._Sum=a.asm.Ia).apply(null,arguments)},zg=a._Tan=function(){return(zg=a._Tan=a.asm.Ja).apply(null,arguments)},Lg=a._Tanh=function(){return(Lg=a._Tanh=a.asm.Ka).apply(null,arguments)},Bg=a._Tile=function(){return(Bg=a._Tile=a.asm.La).apply(null,arguments)},Wg=a._TopK=function(){return(Wg=a._TopK=a.asm.Ma).apply(null,arguments)},Vg=a._Transform=function(){return(Vg=a._Transform=a.asm.Na).apply(null,arguments)},Ug=a._Transpose=function(){return(Ug=a._Transpose=a.asm.Oa).apply(null,arguments)},Gg=a.__FusedMatMul=function(){return(Gg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Hg=a._malloc=function(){return(Hg=a._malloc=a.asm.Qa).apply(null,arguments)},jg=a._free=function(){return(jg=a._free=a.asm.Ra).apply(null,arguments)},rh=a.stackSave=function(){return(rh=a.stackSave=a.asm.Ta).apply(null,arguments)},ah=a.stackRestore=function(){return(ah=a.stackRestore=a.asm.Ua).apply(null,arguments)},Bc=a.stackAlloc=function(){return(Bc=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=Z;var ql;function qg(ae){this.name="ExitStatus",this.message="Program terminated with exit("+ae+")",this.status=ae}Sr=function ae(){ql||Wc(),ql||(Sr=ae)};function Wc(ae){if(ae=ae||u,Rn>0||(Fn(),Rn>0))return;function ie(){ql||(ql=!0,a.calledRun=!0,!M&&(us(),Bs(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Ss()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=Wc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Wc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),fE=1e-7,mE=1e-4,Zc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},eu=class{refCount(e){return Us("refCount")}incRef(e){return Us("incRef")}timerAvailable(){return!0}time(e){return Us("time")}read(e){return Us("read")}readSync(e){return Us("readSync")}numDataIds(){return Us("numDataIds")}disposeData(e,t){return Us("disposeData")}write(e,t,n){return Us("write")}move(e,t,n,s,r){return Us("move")}memory(){return Us("memory")}floatPrecision(){return Us("floatPrecision")}epsilon(){return this.floatPrecision()===32?fE:mE}dispose(){return Us("dispose")}};function Us(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function w5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,ph(e,t,n)}function gE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,ph(e,n,s),ph(t,n,s)}function Yc(e,t,n){return Math.max(e,Math.min(t,n))}function AE(e){return e%2==0?e:e+1}function ph(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function yE(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function xE(e,t){let n=Math.random();return t*n+(1-n)*e}function bE(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Mn(e,t,n=""){O(Sa(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ui(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ci(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||_n(e)&&!n)for(let s=0;s<e.length;++s)ci(e[s],t,n);else t.push(e);return t}function Ut(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function vE(e){return e.length===0}function Sa(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function fn(e){return e%1==0}function wE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function kE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function SE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return w5(t),t}function Jc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function IE(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function CE(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Gs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>fn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function k5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Gs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function S5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function I5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function C5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function T5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function TE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function _n(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Qg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function N5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ia(e){return typeof e=="string"||e instanceof String}function E5(e){return typeof e=="boolean"}function R5(e){return typeof e=="number"}function hh(e){return Array.isArray(e)?hh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":R5(e)?"float32":Ia(e)?"string":E5(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function fh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function tu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function $5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=$5(e+l*i,o,n,s)}return r}function nu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return $5(0,e,t,n)}function e2(e,t){let n=mh(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function mh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function NE(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return nu(e,new Float32Array(n));if(t==="int32")return nu(e,new Int32Array(n));if(t==="bool")return nu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function t2(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function EE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function RE(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function n2(e){return e&&e.then&&typeof e.then=="function"}var _5="tfjsflags",D5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=$E,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(n2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);_5 in e&&e[_5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=DE(s,r)})}};function $E(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(_E(t,s[0],s[1]),s.join("="))),t}function _E(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function DE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return Ir}var Ir=null;function PE(e){Ir=e}var s2;function P5(){if(s2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");s2=e}return s2}function FE(){let e=P5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function r2(e,t){let n=FE();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var di="Abs",su="Acos",ru="Acosh",Hr="Add",Ta="AddN",au="All",ou="Any",Na="ArgMax",iu="ArgMin",lu="Asin",uu="Asinh",cu="Atan",du="Atanh",pu="Atan2",Ea="AvgPool",gh="AvgPoolGrad",Qc="AvgPool3D",Ah="AvgPool3DGrad",Ra="BatchMatMul",pi="BatchToSpaceND",yh="Bincount",F5="BroadcastTo",xh="BroadcastArgs",$a="Cast",_a="Ceil",jr="ClipByValue",ed="Complex",td="ComplexAbs",hi="Concat",Da="Conv2D",bh="Conv2DBackpropFilter",Pa="Conv2DBackpropInput",nd="Conv3D",vh="Conv3DBackpropFilterV2",wh="Conv3DBackpropInputV2",Fa="Cos",Oa="Cosh",fi="Cumsum",mi="CropAndResize",kh="DenseBincount",gi="DepthToSpace",Ma="DepthwiseConv2dNative",Sh="DepthwiseConv2dNativeBackpropFilter",Ih="DepthwiseConv2dNativeBackpropInput",Ch="Diag",sd="Dilation2D",Th="Dilation2DBackpropInput",Nh="Dilation2DBackpropFilter",za="RealDiv",rd="Einsum",La="Elu",Eh="EluGrad",hu="Erf",Ai="Equal",Ba="Exp",yi="ExpandDims",xi="Expm1",Rh="FFT",fu="Fill",bi="FlipLeftRight",Wa="Floor",Va="FloorDiv",Ua="FusedBatchNorm",vi="GatherV2",wi="GatherNd",ki="Greater",Ga="GreaterEqual",Ha="Identity",$h="IFFT",ad="Imag",mu="IsFinite",gu="IsInf",Au="IsNan",Si="LeakyRelu",Ii="Less",Ci="LessEqual",_h="LinSpace",ja="Log",yu="Log1p",Ti="LogicalAnd",xu="LogicalNot",od="LogicalOr",O5="LogSoftmax",id="LRN",Dh="LRNGrad",qa="Max",Xa="Maximum",Ka="MaxPool",Ph="MaxPoolGrad",ld="MaxPool3D",Fh="MaxPool3DGrad",Oh="MaxPoolWithArgmax",Za="Mean",Ya="Min",Ja="Minimum",Qa="MirrorPad",bu="Mod",Mh="Multinomial",eo="Multiply",Ni="Neg",Ei="NotEqual",Ri="NonMaxSuppressionV3",vu="NonMaxSuppressionV4",$i="NonMaxSuppressionV5",_i="OnesLike",Di="OneHot",Pi="Pack",to="PadV2",OE="Pool",no="Pow",so="Prelu",Fi="Prod",wu="Range",ud="Real",ku="Reciprocal",ro="Relu",Oi="Reshape",Su="ResizeNearestNeighbor",zh="ResizeNearestNeighborGrad",ao="ResizeBilinear",Lh="ResizeBilinearGrad",oo="Relu6",Mi="Reverse",zi="Round",io="Rsqrt",Li="ScatterNd",Bi="Select",Iu="Selu",Wi="Slice",lo="Sin",Vi="Sinh",Cu="Sign",uo="Sigmoid",Tu="Softplus",co="Sqrt",po="Sum",Ui="SpaceToBatchND",Gi="SplitV",ho="Softmax",Bh="SparseFillEmptyRows",Wh="SparseReshape",Vh="SparseSegmentMean",Uh="SparseSegmentSum",cd="SparseToDense",fo="SquaredDifference",Nu="Square",Hi="StridedSlice",dd="StringNGrams",Gh="StringSplit",Hh="StringToHashBucketFast",mo="Sub",ji="Tan",go="Tanh",qr="Tile",qi="TopK",Xi="Transform",Ao="Transpose",jh="Unique",Ki="Unpack",pd="UnsortedSegmentSum",Zi="ZerosLike",yo="Step",hd="FromPixels",Yi="RotateWithOffset",xo="_FusedMatMul",bo="FusedConv2D",vo="FusedDepthwiseConv2D";function wo(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function ME(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var Eu=r2("kernelRegistry",()=>new Map),fd=r2("gradRegistry",()=>new Map);function qh(e,t){let n=o2(e,t);return Eu.get(n)}function a2(e){return fd.get(e)}function Xr(e){let t=Eu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function ar(e){let{kernelName:t,backendName:n}=e,s=o2(t,n);Eu.has(s)&&wo(`The kernel '${t}' for backend '${n}' is already registered`),Eu.set(s,e)}function M5(e){let{kernelName:t}=e;fd.has(t)&&K().getBool("DEBUG")&&wo(`Overriding the gradient for '${t}'`),fd.set(t,e)}function zE(e,t){let n=o2(e,t);if(!Eu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Eu.delete(n)}function LE(e){if(!fd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);fd.delete(e)}function BE(e,t){Xr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});ar(r)})}function o2(e,t){return`${t}_${e}`}var v={};Oe(v,{arraysEqual:()=>Sa,assert:()=>O,assertNonNegativeIntegerDimensions:()=>t2,assertNonNull:()=>ui,assertShapesMatch:()=>Mn,bytesFromStringArray:()=>N5,bytesPerElement:()=>Qg,checkConversionForErrors:()=>C5,clamp:()=>Yc,computeStrides:()=>tu,createScalarValue:()=>jE,createShuffledIndices:()=>SE,decodeString:()=>Zh,distSquared:()=>bE,encodeString:()=>Ad,fetch:()=>XE,fingerPrint64:()=>HE,flatten:()=>ci,getArrayFromDType:()=>I5,getTypedArrayFromDType:()=>S5,hasEncodingLoss:()=>TE,hexToLong:()=>md,indexToLoc:()=>RE,inferDtype:()=>hh,inferFromImplicitShape:()=>CE,isBoolean:()=>E5,isFunction:()=>Ca,isInt:()=>fn,isNumber:()=>R5,isPromise:()=>n2,isScalarShape:()=>vE,isString:()=>Ia,isTypedArray:()=>_n,isValidDtype:()=>T5,locToIndex:()=>EE,makeOnesTypedArray:()=>e2,makeZerosNestedTypedArray:()=>NE,makeZerosTypedArray:()=>mh,nearestDivisor:()=>fh,nearestLargerEven:()=>AE,now:()=>gd,parseAxisParam:()=>Gs,randUniform:()=>xE,repeatedTry:()=>IE,rightPad:()=>Jc,shuffle:()=>w5,shuffleCombo:()=>gE,sizeFromShape:()=>Ut,sizeToSquarishShape:()=>kE,squeezeShape:()=>k5,sum:()=>yE,swap:()=>ph,tanh:()=>wE,toNestedArray:()=>nu,toTypedArray:()=>Kh});var z5=li(tE()),Ji=z5.default||z5;function md(e){return Ji.fromString(e,!0,16)}var L5=md("c3a5c85c97cb3127"),Qi=md("b492b66fbe98f273"),zn=md("9ae16a3b2f90404f");function i2(e){return e.xor(e.shru(47))}function B5(e,t,n){let s=e.slice(t,t+n);return Ji.fromBytes(Array.from(s),!0,!0)}function bt(e,t){return B5(e,t,8)}function W5(e,t){return B5(e,t,4)}function mn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ko(e,t,n=md("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function WE(e,t,n,s,r,a){r=r.add(e),a=mn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(mn(r,44)),[r.add(s),a.add(o)]}function Xh(e,t,n,s){return WE(bt(e,t),bt(e,t+8),bt(e,t+16),bt(e,t+24),n,s)}function VE(e,t=e.length){if(t>=8){let n=zn.add(t*2),s=bt(e,0).add(zn),r=bt(e,t-8),a=mn(r,37).mul(n).add(s),o=mn(s,25).add(r).mul(n);return ko(a,o,n)}if(t>=4){let n=zn.add(t*2),s=W5(e,0);return ko(s.shl(3).add(t),W5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return i2(zn.mul(a).xor(L5.mul(o))).mul(zn)}return zn}function UE(e,t=e.length){let n=zn.add(t*2),s=bt(e,0).mul(Qi),r=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(zn);return ko(mn(s.add(r),43).add(mn(a,30)).add(o),s.add(mn(r.add(zn),18)).add(a),n)}function GE(e,t=e.length){let n=zn.add(t*2),s=bt(e,0).mul(zn),r=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(zn),i=mn(s.add(r),43).add(mn(a,30)).add(o),l=ko(i,s.add(mn(r.add(zn),18)).add(a),n),c=bt(e,16).mul(n),u=bt(e,24),d=i.add(bt(e,t-32)).mul(n),p=l.add(bt(e,t-24)).mul(n);return ko(mn(c.add(u),43).add(mn(d,30)).add(p),c.add(mn(u.add(s),18)).add(d),n)}function HE(e,t=e.length){let n=Ji.fromNumber(81,!0);if(t<=32)return t<=16?VE(e,t):UE(e,t);if(t<=64)return GE(e,t);let s=n,r=n.mul(Qi).add(113),a=i2(r.mul(zn).add(113)).mul(zn),o=[Ji.UZERO,Ji.UZERO],i=[Ji.UZERO,Ji.UZERO];s=s.mul(zn).add(bt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=mn(s.add(r).add(o[0]).add(bt(e,l+8)),37).mul(Qi),r=mn(r.add(o[1]).add(bt(e,l+48)),42).mul(Qi),s=s.xor(i[1]),r=r.add(o[0]).add(bt(e,l+40)),a=mn(a.add(i[0]),33).mul(Qi),o=Xh(e,l,o[1].mul(Qi),s.add(i[0])),i=Xh(e,l+32,a.add(i[1]),r.add(bt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Qi.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=mn(s.add(r).add(o[0]).add(bt(e,l+8)),37).mul(d),r=mn(r.add(o[1]).add(bt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(bt(e,l+40))),a=mn(a.add(i[0]),33).mul(d),o=Xh(e,l,o[1].mul(d),s.add(i[0])),i=Xh(e,l+32,a.add(i[1]),r.add(bt(e,l+16))),[a,s]=[s,a],ko(ko(o[0],i[0],d).add(i2(r).mul(L5)).add(a),ko(o[1],i[1],d).add(s),d)}function jE(e,t){return t==="string"?Ad(e):Kh([e],t)}function qE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Kh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ci(e)),K().getBool("DEBUG")&&C5(e,t),qE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function gd(){return K().platform.now()}function XE(e,t){return K().platform.fetch(e,t)}function Ad(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function Zh(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var KE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new YE)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=gd();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:gd()-o})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{ZE(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function ZE(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var YE=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Jc(`${s}ms`,9):s.error,i=Jc(e,25),l=t.rank,c=t.size,u=Jc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function JE(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function QE(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!Sa(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var V5=20,yd=3,l2=7;function e9(e,t,n,s){let r=tu(t),a=t9(e,t,n,r),o=t.length,i=Yh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
`)),l.join(`
`)}function t9(e,t,n,s){let r=Ut(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?bd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],xd(l[u+d],0,n).length)}return o}function xd(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(l2))} + ${parseFloat(e[1].toFixed(l2))}j`:Ia(e)?s=`'${e}'`:n==="bool"?s=U5(e):s=parseFloat(e.toFixed(l2)).toString(),Jc(s,t)}function U5(e){return e===0?"false":"true"}function Yh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=bd(e);return[xd(m[0],0,n)]}return n==="bool"?[U5(e[0])]:[e[0].toString()]}if(l===1){if(i>V5){let g=yd*o,A=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-yd)*o,i*o));return n==="complex64"&&(A=bd(A),x=bd(x)),["["+A.map((y,b)=>xd(y,r[b],n)).join(", ")+", ..., "+x.map((y,b)=>xd(y,r[i-yd+b],n)).join(", ")+"]"]}let m=n==="complex64"?bd(e):Array.from(e);return["["+m.map((g,A)=>xd(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>V5){for(let m=0;m<yd;m++){let g=m*d,A=g+d;p.push(...Yh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-yd;m<i;m++){let g=m*d,A=g+d;p.push(...Yh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Yh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function bd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var tn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ut(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||I5(t,this.size),this.strides=tu(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Cr().makeTensor(this.values,this.shape,this.dtype)}},Cr=null,Ru=null,n9=null;function s9(e){Cr=e}function r9(e){Ru=e}function a9(e){n9=e}var Je=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ut(e),this.strides=tu(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Ru.buffer(this.shape,this.dtype,e)}bufferSync(){return Ru.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return nu(this.shape,e,this.dtype==="complex64")}arraySync(){return nu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Cr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Zh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Cr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Zh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Cr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Cr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Ru.print(this,e)}clone(){return this.throwIfDisposed(),Ru.clone(this)}toString(e=!1){let t=this.dataSync();return e9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Ru.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Cr().makeVariable(this,e,t,n)}};Object.defineProperty(Je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function o9(){return r2("Tensor",()=>Je)}o9();var vd=class extends Je{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Sa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Cr().disposeTensor(this),this.dataId=e.dataId,Cr().incRef(this,null)}dispose(){Cr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(vd,Symbol.hasInstance,{value:e=>e instanceof Je&&e.assign!=null&&e.assign instanceof Function});var or={};Oe(or,{assertTypesMatch:()=>G5,getTensorsInContainer:()=>f2,isTensorInList:()=>l9,makeTypesMatch:()=>Dt});var u2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(u2||(u2={}));var c2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(c2||(c2={}));var d2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(d2||(d2={}));var p2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(p2||(p2={}));var h2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(h2||(h2={}));var i9={float32:p2,int32:c2,bool:d2,complex64:h2};function Ln(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return i9[e][t]}function wd(e){return Ln(e,"int32")}function Dt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ln(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function G5(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function l9(e,t){return t.some(n=>n.id===e.id)}function f2(e){let t=[],n=new Set;return H5(e,t,n),t}function H5(e,t,n){if(e==null)return;if(e instanceof Je){t.push(e);return}if(!u9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),H5(a,t,n))}}function u9(e){return Array.isArray(e)||typeof e=="object"}function m2(e){return e.kernelName!=null}var j5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},g2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new j5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(wo(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new KE(this.backendInstance),!0}setupRegisteredKernels(){Xr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Xr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof eu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,wo(`Initialization of backend ${e} failed`),wo(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return wo(`Initialization of backend ${e} failed`),wo(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return g2.nextTensorId++}nextVariableId(){return g2.nextVariableId++}clone(e){let t=W.runKernel(Ha,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel($a,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(qh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=m2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(m2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=qh(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,x);let y=x.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:C}=b;return this.makeTensorFromDataId(w,k,C)});if(s){let b=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=m2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=a2(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Ia(e[0])&&(r=e.map(i=>Ad(i)));let a=s.write(r,t,n),o=new Je(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=N5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Je(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new vd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Qg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof vd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Qg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=a2(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=mh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=f2(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof Je,()=>"The result y returned by f() must be a tensor.");let a=JE(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?c9(r.shape):n,QE(o,a,l=>this.tidy(l),d9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof Je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof Je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=gd(),n=await this.backend.time(e);return n.wallMs=gd()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new j5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},A2=g2;A2.nextTensorId=0;A2.nextVariableId=0;function c9(e){let t=e2(Ut(e),"float32");return W.makeTensor(t,e,"float32")}function q5(){let e=P5();if(e._tfengine==null){let t=new D5(e);e._tfengine=new A2(t)}return PE(e._tfengine.ENV),s9(()=>e._tfengine),e._tfengine}var W=q5();function d9(e,t){let n={a:e,b:t};return W.runKernel(Hr,n)}var $u={};Oe($u,{isBrowser:()=>X5,isMobile:()=>f9,mockIsMobile:()=>h9});function p9(){return typeof navigator!="undefined"&&navigator!=null}var y2;function h9(e){y2=e}function f9(e){if(y2!==void 0)return y2;if(e||p9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function X5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ir=K();ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ir.registerFlag("IS_BROWSER",()=>X5());ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ir.registerFlag("PROD",()=>!1);ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ir.getBool("DEBUG"));ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ir.registerFlag("IS_TEST",()=>!1);ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Tr(e,t){let n=e;if(_n(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||_n(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&K5(e,s,[]),s}function K5(e,t,n){if(n=n||[],!Array.isArray(e)&&!_n(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)K5(e[r],s,n.concat(r))}function Z5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof Je)return Z5(s,e.dtype,t,n),e;let r=hh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),Z5(s,r,t,n),e==null||!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Tr(e,r);!_n(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Kh(e,r):ci(e,[],!0);return W.makeTensor(i,a,r)}function kd(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var Y5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Y5;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return n2(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function m9(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");Mn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(ed,r)}var So=V({complex_:m9});function Io(e,t,n,s){if(s==null&&(s=hh(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){t2(t);let r=Ut(t),a=Ut(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ut(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!_n(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Kh(e,s):ci(e,[],!0),W.makeTensor(e,t,s)}function Pt(e,t,n){let s=Tr(e,n);return Io(e,t,s,n)}var x2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Jh=4;async function g9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Jh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],x=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(x,m),m+=Jh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:A9(a),specs:n}}function J5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Ut(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=x2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=k9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Ut(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Jh))[0];r+=Jh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=x2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Pt(h,l,"float32"),g=Pt(f,l,"float32");n[o]=So(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Pt(u,l,i))}return n}function A9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var b2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Q5(e){return b2?Buffer.byteLength(e):new Blob([e]).size}function y9(e){if(b2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function x9(e){if(b2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function v2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function e3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function t3(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function w2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Sd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Q5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Q5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function b9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function v9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function w9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function k9(){let e=b9(),t=v9(),n=w9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Bt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Bt.instance==null&&(Bt.instance=new Bt),Bt.instance}static registerSaveRouter(e){Bt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Bt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Bt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Bt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Bt.getInstance().loadRouters:Bt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},S9=e=>Bt.registerSaveRouter(e),I9=e=>Bt.registerLoadRouter(e),C9=e=>Bt.getSaveHandlers(e),T9=(e,t)=>Bt.getLoadHandlers(e,t),k2="tensorflowjs",S2=1,el="models_store",Co="model_info_store";function n3(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function I2(e){let t=e.result;t.createObjectStore(el,{keyPath:"modelPath"}),t.createObjectStore(Co,{keyPath:"modelPath"})}var tl=class{constructor(e){if(this.indexedDB=n3(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(k2,S2);r.onupgradeneeded=()=>I2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(el,"readonly"),l=o.objectStore(el).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Sd(t),i=a.transaction(Co,"readwrite"),l=i.objectStore(Co),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(el,"readwrite");let p=u.objectStore(el).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(Co);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};tl.URL_SCHEME="indexeddb://";var s3=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?N9(e.slice(tl.URL_SCHEME.length)):null;Bt.registerSaveRouter(s3);Bt.registerLoadRouter(s3);function N9(e){return new tl(e)}function E9(e){return e.startsWith(tl.URL_SCHEME)?e.slice(tl.URL_SCHEME.length):e}var R9=class{constructor(){this.indexedDB=n3()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(k2,S2);n.onupgradeneeded=()=>I2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Co,"readonly"),o=r.objectStore(Co).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=E9(e),new Promise((t,n)=>{let s=this.indexedDB.open(k2,S2);s.onupgradeneeded=()=>I2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Co,"readwrite"),o=a.objectStore(Co),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(el,"readwrite");let p=l.objectStore(el).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Kr="/",_u="tensorflowjs_models",r3="info",$9="model_topology",_9="weight_specs",D9="weight_data",P9="model_metadata";function a3(e){return{info:[_u,e,r3].join(Kr),topology:[_u,e,$9].join(Kr),weightSpecs:[_u,e,_9].join(Kr),weightData:[_u,e,D9].join(Kr),modelMetadata:[_u,e,P9].join(Kr)}}function o3(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function F9(e){let t=e.split(Kr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Kr)}function O9(e){return e.startsWith(nl.URL_SCHEME)?e.slice(nl.URL_SCHEME.length):e}var nl=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=a3(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Sd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,y9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw o3(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=x9(a),t}};nl.URL_SCHEME="localstorage://";var i3=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nl.URL_SCHEME)?M9(e.slice(nl.URL_SCHEME.length)):null;Bt.registerSaveRouter(i3);Bt.registerLoadRouter(i3);function M9(e){return new nl(e)}var z9=class{constructor(){O(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=_u+Kr,n=Kr+r3;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=F9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=O9(e);let t=a3(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return o3(t),n}},Du="://",Is=class{constructor(){this.managers={}}static getInstance(){return Is.instance==null&&(Is.instance=new Is),Is.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Du)&&(e=e.slice(0,e.indexOf(Du))),O(e.length>0,()=>"scheme must not be an empty string.");let n=Is.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Qh(e){if(e.indexOf(Du)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Is.getSchemes().join(",")}`);return{scheme:e.split(Du)[0],path:e.split(Du)[1]}}async function l3(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Bt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Bt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Qh(e).scheme,l=Qh(e).path,c=i===Qh(e).scheme,u=await r.load();n&&c&&await Is.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await Is.getManager(i).removeModel(l),d.modelArtifactsInfo}async function L9(){let e=Is.getSchemes(),t={};for(let n of e){let s=await Is.getManager(n).listModels();for(let r in s){let a=n+Du+r;t[a]=s[r]}}return t}async function B9(e){let t=Qh(e);return Is.getManager(t.scheme).removeModel(t.path)}async function W9(e,t){return l3(e,t,!1)}async function V9(e,t){return l3(e,t,!0)}var U9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new U9);try{Is.registerManager(nl.URL_SCHEME,new z9)}catch(e){}try{Is.registerManager(tl.URL_SCHEME,new R9)}catch(e){}}var G9={importFetch:()=>nE()},C2,H9=class{constructor(){this.util=sE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(C2==null&&(C2=G9.importFetch()),C2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&K().setPlatform("node",new H9);function ze(e,t="float32",n){return t=t||"float32",t2(e),new tn(e,t,n)}function j9(e,t){let n=D(e,"x","cast");if(!T5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel($a,s,r)}var pe=V({cast_:j9});function q9(e){let n={x:D(e,"x","clone","string_or_numeric")};return W.runKernel(Ha,n)}var Bn=V({clone_:q9});function u3(e,t=!1){console.log(e.toString(t))}q5();var X9={buffer:ze,cast:pe,clone:Bn,print:u3};r9(X9);var ns={};Oe(ns,{browserFiles:()=>tR,browserHTTPRequest:()=>oR,concatenateArrayBuffers:()=>v2,copyModel:()=>W9,decodeWeights:()=>J5,encodeWeights:()=>g9,fromMemory:()=>lR,getLoadHandlers:()=>T9,getModelArtifactsForJSON:()=>w2,getModelArtifactsInfoForJSON:()=>Sd,getSaveHandlers:()=>C9,http:()=>R2,isHTTPScheme:()=>E2,listModels:()=>L9,loadWeights:()=>nR,moveModel:()=>V9,registerLoadRouter:()=>I9,registerSaveRouter:()=>S9,removeModel:()=>B9,weightsLoaderFactory:()=>h3,withSaveHandler:()=>uR});var K9="model",Z9=".json",Y9=".weights.bin";function c3(e){return new Promise(t=>setTimeout(t)).then(e)}var T2=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(T2.URL_SCHEME)&&(e=e.slice(T2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=K9),this.modelJsonFileName=e+Z9,this.weightDataFileName=e+Y9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=t3(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await c3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await c3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Sd(e)}}}},ef=T2;ef.URL_SCHEME="downloads://";var J9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=w2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,v2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>e3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=e3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},Q9=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ef.URL_SCHEME)?eR(e.slice(ef.URL_SCHEME.length)):null;Bt.registerSaveRouter(Q9);function eR(e="model"){return new ef(e)}function tR(e){return new J9(e)}function d3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function p3(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await d3(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await d3(i,t.onProgress,l,c)}async function nR(e,t="",n,s){return h3(o=>p3(o,{requestInit:s}))(e,t,n)}function h3(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,x=x2[A]*Ut(g.shape),y=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(y(),o[w]=!0)}):y(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);A.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=J5(w,[b.manifestEntry]);for(let C in k)d[C]=k[C]}),p+=f}),d}}var sR="application/octet-stream",rR="application/json",N2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=t3(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:rR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:sR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Sd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return w2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=aR(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await p3(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,v2(l)]}};N2.URL_SCHEME_REGEX=/^https?:\/\//;function aR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function E2(e){return e.match(N2.URL_SCHEME_REGEX)!=null}var f3=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>E2(s)):n=E2(e),n)return R2(e,t)}return null};Bt.registerSaveRouter(f3);Bt.registerLoadRouter(f3);function R2(e,t){return new N2(e,t)}function oR(e,t){return R2(e,t)}var $2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},iR=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function lR(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new $2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function uR(e){return new iR(e)}var m3={};Oe(m3,{confusionMatrix:()=>fR});function cR(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=Dt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(Ra,o,i)}var Ue=V({matMul_:cR});function dR(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(Di,a,o)}var Id=V({oneHot_:dR});function pR(e,t){let n=D(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(Ao,s,r)}var Qe=V({transpose_:pR});function hR(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Id(pe(s,"int32"),n),o=Id(pe(r,"int32"),n),i=Qe(a),l=Ue(i,o);return pe(l,"int32")}var fR=V({confusionMatrix_:hR}),sl={};Oe(sl,{assertAndGetBroadcastShape:()=>mt,getBroadcastDims:()=>g3,getReductionAxes:()=>qt});function g3(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function qt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function mt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Hs={};Oe(Hs,{fromPixels:()=>vR,fromPixelsAsync:()=>xR,toPixels:()=>bR});function A3(e,t,n){if(ui(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Tr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}var rl;function y3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(qh(hd,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(hd,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,c,u).data;else if(s||n)d=e.data;else if(a||r||i){if(rl==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")rl=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else rl=document.createElement("canvas").getContext("2d");rl.canvas.width=c,rl.canvas.height=u,rl.drawImage(e,0,0,c,u),d=rl.getImageData(0,0,c,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return A3(p,[u,c,t],"int32")}function mR(e){return e!=null&&e.data instanceof Uint8Array}function gR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function AR(e){return e!=null&&e.width!==0&&e.height!==0}function yR(e){return gR()&&!(e instanceof ImageBitmap)&&AR(e)&&!mR(e)}async function xR(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&yR(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return y3(n,t)}async function bR(e,t){let n=D(e,"img","toPixels");if(!(e instanceof Je)){let c=n;n=pe(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var vR=V({fromPixels_:y3}),_2={};Oe(_2,{prepareAndValidate:()=>x3});function x3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ut(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...tu(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var D2={};Oe(D2,{calculateShapes:()=>b3,validateInput:()=>F2,validateUpdateShape:()=>P2});function P2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function F2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}P2(n,t,e)}function b3(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ut(t.shape)/i,c=[...tu(n.slice(0,r)),1],u=Ut(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Ft={};Oe(Ft,{assertParamsValid:()=>kR,computeFlatOffset:()=>NR,computeOutShape:()=>IR,getNormalizedAxes:()=>CR,isSliceContinous:()=>TR,maskToAxes:()=>SR,parseSliceParams:()=>E3,sliceInfo:()=>ER,startForAxis:()=>T3,startIndicesWithElidedDims:()=>S3,stopForAxis:()=>N3,stopIndicesWithElidedDims:()=>I3,stridesForAxis:()=>C3,stridesWithElidedDims:()=>v3});var O2=-2,wR=-1;function kR(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function SR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function IR(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function v3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function w3(e,t,n){return n<=e?n:n-(t-1)}function k3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function CR(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=S3(o,h,f,s,e),d=I3(i,h,f,r,e),p=v3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=T3(o,s,a,e,h,l),d[h]=N3(i,r,a,e,h,l),p[h]=C3(a,h,l);return{begin:u,end:d,strides:p}}function S3(e,t,n,s,r){let a=[...r],o=k3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=w3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function I3(e,t,n,s,r){let a=[...r],o=k3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=w3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Yc(0,a[i],r[i])}return a}function C3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function T3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Yc(0,o,l-1),o}function N3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Yc(0,o,l):o=Yc(-1,o,l-1),o}function TR(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function NR(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function E3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function ER(e,t,n,s,r,a,o,i,l){let c;if(s==null?(c=new Array(t.length),c.fill(1)):c=s,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:c.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:c.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)u&&(1<<y&i)!=0&&d.numAddAxisAfterEllipsis++,1<<y&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};RR(d,p);let h=!0,f=!0,m=!0,g=[],A=[];for(let y=0;y<e.length;++y){if(p.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let b=!!(p.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(b?1:-1);continue}let k=[p.beginMask&1<<y,p.endMask&1<<y],C=[p.strides[y]>0?0:-1,p.strides[y]>0?w:w-1];if(b&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let N=!!(p.beginMask&1<<y&&p.endMask&1<<y);if(p.beginValid&&p.endValid){if(b){let P=p.begin[y]<0?w+p.begin[y]:p.begin[y];if(p.begin[y]=P,p.end[y]=p.begin[y]+1,P<0||P>=w)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=R3(p.begin[y],0,p.strides[y],w,k,C),p.end[y]=R3(p.end[y],1,p.strides[y],w,k,C);let _=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===w;h=h&&_,f=f&&(y===0&&p.strides[y]===1||_)}else h=h&&p.strides[y]===1&&N,f=f&&(y===0&&p.strides[y]===1||N);let R,F=!1;if(p.beginValid&&p.endValid?(R=p.end[y]-p.begin[y],F=!0):b?(R=1,F=!0):N&&w>=0&&(p.strides[y]<0?R=-w:R=w,F=!0),F){let _;R===0||R<0!=p.strides[y]<0?_=0:_=Math.trunc(R/p.strides[y])+(R%p.strides[y]!=0?1:0),g.push(_)}else g.push(-1)}for(let y=0;y<p.finalShapeGatherIndices.length;++y){let b=p.finalShapeGatherIndices[y];b>=0?A.push(g[b]):b===O2&&A.push(1)}return{finalShapeSparse:A.filter((y,b)=>p.finalShapeGatherIndices[b]!==O2),finalShape:A,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function RR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(O2),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(wR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function R3(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ue={};Oe(ue,{Serializable:()=>$3,SerializationMap:()=>al,registerClass:()=>To});var $3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},al=class{constructor(){this.classNameMap={}}static getMap(){return al.instance==null&&(al.instance=new al),al.instance}static register(e){al.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function To(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),al.register(e)}var _3={};Oe(_3,{TEST_EPSILON_FLOAT16:()=>D3,encodeStrings:()=>P3,expectArrayBuffersEqual:()=>MR,expectArraysClose:()=>_R,expectArraysEqual:()=>PR,expectNumbersClose:()=>FR,expectPromiseToFail:()=>DR,expectValuesInRange:()=>OR,testEpsilon:()=>M2});var $R=.001,D3=.1;function _R(e,t,n){return n==null&&(n=M2()),z2(e,t,(s,r)=>L2(s,r,n))}function M2(){return W.backend.floatPrecision()===32?$R:D3}function z2(e,t,n){let s=!0;if((_n(e)||_n(t))&&(s=!1),_n(e)&&_n(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Tr(e),i=Tr(t);if(!Sa(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=_n(e)?e:ci(e),a=_n(t)?t:ci(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}}function DR(e,t){e().then(()=>t.fail(),()=>t())}function PR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ia(e)||Ia(e[0])||Ia(t)||Ia(t[0])?z2(e,n,(s,r)=>s==r):z2(e,t,(s,r)=>L2(s,r,0))}function FR(e,t,n){if(n==null&&(n=M2()),!L2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function L2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function OR(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function MR(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function P3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?P3(n):e[t]=Ad(n)}return e}function F3(){K().set("PROD",!0)}function zR(){K().set("DEBUG",!0)}function LR(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function B2(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}a9(B2);function BR(){W.disposeVariables()}function ss(){return W}function tf(){return W.memory()}function WR(e){return W.profile(e)}function q(e,t){return W.tidy(e,t)}function ne(e){f2(e).forEach(n=>n.dispose())}function gn(e){return W.keep(e)}function VR(e){return W.time(e)}function O3(e){return W.setBackend(e)}function nf(){return W.ready()}function Cs(){return W.backendName}function UR(e){W.removeBackend(e)}function W2(e){return W.findBackend(e)}function GR(e){return W.findBackendFactory(e)}function ol(e,t,n=1){return W.registerBackend(e,t,n)}function Nr(){return W.backend}function HR(e,t){K().setPlatform(e,t)}function jR(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(Hr,r)}var le=V({add_:jR});function qR(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(Va,r)}var sf=V({floorDiv_:qR});function XR(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=Dt(n,s),n.dtype==="int32"&&s.dtype==="int32")return sf(n,s);let r={a:n,b:s},a={};return W.runKernel(za,r,a)}var he=V({div_:XR});function KR(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(eo,r)}var L=V({mul_:KR});function ZR(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(td,n)}else{let n={x:t};return W.runKernel(di,n)}}var nn=V({abs_:ZR});function YR(e){let n={x:D(e,"x","acos")};return W.runKernel(su,n)}var M3=V({acos_:YR});function JR(e){let n={x:D(e,"x","acosh")};return W.runKernel(ru,n)}var z3=V({acosh_:JR});function QR(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Sa(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Ta,s)}var rf=V({addN_:QR});function e$(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(au,r,a)}var V2=V({all_:e$});function t$(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(ou,r,a)}var af=V({any_:t$});function n$(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return W.runKernel(Na,s,r)}var js=V({argMax_:n$});function s$(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return W.runKernel(iu,s,r)}var L3=V({argMin_:s$});function r$(e){let n={x:D(e,"x","asin")};return W.runKernel(lu,n)}var B3=V({asin_:r$});function a$(e){let n={x:D(e,"x","asinh")};return W.runKernel(uu,n)}var W3=V({asinh_:a$});function o$(e){let n={x:D(e,"x","atan")};return W.runKernel(cu,n)}var V3=V({atan_:o$});function i$(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(pu,r)}var U3=V({atan2_:i$});function l$(e){let n={x:D(e,"x","atanh")};return W.runKernel(du,n)}var G3=V({atanh_:l$});function u$(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=q3(r);return Cd(e,i,n,a,s,null,null,l)}function H3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=of(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Cd(e,c,n,s,r,a,!1,o)}function c$(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=G2(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return j3(e,u,n,s,r,!1,d,a)}function Cd(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=of(n),[A,x]=of(s),y=Pu(p,A),b=Pu(h,x),{padInfo:w,outHeight:k,outWidth:C}=h$(r,c,u,m,g,y,b,a,i),N=o?f*d:f,R;return i==="channelsFirst"?R=[l,N,k,C]:i==="channelsLast"&&(R=[l,k,C,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:C,outChannels:N,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:x,inShape:e,outShape:R,filterShape:t}}function j3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,x,y]=G2(n),[b,w,k]=G2(s),C=Pu(h,b),N=Pu(f,w),R=Pu(m,k),{padInfo:F,outDepth:_,outHeight:P,outWidth:T}=f$(r,c,u,d,A,x,y,C,N,R,i),M=a?g*p:g,U;return o==="channelsFirst"?U=[l,M,_,P,T]:o==="channelsLast"&&(U=[l,_,P,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:_,outHeight:P,outWidth:T,outChannels:M,padInfo:F,strideDepth:A,strideHeight:x,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:N,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:U,filterShape:t}}function d$(e,t,n,s,r){s==null&&(s=U2(e,t,n));let a=e[0],o=e[1],i=il((a-t+2*s)/n+1,r),l=il((o-t+2*s)/n+1,r);return[i,l]}function p$(e,t,n,s,r,a){r==null&&(r=U2(e,t,s));let o=e[0],i=e[1],l=e[2],c=il((o-t+2*r)/s+1,a),u=il((i-t+2*r)/s+1,a),d=il((l-t+2*r)/s+1,a);return[c,u,d,n]}function U2(e,t,n,s=1){let r=Pu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function of(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function G2(e){return typeof e=="number"?[e,e,e]:e}function Pu(e,t){return t<=1?e:e+(e-1)*(t-1)}function h$(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=d$([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=il((t-a+p+h)/s+1,i),d=il((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function f$(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=p$([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,x=Math.floor(m/2),y=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(A/2),C=A-k;d={top:b,bottom:w,left:k,right:C,front:x,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function il(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function No(e){let[t,n,s]=of(e);return t===1&&n===1&&s===1}function Er(e,t){return No(e)||No(t)}function q3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function m$(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Oi,s,r)}var G=V({reshape_:m$});function g$(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;O(Er(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(fn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ea,c,u);return d=pe(d,a.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var lf=V({avgPool_:g$});function A$(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(fn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(Qc,c,u);return d=pe(d,i.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var H2=V({avgPool3d_:A$});function y$(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=kd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Bn(n[0]);let s=n,r={axis:t};return W.runKernel(hi,s,r)}var vt=V({concat_:y$});function x$(e){let n={x:D(e,"x","sigmoid","float32")};return W.runKernel(uo,n)}var ds=V({sigmoid_:x$});function b$(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Wi,r,a)}var De=V({slice_:b$});function v$(e){let n={x:D(e,"x","tanh","float32")};return W.runKernel(go,n)}var Fu=V({tanh_:v$});function w$(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),c=D(s,"data","basicLSTMCell"),u=D(r,"c","basicLSTMCell"),d=D(a,"h","basicLSTMCell"),p=vt([c,d],1),h=Ue(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],x=De(f,[0,0],A),y=De(f,[0,g],A),b=De(f,[0,g*2],A),w=De(f,[0,g*3],A),k=le(L(ds(x),Fu(y)),L(u,ds(le(o,b)))),C=L(Fu(k),ds(w));return[k,C]}var k$=V({basicLSTMCell_:w$});function S$(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(pi,a,o)}var uf=V({batchToSpaceND_:S$});function I$(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function C$(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;s!=null&&(u=D(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:I$(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(Ua,p,h);return G(f,o.shape)}var Ou=V({batchNorm_:C$});function T$(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var X3=V({batchNorm2d_:T$});function N$(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var K3=V({batchNorm3d_:N$});function E$(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var Z3=V({batchNorm4d_:E$});function R$(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(yh,a,o)}var j2=V({bincount_:R$});function $$(e,t){let n=D(e,"s0","broadcastArgs","int32"),s=D(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(xh,r)}var Y3=V({broadcastArgs_:$$});function _$(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=G(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Bn(n);let i={x:n},l={reps:a};return W.runKernel(qr,i,l)}var Td=V({broadcastTo_:_$});function D$(e){let n={x:D(e,"x","ceil","float32")};return W.runKernel(_a,n)}var J3=V({ceil_:D$});function P$(e,t,n){let s=D(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(jr,r,a)}var ps=V({clipByValue_:P$});function F$(e){return vt(e,0)}var Q3=V({concat1d_:F$});function O$(e,t){return vt(e,t)}var Mu=V({concat2d_:O$});function M$(e,t){return vt(e,t)}var ev=V({concat3d_:M$});function z$(e,t){return vt(e,t)}var tv=V({concat4d_:z$});function L$(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d","float32"),l=D(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(fn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(Er(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(Da,p,h);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Eo=V({conv2d_:L$});function B$(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(fn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(Er(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Eo(p,d,[1,n],s,"NHWC",[1,a],o);return u?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var q2=V({conv1d_:B$});function W$(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(fn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(Pa,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var X2=V({conv2DBackpropInput_:W$});function V$(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return X2(n,o,i,s,r,"NHWC",a)}var K2=V({conv2dTranspose_:V$});function U$(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(Er(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(nd,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Z2=V({conv3d_:U$});function G$(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(wh,u,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var nv=V({conv3DBackpropInput_:G$});function H$(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return nv(n,a,o,s,r)}var sv=V({conv3dTranspose_:H$});function j$(e){let n={x:D(e,"x","cos","float32")};return W.runKernel(Fa,n)}var cf=V({cos_:j$});function q$(e){let n={x:D(e,"x","cosh","float32")};return W.runKernel(Oa,n)}var Y2=V({cosh_:q$});function X$(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(fi,a,o)}var J2=V({cumsum_:X$});function K$(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(kh,o,i)}var rv=V({denseBincount_:K$});function Z$(e,t,n="NHWC"){let s=D(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(gi,i,l)}var av=V({depthToSpace_:Z$});function Y$(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d","float32"),l=D(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(fn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(Ma,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Nd=V({depthwiseConv2d_:Y$});function J$(e){let n={x:D(e,"x","diag")};return W.runKernel(Ch,n)}var Q$=V({diag_:J$});function e_(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(sd,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ov=V({dilation2d_:e_});function t_(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ai,r)}var Ts=V({equal_:t_});function n_(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=mt(mt(a.shape,s.shape),r.shape),i=Td(a,o),l=Td(s,o),c=Td(r,o),u={condition:i,t:l,e:c};return W.runKernel(Bi,u)}var Wn=V({where_:n_});function s_(e){let n={x:D(e,"x","zerosLike")};return W.runKernel(Zi,n)}var et=V({zerosLike_:s_});function r_(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=Dt(n,s);let r=he(n,s),a=et(r),o=Ts(s,a);return Wn(o,a,r)}var iv=V({divNoNan_:r_});function a_(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=G(n,[1,-1]),i=G(s,[-1,1]),l=Ue(o,i);return G(l,[])}else if(n.rank===1&&s.rank===2){let o=G(n,[1,-1]),i=G(s,[s.shape[0],s.shape[1]]),l=Ue(o,i);return G(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=G(s,[-1,1]),i=Ue(n,o);return G(i,[i.size])}else{let o=G(s,[s.shape[0],s.shape[1]]);return Ue(n,o)}}var o_=V({dot_:a_});function i_(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(rd,n,s)}var lv=V({einsum_:i_});function l_(e){let n={x:D(e,"x","elu","float32")};return W.runKernel(La,n)}var Ed=V({elu_:l_});function u_(e){let t=D(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return W.runKernel(hu,n)}var uv=V({erf_:u_});function c_(e){let n={x:D(e,"x","exp")};return W.runKernel(Ba,n)}var Ns=V({exp_:c_});function d_(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(yi,s,r)}var Xt=V({expandDims_:d_});function p_(e){let n={x:D(e,"x","expm1")};return W.runKernel(xi,n)}var cv=V({expm1_:p_});function h_(e,t){let n=D(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(qr,s,r)}var qs=V({tile_:h_});function f_(e,t,n,s="float32"){t==null&&(t=e);let r=ze([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=G(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return qs(Xt(o,0),[n[0],1,1]);if(n.length===2)return qs(Xt(Xt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return qs(Xt(Xt(Xt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Q2=V({eye_:f_});function zu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(fu,{},s)}function m_(e){let n={x:D(e,"x","floor","float32")};return W.runKernel(Wa,n)}var Rd=V({floor_:m_});function g_(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(vi,o,i)}var Lu=V({gather_:g_});function A_(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ki,r)}var hs=V({greater_:A_});function y_(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ga,r)}var ll=V({greaterEqual_:y_});function x_(e){let n={input:D(e,"input","imag")};return W.runKernel(ad,n)}var df=V({imag_:x_});function b_(e){let n={x:D(e,"x","isFinite")};return W.runKernel(mu,n)}var v_=V({isFinite_:b_});function w_(e){let n={x:D(e,"x","isInf")};return W.runKernel(gu,n)}var k_=V({isInf_:w_});function S_(e){let n={x:D(e,"x","isNaN")};return W.runKernel(Au,n)}var dv=V({isNaN_:S_});function I_(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(Si,s,r)}var pf=V({leakyRelu_:I_});function C_(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ii,r)}var e1=V({less_:C_});function T_(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ci,r)}var ul=V({lessEqual_:T_});function pv(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(_h,{},s)}function N_(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),O(fn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(id,l,c);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var hv=V({localResponseNormalization_:N_});function E_(e){let n={x:D(e,"x","log","float32")};return W.runKernel(ja,n)}var Es=V({log_:E_});function R_(e){let n={x:D(e,"x","log1p")};return W.runKernel(yu,n)}var hf=V({log1p_:R_});function $_(e){return O(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ff(o),o[0]})}}function __(e){return O(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=kd(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ff(o),o})}}function D_(e){return O(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return ff(s),{grad:s[0],value:r}}}function P_(e){return O(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof Je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Mn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ff(s.grads),s}}function fv(e,t){O(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof vd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Rr(e){return W.customGrad(e)}function ff(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function F_(e){let n={x:D(e,"x","neg")};return W.runKernel(Ni,n)}var Ot=V({neg_:F_});function O_(e){let n={x:D(e,"x","softplus")};return W.runKernel(Tu,n)}var Bu=V({softplus_:O_});function M_(e){let t=D(e,"x","logSigmoid");return Rr(s=>({value:Ot(Bu(Ot(s))),gradFunc:o=>L(o,ds(Ot(s)))}))(t)}var z_=V({logSigmoid_:M_});function L_(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(qa,r,a)}var An=V({max_:L_});function B_(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(mo,r)}var me=V({sub_:B_});function W_(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(po,r,a)}var Se=V({sum_:W_});function V_(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Rr((r,a)=>{let o=!0,i=An(r,t,!0),l=me(r,i),c=me(pe(l,"float32"),Es(Se(Ns(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Ns(h);return me(d,L(Se(d,t,f),m))}}})(n)}var t1=V({logSoftmax_:V_});function n1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function mv(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function gv(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function cl(e,t){let n=t.map(s=>1);return mv(e,n,t)}function U_(e,t,n){O(n1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Av(e,t){if(n1(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function s1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function G_(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function H_(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=Gs(t,s.shape),a=An(s,r,!0),o=me(s,a),i=Ns(o),l=Se(i,r),c=Es(l),u=le(G(a,c.shape),c);if(n){let d=cl(u.shape,r);return G(u,d)}return u}var yv=V({logSumExp_:H_});function j_(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ti,r)}var lr=V({logicalAnd_:j_});function q_(e){let n={x:D(e,"x","logicalNot","bool")};return W.runKernel(xu,n)}var mf=V({logicalNot_:q_});function X_(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(od,r)}var r1=V({logicalOr_:X_});function K_(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return mt(n.shape,s.shape),lr(r1(e,t),mf(lr(e,t)))}var Z_=V({logicalXor_:K_});function Y_(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(Er(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(fn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ka,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gf=V({maxPool_:Y_});function J_(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(fn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(ld,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var a1=V({maxPool3d_:J_});function Q_(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(Oh,o,i);return{result:l[0],indexes:l[1]}}var xv=V({maxPoolWithArgmax_:Q_});function eD(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Xa,r)}var Zr=V({maximum_:eD});function tD(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(Za,r,a)}var Wt=V({mean_:tD});function Gt(e,t="float32"){if(t==="complex64"){let s=Gt(e,"float32"),r=Gt(e,"float32");return So(s,r)}let n=mh(Ut(e),t);return W.makeTensor(n,e,t)}function fs(e,t="float32"){if(t==="complex64"){let s=fs(e,"float32"),r=Gt(e,"float32");return So(s,r)}let n=e2(Ut(e),t);return W.makeTensor(n,e,t)}function nD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof Je?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof Je?t.dtype:"float32"),a=Ut(s.shape),o=Ut(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[Ue(fs([o,1],s.dtype),s),Ue(r,fs([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[Ue(s,fs([1,o],s.dtype)),Ue(fs([a,1],r.dtype),r)])}function sD(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(Ya,r,a)}var Ro=V({min_:sD});function rD(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ja,r)}var $d=V({minimum_:rD});function aD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(Qa,o,a)}var bv=V({mirrorPad_:aD});function oD(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(bu,r)}var _d=V({mod_:oD});function iD(e){let t=D(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var gt=V({square_:iD});function lD(e,t=null,n=!1){e=D(e,"x","moments");let s=Gs(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=cl(r.shape,s));let o=gt(me(pe(e,"float32"),G(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var Af=V({moments_:lD});function uD(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=kd(n,"c","multiRNNCell"),o=kd(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var cD=V({multiRNNCell_:uD});function dD(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?G(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(Mh,l,c);return o===1?G(u,[u.size]):u}var vv=V({multinomial_:dD});function pD(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ei,r)}var Wu=V({notEqual_:pD});function hD(e){let n={x:D(e,"x","onesLike")};return W.runKernel(_i,n)}var Rs=V({onesLike_:hD});function fD(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return Ue(r,a)}var mD=V({outerProduct_:fD});function gD(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(to,a,r)}var Xs=V({pad_:gD});function AD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Xs(e,[t],n)}var yD=V({pad1d_:AD});function xD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var bD=V({pad2d_:xD});function vD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var wD=V({pad3d_:vD});function kD(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var SD=V({pad4d_:kD});function ID(e,t,n){let s=D(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Ui,r,a)}var yf=V({spaceToBatchND_:ID});function CD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=D(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(Er(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=H3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=ND([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=TD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:yf(i,u,h),x=(n==="avg"?()=>lf(g,t,a,m):()=>gf(g,t,a,m))(),y=p?x:uf(x,u,f);return l?G(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function TD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function ND(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var ED=V({pool_:CD});function RD(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(no,r)}var $o=V({pow_:RD});function $D(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(so,r)}var xf=V({prelu_:$D});function _D(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Fi,r,a)}var o1=V({prod_:_D});function DD(e,t,n){let s=Ut(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var PD=V({rand_:DD}),i1=li(dh()),l1=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=i1.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},FD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=i1.alea(r.toString()),this.randn=new l1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},OD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=i1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function MD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new FD(t,n,s,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var zD=V({randomGamma_:MD});function LD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new l1(t,n,s,!1,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var wv=V({randomNormal_:LD});function BD(e,t=0,n=1,s="float32",r){let a=ze(e,s),o=new OD(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Vu=V({randomUniform_:BD});function Uu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(wu,{},r)}function WD(e){let n={input:D(e,"input","real")};return W.runKernel(ud,n)}var Dd=V({real_:WD});function VD(e){let n={x:D(e,"x","reciprocal")};return W.runKernel(ku,n)}var kv=V({reciprocal_:VD});function UD(e){let n={x:D(e,"x","relu")};return W.runKernel(ro,n)}var $r=V({relu_:UD});function GD(e){let n={x:D(e,"x","relu6")};return W.runKernel(oo,n)}var u1=V({relu6_:GD});function HD(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return W.runKernel(Mi,s,r)}var $s=V({reverse_:HD});function jD(e){let t=D(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),$s(t,0)}var qD=V({reverse1d_:jD});function XD(e,t){let n=D(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),$s(n,t)}var KD=V({reverse2d_:XD});function ZD(e,t){let n=D(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),$s(n,t)}var YD=V({reverse3d_:ZD});function JD(e,t){let n=D(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),$s(n,t)}var QD=V({reverse4d_:JD});function eP(e){let n={x:D(e,"x","round")};return W.runKernel(zi,n)}var c1=V({round_:eP});function tP(e){let n={x:D(e,"x","rsqrt","float32")};return W.runKernel(io,n)}var d1=V({rsqrt_:tP});function Re(e,t){if((_n(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&_n(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Io(e,[],[],t)}function nP(e){let n={x:D(e,"x","selu")};return W.runKernel(Iu,n)}var p1=V({selu_:nP});function sP(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),c=D(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=Nd(u,l,s,r,o,a),g=Eo(f,c,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Sv=V({separableConv2d_:sP});async function rP(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new tn([i],n.dtype),c=new tn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var Iv=rP;function aP(e){let n={x:D(e,"x","sign")};return W.runKernel(Cu,n)}var Cv=V({sign_:aP});function oP(e){let n={x:D(e,"x","sin","float32")};return W.runKernel(lo,n)}var h1=V({sin_:oP});function iP(e){let n={x:D(e,"x","sinh")};return W.runKernel(Vi,n)}var f1=V({sinh_:iP});function lP(e,t,n){let s=D(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),De(s,[t],[n])}var bf=V({slice1d_:lP});function uP(e,t,n){let s=D(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var m1=V({slice2d_:uP});function cP(e,t,n){let s=D(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var dl=V({slice3d_:cP});function dP(e,t,n){let s=D(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var pl=V({slice4d_:dP});function pP(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(ho,s,r)}var Gu=V({softmax_:pP});function hP(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(Rh,t)}var vf=V({fft_:hP});function fP(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel($h,t)}var Pd=V({ifft_:fP});function mP(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=Pd(r)}else{let r=[n,2*(t-1)],a=G(Dd(e),[n,t]),o=G(df(e),[n,t]),i=$s(De(a,[0,1],[n,t-2]),1),l=L($s(De(o,[0,1],[n,t-2]),1),Re(-1)),c=vt([a,i],1),u=vt([o,l],1),d=G(So(c,u),[r[0],r[1]]);s=Pd(d)}if(s=Dd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var g1=V({irfft_:mP});function gP(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Gi,r,a)}var sn=V({split_:gP});function AP(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=De(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=vt([e,Gt(f)],e.shape.length-1),n=t}else r=e;let a=et(r),o=G(So(r,a),[s,n]),i=vf(o),l=Math.floor(n/2)+1,c=Dd(i),u=df(i),d=sn(c,[l,n-l],c.shape.length-1),p=sn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,G(So(d[0],p[0]),h)}var wf=V({rfft_:AP});function yP(e){let n={x:D(e,"x","sqrt","float32")};return W.runKernel(co,n)}var Dn=V({sqrt_:yP});function xP(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(fo,r,a)}var A1=V({squaredDifference_:xP});function bP(e,t){let n=D(e,"x","squeeze");return G(n,k5(n.shape,t).newShape)}var ot=V({squeeze_:bP});function vP(e,t=0){let n=kd(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(Pi,s,r)}var yn=V({stack_:vP});function wP(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return W.runKernel(yo,s,r)}var Fd=V({step_:wP});function kP(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:D(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Hi,u,d)}var Tv=V({stridedSlice_:kP});function SP(e){let n={x:D(e,"x","tan","float32")};return W.runKernel(ji,n)}var Nv=V({tan_:SP});function Kt(e,t){ui(e);let n=Tr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Io(e,null,n,t)}function ur(e,t,n){if(ui(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Tr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Io(e,t,s,n)}function IP(e,t,n){if(ui(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Tr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}function CP(e,t,n){if(ui(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Tr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}function TP(e,t,n){if(ui(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Tr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Io(e,t,s,n)}function NP(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(qi,a,o);return{values:i,indices:l}}var Ev=V({topk_:NP});function EP(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new l1(t,n,s,!0,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var kf=V({truncatedNormal_:EP});function RP(e,t=0){let n=D(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(jh,s,r);return{values:a,indices:o}}var y1=V({unique_:RP});function $P(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");O(fn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(pd,a,o)}var Rv=V({unsortedSegmentSum_:$P});function _P(e,t=0){let n=D(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Ki,s,r)}var rs=V({unstack_:_P});function $v(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function _v(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function DP(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=_v(t.shape,n);return e!==t&&t.dispose(),s}var x1=DP;async function PP(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),Mn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=G(s,c),d=G(r,[-1]),p=await x1(d),h=ot(p,[1]),f=Lu(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var FP=PP;function OP(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=Dv(e,t,n),a=r.shape;if(s){let o=Gs(n,e.shape);a=cl(r.shape,o)}return G(r,a)}function Dv(e,t,n=null){if(e.rank===0)return nn(e);if(e.rank!==1&&n===null)return Dv(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(nn(e),n);if(t===1/0)return An(nn(e),n);if(t===-1/0)return Ro(nn(e),n);if(t==="euclidean"||t===2)return Dn(Se($o(nn(e),Re(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return An(Se(nn(e),n[0]),n[1]-1);if(t===1/0)return An(Se(nn(e),n[1]),n[0]);if(t===-1/0)return Ro(Se(nn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Dn(Se(gt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var b1=V({norm_:OP});function MP(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");G5(a,o),O(Sa(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Re(1),c=me(l,i),u=L(me(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=D(s,"step","movingAverage");u=he(u,me(l,$o(i,d)))}return le(a,u)}var zP=V({movingAverage_:MP});function LP(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");F2(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Li,a,o)}var Pv=V({scatterND_:LP});function BP(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function WP(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense"),o=D(s,"defaultValue","sparseToDense",a.dtype);BP(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(cd,i,l)}var v1=V({sparseToDense_:WP});function VP(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(wi,r)}var Fv=V({gatherND_:VP});function UP(e,t){if(t==null)return e.shape.slice();if(Sa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function GP(e,t,n,s){let r=D(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Je?r.clone():r;let a=UP(r,n),o=1-t,i=he(Rd(le(Vu(a,0,1,"float32",s),o)),o);return L(r,i)}var Ov=V({dropout_:GP});function Mv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function w1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Kt(r,"float32")}async function HP(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Mn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=S5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Pt(u,r.shape,"bool")}var jP=HP,_o={};Oe(_o,{conv2d:()=>KP,depthwiseConv2d:()=>QP,matMul:()=>tF});function qP(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(fn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(bh,d,p)}var k1=V({conv2DBackpropFilter_:qP});function Sf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Fd(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function If(e,t){let n=t,s=qt(e.shape,t.shape);return s.length>0&&(n=Se(n,s)),G(n,e.shape)}function Cf(e,t,n,s){if(t==="linear")return e;if(t==="relu")return $r(e);if(t==="elu")return Ed(e);if(t==="relu6")return u1(e);if(t==="prelu")return xf(e,n);if(t==="leakyrelu")return pf(e,s);if(t==="sigmoid")return ds(e);throw new Error(`Unknown fused activation ${t}.`)}var Tf=(e,t)=>!(e>0)||t==="linear";function XP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Tf(W.state.gradientDepth,l)===!1){let w=Eo(e,t,n,s,r,a,o);return i!=null&&(w=le(w,i)),Cf(w,l,c,u)}let d=D(e,"x","conv2d","float32"),p=D(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(fn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(Er(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Cd(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Dt(g,d),mt(m.outShape,g.shape));let A;c!=null&&(A=D(c,"prelu weights","fused conv2d"));let x=(w,k)=>{let[C,N,R,F]=k,_=Sf(w,R,l);O(No(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let P=X2(N.shape,_,C,n,s),T=k1(N,_,C.shape,n,s),M=[P,T];if(F!=null){let U=If(F,_);M.push(U)}return M},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Rr((k,C,N)=>{let R=W.runKernel(bo,y,b);return N([C,k,R]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,p):Rr((k,C,N,R)=>{let F=W.runKernel(bo,y,b);return R([C,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,p,g)}var KP=V({fusedConv2d_:XP});function ZP(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Sh,c,u)}var zv=V({depthwiseConv2dNativeBackpropFilter_:ZP});function YP(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Ih,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Lv=V({depthwiseConv2dNativeBackpropInput_:YP});function JP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Tf(W.state.gradientDepth,l)===!1){let w=Nd(e,t,n,s,r,a,o);return i!=null&&(w=le(w,i)),Cf(w,l,c,u)}let d=D(e,"x","depthwiseConv2d","float32"),p=D(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(Er(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(fn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Cd(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Dt(g,d),mt(m.outShape,g.shape));let A;c!=null&&(A=D(c,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{O(No(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,N,R,F]=k,_=Sf(w,R,l),P=Lv(N.shape,_,C,n,s,a,o),T=zv(N,_,C.shape,n,s,a,o);if(F!=null){let M=If(g,_);return[P,T,M]}return[P,T]},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Rr((k,C,N)=>{let R=W.runKernel(vo,y,b);return N([C,k,R]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,p):Rr((k,C,N,R)=>{let F=W.runKernel(vo,y,b);return R([C,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,p,g)}var QP=V({fusedDepthwiseConv2d_:JP});function eF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Tf(W.state.gradientDepth,a)===!1){let _=Ue(e,t,n,s);return r!=null&&(_=le(_,r)),Cf(_,a,o,i)}let l=D(e,"a","fused matMul"),c=D(t,"b","fused matMul");[l,c]=Dt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ut(f),A=Ut(m);O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=mt(l.shape.slice(0,-2),c.shape.slice(0,-2)).concat([p,h]),b=n?G(l,[g,u,p]):G(l,[g,p,u]),w=s?G(c,[A,h,d]):G(c,[A,d,h]),k;r!=null&&(k=D(r,"bias","fused matMul"),[k]=Dt(k,l),mt(y,k.shape));let C;o!=null&&(C=D(o,"prelu weights","fused matMul"));let N=(_,P)=>{let[T,M,U,j]=P,z=Sf(G(_,U.shape),U,a),X,Z;if(!n&&!s?(X=Ue(z,M,!1,!0),Z=Ue(T,z,!0,!1)):!n&&s?(X=Ue(z,M,!1,!1),Z=Ue(z,T,!0,!1)):n&&!s?(X=Ue(M,z,!1,!0),Z=Ue(T,z,!1,!1)):(X=Ue(M,z,!0,!0),Z=Ue(z,T,!0,!0)),r!=null){let J=If(j,z);return[X,Z,J]}else return[X,Z]},R={a:b,b:w,bias:k,preluActivationWeights:C},F={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Rr((P,T,M)=>{let U=W.runKernel(xo,R,F);return M([P,T,U]),{value:G(U,y),gradFunc:N}})(b,w):Rr((P,T,M,U)=>{let j=W.runKernel(xo,R,F);return U([P,T,j,M]),{value:G(j,y),gradFunc:N}})(b,w,k)}var tF=V({fusedMatMul_:eF});function nF(e){return w1(e,.54,.46)}var sF=V({hammingWindow_:nF});function rF(e){return w1(e,.5,.5)}var Bv=V({hannWindow_:rF});function aF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(De(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=vt([De(e,a,t-i),zu([i],r)]);o.push(l),a+=n}return o.length===0?ur([],[0,t]):G(vt(o),[o.length,t])}var Wv=V({frame_:aF});function oF(e,t,n,s,r=Bv){s==null&&(s=Mv(t));let a=Wv(e,t,n),o=L(a,r(t));return wf(o,s)}var iF=V({stft_:oF});function lF(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(mi,u,d)}var uF=V({cropAndResize_:lF});function cF(e){let t=D(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(bi,n,{})}var dF=V({flipLeftRight_:cF});function pF(e){let t=D(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,qs(t,r)}var hF=V({grayscaleToRGB_:pF});function fF(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Yi,a,o)}var mF=V({rotateWithOffset_:fF});function Hu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function gF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression","float32"),o=D(t,"scores","nonMaxSuppression","float32"),i=Hu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Ri,{boxes:a,scores:o},l)}var AF=V({nonMaxSuppression_:gF});function yF(e,t,n){let s=xF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function xF(e,t,n){return vF(e,t,n||bF)}function bF(e,t){return e>t?1:e<t?-1:0}function vF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Vv(e,t,n,s,r){return S1(e,t,n,s,r,0)}function Uv(e,t,n,s,r,a){return S1(e,t,n,s,r,0,!1,a,!0)}function Gv(e,t,n,s,r,a){return S1(e,t,n,s,r,a,!0)}function S1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Hv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:x,suppressBeginIndex:y}=g;if(A<r)break;let b=!1;for(let w=d.length-1;w>=y;--w){let k=wF(e,x,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*kF(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(x),p.push(g.score)):g.score>r&&yF(c,g,Hv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function wF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),x=Math.min(l,p),y=Math.max(A-m,0)*Math.max(x-g,0);return y/(h+f-y)}function kF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Hv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function SF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=Hu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=Vv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Kt(d,"int32")}var IF=SF;function CF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Hu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel($i,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var TF=V({nonMaxSuppressionWithScore_:CF});async function NF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Hu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=Gv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Kt(p,"int32"),selectedScores:Kt(h)}}var EF=NF;function RF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Hu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(vu,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var $F=V({nonMaxSuppressionPadded_:RF});async function _F(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Hu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Uv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Kt(f,"int32"),validOutputs:Re(m,"int32")}}var DF=_F;function PF(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(ao,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var FF=V({resizeBilinear_:PF});function OF(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Su,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var MF=V({resizeNearestNeighbor_:OF});function zF(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Kt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=sn(r,[1,1,1],-1);let g=L(u,a),A=L(d,o),x=L(p,i);h=le(le(g,A),x)}else h=e;if(t==="otsu"){let g=j2(pe(c1(h),"int32"),Pt([]),256);c=LF(g,l)}let f=n?ul(h,c):hs(h,c);return pe(L(f,255),"int32")}function LF(e,t){let n=Kt([-1]),s=Kt([0]),r=Kt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=De(e,0,d+1),o=De(e,d+1),c=he(Se(a),t),u=he(Se(o),t);let p=Se(L(a,Uu(0,a.size)));i=he(p,Se(a));let h=zu(o.shape,a.size),f=le(Uu(0,o.size),h),m=L(o,f);l=he(Se(m),Se(o));let g=me(i,l),A=me(i,l),x=L(c,u);r=L(L(x,g),A);let y=hs(r,s);s=Wn(y,r,s),n=Wn(y,Kt([d]),n)}return n}var BF=V({threshold_:zF});function WF(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(Xi,l,c)}var VF=V({transform_:WF});function UF(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(Uu(0,a,1,"int32"),[-1,1]),l=Uu(0,o,1,"int32"),c=me(i,l),u=lr(ul(c,Re(+t,"int32")),ll(c,Re(-n,"int32"))),d=Gt([a,o],s.dtype);return G(yn(rs(G(s,[-1,a,o])).map(p=>Wn(u,p,d))),r)}var GF=V({bandPart_:UF});function HF(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=sn(e,e.shape[0],0).map(r=>ot(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(Se(L(n[o],a)),n[o]);a=me(a,i)}return he(a,b1(a,"euclidean"))}));return t?yn(n,0):n}var jF=V({gramSchmidt_:HF});function qF(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return jv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=rs(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=jv(l,t);r.push(c),a.push(u)});let o=G(yn(r,0),e.shape),i=G(yn(a,0),e.shape);return[o,i]}}function jv(e,t=!1){return W.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=Q2(n),a=Bn(e),o=ur([[1]],[1,1]),i=Bn(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=De(a,[c,c],[n-c,1]),f=b1(h),m=De(a,[c,c],[1,1]),g=Wn(hs(m,0),ur([[-1]]),ur([[1]])),A=me(m,L(g,f)),x=he(h,A);x.shape[0]===1?i=Bn(o):i=vt([o,De(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let y=Ot(he(Ue(g,A),f)),b=De(a,[c,0],[n-c,s]),w=L(y,i),k=Qe(i);if(c===0)a=me(b,Ue(w,Ue(k,b)));else{let R=me(b,Ue(w,Ue(k,b)));a=vt([De(a,[0,0],[c,s]),R],0)}let C=Qe(w),N=De(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=me(N,Ue(Ue(N,i),C));else{let R=me(N,Ue(Ue(N,i),C));r=vt([De(r,[0,0],[n,c]),R],1)}return[i,a,r]}),ne([u,d,p])}return!t&&n>s&&(r=De(r,[0,0],[n,s]),a=De(a,[0,0],[s,s])),[r,a]})}var XF=V({qr_:qF}),Vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Vn||(Vn={}));function KF(e,t,n=Vn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Vn.NONE)return a;if(n===Vn.SUM)return Se(a);if(n===Vn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=he(Se(a),Se(r));return o>1?he(i,Re(o)):i}}if(n===Vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(Se(a),Re(s.size));{let o=L(r,fs(s.shape)),i=pe(Se(Wu(o,Re(0))),"float32");return he(Se(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Yr=V({computeWeightedLoss_:KF});function ZF(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),Mn(r.shape,a.shape,"Error in absoluteDifference: ");let i=nn(me(r,a));return Yr(i,o,s)}var YF=V({absoluteDifference_:ZF});function JF(e,t,n,s,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),Mn(a.shape,o.shape,"Error in cosineDistance: ");let l=Re(1),c=me(l,Se(L(a,o),n,!0));return Yr(c,i,r)}var QF=V({cosineDistance_:JF});function eO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),Mn(r.shape,a.shape,"Error in hingeLoss: ");let i=Re(1);r=me(L(Re(2),r),i);let l=$r(me(i,L(r,a)));return Yr(l,o,s)}var tO=V({hingeLoss_:eO});function nO(e,t,n,s=1,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),Mn(a.shape,o.shape,"Error in huberLoss: ");let l=Re(s),c=nn(me(o,a)),u=$d(c,l),d=me(c,u),p=le(L(Re(.5),gt(u)),L(l,d));return Yr(p,i,r)}var sO=V({huberLoss_:nO});function rO(e,t,n,s=1e-7,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),Mn(a.shape,o.shape,"Error in logLoss: ");let l=Re(1),c=Re(s),u=Ot(L(a,Es(le(o,c)))),d=L(me(l,a),Es(le(me(l,o),c))),p=me(u,d);return Yr(p,i,r)}var aO=V({logLoss_:rO});function oO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),Mn(r.shape,a.shape,"Error in meanSquaredError: ");let i=A1(r,a);return Yr(i,o,s)}var iO=V({meanSquaredError_:oO});function lO(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");Mn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=$r(s),a=L(s,n),o=hf(Ns(Ot(nn(s))));return le(me(r,a),o)}function uO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),Mn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(.5);a=le(L(a,me(u,c)),L(d,c))}let l=lO(a,o);return Yr(l,i,r)}var cO=V({sigmoidCrossEntropy_:uO});function dO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Rr((r,a,o)=>{let l=yv(a,[n],!0),c=me(pe(a,"float32"),l);o([r,c]);let u=Ot(L(c,r));return{value:Se(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=cl(h.shape,[n]);return[L(G(h,A),me(pe(m,"float32"),Ns(g))),L(G(h,A),me(Ns(g),pe(m,"float32")))]}}})(e,t)}function pO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),Mn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(a.shape[1]);a=le(L(a,me(u,c)),he(c,d))}let l=dO(a,o);return Yr(l,i,r)}var hO=V({softmaxCrossEntropy_:pO});function fO(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(Bh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var mO=V({sparseFillEmptyRows_:fO});function gO(e,t,n){let s=D(e,"inputIndices","sparseReshape"),r=D(t,"inputShape","sparseReshape"),a=D(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(Wh,o);return{outputIndices:i[0],outputShape:i[1]}}var AO=V({sparseReshape_:gO});function yO(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean"),a=D(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Vh,o)}var xO=V({sparseSegmentMean_:yO});function bO(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum"),a=D(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Uh,o)}var vO=V({sparseSegmentSum_:bO});function wO(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=D(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(dd,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var kO=V({stringNGrams_:wO});function SO(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(Gh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var IO=V({stringSplit_:SO});function CO(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(Hh,r,s)}var TO=V({stringToHashBucketFast_:CO}),NO={fft:vf,ifft:Pd,rfft:wf,irfft:g1},EO={hammingWindow:sF,hannWindow:Bv,frame:Wv,stft:iF},$e={flipLeftRight:dF,grayscaleToRGB:hF,resizeNearestNeighbor:MF,resizeBilinear:FF,rotateWithOffset:mF,cropAndResize:uF,nonMaxSuppression:AF,nonMaxSuppressionAsync:IF,nonMaxSuppressionWithScore:TF,nonMaxSuppressionWithScoreAsync:EF,nonMaxSuppressionPadded:$F,nonMaxSuppressionPaddedAsync:DF,threshold:BF,transform:VF},qv={bandPart:GF,gramSchmidt:jF,qr:XF},RO={absoluteDifference:YF,computeWeightedLoss:Yr,cosineDistance:QF,hingeLoss:tO,huberLoss:sO,logLoss:aO,meanSquaredError:iO,sigmoidCrossEntropy:cO,softmaxCrossEntropy:hO},Od={sparseFillEmptyRows:mO,sparseReshape:AO,sparseSegmentMean:xO,sparseSegmentSum:vO},Nf={stringNGrams:kO,stringSplit:IO,stringToHashBucketFast:TO},Jr=class extends $3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ne(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return fv(e,t)}dispose(){this.iterations_!=null&&ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Re(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Ef=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:q(()=>et(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:q(()=>et(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;q(()=>{let c=le(L(i,this.rho),L(gt(o),1-this.rho)),u=L(he(Dn(le(l,this.epsilon)),Dn(le(i,this.epsilon))),o),d=le(L(l,this.rho),L(gt(u),1-this.rho));i.assign(c),l.assign(d);let p=le(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ne(this.accumulatedGrads.map(e=>e.variable)),ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Ef.className="Adadelta";To(Ef);var Rf=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:q(()=>zu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;q(()=>{let i=le(o,gt(a));o.assign(i);let l=le(L(he(a,Dn(le(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Rf.className="Adagrad";To(Rf);var $f=class extends Jr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],q(()=>{this.accBeta1=Re(t).variable(),this.accBeta2=Re(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:q(()=>et(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:q(()=>et(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=le(L(u,this.beta2),L(gt(l),1-this.beta2)),h=he(d,n),f=he(p,s);c.assign(d),u.assign(p);let m=le(L(he(h,le(Dn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),q(()=>{this.accBeta1.assign($o(this.beta1,this.iterations_+1)),this.accBeta2.assign($o(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};$f.className="Adam";To($f);var _f=class extends Jr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],q(()=>{this.iteration=Re(0).variable(),this.accBeta1=Re(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=me(1,this.accBeta1),s=he(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:et(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:et(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=nn(l),f=Zr(p,h);c.assign(d),u.assign(f);let m=le(L(he(s,n),he(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};_f.className="Adamax";To(_f);var Md=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];q(()=>{let o=le(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=gn(Re(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Md.className="SGD";To(Md);var Df=class extends Md{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Re(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:q(()=>et(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&q(()=>{let i,l=le(L(this.m,a),o);this.useNesterov?i=le(L(this.c,le(o,L(l,this.m))),r):i=le(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Df.className="Momentum";To(Df);var Pf=class extends Jr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:q(()=>et(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:q(()=>et(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:q(()=>et(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;q(()=>{let c=le(L(i,this.decay),L(gt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(L(u,this.decay),L(o,1-this.decay)),p=he(L(o,this.learningRate),Dn(me(c,le(gt(d),this.epsilon)))),h=le(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=me(r,h);r.assign(f)}else{let u=le(L(i,this.decay),L(gt(o),1-this.decay)),d=le(L(l,this.momentum),he(L(o,this.learningRate),Dn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=me(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Pf.className="RMSProp";To(Pf);var Do=class{static sgd(e){return new Md(e)}static momentum(e,t,n=!1){return new Df(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Pf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new $f(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Ef(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new _f(e,t,n,s,r)}static adagrad(e,t=.1){return new Rf(e,t)}},hl={sgd:Do.sgd,momentum:Do.momentum,adadelta:Do.adadelta,adagrad:Do.adagrad,rmsprop:Do.rmsprop,adamax:Do.adamax,adam:Do.adam},$O=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Xv(){return new Promise(e=>$O(()=>e()))}var E={};Oe(E,{ERF_A1:()=>VO,ERF_A2:()=>UO,ERF_A3:()=>GO,ERF_A4:()=>HO,ERF_A5:()=>jO,ERF_P:()=>WO,PARALLELIZE_THRESHOLD:()=>I1,SELU_SCALE:()=>Zv,SELU_SCALEALPHA:()=>Kv,applyActivation:()=>Cf,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>U_,assertParamsConsistent:()=>_O,assignToTypedArray:()=>JO,axesAreInnerMostDims:()=>n1,calculateShapes:()=>b3,checkEinsumDimSizes:()=>rM,combineLocations:()=>mv,complexWithEvenIndex:()=>KO,complexWithOddIndex:()=>ZO,computeConv2DInfo:()=>Cd,computeConv3DInfo:()=>j3,computeDefaultPad:()=>U2,computeDilation2DInfo:()=>u$,computeOptimalWindowSize:()=>PO,computeOutAndReduceShapes:()=>gv,computeOutShape:()=>DO,computePool2DInfo:()=>H3,computePool3DInfo:()=>c$,convertConv2DDataFormat:()=>q3,decodeEinsumEquation:()=>nM,eitherStridesOrDilationsAreOne:()=>Er,expandShapeToKeepDim:()=>cl,exponent:()=>eM,exponents:()=>QO,fromStringArrayToUint8:()=>hM,fromUint8ToStringArray:()=>pM,getAxesPermutation:()=>Av,getBroadcastDims:()=>g3,getComplexWithIndex:()=>YO,getEinsumComputePath:()=>aM,getEinsumPermutation:()=>sM,getFusedBiasGradient:()=>If,getFusedDyActivation:()=>Sf,getImageCenter:()=>FO,getInnerMostAxes:()=>G_,getPermuted:()=>MO,getReductionAxes:()=>qt,getReshaped:()=>OO,getReshapedPermuted:()=>zO,getSliceBeginCoords:()=>LO,getSliceSize:()=>BO,getUndoAxesPermutation:()=>s1,isIdentityPermutation:()=>oM,log:()=>ME,mergeRealAndImagArrays:()=>qO,prepareAndValidate:()=>x3,prepareSplitSize:()=>lM,segment_util:()=>Qv,shouldFuse:()=>Tf,slice_util:()=>Ft,splitRealAndImagArrays:()=>XO,tupleValuesAreOne:()=>No,upcastType:()=>Ln,validateInput:()=>F2,validateUpdateShape:()=>P2,warn:()=>wo});function _O(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function DO(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var I1=30;function PO(e){return e<=I1?e:fh(e,Math.floor(Math.sqrt(e)))}function FO(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function OO(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function MO(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function zO(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function LO(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function BO(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Kv=1.7580993408473768,Zv=1.0507009873554805,WO=.3275911,VO=.254829592,UO=-.284496736,GO=1.421413741,HO=-1.453152027,jO=1.061405429;function qO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function XO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function KO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function ZO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function YO(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function JO(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function QO(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function eM(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var C1="->",tM=/->/g,Yv=",",Jv="...";function nM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(tM,"").length)/C1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${C1}").`);let[s,r]=e.split(C1);O(s.indexOf(Jv)===-1,()=>`The ellipsis notation ("${Jv}") is not supported yet.`);let a=s.split(Yv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Yv&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function sM(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function rM(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function aM(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=iM(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function oM(e){return e.every((t,n)=>t===n)}function iM(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function lM(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Qv={};Oe(Qv,{collectGatherOpShapeInfo:()=>dM,computeOutShape:()=>cM,segOpComputeOptimalWindowSize:()=>uM});function uM(e,t){let n=!1,s;for(e<=I1?(s=e,n=!0):s=fh(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=fh(e,s+1);return s}function cM(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function dM(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function pM(e){try{return e.map(t=>Zh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function hM(e){return e.map(t=>Ad(t))}var Ks={};Oe(Ks,{nonMaxSuppressionV3Impl:()=>Vv,nonMaxSuppressionV4Impl:()=>Uv,nonMaxSuppressionV5Impl:()=>Gv,whereImpl:()=>_v});var ew={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Fd(pe(n,"float32"),-1))}}},fM={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=gt(pe(n,"float32")),r=Dn(me(Re(1),s));return Ot(he(e,r))}}}},mM={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(me(gt(pe(n,"float32")),1));return he(e,s)}}}},gM={kernelName:Hr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=qt(n.shape,r);return l.length>0&&(i=Se(i,l)),G(i,n.shape)},b:()=>{let i=e,l=qt(s.shape,r);return l.length>0&&(i=Se(i,l)),G(i,s.shape)}}}},AM={kernelName:Ta,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},yM={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>et(n)}}},xM={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>et(n)}}},bM={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Dn(me(Re(1),gt(pe(n,"float32")))))}}},vM={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(le(Re(1),gt(pe(n,"float32"))));return he(e,s)}}}},wM={kernelName:pu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=le(gt(n),gt(s)),l=L(e,he(s,i)),c=qt(n.shape,r);return c.length>0&&(l=Se(l,c)),G(l,n.shape)},b:()=>{let i=le(gt(n),gt(s)),l=Ot(L(e,he(n,i))),c=qt(s.shape,r);return c.length>0&&(l=Se(l,c)),G(l,s.shape)}}}},kM={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(gt(pe(n,"float32")),1))}}},SM={kernelName:du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,me(Re(1),gt(pe(n,"float32"))))}}};function IM(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(fn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Ah,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var CM=V({avgPool3dGrad_:IM}),TM={kernelName:Qc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>CM(e,s,r,a,o,i)}}};function NM(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(gh,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var EM=V({avgPoolGrad_:NM}),RM={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>EM(e,s,r,a,o)}}},$M={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ue(e,r,!1,!0),b:()=>Ue(s,e,!0,!1)}:!a&&o?{a:()=>Ue(e,r,!1,!1),b:()=>Ue(e,s,!0,!1)}:a&&!o?{a:()=>Ue(r,e,!1,!0),b:()=>Ue(s,e,!1,!1)}:{a:()=>Ue(r,e,!0,!0),b:()=>Ue(e,s,!0,!0)}}},_M={kernelName:pi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>yf(e,s,r)}}},DM={kernelName:F5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Se(e,i,!0)}}},PM={kernelName:$a,gradFunc:e=>({x:()=>e.clone()})},FM={kernelName:_a,gradFunc:e=>({x:()=>et(e)})},OM={kernelName:jr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Wn(lr(ll(s,r),ul(s,a)),e,et(e))}}},MM={kernelName:td,inputsToSave:["x"],gradFunc:ew.gradFunc},zM={kernelName:hi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Gs(r,t[0].shape)[0],o=s.map(l=>l[a]);return sn(e,o,a).map(l=>()=>l)}},LM={kernelName:Da,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(No(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>X2(s.shape,e,r,o,i,l),filter:()=>k1(s,e,r.shape,o,i,l)}}},BM={kernelName:Pa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Eo(e,r,a,o,i,1,l),filter:()=>k1(e,s,r.shape,a,o,i,l)}}};function WM(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(vh,i,l)}var VM=V({conv3DBackpropFilter_:WM}),UM={kernelName:nd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(No(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>nv(o.shape,e,i,r,a),filter:()=>VM(o,e,i.shape,r,a)}}},GM={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ot(h1(pe(n,"float32"))),e)}}},HM={kernelName:Oa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(f1(pe(n,"float32")),e)}}},jM={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Av([r],s.rank),l=J2(e,r,a,!o);return i!=null&&(l=Qe(l,i)),l}}}},qM={kernelName:Ma,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(No(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(Er(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(fn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Lv(l.shape,e,c,r,a,i,o),filter:()=>zv(l,e,c.shape,r,a,i,o)}}},XM={kernelName:sd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Th,a,n),filter:()=>W.runKernel(Nh,o,n)}}},KM={kernelName:La,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(Eh,s)}}},ZM={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Ns(Ot(gt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},YM={kernelName:Ba,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},JM={kernelName:yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},QM={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ns(n))}}},ez={kernelName:Wa,gradFunc:e=>({x:()=>et(e)})},tz={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);l.length>0&&(i=G(Se(i,l),s.shape));let c=gt(s);return Ot(he(i,pe(c,"float32")))}}}},nz={kernelName:Ua,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Re(1):i,c=qt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=me(r,a),p=L(e,l),h=d1(le(o,Re(s))),f=L(L(L(h,h),h),Re(-.5));return{x:()=>a.rank===1?G(L(L(e,qs(G(h,[1,1,1,a.shape[0]]),u)),l),r.shape):G(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Re(-1)),p);return a.rank===1&&(b=Se(b,c)),G(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=Se(b,c)),G(b,a.shape)},scale:()=>{let b=L(d,h),w=L(e,b);return a.rank===1&&(w=Se(w,c)),G(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Se(b,c)),G(b,a.shape)}}}},sz={kernelName:vi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Gs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=tw(0,d),m=tw(d+1,d+1+h),g=nw([u,[c],p]),A=G(e,g),x=G(r,[c]),y=nw([[d],f,m]),b=Qe(A,y),w=Rv(b,x,s.shape[o]),k=s1(y);return w=Qe(w,k),w},indices:()=>r}}};function tw(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function nw(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var rz={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>et(n),b:()=>et(s)}}},az={kernelName:Ha,gradFunc:e=>({x:()=>pe(e,"float32")})},oz={kernelName:mu,gradFunc:e=>({x:()=>et(e)})},iz={kernelName:gu,gradFunc:e=>({x:()=>et(e)})},lz={kernelName:Au,gradFunc:e=>({x:()=>et(e)})},uz={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=hs(s,0);return{x:()=>Wn(a,e,L(e,r))}}},cz={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(n,1))}}},dz={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(n,"float32"))}}},pz={kernelName:O5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Ns(s);return me(e,L(Se(e,r,a),o))}}}};function hz(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(Dh,i,l)}var fz=V({localResponseNormalizationBackprop_:hz}),mz={kernelName:id,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>fz(s,r,e,a,o,i,l)}}};function sw(e,t,n,s){return t.rank<n.rank&&(t=G(t,cl(t.shape,s))),e.rank<n.rank&&(e=G(e,cl(e.shape,s))),{x:()=>L(e,pe(Ts(n,t),e.dtype))}}var rw={kernelName:qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Gs(r,a.shape),l=sw(e,o,a,i);return{x:()=>l.x()}}},gz={kernelName:Xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ll(n,s),"float32")),b:()=>L(e,pe(e1(n,s),"float32"))}}};function Az(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),c=D(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(fn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(Fh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var yz=V({maxPool3dGrad_:Az}),xz={kernelName:ld,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>yz(e,s,r,a,o,i,l)}}};function bz(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),c=D(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(fn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(Ph,u,d)}var vz=V({maxPoolGrad_:bz}),wz={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>vz(e,s,r,a,o,i)}}},kz={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Gs(r,s.shape),i=gv(s.shape,a)[1],l=Ut(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=G(e,u);return he(L(d,fs(s.shape,"float32")),l)}}}},Sz={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Gs(r,a.shape),l=sw(e,o,a,i);return{x:()=>l.x()}}},Iz={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ul(n,s),"float32")),b:()=>L(e,pe(hs(n,s),"float32"))}}},Cz={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>De(e,a,s.shape)}}},Tz={kernelName:bu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=qt(n.shape,r);return i.length>0?G(Se(e,i),n.shape):e},b:()=>{let i=L(e,Ot(Rd(he(n,s)))),l=qt(s.shape,r);return l.length>0?G(Se(i,l),s.shape):i}}}},Nz={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=L(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);return l.length>0?G(Se(i,l),s.shape):i}}}},Ez={kernelName:Ni,gradFunc:e=>({x:()=>Ot(e)})},Rz={kernelName:Di,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Gt(n.shape,"float32")}}},$z={kernelName:_i,gradFunc:e=>({x:()=>et(e)})},_z={kernelName:Pi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return rs(e,s).map(a=>()=>a)}},aw={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>De(e,a,s.shape)}}},Dz={kernelName:no,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=mt(a.shape,o.shape);return{a:()=>{let u=pe(o,"float32"),d=L(e,L(u,$o(a,me(u,Re(1))))),p=qt(a.shape,i);return p.length>0&&(d=Se(d,p)),G(d,a.shape)},b:()=>{let u=hs(a,0),d=Wn(u,Es(a),et(a)),p=L(e,L(r,d)),h=qt(o.shape,i);return h.length>0&&(p=Se(p,h)),G(p,o.shape)}}}},Pz={kernelName:so,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=hs(n,0);return{x:()=>Wn(r,e,L(e,s)),alpha:()=>{let a=Wn(r,et(e),L(e,n)),o=qt(s.shape,e.shape);return o.length>0&&(a=Se(a,o)),G(a,s.shape)}}}},Fz={kernelName:za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);l.length>0&&(i=G(Se(i,l),s.shape));let c=gt(s);return Ot(he(i,pe(c,"float32")))}}}},Oz={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Ot(gt(n)))}}},Mz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ul(n,6),Fd(n));return{x:()=>L(e,pe(s,"float32"))}}},zz={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,pe(Fd(n),"float32"))}}},Lz={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},Bz={kernelName:ao,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(Lh,r,n)}}},Wz={kernelName:Su,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(zh,r,n)}}},Vz={kernelName:Mi,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Gs(s,e.shape);return{x:()=>$s(e,r)}}},Uz={kernelName:zi,gradFunc:e=>({x:()=>et(e)})},Gz={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(he(e,L($o(n,1.5),2)))}}},Hz={kernelName:Bi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(et(n),"float32"),t:()=>L(e,pe(n,e.dtype)),e:()=>L(e,pe(mf(n),e.dtype))}}},jz={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=hs(n,Re(0)),r=Re(Kv),a=Re(Zv),o=L(e,a),i=L(L(e,r),Ns(pe(n,"float32")));return Wn(s,o,i)}}}},qz={kernelName:uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,me(Re(1),n)))}}},Xz={kernelName:Cu,gradFunc:e=>({x:()=>et(e)})},Kz={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(cf(pe(n,"float32")),e)}}},Zz={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Y2(pe(n,"float32")),e)}}},Yz={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=E3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>Xs(e,c)}}},Jz={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>me(o,L(Se(o,[r],a),s))}}},Qz={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ds(n))}}},ow={kernelName:Ui,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>uf(e,s,r)}}},iw={kernelName:Gi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>vt(e,s)}}},eL={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,L(Dn(pe(n,"float32")),2))}}},tL={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(pe(n,"float32"),2))}}},nL={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Re(2);return{a:()=>L(e,L(r,me(n,s))),b:()=>L(e,L(r,me(s,n)))}}},sL={kernelName:yo,gradFunc:e=>({x:()=>et(e)})},rL={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=qt(n.shape,r);return l.length>0&&(i=Se(i,l)),G(i,n.shape)},b:()=>{let i=e,l=qt(s.shape,r);return l.length>0&&(i=Se(i,l)),G(Ot(i),s.shape)}}}},aL={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Gs(a,s.shape).forEach(c=>{r[c]=1});let i=G(e,r),l=L(i,fs(s.shape,"float32"));return{x:()=>l}}},oL={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,gt(cf(n)))}}},iL={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(me(Re(1),gt(n)),e)}}},lL={kernelName:qr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=et(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,De(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,De(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,De(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,De(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},uL={kernelName:Ao,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=s1(r);return{x:()=>Qe(e,a)}}},cL={kernelName:Ki,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>yn(e,r)}}},dL={kernelName:pd,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pL(e,n)}}};function pL(e,t){let n=Zr(t,et(t)),s=Lu(e,n),r=ll(t,Re(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Xt(r,i+1);r=lr(r,fs(s.shape,"bool"));let o=et(s);return Wn(r,s,o)}var hL={kernelName:Zi,gradFunc:e=>({x:()=>et(e)})},fL=[ew,fM,mM,gM,AM,yM,xM,bM,vM,wM,kM,SM,TM,RM,$M,_M,DM,PM,FM,OM,MM,zM,BM,LM,UM,GM,HM,jM,qM,XM,Fz,KM,ZM,YM,JM,QM,tz,ez,nz,sz,rz,az,oz,iz,lz,uz,cz,dz,pz,mz,rw,rw,gz,xz,wz,kz,Sz,Iz,Cz,Tz,Nz,Ez,Rz,$z,_z,aw,aw,Dz,Pz,Oz,Mz,zz,Lz,Bz,Wz,Vz,Uz,Gz,Hz,jz,qz,Xz,Kz,Zz,Yz,Jz,Qz,ow,ow,iw,iw,eL,nL,tL,sL,rL,aL,oL,iL,lL,uL,cL,dL,hL];for(let e of fL)M5(e);var lw={};Oe(lw,{maxNorm:()=>yL,minMaxNorm:()=>vL,nonNeg:()=>bL,unitNorm:()=>xL});var T1;function rn(){return T1==null&&(T1=Nr().epsilon()),T1}function cr(){return"channelsLast"}var Qr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Qr.prototype)}},dr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dr.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Le=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Le.prototype)}},uw=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,uw.prototype)}};function fl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function _r(e,t){if(!e)throw new uw(t)}function cw(e,t){let n=0;for(let s of e)s===t&&n++;return n}function as(e){return e.length===1?e[0]:e}function kt(e){return Array.isArray(e)?e:[e]}function ea(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ml(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Zs={};function N1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function E1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>E1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:E1(s))}}}function zd(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Zs)o=Zs[a];else if(o=t[a],o==null)throw new H(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Zs?[i,l]=Zs.className:o in t&&([i,l]=t[o]),i==null)throw new H(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Zs))c[h]=Zs[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d={...Zs};for(let h of Object.keys(n))Zs[h]=n[h];E1(a.config);let p=l(i,a.config,n,r);return Zs={...d},p}else{let c={...Zs};for(let d of Object.keys(n))Zs[d]=n[d];let u=new i(a.config);return Zs={...c},u}}}function mL(e,t){return e<t?-1:e>t?1:0}function Ff(e,t){return-1*mL(e,t)}function Po(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function gL(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function gl(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function R1(e,t,n=0,s=1/0){return _r(n>=0),_r(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function xn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>xn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${dw(e)}.`)}function dw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>dw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function AL(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function pw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function $1(e,t){return q(()=>Dn(Se(L(e,e),t,!0)))}var Ld=class extends ue.Serializable{getConfig(){return{}}},_1=class extends Ld{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=$1(e,this.axis),n=ps(t,0,this.maxValue);return L(e,he(n,le(rn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_1.className="MaxNorm";ue.registerClass(_1);var D1=class extends Ld{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>he(e,le(rn(),$1(e,this.axis))))}getConfig(){return{axis:this.axis}}};D1.className="UnitNorm";ue.registerClass(D1);var P1=class extends Ld{apply(e){return $r(e)}};P1.className="NonNeg";ue.registerClass(P1);var F1=class extends Ld{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=$1(e,this.axis),n=le(L(this.rate,ps(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,he(n,le(rn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};F1.className="MinMaxNorm";ue.registerClass(F1);var hw={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function an(e){return N1(e)}function fw(e,t={}){return zd(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function on(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in hw?hw[e]:e,config:{}};return fw(n)}else return e instanceof Ld?e:fw(e)}function yL(e){return new _1(e)}function xL(e){return new D1(e)}function bL(){return new P1}function vL(e){return new F1(e)}var mw={};Oe(mw,{constant:()=>GL,glorotNormal:()=>YL,glorotUniform:()=>ZL,heNormal:()=>JL,heUniform:()=>QL,identity:()=>XL,leCunNormal:()=>eB,leCunUniform:()=>tB,ones:()=>UL,orthogonal:()=>nB,randomNormal:()=>jL,randomUniform:()=>HL,truncatedNormal:()=>qL,varianceScaling:()=>KL,zeros:()=>VL});var wL=["channelsFirst","channelsLast"],kL=["nearest","bilinear"],SL=["valid","same","causal"],IL=["max","avg"],CL=["sum","mul","concat","ave"],ju=new Map;function Ht(e){gl(wL,"DataFormat",e)}function TL(e){gl(kL,"InterpolationFormat",e)}function _s(e){gl(SL,"PaddingMode",e)}function gw(e){gl(IL,"PoolMode",e)}var Bd=[],Aw="/";function Al(e,t){Bd.push(e);try{let n=t();return Bd.pop(),n}catch(n){throw Bd.pop(),n}}function NL(){return Bd.length===0?"":Bd.join(Aw)+Aw}function yw(e){if(!bw(e))throw new Error("Not a valid tensor name: '"+e+"'");return NL()+e}function xw(e){if(!bw(e))throw new Error("Not a valid tensor name: '"+e+"'");ju.has(e)||ju.set(e,0);let t=ju.get(e);if(ju.set(e,ju.get(e)+1),t>0){let n=`${e}_${t}`;return ju.set(n,1),n}else return e}var EL=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function bw(e){return!!e.match(EL)}function RL(e){return e===parseInt(e.toString(),10)}function Fo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function qu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Oo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function pr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Of(e,t){return pe(e,t)}function Wd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function $L(e,t){return q(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Wd(e,1);return z1(n,[1,t,1])})}function _L(e){let t=[Fo(e.shape)];return G(e,t)}function DL(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Fo(e.shape,1)];return G(e,t)}function yl(e,t,n){return q(()=>{switch(e.rank){case 1:return bf(e,t,n);case 2:return m1(e,[t,0],[n,e.shape[1]]);case 3:return dl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return pl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return De(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return De(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function O1(e,t,n){return q(()=>{switch(e.rank){case 1:return bf(e,t,n);case 2:return m1(e,[0,t],[e.shape[0],n]);case 3:return dl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return pl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Mf(e,t,n,s){return q(()=>{switch(e.rank){case 1:return bf(e,t,n);case 2:switch(s){case 1:return yl(e,t,n);case 2:return O1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return yl(e,t,n);case 2:return dl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return O1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return yl(e,t,n);case 2:return pl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return pl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return O1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function M1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),vt(e,t)}function vw(e,t){switch(e.rank){case 1:return Q3([e,t]);case 2:return Mu([e,t],0);case 3:return ev([e,t],0);case 4:return tv([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function z1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return qs(e,t)}function zf(e,t=0,n=1,s,r){return wv(e,t,n,s,r)}function Dr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Le(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Le(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return _o.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?L1(e.rank,s,cr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(Qe(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return G(_o.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?L1(e.rank,s,cr()):null,activation:n}),d)}}function ww(e,t,n){return q(()=>(Array.isArray(t)?t=Kt(t,"int32"):t=pe(t,"int32"),Lu(e,t,n)))}function Vd(e){return L(e,e)}function L1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function hr(e,t,n){return q(()=>(n==null&&(n=cr()),Ht(n),le(e,L1(e.rank,t,n))))}function PL(e,t=1){if(t!==1)throw new Le(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Ed(e)}function FL(e){return q(()=>he(e,le(nn(e),1)))}function kw(e,t,n,s){return q(()=>Ov(e,t,n,s))}function OL(e){return q(()=>{let t=le(.5,L(.2,e));return ps(t,0,1)})}function Ud(e,t,n=!1){return n?e():t()}var ML=["fanIn","fanOut","fanAvg"],zL=["normal","uniform","truncatedNormal"];function LL(e){gl(ML,"FanMode",e)}function BL(e){gl(zL,"Distribution",e)}var Ys=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},B1=class extends Ys{apply(e,t){return Gt(e,t)}};B1.className="Zeros";ue.registerClass(B1);var Lf=class extends Ys{apply(e,t){return fs(e,t)}};Lf.className="Ones";ue.registerClass(Lf);var W1=class extends Ys{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return q(()=>L(Re(this.value),fs(e,t)))}getConfig(){return{value:this.value}}};W1.className="Constant";ue.registerClass(W1);var V1=class extends Ys{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Vu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};V1.className="RandomUniform";ue.registerClass(V1);var U1=class extends Ys{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`randomNormal does not support dType ${t}.`);return zf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};U1.className="RandomNormal";ue.registerClass(U1);var G1=class extends Ys{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`truncatedNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};G1.className="TruncatedNormal";ue.registerClass(G1);var H1=class extends Ys{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return q(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Q2(e[0]))})}getConfig(){return{gain:this.gain}}};H1.className="Identity";ue.registerClass(H1);function WL(e,t="channelsLast"){let n,s;if(Ht(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Fo(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Fo(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Fo(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var os=class extends Ys{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,LL(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,BL(this.distribution),this.seed=e.seed}apply(e,t){let n=WL(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`${this.getClassName()} does not support dType ${t}.`);return kf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Vu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};os.className="VarianceScaling";ue.registerClass(os);var Bf=class extends os{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};Bf.className="GlorotUniform";ue.registerClass(Bf);var Wf=class extends os{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Wf.className="GlorotNormal";ue.registerClass(Wf);var Vf=class extends os{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Vf.className="HeNormal";ue.registerClass(Vf);var Uf=class extends os{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};Uf.className="HeUniform";ue.registerClass(Uf);var Gf=class extends os{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Gf.className="LeCunNormal";ue.registerClass(Gf);var Hf=class extends os{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};Hf.className="LeCunNormal";ue.registerClass(Hf);var j1=class extends Ys{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Le("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return q(()=>{if(e.length<2)throw new Le("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=zf(n,0,1,"float32"),r=qv.gramSchmidt(s);return e[0]>e[1]&&(r=Qe(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};j1.className="Orthogonal";ue.registerClass(j1);var Sw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Iw(e,t={}){return zd(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Mt(e){return N1(e)}function Nt(e){if(typeof e=="string"){let t=e in Sw?Sw[e]:e;if(t==="GlorotNormal")return new Wf;if(t==="GlorotUniform")return new Bf;if(t==="HeNormal")return new Vf;if(t==="HeUniform")return new Uf;if(t==="LeCunNormal")return new Gf;if(t==="LeCunUniform")return new Hf;{let n={};return n.className=t,n.config={},Iw(n)}}else return e instanceof Ys?e:Iw(e)}function VL(){return new B1}function UL(){return new Lf}function GL(e){return new W1(e)}function HL(e){return new V1(e)}function jL(e){return new U1(e)}function qL(e){return new G1(e)}function XL(e){return new H1(e)}function KL(e){return new os(e)}function ZL(e){return new Bf(e)}function YL(e){return new Wf(e)}function JL(e){return new Vf(e)}function QL(e){return new Uf(e)}function eB(e){return new Gf(e)}function tB(e){return new Hf(e)}function nB(e){return new j1(e)}var Cw={};Oe(Cw,{Layer:()=>tt,RNN:()=>na,RNNCell:()=>Zd,activation:()=>MW,add:()=>jW,alphaDropout:()=>EV,average:()=>qW,averagePooling1d:()=>hy,averagePooling2d:()=>fy,averagePooling3d:()=>my,avgPool1d:()=>nV,avgPool2d:()=>rV,avgPool3d:()=>oV,avgPooling1d:()=>sV,avgPooling2d:()=>aV,avgPooling3d:()=>iV,batchNormalization:()=>QW,bidirectional:()=>vV,concatenate:()=>XW,conv1d:()=>NW,conv2d:()=>EW,conv2dTranspose:()=>RW,conv3d:()=>$W,conv3dTranspose:()=>_W,convLstm2d:()=>AV,convLstm2dCell:()=>yV,cropping2D:()=>PW,dense:()=>zW,depthwiseConv2d:()=>OW,dot:()=>JW,dropout:()=>LW,elu:()=>wW,embedding:()=>HW,flatten:()=>WW,gaussianDropout:()=>NV,gaussianNoise:()=>TV,globalAveragePooling1d:()=>lV,globalAveragePooling2d:()=>uV,globalMaxPool1d:()=>kV,globalMaxPool2d:()=>SV,globalMaxPooling1d:()=>Lk,globalMaxPooling2d:()=>Bk,gru:()=>dV,gruCell:()=>pV,input:()=>ak,inputLayer:()=>vW,layerNormalization:()=>eV,leakyReLU:()=>SW,lstm:()=>hV,lstmCell:()=>fV,masking:()=>RV,maxPool1d:()=>IV,maxPool2d:()=>CV,maxPooling1d:()=>Wk,maxPooling2d:()=>Vk,maxPooling3d:()=>cV,maximum:()=>KW,minimum:()=>ZW,multiply:()=>YW,permute:()=>GW,prelu:()=>IW,reLU:()=>kW,repeatVector:()=>VW,reshape:()=>UW,rnn:()=>xV,separableConv2d:()=>DW,simpleRNN:()=>mV,simpleRNNCell:()=>gV,softmax:()=>CW,spatialDropout1d:()=>BW,stackedRNNCells:()=>bV,thresholdedReLU:()=>TW,timeDistributed:()=>wV,upSampling2d:()=>FW,zeroPadding2d:()=>tV});var sB=0;function Tw(){return sB++}var jf={};function qf(e=""){return e in jf||(jf[e]=0),jf[e]+=1,e+jf[e].toString()}function q1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Be(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Nw="Variable",Ew=class{constructor(e,t="float32",n=Nw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Tw(),n=n==null?Nw:n,this.originalName=yw(n),this.name=xw(this.originalName),this.trainable_=s,this.constraint=r,this.val=$v(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),rB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function rB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function X1(e){return e.map(t=>t.read())}function K1(e){e.forEach(t=>{t[0].write(t[1])})}var Zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},fr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Tw(),a!=null&&(this.originalName=yw(a),this.name=xw(this.originalName)),this.rank=t.length}},aB=0,Zf=class{constructor(e,t){this.callArgs=t,this.id=aB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},oB=0,tt=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=oB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ea(n)+"_"+qf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new dr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return as(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return as(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Qr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Qr(`Layer ${this.name} is not connected, no input to return.`);return as(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Qr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Qr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return as(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=kt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=kt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=kt(e),s=!0;for(let a of n)if(!(a instanceof fr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof fr){r=!1;break}if(s===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Al(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of kt(e))a.push(o.shape);this.build(as(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=kt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=as(i),this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=iB(e),o=this.computeOutputShape(a),i,l=lB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new fr(l,c,this,kt(e),t,this.name,u)):i=new fr(l,o,this,kt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Qr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Qr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new dr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return X1(e?this.trainableWeights:this.weights)}setWeights(e){q(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=X1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}K1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Nt("zeros"));let l=s.apply(t,n),c=new Ew(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=kt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=kt(e);t=kt(t),n=kt(n),s=kt(s),r=Xf(r),a=Xf(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Zf({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function iB(e){e=kt(e);let t=[];for(let n of e)t.push(n.shape);return as(t)}function lB(e){return"float32"}function Rw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=Rw(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Xu=class extends tt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:qf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new fr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Xu.className="InputLayer";ue.registerClass(Xu);function $w(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Xu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Mo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ne(s)}}function _w(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Dw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Dw||(Dw={}));var uB=125,Ku=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Pw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},cB=class extends Ku{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=q(()=>le(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:q(()=>{let s=L(he(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),gn(t[n])}))}},Fw=class extends Ku{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},Ow=class extends Ku{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Xv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=uB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=AL(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Mo(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Mo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Mo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Mo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Mo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Mo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Mo(e),await this.trainEnd(e))}};function Mw(e,t){return e==null&&(e={}),e instanceof Ku?[e]:Array.isArray(e)&&e[0]instanceof Ku?e:kt(e).map(s=>new Ow(s,t))}var Pr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Pr.checkForDuplicate(t),Pr.constructors[e]==null&&(Pr.constructors[e]=[]),Pr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Pr.constructors)Pr.constructors[+t].forEach(s=>{if(s===e)throw new H("Duplicate callback constructor.")})}static clear(){Pr.constructors={}}static createCallbacks(e){let t=[];for(let n in Pr.constructors){let s=+n;e>=s&&t.push(...Pr.constructors[s])}return t.map(n=>new n)}},Z1=Pr;Z1.constructors={};function zw(e,t,n,s,r,a,o,i,l){let c=new Fw,u=[new cB,...Z1.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Pw(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function mr(e,t={},n=!1){return zd(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Yf(e,t){return q(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=Se(Vd(e),t,!0),s=zu(n.shape,rn()),r=Dn(Zr(n,s));return he(e,r)})}function xl(e,t){return q(()=>Wt(Vd(me(t,e)),-1))}function Jf(e,t){return q(()=>Wt(nn(me(t,e)),-1))}function Zu(e,t){return q(()=>{let n=me(e,t),s=ps(nn(e),rn(),Number.MAX_VALUE),r=nn(he(n,s));return L(100,Wt(r,-1))})}function dB(e,t){return q(()=>{let n=ps(t,rn(),Number.MAX_VALUE),s=Es(le(1,n)),r=ps(e,rn(),Number.MAX_VALUE),a=Es(le(1,r));return Wt(Vd(me(s,a)),-1)})}function pB(e,t){return q(()=>{let n=Zr(0,me(1,L(e,t)));return Wt(Vd(n),-1)})}function hB(e,t){return q(()=>{let n=Zr(0,me(1,L(e,t)));return Wt(n,-1)})}function fB(e,t){return q(()=>{let n=Se(L(e,t),-1),s=An(L(me(1,e),t),-1);return Zr(0,le(1,me(s,n)))})}function mB(e,t){return q(()=>{let n=Math.log(2),s=me(t,e),r=me(le(s,Bu(L(-2,s))),n);return Wt(r,-1)})}function Gd(e,t,n=!1){return q(()=>{if(n)t=Gu(t);else{let s=Se(t,t.shape.length-1,!0);t=he(t,s)}return t=ps(t,rn(),1-rn()),Ot(Se(L(pe(e,"float32"),Es(t)),t.shape.length-1))})}function Qf(e,t,n=!1){return q(()=>{let s=pe(Rd(_L(e)),"int32");t=ps(t,rn(),1-rn());let r=t.shape,a=G(Id(s,r[r.length-1]),r);return Gd(a,t,n)})}function gB(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return q(()=>{let n=$r(t),s=Ot(nn(t));return le(me(n,L(t,e)),hf(Ns(s)))})}function em(e,t){return q(()=>{let n;return n=ps(t,rn(),1-rn()),n=Es(he(n,me(1,n))),Wt(gB(e,n),-1)})}function AB(e,t){return q(()=>{let n=ps(e,rn(),1),s=ps(t,rn(),1);return Se(L(e,Es(he(n,s))),-1)})}function yB(e,t){return q(()=>{let n=Es(le(rn(),t));return Wt(me(t,L(e,n)),-1)})}function Y1(e,t){return q(()=>{let n=Yf(e,-1),s=Yf(t,-1),r=L(n,s);return Ot(Se(r,-1))})}var tm={meanSquaredError:xl,meanAbsoluteError:Jf,meanAbsolutePercentageError:Zu,meanSquaredLogarithmicError:dB,squaredHinge:pB,hinge:hB,categoricalHinge:fB,logcosh:mB,categoricalCrossentropy:Gd,sparseCategoricalCrossentropy:Qf,binaryCrossentropy:em,kullbackLeiblerDivergence:AB,poisson:yB,cosineProximity:Y1};function J1(e){if(typeof e=="string"){if(e in tm)return tm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Q1(e,t){return q(()=>{let n=L(.5,Rs(t)),s=Of(hs(t,n),e.dtype);return Wt(Ts(e,s),-1)})}function eA(e,t){return q(()=>Of(Ts(js(e,-1),js(t,-1)),"float32"))}function Lw(e,t){return q(()=>pe(Se(lr(Ts(e,1),Ts(t,1))),"float32"))}function xB(e,t){return q(()=>pe(Se(lr(Ts(e,1),Ts(t,0))),"float32"))}function bB(e,t){return q(()=>pe(Se(lr(Ts(e,0),Ts(t,1))),"float32"))}function Bw(e,t){return q(()=>{let n=Lw(e,t),s=bB(e,t),r=le(n,s);return pe(Wn(hs(r,0),he(n,r),0),"float32")})}function vB(e,t){return q(()=>{let n=Lw(e,t),s=xB(e,t),r=le(n,s);return pe(Wn(hs(r,0),he(n,r),0),"float32")})}function Ww(e,t){return em(e,t)}function Vw(e,t){return e.rank===t.rank&&(e=ot(e,[e.rank-1])),t=js(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(Ts(e,t),"float32")}var wB=xl,kB=xl,SB=Jf,IB=Jf,CB=Zu,TB=Zu,tA=Gd,NB=Y1,Uw=Qf,nm={binaryAccuracy:Q1,categoricalAccuracy:eA,precision:Bw,categoricalCrossentropy:tA,sparseCategoricalCrossentropy:Uw,mse:wB,MSE:kB,mae:SB,MAE:IB,mape:CB,MAPE:TB,cosine:NB};function EB(e){if(typeof e=="string"&&e in nm)return nm[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function sm(e){if(_r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(tm))if(tm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}return t!==void 0?t:e.name}}function RB(e){let t={Adagrad:()=>hl.adagrad(.01),Adadelta:()=>hl.adadelta(1,.95,rn()),Adam:()=>hl.adam(.001,.9,.999,rn()),Adamax:()=>hl.adamax(.002,.9,.999,rn(),0),RMSProp:()=>hl.rmsprop(.001,.9,0,rn()),SGD:()=>hl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var Gw=1*1024*1024;function Hw(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!nA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Gw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Gw}.`)}}function nA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!nA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!nA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function $B(e,t,n,s=console.log){let r=DB(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),rm(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?PB(i[u],n,s):FB(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=_B(e),c=Kf(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function _B(e){let t;return e.collectedTrainableWeights!=null?t=Kf(e.collectedTrainableWeights):t=Kf(e.trainableWeights),t}function DB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function rm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function PB(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];rm(o,t,n)}function FB(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];rm(c,t,s);for(let u=1;u<a.length;++u)rm(["","","",a[u]],t,s)}function jw(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Hd(e,t){if(e===null)return null;if(typeof e=="string")return ml(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];jw(t,r,a)?n.push(a):n.push(Hd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ml(s);n[a]=Hd(r,a)}}return n}}function sA(e,t){if(e==null)return null;if(typeof e=="string")return ea(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];jw(t,r,a)?n.push(a):n.push(sA(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ea(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=sA(r,s)}return n}}var rA="0.0.0";function OB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return pe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var bl=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof bl)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=OB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof fr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof fr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ne(this.id2Mask)}},aA={},qw={};function jd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(aA[u]==null){let f=MB(o,t);d=f.sorted,p=f.recipientCounts,aA[u]=d,qw[u]=p}d=aA[u],p={},r||Object.assign(p,qw[u]);let h=new bl(t);for(let f=0;f<d.length;++f){if(s!=null){let R=tf().numTensors;R>s.maxNumTensors&&(s.maxNumTensors=R),R<s.minNumTensors&&(s.minNumTensors=R)}let m=d[f],g=m.sourceLayer;if(g instanceof Xu)continue;let A=[],x=[],y=[],b=!1;for(let R of m.inputs){let F=h.getValue(R),_=h.getMask(R);A.push(F),x.push(_),_!=null&&(b=!0),r||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!F.isDisposed&&R.sourceLayer.stateful!==!0&&y.push(F))}b&&(n=n||{},n.mask=x[0]);let w=kt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,x));let C=LB(m),N=Array.isArray(C)?C:[C];for(let R=0;R<N.length;++R){h.hasKey(N[R])||h.add(N[R],w[R],Array.isArray(k)?k[0]:k);let F=i.indexOf(N[R].name);F!==-1&&(l[F]=w[R])}r||ne(y)}return h.disposeMasks(),a?l:l[0]}function MB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Xw(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Xw(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:zB(s)}}function zB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Xw(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function LB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Fr=class extends tt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=qf(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Po(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Po(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;_r(y===0,"input layer has >1 nodes"),_r(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let x=this.inputLayers[A];if(!(x instanceof Xu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,x,y,b,w,k)=>{(b==null||w==null||k==null)&&(b=A.sourceLayer,w=A.nodeIndex,k=A.tensorIndex);let C=b.inboundNodes[w];if(y.indexOf(C)!==-1)throw new dr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(C)!==-1)return;this.containerNodes.add(Fr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),y.indexOf(C)===-1&&y.push(C);let N=C.inboundLayers.length;for(let R=0;R<N;R++){let F=C.inputTensors[R],_=C.inboundLayers[R],P=C.nodeIndices[R],T=C.tensorIndices[R];i(F,x,y,_,P,T)}for(x.push(C);y.indexOf(C)>=0;)y.splice(y.indexOf(C),1);o.push(C)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let x=t[A.id],y=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];x=Math.max(x,y),s[A.outboundLayer.id]=x,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=x;for(let b=0;b<A.inboundLayers.length;b++){let w=A.inboundLayers[b],k=A.nodeIndices[b],C=w.inboundNodes[k],N=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(x+1,N),n[C.id]=C}}let d={};for(let A in t){let x=t[A];x in d||(d[x]=[]),d[x].push(n[A])}let p={};for(let A in s){let x=s[A];x in p||(p[x]=[]),p[x].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(Ff);this.layers=[];for(let A of h){let x=p[A];x.sort((y,b)=>{let w=a[y.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let y of x)y instanceof Fr&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(Ff);let f=this.inputs.slice(),m=[];for(let A of h)for(let x of d[A]){let y=x.outboundLayer;if(y!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new dr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let x=g.filter(y=>y===A).length;if(x!==1)throw new dr(`The name "${A}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${s} weights are not set: ${a}`)}K1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${rA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=sA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return q(()=>{e=kt(e);let n=new bl;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return jd(this.outputs,n,t)})}computeMask(e,t){return q(()=>{e=kt(e);let n;return t==null?n=fl(null,e.length):n=kt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xf(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Ff);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],x=`${m.name}_${g}_${A}`,y=n[x];u.push(y)}let d=c.computeOutputShape(as(u)),p=Xf(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];_r(i in n),r.push(n[i])}return as(r)}runInternalGraph(e,t){t==null&&(t=fl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Ff);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,x;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[y,b]=h[0];f.mask==null&&(f.mask=b),A=kt(u.call(y,f)),x=kt(u.computeMask(y,b)),m=[y],g=[b]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),A=kt(u.call(m,f)),x=kt(u.computeMask(m,g));if(u.activityRegularizer)throw new Le("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y<p.length;++y){let b=p[y],w=A[y],k=x[y];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){_r(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Fr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Fr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return q(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Fr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Fr.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],x=d.tensorIndices[m],y=Fr.nodeKey(g,A),b=t[y];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Fr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Fr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],x;for(let y of g){let b=y[0],w=y[1],k=y[2];if(x=y[3]==null?{}:y[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=w){o(m,g);return}let N=C.inboundNodes[w];A.push(N.outputTensors[k])}A.length>0&&m.apply(as(A),x)}function l(m){let g=m.name,A=mr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);o(A,y)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!gL(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let x of A)i(g,x)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],x=m[2];_r(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],x=m[2];_r(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[x])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){q(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function BB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Kw(e,t){return BB(e,t,"classWeight")}async function Zw(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=q(()=>{if(e.shape.length===1)return Bn(e);if(e.shape.length===2){if(e.shape[1]>1)return js(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ne(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Kt(o,"float32")}else return null}function WB(e,t){return L(e,t)}var VB=32;function Yw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Jw("input",e.inputNames,n),o=Jw("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Jw(e,t,n){if(n instanceof Je)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function UB(e){if(e.length===3)throw new Le("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function GB(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Qw(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=UB(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Mw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=zw(u,d,n.epochs,null,null,HB(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,x=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let y=await m.next();if(s&&y.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(y.value!=null){let{xs:b,ys:w}=Yw(e,y.value),k={};k.batch=x,k.size=b[0].shape[0],await p.onBatchBegin(x,k);let C=[];if(n.classWeight!=null){let F=Kw(n.classWeight,e.outputNames);for(let _=0;_<F.length;++_)C.push(await Zw(w[_],null,F[_]))}let N=b.concat(w).concat(C),R=i(N);ne(N);for(let F=0;F<l.length;++F){let _=l[F],P=R[F];k[_]=P,gn(P)}await p.onBatchEnd(x,k),_w(k),x++,A++}if(s?A>=n.batchesPerEpoch:y.done){if(r){let b;Qw(n.validationData)?b=kt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=kt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?VB:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function HB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Qw(e){return typeof e.iterator=="function"}function jB(e){return typeof e.next=="function"}async function qB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Le("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=jB(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=q(()=>{if(c.value){let{xs:u,ys:d}=Yw(e,c.value),p=u.concat(d),h=q(()=>r(p));if(ne(p),l===0)for(let m=0;m<h.length;++m)a.push(Re(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=q(()=>le(a[m],L(f,g))),l>0&&ne(A)}ne(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=he(a[c],i),ne(u)}return as(a)}function oA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function qd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>yl(s,t,n-t)):yl(e,t,n-t)}function iA(e,t){return q(()=>e==null?null:Array.isArray(e)?e.map(n=>iA(n,t)):ww(e,t.dtype==="int32"?t:pe(t,"int32")))}function lA(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function XB(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=pr(0,g)),o==null&&(o=1);let{callbackList:x,history:y}=zw(i,o,a,p,g,h,r,m,d);x.setModel(e),e.history=y,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Le("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Le("batch shuffling is not implemneted yet");u&&v.shuffle(A);let k=Kt(A),C=lA(g,r);for(let N=0;N<C.length;++N){let R={};if(await x.onBatchBegin(N,R),q(()=>{let F=C[N][0],_=C[N][1],P=yl(k,F,_-F);R.batch=N,R.size=_-F;let T=iA(n,P),M=t(T);for(let U=0;U<s.length;++U){let j=s[U],z=M[U];R[j]=z,gn(z)}if(N===C.length-1&&m){let U=e.testLoop(l,c,r);for(let j=0;j<s.length;++j){let z=s[j],X=U[j];gn(X),w["val_"+z]=X}}}),await x.onBatchEnd(N,R),_w(R),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function KB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;oA(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Le("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let C=!0,N=await e.standardizeUserData(o,i,null,null,C,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let C=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=qd(r,C,N),r=qd(r,0,C),c=qd(a,C,N),a=qd(a,0,C),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),y,b;f?(e.makeTestFunction(),y=e.testFunction,b=x.slice().concat(x.map(C=>"val_"+C))):(y=null,m=[],b=x.slice());let w=Mw(s.callbacks,s.yieldEvery);return await XB(e,A,g,x,d,s.epochs,s.verbose,w,y,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,vl(r,t),vl(a,n),vl(l,o),vl(c,i),u!=null&&ne(u)}}function ek(e){let t=[];e instanceof Je&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Wd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function vl(e,t){if(e==null)return;let n=[];if(t instanceof Je)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Je)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function ZB(e){return e instanceof Je}function uA(e){return Array.isArray(e)}function tk(e){return!ZB(e)&&!uA(e)}function nk(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(uA(e)&&e.length>0)o=!0;else if(tk(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(tk(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(uA(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=ek(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new H(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function YB(e,t,n){let s=Po(e.map(a=>a.shape[0]));s.sort();let r=Po(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function JB(e,t,n){let s=[xl,em,Gd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Gd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function sk(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new H(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function QB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var eW="layers-model",ta=class extends Fr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");$B(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=RB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(J1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>J1(o))}else{let a=J1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Al("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=QB(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Al("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===em?["accuracy","acc"].indexOf(h)!==-1?d=Q1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Ww):this.lossFunctions[a]===Qf?["accuracy","acc"].indexOf(h)!==-1?d=Vw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Uw):["accuracy","acc"].indexOf(h)!==-1?d=eA:["crossentropy","ce"].indexOf(h)!==-1&&(d=tA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=EB(h),u=c+sm(h);let f;Al(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;oA(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return as(l)}finally{vl(a[0],e),vl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),qB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new bl;if(e instanceof Je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=jd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=fl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return q(()=>{let s=this.checkNumSamples(e);if(n)throw new Le("Verbose predictLoop() is not implemented yet.");let r=lA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)q(()=>{let l=r[o][0],c=r[o][1],u=qd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new bl(d);return jd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return as(a.map(o=>vt(o,0)))})}predict(e,t={}){let n=ek(e);sk(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return oA(s),this.predictLoop(n,s)}finally{vl(n,e)}}predictOnBatch(e){sk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new dr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Qf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=nk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=nk(t,this.feedOutputNames,r,!1,"target"),YB(e,t,null),JB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Kw(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Zw(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return q(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Le("Verbose mode is not implemented yet.");if(r!=null)throw new Le("steps mode in testLoop() is not implemented yet");{let i=lA(a,n),l=Kt(pr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=yl(l,u,d-u),h=iA(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Re(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],L(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=he(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;cw(e,s)>1&&(r+=`_${cw(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new bl(u),p=jd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=WB(g,r[f]));let A=Wt(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Wt(g(s[A],p[A]))}gn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>q(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new bl(a),i=jd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Wt(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Wt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return KB(this,e,t,n)}async fitDataset(e,t){return GB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return ne(o),as(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=tf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-tf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ea(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ea(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ea(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ea(sm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ea(sm(e)));{let e={};for(let t in this.metrics)e[t]=ea(sm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Hd(e.optimizer_config),n=mr(t),s;if(typeof e.loss=="string")s=ml(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ml(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ml(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ml(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ml(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=ns.getSaveHandlers(e);if(l.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new H(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await ns.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:eW,generatedBy:`TensorFlow.js tfjs-layers v${rA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await ns.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=ns.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;Hw(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Hw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ta.className="Model";ue.registerClass(ta);var rk=class extends ta{};rk.className="Functional";ue.registerClass(rk);async function tW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Hd(n),r=mr(s,t);if(e.weightsManifest!=null){let a=await ns.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ne(a)}return r}async function nW(e,t){if(t==null&&(t={}),typeof e=="string"){let n=ns.getLoadHandlers(e,t);if(n.length===0)n.push(ns.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return sW(e,void 0,t)}async function sW(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=mr(Hd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=rW(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),ne(c),ne(u.map(d=>d.tensor))}return i}function rW(e,t){let n=ns.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var cA=class extends ta{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof cA||e instanceof ta,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=$w({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Rw(this.outputs[0])}this.inboundNodes=[],new Zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ta({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof cA))throw new Le(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=mr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},am=cA;am.className="Sequential";ue.registerClass(am);function aW(e){return new ta(e)}function oW(e){return new am(e)}function iW(e,t){return t==null&&(t={}),nW(e,t)}function ak(e){return $w(e)}function lW(e,t){Z1.registerCallbackConstructor(e,t)}var is=class extends ue.Serializable{getConfig(){return{}}},ok=class extends is{apply(e,t=1){return PL(e,t)}};ok.className="elu";ue.registerClass(ok);var ik=class extends is{apply(e){return p1(e)}};ik.className="selu";ue.registerClass(ik);var lk=class extends is{apply(e){return $r(e)}};lk.className="relu";ue.registerClass(lk);var uk=class extends is{apply(e){return q(()=>$d(6,$r(e)))}};uk.className="relu6";ue.registerClass(uk);var ck=class extends is{apply(e){return e}};ck.className="linear";ue.registerClass(ck);var dk=class extends is{apply(e){return ds(e)}};dk.className="sigmoid";ue.registerClass(dk);var pk=class extends is{apply(e){return OL(e)}};pk.className="hardSigmoid";ue.registerClass(pk);var hk=class extends is{apply(e){return Bu(e)}};hk.className="softplus";ue.registerClass(hk);var fk=class extends is{apply(e){return FL(e)}};fk.className="softsign";ue.registerClass(fk);var mk=class extends is{apply(e){return Fu(e)}};mk.className="tanh";ue.registerClass(mk);var dA=class extends is{apply(e,t=-1){return Gu(e,t)}};dA.className="softmax";ue.registerClass(dA);var gk=class extends is{apply(e,t=-1){return t1(e,t)}};gk.className="logSoftmax";ue.registerClass(gk);var Ak=class extends is{apply(e,t=1){return q(()=>L(ds(L(e,t)),e))}};Ak.className="swish";ue.registerClass(Ak);var yk=class extends is{apply(e){return q(()=>L(e,Fu(Bu(e))))}};yk.className="mish";ue.registerClass(yk);function zo(e){return e.getClassName()}function pA(e,t={}){return zd(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Lo(e){if(e==null){let t={};return t.className="linear",t.config={},pA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},pA(t)}else return e instanceof is?e:pA(e)}function hA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var xk=class extends ue.Serializable{},Xd=class extends xk{constructor(e){super();hA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return q(()=>{let t=Gt([1]);return this.hasL1&&(t=le(t,Se(L(this.l1,nn(e))))),this.hasL2&&(t=le(t,Se(L(this.l2,Vd(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Xd.className="L1L2";ue.registerClass(Xd);function uW(e){return hA(e),new Xd({l1:e!=null?e.l1:null,l2:0})}function cW(e){return hA(e),new Xd({l2:e!=null?e.l2:null,l1:0})}var bk={l1l2:"L1L2"};function At(e){return N1(e)}function vk(e,t={}){return zd(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Et(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in bk?bk[e]:e,config:{}};return vk(n)}else return e instanceof xk?e:vk(e)}var fA=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Be(e);let n=$r(e);return this.maxValue!=null&&(n=ps(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};fA.className="ReLU";ue.registerClass(fA);var mA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return pf(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};mA.className="LeakyReLU";ue.registerClass(mA);var gA=class extends tt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Et(e.alphaRegularizer),this.alphaConstraint=on(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Be(e),xf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Mt(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:an(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};gA.className="PReLU";ue.registerClass(gA);var AA=class extends tt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Le(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return Ed(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};AA.className="ELU";ue.registerClass(AA);var yA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Be(e);return L(n,pe(hs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};yA.className="ThresholdedReLU";ue.registerClass(yA);var xA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new dA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Be(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};xA.className="Softmax";ue.registerClass(xA);function Yu(e,t,n){if(typeof e=="number")return fl(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!RL(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function gr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Or(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Oo([n-t,0]);else if(s==="same")e=e*t;else throw new H(`Unsupport padding mode: ${s}.`);return e}function bA(e,t){return q(()=>(Ht(t),t==="channelsFirst"?Qe(e,[0,2,3,1]):e))}function wk(e,t){return q(()=>(Ht(t),t==="channelsFirst"?Qe(e,[0,2,3,4,1]):e))}function dW(e,t,n,s=1,r="valid",a,o=1){return q(()=>{if(a==null&&(a=cr()),Ht(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Qe(e,[0,2,1])),r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=q2(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=hr(i,n)),i})}function kk(e,t,n,s=[1,1],r="valid",a,o,i=null){return q(()=>{if(a==null&&(a=cr()),Ht(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=bA(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_o.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Qe(l,[0,3,1,2])),l})}function pW(e,t,n,s=[1,1,1],r="valid",a,o){return q(()=>{if(a==null&&(a=cr()),Ht(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=wk(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Z2(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=hr(i,n)),a==="channelsFirst"&&(i=Qe(i,[0,4,1,2,3])),i})}var vA=class extends tt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",vA.verifyArgs(t),this.rank=e,xn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Le(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yu(t.kernelSize,e,"kernelSize"),this.strides=Yu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,_s(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ht(this.dataFormat),this.activation=Lo(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=on(t.biasConstraint),this.biasRegularizer=Et(t.biasRegularizer),this.activityRegularizer=Et(t.activityRegularizer),this.dilationRate=Yu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(_r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!R1(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:zo(this.activation),useBias:this.useBias,biasInitializer:Mt(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Kd=class extends vA{constructor(e,t){super(e,t);this.kernel=null,Kd.verifyArgs(t),this.filters=t.filters,xn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=on(t.kernelConstraint),this.kernelRegularizer=Et(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return q(()=>{e=Be(e);let n,s=this.bias==null?null:this.bias.read(),r=pw(this.activation.getClassName());if(r!=null&&this.rank===2)n=kk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=dW(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=kk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=pW(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Le("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=gr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Mt(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:an(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sk=class extends Kd{constructor(e){super(2,e);Sk.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!R1(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},om=Sk;om.className="Conv2D";ue.registerClass(om);var Ik=class extends Kd{constructor(e){super(3,e);Ik.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},im=Ik;im.className="Conv3D";ue.registerClass(im);var wA=class extends om{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Be(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Or(i,d,c,this.padding),f=Or(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,1]));let g=K2(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Qe(g,[0,3,1,2])),this.bias!=null&&(g=hr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Or(t[s],i,a,this.padding),t[r]=Or(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};wA.className="Conv2DTranspose";ue.registerClass(wA);var kA=class extends im{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Be(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Or(l,f,d,this.padding),x=Or(c,m,p,this.padding),y=Or(u,g,h,this.padding),b=[r,A,x,y,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,4,1]));let w=sv(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Qe(w,[0,4,1,2,3])),this.bias!==null&&(w=hr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Or(t[s],c,o,this.padding),t[r]=Or(t[r],u,i,this.padding),t[a]=Or(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};kA.className="Conv3DTranspose";ue.registerClass(kA);var Ck=class extends Kd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Et(t.depthwiseRegularizer),this.depthwiseConstraint=on(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Et(t.pointwiseRegularizer),this.pointwiseConstraint=on(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{e=Be(e);let n;if(this.rank===1)throw new Le("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Qe(e,[0,2,3,1])),n=Sv(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Qe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.pointwiseInitializer=Mt(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseConstraint),e.pointwiseConstraint=an(this.pointwiseConstraint),e}};Ck.className="SeparableConv";var SA=class extends Ck{constructor(e){super(2,e)}};SA.className="SeparableConv2D";ue.registerClass(SA);var Tk=class extends Kd{constructor(e){super(1,e);Tk.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!R1(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},IA=Tk;IA.className="Conv1D";ue.registerClass(IA);var CA=class extends tt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return q(()=>{if(e=Be(e),this.dataFormat==="channelsLast"){let n=Mf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Mf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Mf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Mf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};CA.className="Cropping2D";ue.registerClass(CA);var TA=class extends tt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,TL(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return q(()=>{let n=Be(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Qe(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return Qe(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};TA.className="UpSampling2D";ue.registerClass(TA);function hW(e,t,n=[1,1],s="valid",r,a){return q(()=>{r==null&&(r=cr()),Ht(r);let o=bA(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Nd(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Qe(o,[0,3,1,2])),o})}var NA=class extends vA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=on(e.depthwiseConstraint),this.depthwiseRegularizer=Et(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{e=Be(e);let n=hW(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=gr(t,this.kernelSize[0],this.padding,this.strides[0]),a=gr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseRegularizer),e}};NA.className="DepthwiseConv2D";ue.registerClass(NA);function Nk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Ek(e,t,n,s=!1,r,a,o=!1,i=!1){return q(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(pr(2,l));if(t=Qe(t,c),a!=null)throw new Le("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=Xt(r,-1)),r=Qe(r,c)),s&&(t=$s(t,0),r!=null&&(r=$s(r,0)));let u=[],d,p=n,h=t.shape[0],f=rs(t),m;r!=null&&(m=rs(r));for(let A=0;A<h;++A){let x=f[A],y=q(()=>e(x,p));if(r==null)d=y[0],p=y[1];else{let b=q(()=>{let w=m[A],k=me(Rs(w),w),C=le(L(y[0],w),L(p[0],k)),N=p.map((R,F)=>le(L(y[1][F],w),L(R,k)));return{output:C,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=yn(u,1)),[d,g,p]})}var Rk=class extends tt{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new cm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return pr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){q1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return q(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Le("Constants support is not implemented in RNN yet.");q1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Zt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Le("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Zt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Qr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Gt([n,s])):this.states_=[Gt([n,this.cell.stateSize])];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Gt([n,s])):this.states_[0]=Gt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>gn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Nk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Zt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof fr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Be(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Ek((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return q(()=>{let t=Gt(e.shape);return t=Se(t,[1,2]),t=Wd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?z1(t,[1,n]):t):this.cell.stateSize>1?[z1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Rk.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=mr(s,n);return new e(Object.assign(t,{cell:r}))}},na=Rk;na.className="RNN";ue.registerClass(na);var Zd=class extends tt{},lm=class extends Zd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Dr(L(e,a),this.kernel.read()):r=Dr(e,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=le(r,Dr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};lm.className="SimpleRNNCell";ue.registerClass(lm);var EA=class extends na{constructor(e){e.cell=new lm(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};EA.className="SimpleRNN";ue.registerClass(EA);var um=class extends Zd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=Dr(e,this.kernel.read());this.useBias&&(c=hr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=sn(u,[2*this.units,this.units],u.rank-1),h=Dr(s,d),[f,m,g]=sn(c,3,c.rank-1),[A,x]=sn(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,x));let y=Dr(L(i,s),p);l=this.activation.apply(le(g,y));let b=le(L(o,s),L(le(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),recurrentActivation:zo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};um.className="GRUCell";ue.registerClass(um);var RA=class extends na{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new um(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};RA.className="GRU";ue.registerClass(RA);var Yd=class extends Zd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ys{apply(o,i){let l=r.apply([a]),c=new Lf().apply([a]),u=r.apply([a*2]);return vw(vw(l,c),u)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=Dr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=le(d,Dr(s,this.recurrentKernel.read())),this.useBias&&(d=hr(d,this.bias.read()));let[p,h,f,m]=sn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(L(l,r),L(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),recurrentActivation:zo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Yd.className="LSTMCell";ue.registerClass(Yd);var $A=class extends na{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Yd(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$A.className="LSTM";ue.registerClass($A);var cm=class extends Zd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return q(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){q1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Al(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(mr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return X1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}K1(t)}};cm.className="StackedRNNCells";ue.registerClass(cm);function Bo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):kw(t(),n),i=()=>Ud(o,t,s);return!r||r<=1?gn(i().clone()):Array(r).fill(void 0).map(i).map(c=>gn(c.clone()))}var $k=class extends na{constructor(e){if(e.unroll)throw new Le("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Le("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Zt({ndim:5})]}call(e,t){return q(()=>{if(this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return q(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Gt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Qr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Gt(r)):this.states_=[Gt(r)];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Gt(r)):this.states_[0]=Gt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>gn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=gr(l,s[0],r,a[0],o[0]),d=gr(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};$k.className="ConvRNN2D";var dm=class extends Yd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,xn(this.filters,"filters"),this.kernelSize=Yu(n,2,"kernelSize"),this.kernelSize.forEach(i=>xn(i,"kernelSize")),this.strides=Yu(s||1,2,"strides"),this.strides.forEach(i=>xn(i,"strides")),this.padding=r||"valid",_s(this.padding),this.dataFormat=a||"channelsLast",Ht(this.dataFormat),this.dilationRate=Yu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>xn(i,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Ys{apply(u,d){let p=l.apply([c]),h=fs([c]),f=l.apply([c*2]);return M1([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return q(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:L(J[ee],Z),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),x=3,[y,b,w,k]=sn(this.kernel.read(),o,x),[C,N,R,F]=this.useBias?sn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,y,C,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,w,R,this.padding),p=this.inputConv(p,k,F,this.padding);let[_,P,T,M]=sn(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,P),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let U=this.recurrentActivation.apply(le(c,f)),j=this.recurrentActivation.apply(le(u,m)),z=le(L(j,a),L(U,this.activation.apply(le(d,g)))),X=L(this.recurrentActivation.apply(le(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=Eo(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?hr(r,n,this.dataFormat):r}recurrentConv(e,t){return Eo(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};dm.className="ConvLSTM2DCell";ue.registerClass(dm);var _A=class extends $k{constructor(e){let t=new dm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};_A.className="ConvLSTM2D";ue.registerClass(_A);var pm=class extends tt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ud(()=>kw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};pm.className="Dropout";ue.registerClass(pm);var DA=class extends pm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};DA.className="SpatialDropout1D";ue.registerClass(DA);var PA=class extends tt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=on(e.kernelConstraint),this.biasConstraint=on(e.biasConstraint),this.kernelRegularizer=Et(e.kernelRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=pw(this.activation.getClassName()),r;return s!=null?r=Dr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Dr(n,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:zo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};PA.className="Dense";ue.registerClass(PA);var FA=class extends tt{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Fo(e,1)]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Qe(n,s)}return DL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};FA.className="Flatten";ue.registerClass(FA);var OA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.activation=Lo(e.activation)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.activation.apply(n)})}getConfig(){let e={activation:zo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};OA.className="Activation";ue.registerClass(OA);var MA=class extends tt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return q(()=>(e=Be(e),$L(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};MA.className="RepeatVector";ue.registerClass(MA);var zA=class extends tt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let o=Fo(e);if(a!==null){if(r===0||o%r!=0)throw new H(n);s[a]=o/r}else if(o!==r)throw new H(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};zA.className="Reshape";ue.registerClass(zA);var LA=class extends tt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=pr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Qe(Be(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};LA.className="Permute";ue.registerClass(LA);var BA=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Be(e),s=-1;return af(Wu(n,this.maskValue),s)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=-1,r=!0,a=af(Wu(n,this.maskValue),s,r);return L(n,pe(a,n.dtype))})}};BA.className="Masking";ue.registerClass(BA);var WA=class extends tt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(kt(e.inputLength))}this.inputDim=e.inputDim,xn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,xn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Et(e.embeddingsRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.embeddingsConstraint=on(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return q(()=>this.maskZero?(e=Be(e),Wu(e,et(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=kt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);n.dtype!=="int32"&&(n=Of(n,"int32"));let s=ww(this.embeddings.read(),G(n,[n.size]));return G(s,pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Mt(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:an(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};WA.className="Embedding";ue.registerClass(WA);var wl=class extends tt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Le}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[pt(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Po(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Po(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return q(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Oo(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Wd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=G(i,[u].concat(Fo(c.slice(1))));p=Qe(p,[1,0]),p=G(p,d),n.push(p),r=!0}else if(l>1){let c=pr(1,l).concat([0]);n.push(Qe(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=G(Qe(G(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(pr(0,o-1));a=Qe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Po(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return q(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Xt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=lr(n,t[s]);return n})}},VA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};VA.className="Add";ue.registerClass(VA);var UA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};UA.className="Multiply";ue.registerClass(UA);var GA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return L(1/e.length,t)})}};GA.className="Average";ue.registerClass(GA);var HA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Zr(t,e[n]);return t})}};HA.className="Maximum";ue.registerClass(HA);var jA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=$d(t,e[n]);return t})}};jA.className="Minimum";ue.registerClass(jA);var qA=class extends wl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return q(()=>M1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return q(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(pe(Rs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Xt(t[a],-1)):s.push(t[a]);let r=vt(s,this.axis);return V2(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Concatenate";ue.registerClass(qA);function Jd(e,t){for(;e<0;)e+=t;return e}function fW(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Le("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Le("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return q(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=G(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=G(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Se(L(e,t),a[0]):i=Se(L(Qe(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ue(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=ot(i,c)}return i.shape.length===1&&(i=Xt(i,1)),i})}var XA=class extends wl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new H(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Jd(r,e[a].shape.length)):s=[Jd(this.axes,t.shape.length),Jd(this.axes,n.shape.length)],this.normalize&&(t=Yf(t,s[0]),n=Yf(n,s[1])),fW(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Jd(this.axes,e.length),Jd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};XA.className="Dot";ue.registerClass(XA);var KA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return Ud(()=>le(zf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};KA.className="GaussianNoise";ue.registerClass(KA);var ZA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.rate>0&&this.rate<1?Ud(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,zf(n.shape,1,r))},()=>n,t.training||!1):n})}};ZA.className="GaussianDropout";ue.registerClass(ZA);var YA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Be(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ud(()=>{let r=Be(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ll(Vu(n),this.rate);l=Of(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(L(r,l),L(le(l,-1),i));return le(L(d,c),u)},()=>Be(e),t.training||!1)}return e})}};YA.className="AlphaDropout";ue.registerClass(YA);function Qd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=X3(e,t,n,s,r,a);else if(e.rank===3)o=K3(e,t,n,s,r,a);else if(e.rank===4)o=Z3(e,t,n,s,r,a);else throw new Le(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function mW(e,t,n,s,r=.001){return q(()=>{let a=Af(e,s),o=a.mean,i=a.variance;return[Qd(e,o,i,n,t,r),o,i]})}function gW(e,t,n,s,r=.001){return q(()=>{let a=Af(e,s),o=a.mean,i=a.variance,l=[];for(let f of pr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=G(o,l),u=G(i,l),d=t==null?null:G(t,l),p=n==null?null:G(n,l);return[Qd(e,c,u,p,d,r),o,i]})}function AW(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),pr(0,e.rank-1))?mW(e,t,n,s,r):gW(e,t,n,s,r)}var JA=class extends tt{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=on(e.betaConstraint),this.gammaConstraint=on(e.gammaConstraint),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Zt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training,s=Be(e),r=s.shape,a=r.length,o=pr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=fl(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,pr(0,a).slice(0,a-1)),d=()=>{if(u){let A=G(this.movingMean.read(),l),x=G(this.movingVariance.read(),l),y=this.center?G(this.beta.read(),l):null,b=this.scale?G(this.gamma.read(),l):null;return Qd(s,A,x,y,b,this.epsilon)}else return Qd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=AW(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,x,y)=>{q(()=>{let b=1-y,w=A.read(),k=L(me(w,x),b);A.write(me(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),movingMeanInitializer:Mt(this.movingMeanInitializer),movingVarianceInitializer:Mt(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:an(this.betaConstraint),gammaConstraint:an(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};JA.className="BatchNormalization";ue.registerClass(JA);var QA=class extends tt{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Po(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Be(e),s=n.shape,r=s.length;return q(()=>{let a=!0,{mean:o,variance:i}=Af(n,this.axis,a),l=fl(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?G(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=qs(o,p),i=qs(i,p),u=qs(u,h),d=qs(d,h),Qd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};QA.className="LayerNormalization";ue.registerClass(QA);function yW(e,t,n){return q(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=cr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Xs(e,s)})}var ey=class extends tt{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?cr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return q(()=>yW(Be(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ey.className="ZeroPadding2D";ue.registerClass(ey);function hm(e,t,n,s,r,a){return q(()=>{Ht(r),gw(a),_s(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=cr()),a==null&&(a="max"),e=bA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=gf(e,t,n,i):o=lf(e,t,n,i),r==="channelsFirst"&&(o=Qe(o,[0,3,1,2])),o})}function _k(e,t,n,s,r,a){return q(()=>{Ht(r),gw(a),_s(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=cr()),a==null&&(a="max"),e=wk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=a1(e,t,n,i):o=H2(e,t,n,i),r==="channelsFirst"&&(o=Qe(o,[0,4,1,2,3])),o})}var Dk=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(xn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,_s(this.padding),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=gr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return q(()=>{this.invokeCallHook(e,t),e=Wd(Be(e),2);let n=this.poolingFunction(Be(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ot(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ty=class extends Dk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),hm(e,t,n,s,r,"max")}};ty.className="MaxPooling1D";ue.registerClass(ty);var ny=class extends Dk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),hm(e,t,n,s,r,"avg")}};ny.className="AveragePooling1D";ue.registerClass(ny);var Pk=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),_s(this.padding),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sy=class extends Pk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),hm(e,t,n,s,r,"max")}};sy.className="MaxPooling2D";ue.registerClass(sy);var ry=class extends Pk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),hm(e,t,n,s,r,"avg")}};ry.className="AveragePooling2D";ue.registerClass(ry);var Fk=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),_s(this.padding),this.inputSpec=[new Zt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),s=gr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ay=class extends Fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),_k(e,t,n,s,r,"max")}};ay.className="MaxPooling3D";ue.registerClass(ay);var oy=class extends Fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),_k(e,t,n,s,r,"avg")}};oy.className="AveragePooling3D";ue.registerClass(oy);var Ok=class extends tt{constructor(e){super(e);this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Le}},iy=class extends Ok{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Be(e);return Wt(n,1)})}};iy.className="GlobalAveragePooling1D";ue.registerClass(iy);var ly=class extends Ok{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Be(e);return An(n,1)})}};ly.className="GlobalMaxPooling1D";ue.registerClass(ly);var Mk=class extends tt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Le}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},uy=class extends Mk{call(e,t){return q(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};uy.className="GlobalAveragePooling2D";ue.registerClass(uy);var cy=class extends Mk{call(e,t){return q(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?An(n,[1,2]):An(n,[2,3])})}};cy.className="GlobalMaxPooling2D";ue.registerClass(cy);var zk=class extends tt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=mr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},dy=class extends zk{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return q(()=>(e=Be(e),Ek((a,o)=>[Be(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};dy.className="TimeDistributed";ue.registerClass(dy);function xW(e){gl(CL,"BidirectionalMergeMode",e)}var bW="concat",py=class extends zk{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=mr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=mr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?bW:e.mergeMode,xW(this.mergeMode),e.weights)throw new Le("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):as(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Nk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Zt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Le("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof fr;for(let l of a)if(l instanceof fr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=$s(r,1));let o;return this.mergeMode==="concat"?o=M1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=L(.5,le(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Al(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Al(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=mr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Le("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};py.className="Bidirectional";ue.registerClass(py);function vW(e){return new Xu(e)}function wW(e){return new AA(e)}function kW(e){return new fA(e)}function SW(e){return new mA(e)}function IW(e){return new gA(e)}function CW(e){return new xA(e)}function TW(e){return new yA(e)}function NW(e){return new IA(e)}function EW(e){return new om(e)}function RW(e){return new wA(e)}function $W(e){return new im(e)}function _W(e){return new kA(e)}function DW(e){return new SA(e)}function PW(e){return new CA(e)}function FW(e){return new TA(e)}function OW(e){return new NA(e)}function MW(e){return new OA(e)}function zW(e){return new PA(e)}function LW(e){return new pm(e)}function BW(e){return new DA(e)}function WW(e){return new FA(e)}function VW(e){return new MA(e)}function UW(e){return new zA(e)}function GW(e){return new LA(e)}function HW(e){return new WA(e)}function jW(e){return new VA(e)}function qW(e){return new GA(e)}function XW(e){return new qA(e)}function KW(e){return new HA(e)}function ZW(e){return new jA(e)}function YW(e){return new UA(e)}function JW(e){return new XA(e)}function QW(e){return new JA(e)}function eV(e){return new QA(e)}function tV(e){return new ey(e)}function hy(e){return new ny(e)}function nV(e){return hy(e)}function sV(e){return hy(e)}function fy(e){return new ry(e)}function rV(e){return fy(e)}function aV(e){return fy(e)}function my(e){return new oy(e)}function oV(e){return my(e)}function iV(e){return my(e)}function lV(e){return new iy(e)}function uV(e){return new uy(e)}function Lk(e){return new ly(e)}function Bk(e){return new cy(e)}function Wk(e){return new ty(e)}function Vk(e){return new sy(e)}function cV(e){return new ay(e)}function dV(e){return new RA(e)}function pV(e){return new um(e)}function hV(e){return new $A(e)}function fV(e){return new Yd(e)}function mV(e){return new EA(e)}function gV(e){return new lm(e)}function AV(e){return new _A(e)}function yV(e){return new dm(e)}function xV(e){return new na(e)}function bV(e){return new cm(e)}function vV(e){return new py(e)}function wV(e){return new dy(e)}var kV=Lk,SV=Bk,IV=Wk,CV=Vk;function TV(e){return new KA(e)}function NV(e){return new ZA(e)}function EV(e){return new YA(e)}function RV(e){return new BA(e)}var Uk={};Oe(Uk,{MAPE:()=>WV,MSE:()=>GV,binaryAccuracy:()=>$V,binaryCrossentropy:()=>_V,categoricalAccuracy:()=>PV,categoricalCrossentropy:()=>FV,cosineProximity:()=>zV,mape:()=>VV,meanAbsoluteError:()=>LV,meanAbsolutePercentageError:()=>BV,meanSquaredError:()=>UV,mse:()=>HV,precision:()=>OV,recall:()=>MV,sparseCategoricalAccuracy:()=>DV});function $V(e,t){return Q1(e,t)}function _V(e,t){return Ww(e,t)}function DV(e,t){return Vw(e,t)}function PV(e,t){return eA(e,t)}function FV(e,t){return tA(e,t)}function OV(e,t){return Bw(e,t)}function MV(e,t){return vB(e,t)}function zV(e,t){return Y1(e,t)}function LV(e,t){return Jf(e,t)}function BV(e,t){return Zu(e,t)}function WV(e,t){return Zu(e,t)}function VV(e,t){return Zu(e,t)}function UV(e,t){return xl(e,t)}function GV(e,t){return xl(e,t)}function HV(e,t){return xl(e,t)}var Gk={};Oe(Gk,{modelFromJSON:()=>tW});var Hk={};Oe(Hk,{l1:()=>qV,l1l2:()=>jV,l2:()=>XV});function jV(e){return new Xd(e)}function qV(e){return uW(e)}function XV(e){return cW(e)}var jk=class extends Ku{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ta))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function fm(e,t){return e<t}function qk(e,t){return e>t}var Xk=class extends jk{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Le("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=fm:this.mode==="max"?this.monitorFunc=qk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=qk:this.monitorFunc=fm,this.monitorFunc===fm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===fm?1/0:-1/0}async onEpochEnd(e,t){await Mo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function KV(e){return new Xk(e)}var ZV={earlyStopping:KV},YV=K();YV.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ar;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ar||(Ar={}));var Kk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Kk||(Kk={}));var gy={};function JV(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};gy[e]=n}function Zk(e){return gy[e]}function QV(e){delete gy[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Un(p,n,s,r));let c=Un(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Un(e,t,n,s){let[r,a]=ms(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[mm(r,i)]);return o!==void 0?t[mm(r,o)][a]:void 0}function eU(e,t,n){return t[mm(e,n.currentContextId)]}function Mr(e,t){let[n,s,r]=ms(e);return[mm(n,t&&t.currentContextId),s,r]}function mm(e,t){return t?`${e}-${t}`:e}function ms(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function gm(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function sa(e){return e.kept?e:Bn(e)}var Yk={};Oe(Yk,{json:()=>tU});var tU=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Jk={};Oe(Jk,{json:()=>nU});var nU=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Qk={};Oe(Qk,{json:()=>sU});var sU=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],e7={};Oe(e7,{json:()=>rU});var rU=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],t7={};Oe(t7,{json:()=>aU});var aU=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],n7={};Oe(n7,{json:()=>oU});var oU=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s7={};Oe(s7,{json:()=>iU});var iU=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],r7={};Oe(r7,{json:()=>lU});var lU=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],a7={};Oe(a7,{json:()=>uU});var uU=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],o7={};Oe(o7,{json:()=>cU});var cU=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],i7={};Oe(i7,{json:()=>dU});var dU=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],l7={};Oe(l7,{json:()=>pU});var pU=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],u7={};Oe(u7,{json:()=>hU});var hU=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],c7={};Oe(c7,{json:()=>fU});var fU=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],d7={};Oe(d7,{json:()=>mU});var mU=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],p7={};Oe(p7,{json:()=>gU});var gU=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],h7={};Oe(h7,{json:()=>AU});var AU=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],f7={};Oe(f7,{json:()=>yU});var yU=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],m7={};Oe(m7,{json:()=>xU});var xU=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],g7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Yk,Jk,Qk,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7,f7,m7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[x,,y]=Mr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(y);if(w!==-1){let k=`${x}:${w}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Mr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Mr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Zk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Ay(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=Iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=xy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=xy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=Sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=yy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Ty(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ky(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ky(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=Cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=vy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=vy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=wy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=wy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=y7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=y7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Mr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:by(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Mr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let x=`${f}:${A}`;d.inputNames[h]=x}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Mr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function bU(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function A7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):bU(e);return t?n:n.toLowerCase()}function Ay(e,t,n,s=!1){let r=e[t];return r!=null?A7(r.s,s):n}function yy(e,t,n){let s=e[t];return s?s.b:n}function xy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function by(e){switch(typeof e=="string"&&(e=Ar[e]),e){case Ar.DT_FLOAT:return"float32";case Ar.DT_INT32:case Ar.DT_INT64:case Ar.DT_INT8:case Ar.DT_UINT8:return"int32";case Ar.DT_BOOL:return"bool";case Ar.DT_DOUBLE:return"float32";case Ar.DT_STRING:return"string";default:return null}}function y7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function vy(e,t,n){let s=e[t];return s&&s.type?by(s.type):n}function wy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>by(r)):n}function x7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ky(e,t,n){let s=e[t];return s&&s.shape?x7(s.shape):n}function Sy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Iy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>A7(a,s)):n}function Cy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>x7(r)):n}function Ty(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var vU=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return xy(this.node.rawAttrs,e,t);if(n.s!=null)return Ay(this.node.rawAttrs,e,t);if(n.b!=null)return yy(this.node.rawAttrs,e,t);if(n.shape!=null)return ky(this.node.rawAttrs,e,t);if(n.type!=null)return vy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Sy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Iy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Cy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Ty(this.node.rawAttrs,e,t);if(n.list.type!=null)return wy(this.node.rawAttrs,e,t)}return t}},wU=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[rf(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[_d(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[L(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[he(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[iv(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[sf(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[me(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[$d(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[Zr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[$o(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[A1(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kU=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[nn(S("x",e,t,n))];case"Acos":return[M3(S("x",e,t,n))];case"Acosh":return[z3(S("x",e,t,n))];case"Asin":return[B3(S("x",e,t,n))];case"Asinh":return[W3(S("x",e,t,n))];case"Atan":return[V3(S("x",e,t,n))];case"Atan2":return[U3(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[G3(S("x",e,t,n))];case"Ceil":return[J3(S("x",e,t,n))];case"Complex":return[So(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[cf(S("x",e,t,n))];case"Cosh":return[Y2(S("x",e,t,n))];case"Elu":return[Ed(S("x",e,t,n))];case"Erf":return[uv(S("x",e,t,n))];case"Exp":return[Ns(S("x",e,t,n))];case"Expm1":return[cv(S("x",e,t,n))];case"Floor":return[Rd(S("x",e,t,n))];case"Log":return[Es(S("x",e,t,n))];case"Log1p":return[hf(S("x",e,t,n))];case"Imag":return[df(S("x",e,t,n))];case"Neg":return[Ot(S("x",e,t,n))];case"Reciprocal":return[kv(S("x",e,t,n))];case"Real":return[Dd(S("x",e,t,n))];case"Relu":return[$r(S("x",e,t,n))];case"Round":return[c1(S("x",e,t,n))];case"Selu":return[p1(S("x",e,t,n))];case"Sigmoid":return[ds(S("x",e,t,n))];case"Sin":return[h1(S("x",e,t,n))];case"Sign":return[Cv(S("x",e,t,n))];case"Sinh":return[f1(S("x",e,t,n))];case"Softplus":return[Bu(S("x",e,t,n))];case"Sqrt":return[Dn(S("x",e,t,n))];case"Square":return[gt(S("x",e,t,n))];case"Tanh":return[Fu(S("x",e,t,n))];case"Tan":return[Nv(S("x",e,t,n))];case"ClipByValue":return[ps(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[u1(S("x",e,t,n))];case"Rsqrt":return[d1(Un(e.inputNames[0],t,n))];case"Prod":return[o1(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[pf(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[xf(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[dv(Un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Js(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function b7(e){return!(typeof e=="number"||e.some(t=>t<0))}function ep(e,t,n){let s=Ny(e,n),r=!b7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Ny(a.shape,s)}),!b7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Ny(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var SU=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Re(0),gn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Js(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,gn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Pt([],[0].concat(this.elementShape));let n=this.readMany(e);return Js(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),yn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Pt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Js(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),vt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,rs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];q(()=>{t=G(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=G(De(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},tp=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Js(t,r.shape,"TensorList shape mismatch: "),gn(r)}),this.idTensor=Re(0),this.maxNumElements=s,gn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new tp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Js(e,this.elementShape,"TensorList shape mismatch: ");let s=ep(this.elementShape,this.tensors,e);return q(()=>{let r=this.tensors.map(a=>G(a,s));return yn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=ep(this.elementShape,this.tensors,e),s=this.tensors.pop();return Js(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Js(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");gn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Js(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=ep(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Js(this.elementShape,t.shape,"TensorList shape mismatch: "),gn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Js(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=ep(this.elementShape,this.tensors,n);return e.length===0?Pt([],[0].concat(s)):q(()=>{let r=e.map(a=>G(this.tensors[a],s));return yn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Js(this.elementShape,t,"TensorList shape mismatch: ");let n=ep(this.elementShape,this.tensors,t);return this.size()===0?Pt([],[0].concat(n)):q(()=>{let s=this.tensors.map(r=>G(r,n));return vt(s,0)})}};function IU(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Js(r,t,"TensorList shape mismatch: ");let a=rs(e);return new tp(a,t,s)}function CU(e,t,n){return new tp([],e,t,n)}function TU(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new tp([],n,e.dtype,s),o=rs(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function NU(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Ny(a,n),i=s===0?0:e.size/s,l=q(()=>{let u=[];e=G(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=G(De(e,h,f),o)}return e.dispose(),u}),c=new tp([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var EU=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=S("pred",e,t,n);return[sa(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=sa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Un(r,t,n)!==void 0);if(s){let r=Un(s,t,n);return[sa(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[sa(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[sa(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[sa(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),c=S("name",e,t,n),u=new SU(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Re(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Re(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=TU(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=CU(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=IU(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=NU(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function v7(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=S("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=S("strides",e,t,n),d=gm(e,t,n),p=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var RU=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[q2(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=gm(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Eo(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=v7(e,t,n);return[_o.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=v7(e,t,n);return[_o.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=gm(e,t,n);return[K2(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=gm(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[Nd(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Z2(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[lf(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[gf(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=xv(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[H2(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[a1(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[ov(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$U=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[zu(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[pv(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[vv(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[Id(s,r,a,o)]}case"Ones":return[fs(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Rs(S("x",e,t,n))];case"RandomUniform":return[Vu(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[Uu(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[kf(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Gt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[et(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ey(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var _U=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=Ey(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Ey(e,t,n),l=S("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Ey(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(S("condition",e,t,n),"bool"),r=[await x1(s)];return s.dispose(),r}case"ListDiff":return Iv(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},DU=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=Ev(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=y1(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=y1(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},PU=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[Un(e.name,t,n)||s];case"Placeholder":return[Un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=S("x",e,t,n);return[sa(c)]}case"IdentityN":return S("x",e,t,n).map(c=>sa(c));case"Snapshot":let r=S("x",e,t,n);return[sa(r)];case"Shape":return[Kt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(c=>Kt(c.shape));case"Size":return[Re(S("x",e,t,n).size,"int32")];case"Rank":return[Re(S("x",e,t,n).rank,"int32")];case"NoOp":return[Re(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FU=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Re(0),this.tensorMap=new Map,gn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Re(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),q(()=>{let s=rs(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];gn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return q(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return yn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},OU=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new FU(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},MU=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zU=(e,t,n)=>{switch(e.op){case"Equal":return[Ts(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Wu(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[hs(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[ll(S("a",e,t,n),S("b",e,t,n))];case"Less":return[e1(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[ul(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[lr(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[mf(S("a",e,t,n))];case"LogicalOr":return[r1(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[Wn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LU=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[lv(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Qe(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=S("args",e,t,n);return[_o.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BU=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ou(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ou(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[hv(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[Gu(S("x",e,t,n))];case"LogSoftmax":return[t1(S("x",e,t,n))];case"SparseToDense":return[v1(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WU=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[An(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Wt(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Ro(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Se(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[V2(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[af(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[js(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[L3(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[o1(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[J2(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[j2(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),c=S("binaryOutput",e,t,n);return[rv(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},VU=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[vt(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Lu(s,pe(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Lu(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=S("x",e,t,n);return[$s(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[$s(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[De(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),o=S("beginMask",e,t,n),i=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),c=S("newAxisMask",e,t,n),u=S("shrinkAxisMask",e,t,n),d=S("x",e,t,n);return[Tv(d,s,r,a,o,i,l,c,u)]}case"Pack":return q(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=ot(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(ot(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:G(l,a)});return[yn(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return rs(r,s)}case"Tile":{let s=S("reps",e,t,n);return[qs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return sn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[Pv(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Fv(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[v1(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},UU=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Od.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Od.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Od.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[Od.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},GU=(e,t,n)=>{switch(e.op){case"FFT":return[vf(S("x",e,t,n))];case"IFFT":return[Pd(S("x",e,t,n))];case"RFFT":return[wf(S("x",e,t,n))];case"IRFFT":return[g1(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},HU=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Nf.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Nf.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Nf.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jU=(e,t,n)=>{switch(e.op){case"Cast":return[pe(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Xt(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[ot(S("x",e,t,n),s)]}case"Reshape":return[G(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[bv(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Xs(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[yf(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[uf(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[av(S("x",e,t,n),s,r)]}case"BroadcastTo":return[Td(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[Y3(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function w7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return q(()=>wU(a,o,i));case"basic_math":return q(()=>kU(a,o,i));case"control":return EU(a,o,i);case"convolution":return q(()=>RU(a,o,i));case"creation":return q(()=>$U(a,o,i));case"dynamic":return _U(a,o,i);case"evaluation":return q(()=>DU(a,o,i));case"image":return q(()=>MU(a,o,i));case"graph":return q(()=>PU(a,o,i));case"logical":return q(()=>zU(a,o,i));case"matrices":return q(()=>LU(a,o,i));case"normalization":return q(()=>BU(a,o,i));case"reduction":return q(()=>WU(a,o,i));case"slice_join":return q(()=>VU(a,o,i));case"sparse":return q(()=>UU(a,o,i));case"spectral":return q(()=>GU(a,o,i));case"string":return q(()=>HU(a,o,i));case"transformation":return q(()=>jU(a,o,i));case"hash_table":return OU(a,o,i,s);case"custom":let l=Zk(a.op);if(l&&l.customExecutor)return l.customExecutor(new vU(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var k7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function S7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ms(p)[0]),u=[];s!=null&&(u=s.map(p=>ms(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((I7(p)||YU(p)||JU(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function qU(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ms(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var XU=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],KU=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],ZU=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function I7(e){return XU.indexOf(e.op)>=0}function YU(e){return KU.indexOf(e.op)>=0}function JU(e){return ZU.indexOf(e.op)>=0}var Ry=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Ry(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=S7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return qU(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ms(u)[0]]),r=t.map(u=>ms(u)[0]),a=r.map(u=>this.graph.nodes[u]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return q(()=>{let u=new k7(this.weightMap,l,c,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=ms(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=w7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Un(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=eU(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];if(u===1){if(!this.keepTensorForDebug)c.dispose();else{let[d,p]=Mr(t.name,s);this.intermediateTensors[d]?this.intermediateTensors[d][p]=c:(this.intermediateTensors[d]=[],this.intermediateTensors[d][p]=c)}delete o[c.id]}else u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=K().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let a=new k7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(c=>Un(c,this.tensorsMap,a)),i=o.map(c=>c.id),l=Object.keys(e).map(c=>e[c].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ms(x)[0]]),o=n.map(x=>ms(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=S7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(x=>{let[y,b]=ms(x),w=[];w[b]=e[x],h[y]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let x=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(x)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(x=>!I7(x)&&!Un(x.name,h,t)).map(x=>x.name);if(A.length>0){let x="";throw u!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&S("isConstant",u.node,s,n)&&([d]=Mr(u.node.name,n)),s[u.node.name]==null){let p=w7(u.node,s,n,this._resourceManager);d||([d]=Mr(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Mr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ms(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ms(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ms(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},QU=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},eG="?tfjs-format=file",tG="model.json",C7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new QU}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=ns.browserHTTPRequest(e,this.loadOptions);else{let t=ns.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(ns.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=ns.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Ry(g7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=g7.Instance.transformGraph(e.modelInitializer);this.initializer=new Ry(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=ns.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Xe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${tG}${eG}`);let n=new C7(e,t);return await n.load(),n}var nG="0.0.0",T7={};Oe(T7,{CSVDataset:()=>W7,Dataset:()=>Qu,FileDataSource:()=>X7,TextLineDataset:()=>z7,URLDataSource:()=>K7,array:()=>IG,csv:()=>OG,func:()=>MG,generator:()=>zG,microphone:()=>BG,version_data:()=>WG,webcam:()=>LG,zip:()=>CG});var sG=li(dh()),rG=li(dh());function aG(e,t){return Am(e,t)}function Am(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ju(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Am(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function oG(e,t=E7){return N7(e,t)}function N7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ju(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=N7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function E7(e){return e===null?null:Ju(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function R7(e,t){let n=new Map;Am(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Am(e,t,n)}function Ju(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=v5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Je)&&!(e instanceof Promise)&&!t)}function iG(e){return e==null||lG(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Je||v.isTypedArray(e)}function lG(e){return e===null||typeof e!="object"&&typeof e!="function"}function uG(e){return aG(e,cG)}function cG(e){return e instanceof Je?{value:e.clone(),recurse:!1}:Ju(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var $7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},_7=class extends $7{constructor(){super(_7.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},D7=_7;D7.INITIAL_CAPACITY=32;function P7(e){return new hG(e)}function $y(e){return new fG(e)}function dG(e,t){return new O7(e,t)}function pG(e,t=ym.FAIL){return new kG(e,t)}var bn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new vG(this,e)}filter(e){return new xG(this,e)}map(e){return new bG(this,e)}mapAsync(e){return new F7(this,e)}serialMapAsync(e){return new F7(this,e).serial()}flatmap(e){return new wG(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new yG(this,e,t)}columnMajorBatch(e,t=!0,n=E7){return this.rowMajorBatch(e,t).map(r=>oG(r,n))}concatenate(e,t){return new O7(P7([this,e]),t)}take(e){return e<0||e==null?this:new AG(this,e)}skip(e){return e<0||e==null?this:new gG(this,e)}prefetch(e){return new M7(this,e)}shuffle(e,t){return new SG(this,e,t)}serial(){return new mG(this)}},hG=class extends bn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:uG(e),done:!1}}},fG=class extends bn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},mG=class extends bn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},gG=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ne(e.value)}return this.upstream.next()}},AG=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},yG=class extends bn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},xG=class extends bn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ne(e.value)}}},bG=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},vG=class extends bn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},F7=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=await this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},_y=class extends bn{constructor(){super();this.outputQueue=new D7,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},wG=class extends _y{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return!0}},O7=class extends bn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ym;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ym||(ym={}));var kG=class extends bn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof bn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await R7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},M7=class extends bn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new $7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},SG=class extends M7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=rG.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Qu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),gs(async()=>(await n.iterator()).columnMajorBatch(e,t,TG),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,gs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,gs(async()=>(await t.iterator()).filter(s=>q(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return gs(async()=>(await t.iterator()).map(n=>q(()=>e(n))),this.size)}mapAsync(e){let t=this;return gs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return gs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,gs(async()=>{let s=$y(async()=>({value:await t.iterator(),done:!1}));return dG(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,gs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=sG.alea(t||v.now().toString());return gs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,gs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Qu.MAX_BUFFER_SIZE=1e4;function gs(e,t=null){return new class extends Qu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function IG(e){return gs(async()=>P7(e),e.length)}function CG(e){if(!Ju(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return gs(async()=>{let n=await R7(e,s=>{if(s instanceof Qu)return{value:s.iterator(),recurse:!1};if(Ju(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return pG(n,ym.SHORTEST)},t)}function TG(e){if(e===null)return null;let t=e[0];return iG(t)?{value:NG(e),recurse:!1}:{value:null,recurse:!0}}function NG(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Je?yn(e):Pt(e)}var z7=class extends Qu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},xm='"',np=Symbol("out"),L7=Symbol("field"),bm=Symbol("quote"),Dy=Symbol("quoteafterquote"),B7=Symbol("quoteinquote"),W7=class extends Qu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new z7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=np;for(let o=0;o<r;o++)switch(a){case np:switch(e.charAt(o)){case xm:s=o+1,a=bm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=np;break;default:a=L7,s=o;break}break;case L7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=np,s=o+1;break;default:}break;case bm:switch(e.charAt(o)){case xm:a=Dy;break;default:}break;case Dy:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=np,s=o+1;break;case xm:a=bm;break;default:a=B7;break}break;case B7:switch(e.charAt(o)){case xm:a=bm;break;default:}break;default:}if(a===Dy?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},V7=class extends bn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(K().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new V7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Pt(n,t)}},U7=class extends bn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Kt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=ur([a,r,i,o],[1,4])}else this.cropBox=ur([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(K().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new U7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Hs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return q(()=>{let t=Xt(pe(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},G7=class{},H7=class extends bn{split(e){return new EG(this,e)}},EG=class extends H7{constructor(e,t){super();this.upstream=e,this.impl=new RG(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},RG=class extends _y{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$G=class extends bn{decodeUTF8(){return new _G(this)}},_G=class extends H7{constructor(e){super();this.upstream=e,this.impl=new DG(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},DG=class extends _y{constructor(e){super();if(this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=v5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},j7=class extends $G{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function PG(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=FG(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new j7(o,t)}else throw new Error(a.statusText)}var FG=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function q7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var X7=class extends G7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(q7(this.input)&&K().get("IS_NODE")){let e=Vs("fs");this.input=e.readFileSync(this.input.substr(7))}return new j7(this.input,this.options)}},K7=class extends G7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return q7(this.url)?new X7(this.url,this.fileOptions).iterator():PG(this.url,this.fileOptions)}};function OG(e,t={}){return new W7(new K7(e),t)}function MG(e){let t=$y(e);return gs(async()=>t)}function zG(e){return gs(async()=>{let t=await e();return $y(()=>t.next())})}async function LG(e,t){return U7.create(e,t)}async function BG(e){return V7.create(e)}var WG="0.0.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var VG=Ks.whereImpl,Z7=class extends eu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Zc(this,ss())}nextDataId(){return Z7.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&E.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ss().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return VG(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},Py=Z7;Py.nextDataId=0;var vm={};Oe(vm,{addImpl:()=>J7,bincountImpl:()=>Oy,bincountReduceImpl:()=>Q7,ceilImpl:()=>eS,concatImpl:()=>My,equalImpl:()=>tS,expImpl:()=>sS,expm1Impl:()=>aS,floorImpl:()=>oS,gatherNdImpl:()=>iS,gatherV2Impl:()=>lS,greaterEqualImpl:()=>cS,greaterImpl:()=>uS,lessEqualImpl:()=>pS,lessImpl:()=>dS,linSpaceImpl:()=>hS,logImpl:()=>fS,maxImpl:()=>mS,maximumImpl:()=>gS,minimumImpl:()=>AS,multiplyImpl:()=>zy,negImpl:()=>yS,notEqualImpl:()=>xS,prodImpl:()=>bS,rangeImpl:()=>By,rsqrtImpl:()=>vS,sigmoidImpl:()=>RH,simpleAbsImpl:()=>Y7,sliceImpl:()=>Sm,sparseFillEmptyRowsImpl:()=>kS,sparseReshapeImpl:()=>SS,sparseSegmentReductionImpl:()=>Wy,sqrtImpl:()=>DH,squaredDifferenceImpl:()=>IS,stridedSliceImpl:()=>CS,stringNGramsImpl:()=>TS,stringSplitImpl:()=>NS,stringToHashBucketFastImpl:()=>ES,subImpl:()=>RS,tileImpl:()=>$S,topKImpl:()=>DS,transposeImpl:()=>Ly,uniqueImpl:()=>PS});function Y7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var UG=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=Y7(r),n.makeOutput(s,t.shape,t.dtype)},GG={kernelName:di,backendName:"cpu",kernelFunc:UG};function Yt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let x=v.indexToLoc(A,i,l),y=x.slice(-d);m.forEach(C=>y[C]=0);let b=v.locToIndex(y,d,h),w=x.slice(-p);g.forEach(C=>w[C]=0);let k=v.locToIndex(w,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function As(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var HG={kernelName:ed,backendName:"cpu",kernelFunc:As};function wm(e,t,n="float32"){if(n==="complex64"){let r=wm(e,t,"float32"),a=wm(e,t,"float32");return As({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function zr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var jG={kernelName:Ha,backendName:"cpu",kernelFunc:zr};function kl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var qG={kernelName:ud,backendName:"cpu",kernelFunc:kl};function Wo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return zr({inputs:{x:r},backend:n});let o=wm(n,r.shape,r.dtype),i=Wo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=As({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=kl({inputs:{input:r},backend:n}),i=Wo({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=zr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Yt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var XG={kernelName:$a,backendName:"cpu",kernelFunc:Wo};function vn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Wo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Wo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,y=l.data.get(A.dataId).values,b=l.data.get(x.dataId).values,[w,k,C]=n(o.shape,i.shape,h,f,y,b),N=l.makeTensorInfo(C,"float32",w),R=l.makeTensorInfo(C,"float32",k),F=As({inputs:{real:N,imag:R},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(R),F}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function Fy(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),A=t.length,x=v.computeStrides(t),y=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let k=w%m.length,C=w%g.length,N=e(m[k*2],m[k*2+1],g[C*2],g[C*2+1]);d[w]=N.real,p[w]=N.imag}else for(let w=0;w<d.length;w++){let k=v.indexToLoc(w,c,u),C=k.slice(-A);h.forEach(P=>C[P]=0);let N=v.locToIndex(C,A,x),R=k.slice(-y);f.forEach(P=>R[P]=0);let F=v.locToIndex(R,y,b),_=e(m[N*2],m[N*2+1],g[F*2],g[F*2+1]);d[w]=_.real,p[w]=_.imag}return[d,p,i]}}var J7=Yt((e,t)=>e+t),KG=Fy((e,t,n,s)=>({real:e+n,imag:t+s})),sp=vn(Hr,J7,KG),ZG={kernelName:Hr,backendName:"cpu",kernelFunc:sp};function Oy(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function Q7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=ze([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Vo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function ht(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function ec(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var eS=Vo(e=>Math.ceil(e)),YG=ec(_a,eS),JG={kernelName:_a,backendName:"cpu",kernelFunc:YG};function My(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var tS=Yt((e,t)=>e===t?1:0),nS=vn(Ai,tS,null,"bool"),QG={kernelName:Ai,backendName:"cpu",kernelFunc:nS},sS=Vo(e=>Math.exp(e)),rS=ec(Ba,sS,"float32"),eH={kernelName:Ba,backendName:"cpu",kernelFunc:rS},aS=Vo(e=>Math.expm1(e)),tH=ec(xi,aS),nH={kernelName:xi,backendName:"cpu",kernelFunc:tH},oS=Vo(e=>Math.floor(e)),sH=ec(Wa,oS),rH={kernelName:Wa,backendName:"cpu",kernelFunc:sH};function iS(e,t,n,s,r,a,o,i,l){let c=ze([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function lS(e,t,n){let s=ze(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var uS=Yt((e,t)=>e>t?1:0),aH=vn(ki,uS,null,"bool"),oH={kernelName:ki,backendName:"cpu",kernelFunc:aH},cS=Yt((e,t)=>e>=t?1:0),iH=vn(Ga,cS,null,"bool"),lH={kernelName:Ga,backendName:"cpu",kernelFunc:iH},dS=Yt((e,t)=>e<t?1:0),uH=vn(Ii,dS,null,"bool"),cH={kernelName:Ii,backendName:"cpu",kernelFunc:uH},pS=Yt((e,t)=>e<=t?1:0),dH=vn(Ci,pS,null,"bool"),pH={kernelName:Ci,backendName:"cpu",kernelFunc:dH};function hS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var fS=Vo(e=>Math.log(e)),hH=ec(ja,fS),fH={kernelName:ja,backendName:"cpu",kernelFunc:hH};function mS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var gS=Yt((e,t)=>Math.max(e,t)),mH=vn(Xa,gS),gH={kernelName:Xa,backendName:"cpu",kernelFunc:mH},AS=Yt((e,t)=>Math.min(e,t)),AH=vn(Ja,AS),yH={kernelName:Ja,backendName:"cpu",kernelFunc:AH},zy=Yt((e,t)=>e*t),xH=Fy((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),km=vn(eo,zy,xH),bH={kernelName:eo,backendName:"cpu",kernelFunc:km};function yS(e,t,n){let s=v.createScalarValue(-1,n);return zy([],t,s,e,n)}function vH(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=yS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var wH={kernelName:Ni,backendName:"cpu",kernelFunc:vH},xS=Yt((e,t)=>e!==t?1:0),kH=vn(Ei,xS,null,"bool"),SH={kernelName:Ei,backendName:"cpu",kernelFunc:kH};function Ly(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Ds(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=Ly(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var IH={kernelName:Ao,backendName:"cpu",kernelFunc:Ds};function bS(e,t,n,s){let[r,a]=E.computeOutAndReduceShapes(e,s),o=Ln(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function CH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=E.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=E.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=bS(d.shape,d.dtype,h,u),A=m;return o&&(A=E.expandShapeToKeepDim(m,l)),p.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(A,g,f)}var TH={kernelName:Fi,backendName:"cpu",kernelFunc:CH};function By(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var vS=Vo(e=>1/Math.sqrt(e)),NH=ec(io,vS),EH={kernelName:io,backendName:"cpu",kernelFunc:NH},RH=Vo(e=>1/(1+Math.exp(-e))),wS=ht(uo,e=>1/(1+Math.exp(-e))),$H={kernelName:uo,backendName:"cpu",kernelFunc:wS};function Sm(e,t,n,s,r){let a=Ft.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=Ft.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=ze(s,r,l),u=ze(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function Sl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=Ft.parseSliceParams(r,a,o);Ft.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=Sm(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var _H={kernelName:Wi,backendName:"cpu",kernelFunc:Sl};function kS(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),A=v.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let x=0;x<i;++x)u[x]=x;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=v.getArrayFromDType(n,g*d),x=v.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],k=y[w],C=(w===0?0:f[w-1])+k;y[w]++;for(let N=0;N<d;++N)A[C*d+N]=e[b*d+N];x[C]=s[b],u[b]=C}for(let b=0;b<l;++b)if(y[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let C=1;C<d;++C)A[k*d+C]=0;x[k]=o}return[A,[g,d],x,c,u]}}function SS(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let x=0;x<p;++x)A+=e[g*p+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(A/f[x]),A%=f[x]}return[m,[o,i],l]}function Wy(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,b)=>y*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,x=r[m];for(;;){let y=0;if(g<i){if(y=r[g],x===y){++g;continue}if(x>=y)throw new Error("segment ids are not increasing")}if(x<0||x>=d)throw new Error(`Segment id ${x} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);x>A&&f.fill(o,A*c,x*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[x*c+k]+=e[w*c+k]}if(a)for(let b=0;b<c;b++)f[x*c+b]/=g-m;if(m=g,++g,A=x+1,x=y,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var DH=Vo(e=>Math.sqrt(e)),PH=ht(co,e=>Math.sqrt(e)),FH={kernelName:co,backendName:"cpu",kernelFunc:PH},IS=Yt((e,t)=>{let n=e-t;return n*n}),OH=vn(fo,IS),MH={kernelName:fo,backendName:"cpu",kernelFunc:OH};function CS(e,t,n,s){let r=ze(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var zH=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(x=>f[m++]=x);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function TS(e,t,n,s,r,a,o,i){return new zH(n,s,r,a,o,i).compute(e,t)}function LH(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function NS(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;LH(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function ES(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var RS=Yt((e,t)=>e-t),BH=Fy((e,t,n,s)=>({real:e-n,imag:t-s})),Vy=vn(mo,RS,BH),WH={kernelName:mo,backendName:"cpu",kernelFunc:Vy};function $S(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=ze(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var rp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function _S(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));_S(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),rp(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;rp(e[a],r)<0;)a=a+1;for(;rp(e[o],r)>0;)o=o-1}rp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function DS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((x,y)=>f[y]={value:x,index:y}),s<f.length&&(_S(f,s),f=f.slice(0,s)),r&&f.sort(rp);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,A[x]=f[x].index}let u=t.slice();return u[u.length-1]=s,[ze(u,n,l),ze(u,"int32",c)]}function PS(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new tn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let x=0;x<a[2];x++)g.push(l.get(A,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new tn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var VH="0.0.0";ol("cpu",()=>new Py,1);var FS=ht(La,e=>e>=0?e:Math.exp(e)-1),UH={kernelName:La,backendName:"cpu",kernelFunc:FS};function OS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var GH={kernelName:Si,backendName:"cpu",kernelFunc:OS},HH=Yt((e,t)=>e<0?t*e:e);function MS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=HH(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var jH={kernelName:so,backendName:"cpu",kernelFunc:MS},zS=ht(ro,e=>Math.max(0,e)),qH={kernelName:ro,backendName:"cpu",kernelFunc:zS},LS=ht(oo,e=>Math.min(Math.max(0,e),6)),XH={kernelName:oo,backendName:"cpu",kernelFunc:LS};function Uy(e,t,n,s,r){if(n==="linear")return zr({inputs:{x:t},backend:e});if(n==="relu")return zS({inputs:{x:t},backend:e});if(n==="elu")return FS({inputs:{x:t},backend:e});if(n==="relu6")return LS({inputs:{x:t},backend:e});if(n==="prelu")return MS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return OS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return wS({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var KH={kernelName:Oi,backendName:"cpu",kernelFunc:Rt};function BS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),C=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),N=o?k.shape[1]:k.shape[2],R=o?k.shape[2]:k.shape[1],F=i?C.shape[1]:C.shape[2],_=Math.max(g,A),P=n.data.get(k.dataId).values,T=n.data.get(C.dataId).values,M=v.computeStrides(k.shape),U=v.computeStrides(C.shape),[j,z,X]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Z,J,ee]=i?[1,U[1],U[0]]:[U[1],1,U[0]],re=R*F,Q=ze([_,R,F],k.dtype),te=Q.values,oe=n.blockSize;for(let fe=0;fe<_;fe++)for(let be=0;be<R;be+=oe)for(let we=0;we<F;we+=oe)for(let Ce=0;Ce<N;Ce+=oe){let Me=Math.min(be+oe,R),We=Math.min(we+oe,F),He=Math.min(Ce+oe,N);for(let qe=be;qe<Me;qe++)for(let ct=we;ct<We;ct++){let dt=0;for(let rt=Ce;rt<He;rt++){let wt=Math.min(fe,g-1)*j,ft=Math.min(fe,A-1)*ee,Ct=P[wt+qe*z+rt*X],_t=T[rt*Z+ct*J+ft];dt+=Ct*_t}te[fe*re+(qe*F+ct)]+=dt}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(y,Q.dtype,Q.values)}var ZH={kernelName:Ra,backendName:"cpu",kernelFunc:BS};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=BS({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=sp({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=Uy(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var JH={kernelName:xo,backendName:"cpu",kernelFunc:YH},QH=ht(su,e=>Math.acos(e)),ej={kernelName:su,backendName:"cpu",kernelFunc:QH},tj=ht(ru,e=>Math.acosh(e)),nj={kernelName:ru,backendName:"cpu",kernelFunc:tj};function sj(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=ze(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var rj={kernelName:Ta,backendName:"cpu",kernelFunc:sj};function aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y&&w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var oj={kernelName:au,backendName:"cpu",kernelFunc:aj};function ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y||w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var lj={kernelName:ou,backendName:"cpu",kernelFunc:ij};function uj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w>x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var cj={kernelName:Na,backendName:"cpu",kernelFunc:uj};function dj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w<x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var pj={kernelName:iu,backendName:"cpu",kernelFunc:dj},hj=ht(lu,e=>Math.asin(e)),fj={kernelName:lu,backendName:"cpu",kernelFunc:hj},mj=ht(uu,e=>Math.asinh(e)),gj={kernelName:uu,backendName:"cpu",kernelFunc:mj},Aj=ht(cu,e=>Math.atan(e)),yj={kernelName:cu,backendName:"cpu",kernelFunc:Aj},xj=Yt((e,t)=>Math.atan2(e,t)),bj=vn(pu,xj),vj={kernelName:pu,backendName:"cpu",kernelFunc:bj},wj=ht(du,e=>Math.atanh(e)),kj={kernelName:du,backendName:"cpu",kernelFunc:wj};function Gy(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*A,k=b*s[0];for(let C=0;C<r.inChannels;++C)for(let N=0;N<r.outHeight;++N){let R=N*o-p,F=Math.max(0,R),_=Math.min(r.inHeight,u+R),P=w+N*x;for(let T=0;T<r.outWidth;++T){let M=T*i-h,U=Math.max(0,M),j=Math.min(r.inWidth,d+M),z=f,X=0,Z=0;for(let ee=F;ee<_;ee+=l){let re=k+ee*s[1];for(let Q=U;Q<j;Q+=c){let te=re+Q*s[2],oe=e[te+C];a==="max"&&oe>z?z=oe:a==="avg"&&(X+=oe,Z++)}if(isNaN(z))break}let J=P+T*y+C;g[J]=a==="avg"?X/Z:z}}}return m}function WS(e,t,n,s,r=!1,a=!1){let o=ze(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=ze(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let x=0;x<s.outHeight;++x){let y=x*i-h,b=y;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+y);for(let k=0;k<s.outWidth;++k){let C=k*l-f,N=C;for(;N<0;)N+=u;let R=Math.min(s.inWidth,p+C),F=Number.NEGATIVE_INFINITY,_=-1;for(let P=b;P<w;P+=c){let T=P-y;for(let M=N;M<R;M+=u){let U=M-C,j=m.get(g,P,M,A);j>F&&(F=j,r?_=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+A:(P*s.inWidth+M)*s.inChannels+A:_=T*p+U)}}o.set(_,g,x,k,A)}}return o}function VS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=ze(r.outShape,n),b=y.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let R=0;R<r.batchSize;++R){let F=R*w,_=R*s[0];for(let P=0;P<r.inChannels;++P)for(let T=0;T<r.outDepth;++T){let M=T*o-m,U=M;for(;U<0;)U+=c;let j=Math.min(r.inDepth,p+M),z=F+T*k;for(let X=0;X<r.outHeight;++X){let Z=X*i-g,J=Z;for(;J<0;)J+=u;let ee=Math.min(r.inHeight,h+Z),re=z+X*C;for(let Q=0;Q<r.outWidth;++Q){let te=Q*l-A,oe=te;for(;oe<0;)oe+=d;let fe=Math.min(r.inWidth,f+te),be=re+Q*N,we=x,Ce=0,Me=0;for(let He=U;He<j;He+=c){let qe=_+He*s[1];for(let ct=J;ct<ee;ct+=u){let dt=qe+ct*s[2];for(let rt=oe;rt<fe;rt+=d){let wt=dt+rt*s[3],ft=e[wt+P];if(a==="max"&&ft>we?we=ft:a==="avg"&&(Ce+=ft,Me++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let We=be+P;b[We]=a==="avg"?Ce/Me:we}}}}return y}function Sj(e,t){let n=ze(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let x=A*s-p,y=x;for(;y<0;)y+=o;let b=Math.min(t.inDepth,c+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,C=k;for(;C<0;)C+=i;let N=Math.min(t.inHeight,u+k);for(let R=0;R<t.outWidth;++R){let F=R*a-f,_=F;for(;_<0;)_+=l;let P=Math.min(t.inWidth,d+F),T=Number.NEGATIVE_INFINITY,M=-1;for(let U=y;U<b;U+=o){let j=U-x;for(let z=C;z<N;z+=i){let X=z-k;for(let Z=_;Z<P;Z+=l){let J=Z-F,ee=e.get(m,U,z,Z,g);ee>=T&&(T=ee,M=j*u*d+X*u+J)}}}n.set(M,m,A,w,R,g)}}}return n}function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=zr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Gy(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Cj={kernelName:Ea,backendName:"cpu",kernelFunc:Ij};function Tj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=VS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var Nj={kernelName:Qc,backendName:"cpu",kernelFunc:Tj};function Ej(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,x=u.dilationHeight,y=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,C=b-1-u.padInfo.front,N=k-1-u.padInfo.left,R=w-1-u.padInfo.top,F=ze(a.shape,"float32"),_=1/(f*m*g),P=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let U=0;U<u.inDepth;++U)for(let j=0;j<u.inHeight;++j)for(let z=0;z<u.inWidth;++z){let X=U-C,Z=j-R,J=z-N,ee=0;for(let re=0;re<b;re+=A){let Q=(X+re)/d;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let te=0;te<w;te+=x){let oe=(Z+te)/p;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<k;fe+=y){let be=(J+fe)/h;if(be<0||be>=u.outWidth||Math.floor(be)!==be)continue;ee+=P.get(T,Q,oe,be,M)}}}F.set(ee*_,T,U,j,z,M)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var Rj={kernelName:Ah,backendName:"cpu",kernelFunc:Ej};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,x=u.effectiveFilterWidth,y=x-1-u.padInfo.left,b=A-1-u.padInfo.top,w=ze(o.shape,"float32"),k=1/(h*f),C=n.data.get(r.dataId).values,N=ze(r.shape,"float32",C);for(let R=0;R<u.batchSize;++R)for(let F=0;F<u.inChannels;++F)for(let _=0;_<u.inHeight;++_)for(let P=0;P<u.inWidth;++P){let T=_-b,M=P-y,U=0;for(let j=0;j<A;j+=m){let z=(T+j)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<x;X+=g){let Z=(M+X)/p;if(Z<0||Z>=u.outWidth||Math.floor(Z)!==Z)continue;U+=N.get(R,z,Z,F)}}w.set(U*k,R,_,P,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var _j={kernelName:gh,backendName:"cpu",kernelFunc:$j};function Dj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,x=p.length,y=d.length,b=0,w=0,k=0,C=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[w++])*h[k++]/Math.sqrt(p[C++]+c),b>=g&&(b=0),w>=y&&(w=0),k>=A&&(k=0),C>=x&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var Pj={kernelName:Ua,backendName:"cpu",kernelFunc:Dj};function Fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ds({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Sl({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Oj={kernelName:pi,backendName:"cpu",kernelFunc:Fj};function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=Oy(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var zj={kernelName:yh,backendName:"cpu",kernelFunc:Mj};function Lj(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Bj={kernelName:xh,backendName:"cpu",kernelFunc:Lj},Wj=ht(jr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),Vj={kernelName:jr,backendName:"cpu",kernelFunc:Wj},Uj=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},Gj={kernelName:td,backendName:"cpu",kernelFunc:Uj};function tc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var Hj={kernelName:ad,backendName:"cpu",kernelFunc:tc};function nc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return zr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>kl({inputs:{input:b},backend:n})),g=i.map(b=>tc({inputs:{input:b},backend:n})),A=nc({inputs:m,backend:n,attrs:{axis:a}}),x=nc({inputs:g,backend:n,attrs:{axis:a}}),y=As({inputs:{real:A,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),y}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=My(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var jj={kernelName:hi,backendName:"cpu",kernelFunc:nc};function US(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,x=p.padInfo.top,y=p.dataFormat==="channelsLast",b=new tn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),C=w[0],N=y?w[1]:w[2],R=y?w[2]:1,F=y?1:w[1],_=b.strides[0],P=y?b.strides[1]:b.strides[2],T=y?b.strides[2]:1,M=y?1:b.strides[1],U=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let Z=X*C,J=X*_;for(let ee=0;ee<p.outHeight;++ee){let re=J+ee*P,Q=ee*p.strideHeight-x;for(let te=0;te<h;++te){let oe=Q+te*m;if(oe<0||oe>=p.inHeight)continue;let fe=te*k[0],be=Z+oe*N;for(let we=0;we<p.outWidth;++we){let Ce=re+we*T,Me=we*p.strideWidth-A;for(let We=0;We<f;++We){let He=Me+We*g;if(He<0||He>=p.inWidth)continue;let qe=fe+We*k[1],ct=be+He*R,dt=qe;for(let rt=0;rt<p.inChannels;++rt){let wt=U[ct+rt*F];for(let ft=0;ft<p.outChannels;++ft)z[Ce+ft*M]+=wt*j[dt+ft];dt+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var qj={kernelName:Da,backendName:"cpu",kernelFunc:US};function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",x=new tn(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=new tn(r.shape,r.dtype,w),N=new tn(a.shape,a.dtype,k);for(let R=0;R<m;++R){let F=Math.max(0,Math.ceil((b-R)/h)),_=Math.min(p.outHeight,(p.inHeight+b-R)/h);for(let P=0;P<g;++P){let T=Math.max(0,Math.ceil((y-P)/f)),M=Math.min(p.outWidth,(p.inWidth+y-P)/f);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let z=0;for(let X=0;X<p.batchSize;++X)for(let Z=F;Z<_;++Z){let J=R+Z*h-b;for(let ee=T;ee<M;++ee){let re=P+ee*f-y;A?z+=C.get(X,J,re,U)*N.get(X,Z,ee,j):z+=C.get(X,U,J,re)*N.get(X,j,Z,ee)}}x.set(z,R,P,U,j)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Kj={kernelName:bh,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new tn(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[y,b,w]=d,{batchSize:k,filterHeight:C,filterWidth:N,inChannels:R,inHeight:F,inWidth:_,outChannels:P,outHeight:T,outWidth:M,strideHeight:U,strideWidth:j}=f;h=f.dataFormat;let z=C-1-f.padInfo.top,X=N-1-f.padInfo.left,Z=h==="channelsLast",J=m.strides[0],ee=Z?m.strides[1]:m.strides[2],re=Z?m.strides[2]:1,Q=Z?1:m.strides[1],te=p[0],oe=Z?p[1]:p[2],fe=Z?p[2]:1,be=Z?1:p[1];for(let we=0;we<k;++we)for(let Ce=0;Ce<R;++Ce)for(let Me=0;Me<F;++Me){let We=Me-z,He=Math.max(0,Math.ceil(We/U)),qe=Math.min(T,(C+We)/U);for(let ct=0;ct<_;++ct){let dt=ct-X,rt=Math.max(0,Math.ceil(dt/j)),wt=Math.min(M,(N+dt)/j),ft=0;for(let _t=He;_t<qe;++_t){let ks=_t*U-We;for(let kn=rt;kn<wt;++kn){let sr=kn*j-dt,Fn=te*we+oe*_t+fe*kn,us=y*(C-1-ks)+b*(N-1-sr)+w*Ce;for(let Bs=0;Bs<P;++Bs){let Ss=A[Fn+be*Bs],Sn=x[us+Bs];ft+=Ss*Sn}}}let Ct=J*we+ee*Me+re*ct+Q*Ce;g[Ct]=ft}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Yj={kernelName:Pa,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,x=g.left,y=g.top,b=new tn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=b.values,N=v.computeStrides(r.shape),R=v.computeStrides(a.shape);for(let F=0;F<c.batchSize;++F){let _=F*N[0],P=F*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=P+T*b.strides[1],U=T*c.strideDepth-A;for(let j=0;j<u;++j){let z=U+j*h;if(z<0||z>=c.inDepth)continue;let X=j*R[0],Z=_+z*N[1];for(let J=0;J<c.outHeight;++J){let ee=M+J*b.strides[2],re=J*c.strideHeight-y;for(let Q=0;Q<d;++Q){let te=re+Q*f;if(te<0||te>=c.inHeight)continue;let oe=X+Q*R[1],fe=Z+te*N[2];for(let be=0;be<c.outWidth;++be){let we=ee+be*c.outChannels,Ce=be*c.strideWidth-x;for(let Me=0;Me<p;++Me){let We=Ce+Me*m;if(We<0||We>=c.inWidth)continue;let He=oe+Me*R[2],qe=fe+We*c.inChannels,ct=He;for(let dt=0;dt<c.inChannels;++dt){let rt=w[qe+dt];for(let wt=0;wt<c.outChannels;++wt)C[we+wt]+=rt*k[ct+wt];ct+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var Qj={kernelName:nd,backendName:"cpu",kernelFunc:Jj};function eq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,x=new tn(d.filterShape,"float32"),y=x.values,[b,w,k,C]=x.strides,N=n.data.get(a.dataId).values,[R,F,_,P]=u,T=n.data.get(r.dataId).values,[M,U,j,z]=c,X=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let ee=0;ee<m;++ee){let re=Math.max(0,Math.ceil((X-ee)/p)),Q=Math.min(d.outDepth,(d.inDepth+X-ee)/p),te=ee*b;for(let oe=0;oe<g;++oe){let fe=Math.max(0,Math.ceil((J-oe)/h)),be=Math.min(d.outHeight,(d.inHeight+J-oe)/h),we=oe*w+te;for(let Ce=0;Ce<A;++Ce){let Me=Math.max(0,Math.ceil((Z-Ce)/f)),We=Math.min(d.outWidth,(d.inWidth+Z-Ce)/f),He=Ce*k+we;for(let qe=0;qe<d.inChannels;++qe){let ct=qe*C+He;for(let dt=0;dt<d.outChannels;++dt){let rt=0;for(let wt=0;wt<d.batchSize;++wt){let ft=wt*M,Ct=wt*R;for(let _t=re;_t<Q;++_t){let kn=(ee+_t*p-X)*U+ft,sr=_t*F+Ct;for(let Fn=fe;Fn<be;++Fn){let Bs=(oe+Fn*h-J)*j+kn,Ss=Fn*_+sr;for(let Sn=Me;Sn<We;++Sn){let Rn=(Ce+Sn*f-Z)*z+Bs,kr=Sn*P+Ss;rt+=T[Rn+qe]*N[kr+dt]}}}}y[ct+dt]=rt}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var tq={kernelName:vh,backendName:"cpu",kernelFunc:eq};function nq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(l,a.shape,i,1,o),p=new tn(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,x=n.data.get(r.dataId).values,[y,b,w,k]=c,C=n.data.get(a.dataId).values,[N,R,F,_]=u,{batchSize:P,filterDepth:T,filterHeight:M,filterWidth:U,inChannels:j,inDepth:z,inHeight:X,inWidth:Z,outChannels:J,outDepth:ee,outHeight:re,outWidth:Q,strideDepth:te,strideHeight:oe,strideWidth:fe}=d,be=T-1-d.padInfo.front,we=M-1-d.padInfo.top,Ce=U-1-d.padInfo.left;for(let Me=0;Me<P;++Me)for(let We=0;We<j;++We)for(let He=0;He<z;++He){let qe=He-be,ct=Math.max(0,Math.ceil(qe/te)),dt=Math.min(ee,(T+qe)/te);for(let rt=0;rt<X;++rt){let wt=rt-we,ft=Math.max(0,Math.ceil(wt/oe)),Ct=Math.min(re,(M+wt)/oe);for(let _t=0;_t<Z;++_t){let ks=_t-Ce,kn=Math.max(0,Math.ceil(ks/fe)),sr=Math.min(Q,(U+ks)/fe),Fn=0;for(let us=ct;us<dt;++us){let Bs=us*te-qe;for(let Ss=ft;Ss<Ct;++Ss){let Sn=Ss*oe-wt;for(let wr=kn;wr<sr;++wr){let Rn=wr*fe-ks,kr=y*Me+b*us+w*Ss+k*wr,Sr=N*(T-1-Bs)+R*(M-1-Sn)+F*(U-1-Rn)+_*We;for(let ma=0;ma<J;++ma){let Pc=x[kr+ma],rr=C[Sr+ma];Fn+=Pc*rr}}}}h[f*Me+m*He+g*rt+A*_t+We]=Fn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var sq={kernelName:wh,backendName:"cpu",kernelFunc:nq},rq=ht(Fa,e=>Math.cos(e)),aq={kernelName:Fa,backendName:"cpu",kernelFunc:rq},oq=ht(Oa,e=>Math.cosh(e)),iq={kernelName:Oa,backendName:"cpu",kernelFunc:oq};function lq(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=ze([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(A.shape);for(let C=0;C<f;C++){let N=C*4,R=x[N],F=x[N+1],_=x[N+2],P=x[N+3],T=y[C];if(T>=u)continue;let M=m>1?(_-R)*(d-1)/(m-1):0,U=g>1?(P-F)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let z=m>1?R*(d-1)+j*M:.5*(R+_)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let Z=0;Z<h;Z++){let J=Z+X*k[2]+j*k[1]+C*k[0];A.values[J]=c}continue}if(l==="bilinear"){let X=Math.floor(z),Z=Math.ceil(z),J=z-X;for(let ee=0;ee<g;ee++){let re=g>1?F*(p-1)+ee*U:.5*(F+P)*(p-1);if(re<0||re>p-1){for(let fe=0;fe<h;fe++){let be=fe+ee*k[2]+j*k[1]+C*k[0];A.values[be]=c}continue}let Q=Math.floor(re),te=Math.ceil(re),oe=re-Q;for(let fe=0;fe<h;fe++){let be=fe+Q*w[2]+X*w[1]+T*w[0],we=b[be];be=fe+te*w[2]+X*w[1]+T*w[0];let Ce=b[be];be=fe+Q*w[2]+Z*w[1]+T*w[0];let Me=b[be];be=fe+te*w[2]+Z*w[1]+T*w[0];let We=b[be],He=we+(Ce-we)*oe,qe=Me+(We-Me)*oe;be=fe+ee*k[2]+j*k[1]+C*k[0],A.values[be]=He+(qe-He)*J}}}else for(let X=0;X<g;++X){let Z=g>1?F*(p-1)+X*U:.5*(F+P)*(p-1);if(Z<0||Z>p-1){for(let re=0;re<h;re++){let Q=re+X*k[2]+j*k[1]+C*k[0];A.values[Q]=c}continue}let J=Math.round(Z),ee=Math.round(z);for(let re=0;re<h;re++){let Q=re+J*w[2]+ee*w[1]+T*w[0],te=re+X*k[2]+j*k[1]+C*k[0];A.values[te]=b[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var uq={kernelName:mi,backendName:"cpu",kernelFunc:lq};function cq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=E.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ds({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ln(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,x)=>A+f-x-1:(A,x)=>A+x;for(let A=0;A<h.length;A+=f)for(let x=0;x<f;x++){let y=m(A,x);if(x===0)p[y]=o?0:h[y];else{let b=m(A,x-1);p[y]=o?h[b]+p[b]:h[y]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=E.getUndoAxesPermutation(l),x=Ds({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),x}return g}var dq={kernelName:fi,backendName:"cpu",kernelFunc:cq};function pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Oy(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=Q7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var hq={kernelName:kh,backendName:"cpu",kernelFunc:pq};function fq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let x=0;x<d;++x){let y=Math.floor(x/a),b=x%a;for(let w=0;w<p;++w){let k=Math.floor(w/a),C=w%a,N=(b*a+C)*h;for(let R=0;R<h;++R){let _=R+N+u*(k+c*(y+l*A));m[g++]=f[_]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var mq={kernelName:gi,backendName:"cpu",kernelFunc:fq};function GS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:x}=h,y=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new tn(h.outShape,r.dtype),C=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,R=k.values;for(let F=0;F<h.batchSize;++F){let _=F*u[0],P=F*k.strides[0];for(let T=0;T<h.outHeight;++T){let M=P+T*k.strides[1],U=T*h.strideHeight-b;for(let j=0;j<f;++j){let z=U+j*g;if(z<0||z>=h.inHeight)continue;let X=j*d[0],Z=_+z*u[1];for(let J=0;J<h.outWidth;++J){let ee=M+J*k.strides[2],re=J*h.strideWidth-y;for(let Q=0;Q<m;++Q){let te=re+Q*A;if(te<0||te>=h.inWidth)continue;let oe=X+Q*d[1],fe=Z+te*h.inChannels,be=ee,we=oe;for(let Ce=0;Ce<h.inChannels;++Ce){let Me=C[fe+Ce];for(let We=0;We<w;++We)R[be+We]+=Me*N[we+We];be+=w,we+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var gq={kernelName:Ma,backendName:"cpu",kernelFunc:GS};function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new tn(d.filterShape,"float32"),A=d.padInfo.left,x=d.padInfo.top,y=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new tn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,C=new tn(a.shape,a.dtype,k);for(let N=0;N<f;++N){let R=Math.max(0,Math.ceil((x-N)/p)),F=Math.min(d.outHeight,(d.inHeight+x-N)/p);for(let _=0;_<m;++_){let P=Math.max(0,Math.ceil((A-_)/h)),T=Math.min(d.outWidth,(d.inWidth+A-_)/h);for(let M=0;M<d.outChannels;++M){let U=Math.trunc(M/y),j=M%y,z=0;for(let X=0;X<d.batchSize;++X)for(let Z=R;Z<F;++Z){let J=N+Z*p-x;for(let ee=P;ee<T;++ee){let re=_+ee*h-A;z+=w.get(X,J,re,U)*C.get(X,Z,ee,M)}}g.set(z,N,_,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var yq={kernelName:Sh,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new tn(h.inShape,"float32"),m=f.values,[g,A,x]=f.strides,y=n.data.get(r.dataId).values,[b,w,k]=d,C=n.data.get(a.dataId).values,[N,R,F]=p,{batchSize:_,filterHeight:P,filterWidth:T,inChannels:M,inHeight:U,inWidth:j,outChannels:z,outHeight:X,outWidth:Z,strideHeight:J,strideWidth:ee}=h,re=P-1-h.padInfo.top,Q=T-1-h.padInfo.left,te=z/M;for(let oe=0;oe<_;++oe)for(let fe=0;fe<M;++fe)for(let be=0;be<U;++be){let we=be-re,Ce=Math.max(0,Math.ceil(we/J)),Me=Math.min(X,(P+we)/J);for(let We=0;We<j;++We){let He=We-Q,qe=Math.max(0,Math.ceil(He/ee)),ct=Math.min(Z,(T+He)/ee),dt=0;for(let rt=Ce;rt<Me;++rt){let wt=rt*J-we;for(let ft=qe;ft<ct;++ft){let Ct=ft*ee-He,_t=b*oe+w*rt+k*ft,ks=N*(P-1-wt)+R*(T-1-Ct)+F*fe;for(let kn=0;kn<te;++kn){let sr=fe*te+kn,Fn=y[_t+sr],us=C[ks+kn];dt+=Fn*us}}}m[g*oe+A*be+x*We+fe]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var bq={kernelName:Ih,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=ze([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var wq={kernelName:Ch,backendName:"cpu",kernelFunc:vq},kq={kernelName:sd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:x,padInfo:y,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:R,outShape:F}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=v.sizeFromShape(F),P=F.length,T=v.getArrayFromDType(s.dtype,_);for(let U=0;U<h;++U)for(let j=0;j<A;++j){let z=j*b-y.top;for(let X=0;X<x;++X){let Z=X*w-y.left;for(let J=0;J<g;++J){let ee=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<k;++Q){let te=z+Q*N;if(te>=0&&te<f)for(let oe=0;oe<C;++oe){let fe=Z+oe*R;if(fe>=0&&fe<m){let be=v.locToIndex([U,te,fe,J],u,v.computeStrides(s.shape)),we=v.locToIndex([Q,oe,J],p,v.computeStrides(r.shape)),Ce=c[be]+d[we];Ce>ee&&(ee=Ce)}}}let re=v.locToIndex([U,j,X,J],P,v.computeStrides(F));T[re]=ee}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),F,s.dtype),shape:F,dtype:s.dtype}}},Sq={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:R}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${Nh}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let F=v.toNestedArray(R,c.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*y-x.top;for(let j=0;j<A;++j){let z=j*b-x.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,J=0,ee=0;for(let re=0;re<w;++re){let Q=U+re*C;if(Q>=0&&Q<h)for(let te=0;te<k;++te){let oe=z+te*N;if(oe>=0&&oe<f){let fe=u[T][Q][oe][X]+d[re][te][X];fe>Z&&(Z=fe,J=re,ee=te)}}}_[J][ee][X]+=F[T][M][j][X]}}}return{dataId:c.write(v.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Iq={kernelName:Th,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:R}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${Th}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let F=v.toNestedArray(R,c.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*y-x.top;for(let j=0;j<A;++j){let z=j*b-x.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,J=U<0?0:U,ee=z<0?0:z;for(let re=0;re<w;++re){let Q=U+re*C;if(Q>=0&&Q<h)for(let te=0;te<k;++te){let oe=z+te*N;if(oe>=0&&oe<f){let fe=u[T][Q][oe][X]+d[re][te][X];fe>Z&&(Z=fe,J=Q,ee=oe)}}}_[T][J][ee][X]+=F[T][M][j][X]}}}return{dataId:c.write(v.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function ap(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Wo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=zr({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ds({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=wm(n,h,m),A=v.sizeFromShape(f),x=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let b=0;b<x.length;++b){let w=b*A,k=0;for(let C=0;C<A;++C)k+=y[w+C];x[b]=k}if(o){let b=E.expandShapeToKeepDim(g.shape,c),w=g;g=Rt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var Cq={kernelName:po,backendName:"cpu",kernelFunc:ap};function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Ds({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Rt({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=km({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=ap({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Nq={kernelName:rd,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var Rq={kernelName:Eh,backendName:"cpu",kernelFunc:Eq},$q=E.ERF_P,_q=E.ERF_A1,Dq=E.ERF_A2,Pq=E.ERF_A3,Fq=E.ERF_A4,Oq=E.ERF_A5,Mq=ht(hu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+$q*n);return t*(1-((((Oq*s+Fq)*s+Pq)*s+Dq)*s+_q)*s*Math.exp(-n*n))}),zq={kernelName:hu,backendName:"cpu",kernelFunc:Mq};function Im(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var Lq={kernelName:yi,backendName:"cpu",kernelFunc:Im},Bq=Yt((e,t)=>e/t),Hy=vn(za,Bq),jy={kernelName:za,backendName:"cpu",kernelFunc:Hy};function HS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=Sl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Sl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=As({inputs:{real:A,imag:x},backend:n}),{real:b,imag:w}=Wq(y,t,n),k=E.mergeRealAndImagArrays(b,w);for(let C=0;C<a;C++){let N=E.getComplexWithIndex(k,C);d[g*a+C]=N.real,p[g*a+C]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(y)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=As({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Wq(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Vq(s)){let i=qy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=zr({inputs:{x:d},backend:n}),h=jy.kernelFunc({inputs:{a:c,b:d},backend:n}),f=jy.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=E.mergeRealAndImagArrays(a,o),l=Uq(i,s,t);return E.splitRealAndImagArrays(l)}}function Vq(e){return(e&e-1)==0}function qy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=E.mergeRealAndImagArrays(e,t),o=n/2,i=E.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=As({inputs:{real:d,imag:p},backend:r}),f=E.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],x=r.makeTensorInfo(A,"float32",m),y=r.makeTensorInfo(A,"float32",g),b=As({inputs:{real:x,imag:y},backend:r}),w=qy(l,c,o,s,r),k=w.real,C=w.imag,N=[k.length],R=r.makeTensorInfo(N,"float32",k),F=r.makeTensorInfo(N,"float32",C),_=As({inputs:{real:R,imag:F},backend:r}),P=qy(m,g,o,s,r),T=P.real,M=P.imag,U=[T.length],j=r.makeTensorInfo(U,"float32",T),z=r.makeTensorInfo(U,"float32",M),X=As({inputs:{real:j,imag:z},backend:r}),Z=E.exponents(n,s),J=[Z.real.length],ee=r.makeTensorInfo(J,"float32",Z.real),re=r.makeTensorInfo(J,"float32",Z.imag),Q=As({inputs:{real:ee,imag:re},backend:r}),te=km({inputs:{a:Q,b:X},backend:r}),oe=sp({inputs:{a:_,b:te},backend:r}),fe=Vy({inputs:{a:_,b:te},backend:r}),be=kl({inputs:{input:oe},backend:r}),we=kl({inputs:{input:fe},backend:r}),Ce=tc({inputs:{input:oe},backend:r}),Me=tc({inputs:{input:fe},backend:r}),We=nc({inputs:[be,we],backend:r,attrs:{axis:0}}),He=nc({inputs:[Ce,Me],backend:r,attrs:{axis:0}}),qe=r.data.get(We.dataId).values,ct=r.data.get(He.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(He),{real:qe,imag:ct}}function Uq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=E.exponent(r*i,t,n),c=E.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),E.assignToTypedArray(s,a,o,r)}return s}function Gq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=HS(i,!1,n),c=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Hq={kernelName:Rh,backendName:"cpu",kernelFunc:Gq};function Xy(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return qq(i,r,o),t.makeTensorInfo(s,o,i)}var jq={kernelName:fu,backendName:"cpu",kernelFunc:Xy};function qq(e,t,n){e.fill(t)}var Xq={kernelName:bi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let x=0;x<c;x++){let y=Math.round(l-g-1),b=h+m+A+x,w=u[b];if(y>=0&&y<l){let k=y*c,C=h+m+k+x;w=u[C]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Kq=Yt((e,t)=>Math.floor(e/t)),Zq=vn(Va,Kq,null,"int32"),Yq={kernelName:Va,backendName:"cpu",kernelFunc:Zq};function Jq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=US({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=sp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Uy(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Qq={kernelName:bo,backendName:"cpu",kernelFunc:Jq};function eX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=GS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=sp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Uy(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var tX={kernelName:vo,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=iS(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var sX={kernelName:wi,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=v.sizeFromShape(a.shape),h=E.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),x=n.bufferSync(f),y=lS(x,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var aX={kernelName:vi,backendName:"cpu",kernelFunc:rX};function oX(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=HS(i,!0,n),c=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var iX={kernelName:$h,backendName:"cpu",kernelFunc:oX},lX=ht(mu,e=>Number.isFinite(e)?1:0,"bool"),uX={kernelName:mu,backendName:"cpu",kernelFunc:lX},cX=ht(gu,e=>Math.abs(e)===1/0?1:0,"bool"),dX={kernelName:gu,backendName:"cpu",kernelFunc:cX},pX=ht(Au,e=>Number.isNaN(e)?1:0,"bool"),hX={kernelName:Au,backendName:"cpu",kernelFunc:pX};function fX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=hS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var mX={kernelName:_h,backendName:"cpu",kernelFunc:fX},gX=ht(yu,e=>Math.log1p(e)),AX={kernelName:yu,backendName:"cpu",kernelFunc:gX},yX=Yt((e,t)=>e&&t),xX=vn(Ti,yX,null,"bool"),bX={kernelName:Ti,backendName:"cpu",kernelFunc:xX},vX=ht(xu,e=>e?0:1,"bool"),wX={kernelName:xu,backendName:"cpu",kernelFunc:vX},kX=Yt((e,t)=>e||t),SX=vn(od,kX,null,"bool"),IX={kernelName:od,backendName:"cpu",kernelFunc:SX};function CX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,u),y=0;for(;A<=x;A++){let b=d[A];y+=b*b}return y}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var TX={kernelName:id,backendName:"cpu",kernelFunc:CX};function NX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let x=0;x<A;x++){let y=x%p,b=x-y+Math.max(0,y-i),w=x-y+Math.min(p,y+i+1),k=0;for(let C=b;C<w;C++)k+=Math.pow(f[C],2);k=c*k+l;for(let C=b;C<w;C++){let N=-2*c*u*f[C]*m[x]/k;x===C&&(N+=Math.pow(k,-u)),N*=h[x],g[C]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var EX={kernelName:Dh,backendName:"cpu",kernelFunc:NX};function jS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=E.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=Ly(h,l,r.dtype,p,b),d=E.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),E.assertAxesAreInnerMostDims("max",d,c);let[f,m]=E.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),A=mS(h,g,f,r.dtype),x=i.write(A,f,r.dtype),y=f;return o&&(y=E.expandShapeToKeepDim(f,u)),{dataId:x,shape:y,dtype:r.dtype}}var RX={kernelName:qa,backendName:"cpu",kernelFunc:jS};function $X(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=zr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Gy(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var _X={kernelName:Ka,backendName:"cpu",kernelFunc:$X};function DX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=VS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var PX={kernelName:ld,backendName:"cpu",kernelFunc:DX};function FX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=Sj(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,y=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=y-1-u.padInfo.front,C=w-1-u.padInfo.left,N=b-1-u.padInfo.top,R=ze(a.shape,"float32"),F=n.bufferSync(r);for(let _=0;_<u.batchSize;++_)for(let P=0;P<u.inChannels;++P)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let U=0;U<u.inWidth;++U){let j=T-k,z=M-N,X=U-C,Z=0;for(let J=0;J<y;J+=g){let ee=(j+J)/h;if(!(ee<0||ee>=u.outDepth||Math.floor(ee)!==ee))for(let re=0;re<b;re+=A){let Q=(z+re)/f;if(!(Q<0||Q>=u.outHeight||Math.floor(Q)!==Q))for(let te=0;te<w;te+=x){let oe=(X+te)/m;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let fe=y*b*w-1-p.get(_,ee,Q,oe,P),be=J*b*w+re*w+te,we=fe===be?1:0;if(we===0)continue;Z+=F.get(_,ee,Q,oe,P)*we}}}R.set(Z,_,T,M,U,P)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var OX={kernelName:Fh,backendName:"cpu",kernelFunc:FX};function MX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=ze(p.outShape,i.dtype,WS(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,x=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=y-1-p.padInfo.top,C=ze(i.shape,"float32"),N=n.data.get(r.dataId).values,R=ze(r.shape,"float32",N);for(let F=0;F<p.batchSize;++F)for(let _=0;_<p.inChannels;++_)for(let P=0;P<p.inHeight;++P)for(let T=0;T<p.inWidth;++T){let M=P-k,U=T-w,j=0;for(let z=0;z<y;z+=A){let X=(M+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let Z=0;Z<b;Z+=x){let J=(U+Z)/g;if(J<0||J>=p.outWidth||Math.floor(J)!==J)continue;let ee=y*b-1-f.get(F,X,J,_),re=z*b+Z,Q=ee===re?1:0;if(Q===0)continue;j+=R.get(F,X,J,_)*Q}}C.set(j,F,P,T,_)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var zX={kernelName:Ph,backendName:"cpu",kernelFunc:MX};function LX(e,t,n,s,r){let a=v.computeStrides(t),o=Gy(e,t,n,a,r,"max"),i=WS(e,t,n,r,!0,s);return[o.values,i.values]}var BX={kernelName:Oh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=LX(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function WX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Wo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Hy({inputs:{a:h,b:p},backend:n});d.push(f);let m=ap({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var VX={kernelName:Za,backendName:"cpu",kernelFunc:WX};function UX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<y)&&(y=w)}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var GX={kernelName:Ya,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((y,b)=>y[0]+r.shape[b]+y[1]),l=a.map(y=>y[0]),c=a.map((y,b)=>y[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),A=v.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let b=v.indexToLoc(y,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,C)=>k-l[C]);let w=v.locToIndex(b,p,h);A[y]=d[w]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var jX={kernelName:Qa,backendName:"cpu",kernelFunc:HX},qX=Yt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),XX=vn(bu,qX),KX={kernelName:bu,backendName:"cpu",kernelFunc:XX},ZX=li(dh());function qS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=jS({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Rt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=Vy({inputs:{a:r,b:d},backend:n}),h=rS({inputs:{x:p},backend:n}),f=ap({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Hy({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var YX={kernelName:ho,backendName:"cpu",kernelFunc:qS};function JX(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:qS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+d[m+y];let A=ZX.alea(o.toString()),x=f*a;for(let y=0;y<a;++y){let b=A();h[x+y]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+y]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var QX={kernelName:Mh,backendName:"cpu",kernelFunc:JX},eK=Ks.nonMaxSuppressionV3Impl;function tK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=eK(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var nK={kernelName:Ri,backendName:"cpu",kernelFunc:tK},sK=Ks.nonMaxSuppressionV4Impl;function rK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=sK(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var aK={kernelName:vu,backendName:"cpu",kernelFunc:rK},oK=Ks.nonMaxSuppressionV5Impl;function iK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=oK(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var lK={kernelName:$i,backendName:"cpu",kernelFunc:iK};function uK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var cK={kernelName:Di,backendName:"cpu",kernelFunc:uK};function Cm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=Cm({inputs:{x:r},backend:n}),o=tc({inputs:{input:s},backend:n}),i=Cm({inputs:{x:o},backend:n}),l=As({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Xy({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var dK={kernelName:Zi,backendName:"cpu",kernelFunc:Cm};function XS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=XS({inputs:{x:r},backend:n}),o=tc({inputs:{input:s},backend:n}),i=Cm({inputs:{x:o},backend:n}),l=As({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Xy({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var pK={kernelName:_i,backendName:"cpu",kernelFunc:XS};function KS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Im({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Im({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=nc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var hK={kernelName:Pi,backendName:"cpu",kernelFunc:KS};function fK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((x,y)=>x[0]+r.shape[y]+x[1]),l=a.map(x=>x[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<u;x++){let b=v.indexToLoc(x,d,p).map((k,C)=>k+l[C]),w=v.locToIndex(b,f,m);g[w]=c[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var ZS={kernelName:to,backendName:"cpu",kernelFunc:fK},mK=Yt((e,t)=>Math.pow(e,t)),gK=vn(no,mK),AK={kernelName:no,backendName:"cpu",kernelFunc:gK};function yK(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=By(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var xK={kernelName:wu,backendName:"cpu",kernelFunc:yK},bK=ht(ku,e=>1/e),vK={kernelName:ku,backendName:"cpu",kernelFunc:bK};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=0,b=A[0]/x[0],w=A[1]/x[1];for(let k=0;k<d;k++)for(let C=0;C<c;C++){let N;o?N=b*(C+.5)-.5:N=b*C;let R=Math.max(0,Math.floor(N)),F=N-R,_=Math.min(p-1,Math.ceil(N)),P=k*l[0]+R*l[1],T=k*l[0]+_*l[1];for(let M=0;M<u;M++){let U;o?U=w*(M+.5)-.5:U=w*M;let j=Math.max(0,Math.floor(U)),z=U-j,X=Math.min(h-1,Math.ceil(U)),Z=P+j*l[2],J=T+j*l[2],ee=P+X*l[2],re=T+X*l[2];for(let Q=0;Q<f;Q++){let te=m[Z+Q],oe=m[J+Q],fe=m[ee+Q],be=m[re+Q],we=te+(fe-te)*z,Ce=oe+(be-oe)*z,Me=we+(Ce-we)*F;g[y++]=Me}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var kK={kernelName:ao,backendName:"cpu",kernelFunc:wK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],x=m[1]/g[1],y=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let C=0;C<p;C++){let N=C*A,R=Math.floor(N),F=Math.min(Math.ceil(N),c-1),_=k+R*i[1],P=k+F*i[1],T=N-R,M=1-T;for(let U=0;U<h;U++){let j=U*x,z=Math.floor(j),X=Math.min(Math.ceil(j),u-1),Z=j-z,J=1-Z,ee=_+z*i[2],re=_+X*i[2],Q=P+z*i[2],te=P+X*i[2],oe=M*J,fe=M*Z,be=T*J,we=T*Z;for(let Ce=0;Ce<d;Ce++){let Me=y[b++];f[ee+Ce]+=Me*oe,f[re+Ce]+=Me*fe,f[Q+Ce]+=Me*be,f[te+Ce]+=Me*we}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var IK={kernelName:Lh,backendName:"cpu",kernelFunc:SK};function CK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=A[0]/x[0],b=A[1]/x[1],w=0;for(let k=0;k<d;k++){let C=k*l[0];for(let N=0;N<c;N++){let R=o?y*(N+.5):y*N,F=Math.min(p-1,a?Math.round(R):Math.floor(R));o&&(F=Math.max(0,F));let _=C+F*l[1];for(let P=0;P<u;P++){let T=o?b*(P+.5):b*P,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let U=_+M*l[2];for(let j=0;j<f;j++){let z=m[U+j];g[w++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var TK={kernelName:Su,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=A[0]/x[0],b=A[1]/x[1],w=1/y,k=1/b,C=Math.ceil(w)*2+2,N=Math.ceil(k)*2+2;for(let R=0;R<c;R++){let F=R*i[0];for(let _=0;_<u;_++){let P=F+_*i[1],T=Math.floor(_*w),M=Math.floor(T-C/2);for(let U=0;U<d;U++){let j=P+U*i[2],z=Math.floor(U*k),X=Math.floor(z-N/2);for(let Z=0;Z<p;Z++){let J=0;for(let ee=0;ee<C;ee++){let re=ee+M;if(re<0||re>=h)continue;let Q=F+re*l[1],te=re*y,oe=Math.min(u-1,o?Math.round(te):Math.floor(te));if(_===oe)for(let fe=0;fe<N;fe++){let be=fe+X;if(be<0||be>=f)continue;let we=Q+be*l[2],Ce=be*b,Me=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));U===Me&&(J+=g[we+Z])}}m[j+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var EK={kernelName:zh,backendName:"cpu",kernelFunc:NK};function RK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return zr({inputs:{x:r},backend:n});let l=new tn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var $K={kernelName:Mi,backendName:"cpu",kernelFunc:RK},_K={kernelName:Yi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let k=0;k<u;k++){let C=k*(d*p);for(let N=0;N<d;N++){let R=N*p;for(let F=0;F<p;F++){let _=[c,k,N,F],P=_[2],T=_[1],M=(P-h)*A-(T-f)*g,U=(P-h)*g+(T-f)*A;M=Math.round(M+h),U=Math.round(U+f);let j=a;if(typeof a!="number"&&(F===3?j=m:j=a[F]),M>=0&&M<d&&U>=0&&U<u){let X=U*(d*p),Z=M*p,J=w+X+Z+F;j=x[J]}let z=w+C+R+F;l[z]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},DK=ht(zi,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),PK={kernelName:zi,backendName:"cpu",kernelFunc:DK};function YS(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return ze(n,t.dtype);let h=ze(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let x=d[f*o+A];m.push(x),g+=x*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function FK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=YS(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var OK={kernelName:Li,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ln(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var zK={kernelName:Bi,backendName:"cpu",kernelFunc:MK},LK=E.SELU_SCALEALPHA,BK=E.SELU_SCALE,WK=ht(Iu,e=>e>=0?BK*e:LK*(Math.exp(e)-1)),VK={kernelName:Iu,backendName:"cpu",kernelFunc:WK},UK=ht(Cu,e=>e<0?-1:e>0?1:0),GK={kernelName:Cu,backendName:"cpu",kernelFunc:UK},HK=ht(lo,e=>Math.sin(e)),jK={kernelName:lo,backendName:"cpu",kernelFunc:HK},qK=ht(Vi,e=>Math.sinh(e)),XK={kernelName:Vi,backendName:"cpu",kernelFunc:qK},KK=11920928955078125e-23,JS=Math.log(KK)+2,ZK=ht(Tu,e=>{let t=e>-JS,n=e<JS,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),YK={kernelName:Tu,backendName:"cpu",kernelFunc:ZK};function JK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=ZS.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Rt({inputs:{x:c},backend:n,attrs:{shape:u}}),x=Ds({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Rt({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var QK={kernelName:Ui,backendName:"cpu",kernelFunc:JK};function eZ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=kS(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var tZ={kernelName:Bh,backendName:"cpu",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=SS(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var sZ={kernelName:Wh,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Wy(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var aZ={kernelName:Vh,backendName:"cpu",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Wy(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var iZ={kernelName:Uh,backendName:"cpu",kernelFunc:oZ};function lZ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=YS(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var uZ={kernelName:cd,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Sl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var dZ={kernelName:Gi,backendName:"cpu",kernelFunc:cZ},pZ={kernelName:Nu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},hZ=ht(yo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),fZ={kernelName:yo,backendName:"cpu",kernelFunc:hZ};function mZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),C=Sl({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Rt({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(C)}else{let k=n.bufferSync(r),C=CS(h,k,b,x);w=n.makeTensorInfo(f,C.dtype,C.values)}return w}var gZ={kernelName:Hi,backendName:"cpu",kernelFunc:mZ};function AZ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=TS(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var yZ={kernelName:dd,backendName:"cpu",kernelFunc:AZ};function xZ(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=NS(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var bZ={kernelName:Gh,backendName:"cpu",kernelFunc:xZ};function vZ(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=ES(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var wZ={kernelName:Hh,backendName:"cpu",kernelFunc:vZ},kZ=ht(ji,e=>Math.tan(e)),SZ={kernelName:ji,backendName:"cpu",kernelFunc:kZ},IZ=ht(go,e=>Math.tanh(e)),CZ={kernelName:go,backendName:"cpu",kernelFunc:IZ};function TZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=$S(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var NZ={kernelName:qr,backendName:"cpu",kernelFunc:TZ};function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=DS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var RZ={kernelName:qi,backendName:"cpu",kernelFunc:EZ};function $Z(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=v.computeStrides(r.shape),x=A[0],y=A[1],b=A[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,C=s.data.get(a.dataId).values;for(let R=0;R<u;++R){let F=a.shape[0]===1?C:C.subarray(R*8,R*8+8);for(let _=0;_<f;++_)for(let P=0;P<m;++P)for(let T=0;T<h;++T){let M,U=F[6]*P+F[7]*_+1;if(U===0)continue;let j=(F[0]*P+F[1]*_+F[2])/U,z=(F[3]*P+F[4]*_+F[5])/U,X=QS(j,p,i),Z=QS(z,d,i);switch(o){case"nearest":M=MZ(k,d,p,x,y,b,R,Z,X,T,l);break;case"bilinear":M=zZ(k,d,p,x,y,b,R,Z,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let J=R*x+_*y+P*b+T;w[J]=M}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var _Z={kernelName:Xi,backendName:"cpu",kernelFunc:$Z};function QS(e,t,n){switch(n){case"reflect":return DZ(e,t);case"wrap":return PZ(e,t);case"nearest":return OZ(e,t);case"constant":default:return FZ(e,t)}}function DZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function PZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function FZ(e,t){return e}function OZ(e,t){return v.clamp(0,e,t-1)}function op(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function MZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return op(e,t,n,s,r,a,o,d,p,c,u)}function zZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*op(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*op(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*op(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*op(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function LZ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=PS(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var BZ={kernelName:jh,backendName:"cpu",kernelFunc:LZ};function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=Sl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Rt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var VZ={kernelName:Ki,backendName:"cpu",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=Im({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=nS({inputs:{a:g,b:p},backend:n}),x=Wo({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),y=km({inputs:{a:x,b:r},backend:n}),b=ap({inputs:{x:y},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(x),u.push(y),u.push(b)}let h=KS({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var GZ={kernelName:pd,backendName:"cpu",kernelFunc:UZ},HZ=[JH,GG,ej,nj,ZG,rj,oj,lj,cj,pj,fj,gj,yj,vj,kj,Cj,Nj,Rj,_j,ZH,Pj,Oj,zj,Bj,XG,JG,Vj,HG,Gj,jj,Kj,Yj,qj,tq,sq,Qj,aq,iq,uq,dq,hq,mq,gq,yq,bq,wq,kq,Iq,Sq,jy,Nq,UH,Rq,QG,zq,eH,Lq,nH,Hq,jq,Xq,rH,Yq,Qq,tX,sX,aX,oH,lH,jG,iX,Hj,uX,dX,hX,GH,cH,pH,mX,fH,AX,bX,wX,IX,TX,EX,gH,_X,PX,OX,zX,BX,RX,VX,GX,yH,jX,KX,QX,bH,wH,nK,aK,lK,SH,cK,pK,hK,ZS,AK,jH,TH,xK,qG,vK,qH,XH,KH,kK,IK,TK,EK,$K,_K,PK,EH,OK,zK,VK,$H,GK,jK,XK,_H,YX,YK,QK,tZ,sZ,aZ,iZ,uZ,dZ,FH,pZ,MH,fZ,gZ,yZ,bZ,wZ,WH,Cq,SZ,CZ,NZ,RZ,IH,_Z,BZ,VZ,GZ,dK];for(let e of HZ)ar(e);var eI={};Oe(eI,{assertNotComplex:()=>rc,bindCanvasToFramebuffer:()=>sY,bindColorTextureToFramebuffer:()=>Rm,bindTextureToProgramUniformSampler:()=>mI,bindTextureUnit:()=>pI,bindVertexBufferToProgramAttribute:()=>Yy,callAndCheck:()=>Ie,canBeRepresented:()=>tI,createFragmentShader:()=>rI,createFramebuffer:()=>dI,createProgram:()=>aI,createStaticIndexBuffer:()=>lI,createStaticVertexBuffer:()=>iI,createTexture:()=>uI,createVertexShader:()=>sI,getBatchDim:()=>Cl,getExtensionOrThrow:()=>up,getFramebufferErrorMessage:()=>gI,getMaxTexturesInShader:()=>bI,getNumChannels:()=>tY,getProgramUniformLocation:()=>fI,getProgramUniformLocationOrThrow:()=>hI,getRowsCols:()=>Tl,getShapeAs3D:()=>$m,getTextureShapeFromLogicalShape:()=>yI,getWebGLDisjointQueryTimerVersion:()=>vI,getWebGLErrorMessage:()=>nI,getWebGLMaxTextureSize:()=>xI,hasExtension:()=>Fs,isCapableOfRenderingToFloatTexture:()=>wI,isDownloadFloatTextureEnabled:()=>kI,isReshapeFree:()=>dp,isWebGLFenceEnabled:()=>SI,isWebGLVersionEnabled:()=>Qy,linkProgram:()=>oI,resetMaxTextureSize:()=>rY,resetMaxTexturesInShader:()=>aY,unbindColorTextureFromFramebuffer:()=>Jy,unbindTextureUnit:()=>nY,validateFramebuffer:()=>cp,validateProgram:()=>Em,validateTextureSize:()=>cI});var Il={},Ky={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Tm(e,t){Il[e]=t}function Lr(e){if(!(e in Il)){let n=qZ(e);if(n!==null)Il[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Il[e];return t==null||t.isContextLost()?(delete Il[e],Lr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Il[e])}function jZ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function qZ(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=jZ(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Il[e]},!1),e===1?t.getContext("webgl",Ky)||t.getContext("experimental-webgl",Ky):t.getContext("webgl2",Ky)}var ip;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ip||(ip={}));var Ps;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Ps||(Ps={}));var Cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Cn||(Cn={}));function lp(e,t){return[t,e]}function XZ(e,t){return e*t}function Nm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function sc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function KZ(e,t){let[n,s]=sc(e,t);return n*s*4}function Zy(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ie(e,t){let n=t();return K().getBool("DEBUG")&&ZZ(e),n}function ZZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+nI(e,t))}var YZ=596e-10,JZ=65504;function tI(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||YZ<Math.abs(e)&&Math.abs(e)<JZ)}function nI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function up(e,t){return ra(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function sI(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function rI(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw eY(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var QZ=/ERROR: [0-9]+:([0-9]+):/g;function eY(e,t){let n=QZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function aI(e){return ra(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function oI(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Em(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function iI(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function lI(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function tY(){return K().getNumber("WEBGL_VERSION")===2?1:4}function uI(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function cI(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function dI(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Yy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function pI(e,t,n){AI(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function nY(e,t){AI(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function hI(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function fI(e,t,n){return e.getUniformLocation(t,n)}function mI(e,t,n,s){Ie(e,()=>pI(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function sY(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Rm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Jy(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function cp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+gI(e,t))}function gI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function AI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Cl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Tl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $m(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Cl(e),...Tl(e)]),t}function yI(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Cl(e),a=2,o=2;return e.length&&([a,o]=Tl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function _m(e){return e%2==0}function dp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||_m(n)&&_m(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&_m(e[0])&&_m(t[0])}var Dm,Pm;function xI(e){if(Dm==null){let t=Lr(e);Dm=t.getParameter(t.MAX_TEXTURE_SIZE)}return Dm}function rY(){Dm=null}function aY(){Pm=null}function bI(e){if(Pm==null){let t=Lr(e);Pm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pm)}function vI(e){if(e===0)return 0;let t,n=Lr(e);return Fs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Fs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Fs(e,t){return e.getExtension(t)!=null}function Qy(e){try{if(Lr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function wI(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Fs(t,"OES_texture_float"))return!1}else if(!Fs(t,"EXT_color_buffer_float"))return!1;return ex(t)}function kI(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Fs(t,"OES_texture_float")||!Fs(t,"WEBGL_color_buffer_float"))return!1}else{if(Fs(t,"EXT_color_buffer_float"))return ex(t);let s="EXT_color_buffer_half_float";if(Fs(t,s)){let r=t.getExtension(s);return oY(t,r)}return!1}return ex(t)}function ex(e){let t=Zy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function oY(e,t){let n=Zy(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function SI(e){return e!==2?!1:Lr(e).fenceSync!=null}function rc(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var _e=K();_e.registerFlag("HAS_WEBGL",()=>_e.getNumber("WEBGL_VERSION")>0);_e.registerFlag("WEBGL_VERSION",()=>Qy(2)?2:Qy(1)?1:0);_e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);_e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>_e.get("WEBGL_VERSION")===2);_e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);_e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);_e.registerFlag("WEBGL_PACK",()=>_e.getBool("HAS_WEBGL"));_e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_CLIP",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_REDUCE",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_LAZILY_UNPACK",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_CONV_IM2COL",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>xI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>bI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=_e.getNumber("WEBGL_VERSION");return e===0?0:vI(e)});_e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>_e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!$u.isMobile());_e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>wI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>_e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:_e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));_e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>kI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>SI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>_e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);_e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});_e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>$u.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});_e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);_e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);_e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);_e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Gn(){let e,t,n,s,r,a,o,i,l,c;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Nl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Fm(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function iY(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function lY(e,t,n="index"){let s=e.map((a,o)=>o),r=iY(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function tx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function nx(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var II=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:CI}=E;function uY(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=sx(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>cY(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=Gn(),l=hY(i),c,u,d=gY(i);return t.isPacked?(c=dY(t.logicalShape,o,n.enableShapeUniforms),u=mY(i)):(c=pY(t.logicalShape,o,n.enableShapeUniforms),u=fY(i)),n.packedInputs&&(d+=bY),[d,l,u,r,c,a,n.userCode].join(`
`)}function ac(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return _Y(e,t);case 1:return PY(e,t);case 2:return OY(e,t);case 3:return zY(e,t);case 4:return BY(e,t);case 5:return WY(e);case 6:return VY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function TI(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return $Y(e);case 1:return DY(e,t);case 2:return FY(e,t);case 3:return MY(e,t);default:return LY(e,t)}}function cY(e,t,n=!1,s){let r="";n?r+=TI(e,s):r+=ac(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=UY(e,t):r+=GY(e,t)),r}function dY(e,t,n){switch(e.length){case 0:return NI();case 1:return vY(e,t,n);case 2:return EY(e,t,n);case 3:return kY(e,t,n);default:return IY(e,t,n)}}function pY(e,t,n){switch(e.length){case 0:return NI();case 1:return wY(e,t,n);case 2:return RY(e,t,n);case 3:return SY(e,t,n);case 4:return CY(e,t,n);case 5:return TY(e,t);case 6:return NY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function hY(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function fY(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function mY(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function gY(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${AY}
${yY}
${xY}
`}var AY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,bY=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function NI(){return`
int getOutputCoords() {
return 0;
}
`}function vY(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function wY(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function kY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function SY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Fm(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=Nl(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function IY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
int b${c} = index / ${o};
index -= b${c} * ${o};
`+i,l=`b${c}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function CY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Fm(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=Nl(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function TY(e,t){let n=Nl(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function NY(e,t){let n=Nl(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function EY(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function RY(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function El(e){return`offset${e}`}function $Y(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Gn();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function _Y(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=El(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function DY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Gn();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function PY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${oc(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=El(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function FY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Gn();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function OY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let p=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=ic(e,l),h=["row","col"];return`
${ac(p,t)}
float ${r}(int row, int col) {
return ${r}(${lc(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${oc(e)}
}
`;let c=a[0],u=a[1],d=El(s);return u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
return sampleTexture(${s}, uv);
}
`:c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${c}, ${u}, index);
return sampleTexture(${s}, uv);
}
`}function MY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=ic(e,p),m=["b","row","col"];return`
${TI(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${lc(m,h)});
}
`}let i=Gn();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${c}, ${d}, ${u}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function zY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=ic(e,c),g=["row","col","depth"];return`
${ac(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${lc(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${oc(e)}
}
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(p===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let f=El(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${s}, uv);
}
`}function LY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Gn();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${u};
int texC = index - texR * ${u};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
return ${r.texture2D}(${n}, uv);
}
`}function BY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let x=ic(e,l),y=["row","col","depth","depth2"];return`
${ac(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${lc(y,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${oc(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let A=El(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
return sampleTexture(${s}, uv);
}
`}function WY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=ic(e,l),g=["row","col","depth","depth2","depth3"];return`
${ac(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${lc(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${oc(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=El(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function VY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=ic(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
${ac(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${lc(A,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${oc(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=El(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function oc(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function UY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=CI(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(x=>`coords.${d[x+c]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((x,y)=>`coords.${d[y+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,A=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!A)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,y=a-1;i.indexOf(x)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${s}(${p});
${h}
}
`}function GY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=yt(l),u=CI(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${p}
return get${s}(${f});
}
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function sx(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function ic(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function lc(e,t){return t.map(n=>e[n]).join(", ")}function HY(e,t,n,s){let r=n.map((b,w)=>{let k={logicalShape:b.shape,texShape:b.isUniform?null:b.texData.texShape,isUniform:b.isUniform,isPacked:b.isUniform?!1:b.texData.isPacked,flatOffset:null};return b.texData!=null&&b.texData.slice!=null&&b.texData.slice.flatOffset>0&&(k.flatOffset=b.texData.slice.flatOffset),{name:t.variableNames[w],shapeInfo:k}}),a=r.map(b=>b.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=uY(r,o,t),l=rI(e.gl,i),c=e.createProgram(l),u=null,d=e.getUniformLocation(c,"NAN",!1);K().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let p=!1,h={},f={},m={};for(let b=0;b<t.variableNames.length;b++){let w=t.variableNames[b];h[w]=e.getUniformLocation(c,w,p),h[`offset${w}`]=e.getUniformLocation(c,`offset${w}`,p),t.enableShapeUniforms&&(f[`${w}Shape`]=e.getUniformLocation(c,`${w}Shape`,p),m[`${w}TexShape`]=e.getUniformLocation(c,`${w}TexShape`,p))}let g,A,x;t.enableShapeUniforms&&(g=e.getUniformLocation(c,"outShape",p),x=e.getUniformLocation(c,"outShapeStrides",p),A=e.getUniformLocation(c,"outTexShape",p));let y=[];return t.customUniforms&&t.customUniforms.forEach((b,w)=>{y[w]=e.getUniformLocation(c,b.name,p)}),{program:t,fragmentShader:l,source:i,webGLProgram:c,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:d,inShapesLocations:f,inTexShapesLocations:m,outShapeLocation:g,outShapeStridesLocation:x,outTexShapeLocation:A}}function EI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function jY(e,t,n,s,r){t.program.enableShapeUniforms||(EI(t.inShapeInfos,n),EI([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=sx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function qY(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=sx(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),A=v.sizeFromShape(o.shape)===1,x=E.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${c?d:""}_${u.length}_${A}_${x}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function Os(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var XY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ip.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Fm(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},KY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ip.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Fm(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},ZY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Ps.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${II}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},YY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Ps.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${II}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},JY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?nx():tx(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},QY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?nx():tx(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},RI={};Oe(RI,{bindVertexProgramAttributeStreams:()=>LI,createBufferFromOutputTexture:()=>VI,createFloat16MatrixTexture:()=>FI,createFloat16PackedMatrixTexture:()=>zI,createFloat32MatrixTexture:()=>PI,createIndexBuffer:()=>DI,createPackedMatrixTexture:()=>MI,createUnsignedBytesMatrixTexture:()=>OI,createVertexBuffer:()=>_I,createVertexShader:()=>$I,downloadByteEncodedFloatMatrixFromOutputTexture:()=>GI,downloadFloat32MatrixFromBuffer:()=>UI,downloadMatrixFromPackedOutputTexture:()=>jI,downloadPackedMatrixFromBuffer:()=>HI,getInternalFormatForFloat16MatrixTexture:()=>ax,getInternalFormatForFloat16PackedMatrixTexture:()=>lx,getInternalFormatForFloat32MatrixTexture:()=>rx,getInternalFormatForPackedMatrixTexture:()=>ix,getInternalFormatForUnsignedBytesMatrixTexture:()=>ox,uploadDenseMatrixToTexture:()=>BI,uploadPixelDataToTexture:()=>WI});function $I(e){let t=Gn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return sI(e,n)}function _I(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return iI(e,t)}function DI(e){let t=new Uint16Array([0,1,2,2,1,3]);return lI(e,t)}function pp(e,t,n,s,r,a){cI(t,n);let o=uI(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function rx(e){return e.internalFormatFloat}function PI(e,t,n,s){let[r,a]=lp(t,n);return pp(e,r,a,rx(s),s.textureFormatFloat,e.FLOAT)}function ax(e){return e.internalFormatHalfFloat}function FI(e,t,n,s){let[r,a]=lp(t,n);return pp(e,r,a,ax(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function ox(e){return e.downloadTextureFormat}function OI(e,t,n,s){let[r,a]=lp(t,n);return pp(e,r,a,ox(s),e.RGBA,e.UNSIGNED_BYTE)}function ix(e){return e.internalFormatPackedFloat}function MI(e,t,n,s){let[r,a]=sc(t,n);return pp(e,r,a,ix(s),e.RGBA,e.FLOAT)}function lx(e){return e.internalFormatPackedHalfFloat}function zI(e,t,n,s){let[r,a]=sc(t,n);return pp(e,r,a,lx(s),e.RGBA,s.textureTypeHalfFloat)}function LI(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Yy(e,t,"clipSpacePos",n,3,a,s)&&Yy(e,t,"uv",n,2,a,r)}function BI(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function WI(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function VI(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function UI(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function GI(e,t,n,s){let[r,a]=lp(t,n),o=4,i=new Uint8Array(XZ(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function HI(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(KZ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function jI(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Om=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Tm(t,e)):this.gl=Lr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=up(this.gl,r),Fs(this.gl,a))this.textureHalfFloatExtension=up(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Fs(this.gl,s))this.colorBufferHalfFloatExtension=up(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Fs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Fs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=_I(this.gl),this.indexBuffer=DI(this.gl),this.framebuffer=dI(this.gl),this.textureConfig=Zy(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),PI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),FI(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),OI(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),WI(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),BI(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),zI(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),MI(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Jy(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>GI(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return HI(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return UI(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=VI(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>jI(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=$I(t));let n=aI(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),oI(t,n),this.debug&&Em(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=LI(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Em(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?hI(this.gl,e,t):fI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),mI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=sc(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Em(this.gl,this.program),cp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=up(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=eJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Rm(this.gl,e,this.framebuffer),this.debug&&cp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Rm(this.gl,this.outputTexture,this.framebuffer),this.debug&&cp(this.gl)):Jy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Rm(s,e,this.framebuffer),this.debug&&cp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function eJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:tJ,bincountImpl:qI,bincountReduceImpl:nJ,ceilImpl:sJ,concatImpl:rJ,equalImpl:aJ,expImpl:oJ,expm1Impl:iJ,floorImpl:lJ,gatherNdImpl:uJ,gatherV2Impl:cJ,greaterImpl:dJ,greaterEqualImpl:pJ,lessImpl:hJ,lessEqualImpl:fJ,linSpaceImpl:mJ,logImpl:gJ,maxImpl:AJ,maximumImpl:yJ,minimumImpl:xJ,multiplyImpl:bJ,negImpl:vJ,notEqualImpl:wJ,prodImpl:kJ,rangeImpl:SJ,rsqrtImpl:IJ,sigmoidImpl:CJ,simpleAbsImpl:XI,sliceImpl:TJ,sparseFillEmptyRowsImpl:NJ,sparseReshapeImpl:EJ,sparseSegmentReductionImpl:KI,sqrtImpl:RJ,stridedSliceImpl:$J,stringNGramsImpl:_J,stringSplitImpl:DJ,stringToHashBucketFastImpl:PJ,subImpl:FJ,tileImpl:OJ,topKImpl:MJ,transposeImpl:ux,uniqueImpl:zJ}=vm;function ZI(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Hn(e,t){return t===1?[e]:ZI(e,t)}function LJ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var BJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=Hn("rc",t),s=yt(t),r=VJ(t,e,n),a=UJ(t,e[e.length-1],e[e.length-2],n),o=GJ(e,n);this.userCode=`
void main() {
${s} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${o}));
}
}
`}}};function WJ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function VJ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function UJ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function GJ(e,t){let n=e.length,s=WJ(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${s[0]}),
cEdge ? 0. : getA(${s[1]}),
rEdge ? 0. : getA(${s[2]}),
rEdge || cEdge ? 0. : getA(${s[3]})`}var YI=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${HJ(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?nx():tx(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function HJ(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?lY(["r","c","d"],"inputShape"):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var jJ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=QI(t,n),r=e4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=JI(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Cn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Cn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Cn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=QI(n,s),a=e4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=JI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qJ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function JI(e,t,n,s,r){let a=XJ(t,s),o;if(r){let[l,c]=sc(e[0],e[1]);o=l*c}else{let[l,c]=lp(e[0],e[1]);o=l*c}let i=qJ(n,a);return o*i}function XJ(e,t){switch(e){case Cn.PACKED_2X2_FLOAT32:return ix(t);case Cn.PACKED_2X2_FLOAT16:return lx(t);case Cn.UNPACKED_FLOAT32:return rx(t);case Cn.UNPACKED_FLOAT16:return ax(t);case Cn.PACKED_4X1_UNSIGNED_BYTE:return ox(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function KJ(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Cn.PACKED_2X2_FLOAT32:Cn.UNPACKED_FLOAT32:e?Cn.PACKED_2X2_FLOAT16:Cn.UNPACKED_FLOAT16}function QI(e,t){if(e===Ps.UPLOAD)return Cn.PACKED_2X2_FLOAT32;if(e===Ps.RENDER||e==null)return KJ(t);if(e===Ps.DOWNLOAD||e===Ps.PIXELS)return Cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function e4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Uo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},yr="if (isnan(x)) return x;",ZJ="return x;",t4="return abs(x);",YJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",JJ=yr+`
return (x < 0.0) ? 0.0 : x;
`,QJ=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Mm="return x;",eQ="return 1.0 / (1.0 + exp(-1.0 * x));",tQ="return x;",nQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,sQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aQ="return 1.0 / (1.0 + exp(-1.0 * x));",uc=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},oQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Hn("rc",t),s=yt(t),r=LJ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},iQ=Ks.whereImpl,lQ=1e-7,uQ=1e-4,zm={};function cQ(e){return e in zm||(zm[e]={}),zm[e]}var dQ=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),pQ=600;function hQ(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*pQ/1024/1024}var n4=class extends eu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Lr(K().getNumber("WEBGL_VERSION"));this.binaryCache=cQ(K().getNumber("WEBGL_VERSION")),this.gpgpu=new Om(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new jJ(this.gpgpu),this.numMBBeforeWarning=hQ(),this.texData=new Zc(this,ss())}nextDataId(){return n4.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Ps.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Ps.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new uc(o,Mm):d=new Uo(o,Mm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new uc(s,Mm):h=new Uo(s,Mm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(K().getBool("DEBUG")&&!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Nm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ss().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!tI(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Nm(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=K().getBool("WEBGL_PACK")&&s===!0,o=a?$m(t):t,i=a?new YY(o):new ZY(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=dQ){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return iQ(e.shape,t)}packedUnaryOp(e,t,n){let s=new uc(e.shape,t),r=this.compileAndRun(s,[e],n);return ss().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=XI(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,t4,e.dtype);let t=new Uo(e.shape,t4),n=this.compileAndRun(t,[e]);return ss().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ss().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new oQ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new BJ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Cl(e.shape),...Tl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Cl(t),...Tl(t)],a=new YI(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=$m(s),o,i=Nm(a);n?o=new KY(a):o=new XY(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===ip.DENSE){let m=Nm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!dp(g.shape,m.shape)){let A=m,x=m.shape;m.shape=g.shape,m=this.packedReshape(m,x),i.push(m),g=this.texData.get(m.dataId),A.shape=x}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=qY(e,l,c),d=this.getAndSaveBinary(u,()=>HY(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),jY(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=K().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=q(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(Re(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?lQ:uQ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=yI(n,i),t.texShape=u),r!=null){let d=$m(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=sc(u[0],u[1]),p=new QY(d,m)):p=new JY(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Ps.PIXELS:this.texData.get(g.dataId).usage=Ps.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],x=!0,y=this.runWebGLProgram(p,[g],s,A,x),b=this.texData.get(y.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=fQ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}},hp=n4;hp.nextDataId=0;function fQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var mQ="0.0.0";function s4(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}$u.isBrowser()&&ol("webgl",()=>new hp,2);var gQ={forceHalfFloat:s4},r4=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,cc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Lm=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,fp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Os(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${yt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Hn("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function ys(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var AQ={kernelName:Ha,backendName:"webgl",kernelFunc:ys};function Go(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ys({inputs:{x:s},backend:n}),l=ys({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var yQ={kernelName:ed,backendName:"webgl",kernelFunc:Go},a4="return (a < 0.) ? b * a : a;",o4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function xQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fp(o4,r.shape,o.shape):new cc(a4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var bQ={kernelName:Si,backendName:"webgl",kernelFunc:xQ},i4="return (a < 0.) ? b * a : a;",l4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function vQ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fp(l4,s.shape,r.shape):new cc(i4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var wQ={kernelName:so,backendName:"webgl",kernelFunc:vQ},u4="if (isnan(x)) return x;",kQ=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,SQ=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function st({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new uc(o.shape,t):u=new Uo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,w]=y,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new cc(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,C],Ln(b.dtype,w.dtype))}),x=Go({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),x}let d=a||Ln(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,A=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[x,y]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(y,d),w=u.texData.get(b.dataId);return w.values=x,b}let p=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new fp(t,l.shape,c.shape,n):h=new cc(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Bm(e,t=!1){if(e==="linear")return t?tQ:ZJ;if(e==="relu")return t?sQ:JJ;if(e==="elu")return t?nQ:YJ;if(e==="relu6")return t?rQ:QJ;if(e==="prelu")return t?l4:i4;if(e==="leakyrelu")return t?o4:a4;if(e==="sigmoid")return t?aQ:eQ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var c4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Os(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",y="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${x};
int batchB = ${y};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${A}
${g}
setOutput(result);
}
`}},d4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},p4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},h4="return a * b;";function cx(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=E.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new p4(d4.REAL,s.shape,r.shape),u=new p4(d4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Go({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=bJ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new fp(h4,s.shape,r.shape):o=new cc(h4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var IQ={kernelName:eo,backendName:"webgl",kernelFunc:cx};function CQ(e,t,n){let s=[Cl(e.shape),...Tl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Cl(t),...Tl(t)],o=new YI(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!dp(r.shape,l)&&!(u.texture!==null&&dp(u.shape,l))?CQ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var TQ={kernelName:Oi,backendName:"webgl",kernelFunc:ve},f4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},NQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${u===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${u===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function EQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Rl(e,t,n,s){let r=EQ(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new f4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new f4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new NQ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var RQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=$Q(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function $Q(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var _Q=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=ZI("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Wm(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _Q(e.shape,t):new RQ(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function DQ(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=E.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Wm(e,l,s),i=E.getInnerMostAxes(i.length,a)),E.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=E.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,A=ve({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),x=wd(e.dtype),y=Rl(A,x,"sum",s),b=ve({inputs:{x:y},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(y),c&&s.disposeIntermediateTensorInfo(u),b}function Vm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return DQ(r,a,o,n)}var PQ={kernelName:po,backendName:"webgl",kernelFunc:Vm};function jn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=ux(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Wm(r,a,o);return c}var FQ={kernelName:Ao,backendName:"webgl",kernelFunc:jn},m4=1e3;function Um({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],C=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),N=ve({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[C,N],F=Math.max(A,x),_=n?C.shape[1]:C.shape[2],P=a!=null,T=o!=null,M=l==="leakyrelu",U=l!=null?Bm(l,!0):null,j=P||T||M||U!=null,z;if((h===1||f===1)&&_>m4&&j===!1){let Z=C,J=N;n&&(Z=jn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),R.push(Z)),s&&(J=jn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),R.push(J));let ee=f!==1,re=f===1,Q=Z;ee&&(Q=ve({inputs:{x:Z},backend:r,attrs:{shape:[F,_,1]}}),R.push(Q));let te=f===1?2:1,oe=J;re&&(oe=ve({inputs:{x:J},backend:r,attrs:{shape:[F,1,_]}}),R.push(oe));let fe=cx({inputs:{a:Q,b:oe},backend:r});z=Vm({inputs:{x:fe},backend:r,attrs:{axis:te,keepDims:!0}}),R.push(fe)}else{let Z=Ln(e.dtype,t.dtype),J=new c4(w,k,[F,h,f],n,s,P,U,T,M),ee=[C,N];if(a!=null&&ee.push(a),T&&ee.push(o),M){let re=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ee.push(re),R.push(re)}z=r.runWebGLProgram(J,ee,Z)}let X=ve({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let Z of R)r.disposeIntermediateTensorInfo(Z);return X}function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Um({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var MQ={kernelName:xo,backendName:"webgl",kernelFunc:OQ},g4="return abs(x);";function zQ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=XI(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new uc(s.shape,g4):r=new Uo(s.shape,g4),n.runWebGLProgram(r,[s],s.dtype)}var LQ={kernelName:di,backendName:"webgl",kernelFunc:zQ},BQ=yr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,WQ=st({opSnippet:BQ}),VQ={kernelName:su,backendName:"webgl",kernelFunc:WQ},UQ=yr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,GQ=st({opSnippet:UQ}),HQ={kernelName:ru,backendName:"webgl",kernelFunc:GQ},A4="return a + b;",jQ=Tn({opSnippet:A4,packedOpSnippet:A4,supportsComplex:!0,cpuKernelImpl:tJ}),qQ={kernelName:Hr,backendName:"webgl",kernelFunc:jQ},XQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},KQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function Gm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ys({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Gm({inputs:s.slice(0,l),backend:n}),u=Gm({inputs:s.slice(l),backend:n});return Gm({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ln(l,c)),a=s.map(l=>l.shape),i=K().getBool("WEBGL_PACK")?new KQ(s[0].shape,a):new XQ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var ZQ={kernelName:Ta,backendName:"webgl",kernelFunc:Gm};function YQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"all",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var JQ={kernelName:au,backendName:"webgl",kernelFunc:YQ};function QQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"any",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var eee={kernelName:ou,backendName:"webgl",kernelFunc:QQ},tee=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},nee=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),c=Hn("coords",i),u,d;if(a===1){d=i+1;let C=yt(d);u=`
${C} sourceLocR = ${C}(${c.join()}, 0);
++${c[i-1]};
${C} sourceLocG = ${C}(${c.join()}, 0);
++${c[i-2]};
${C} sourceLocA = ${C}(${c.join()}, 0);
--${c[i-1]};
${C} sourceLocB = ${C}(${c.join()}, 0);
--${c[i-2]};`}else d=i,u=`
${l} sourceLocR = coords;
++${c[i-1]};
${l} sourceLocG = coords;
++${c[i-2]};
${l} sourceLocA = coords;
--${c[i-1]};
${l} sourceLocB = coords;
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Hn("sourceLocR",d-1).concat("inIdx.r"),g=Hn("sourceLocG",d-1).concat("inIdx.g"),A=Hn("sourceLocB",d-1).concat("inIdx.b"),x=Hn("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${A.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function y4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new tee(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=y4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function x4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new nee(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=x4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function b4(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=y4(e,p,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return x4(e,t,s)}function see(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=b4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var ree={kernelName:Na,backendName:"webgl",kernelFunc:see};function aee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=b4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var oee={kernelName:iu,backendName:"webgl",kernelFunc:aee},iee=yr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,lee=st({opSnippet:iee}),uee={kernelName:lu,backendName:"webgl",kernelFunc:lee},cee=yr+"return log(x + sqrt(x * x + 1.0));",dee=st({opSnippet:cee}),pee={kernelName:uu,backendName:"webgl",kernelFunc:dee},hee=yr+`
return atan(x);
`,fee=st({opSnippet:hee}),mee={kernelName:cu,backendName:"webgl",kernelFunc:fee},gee=kQ+`
return atan(a, b);
`,Aee=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+SQ+`
return result;
`,yee=Tn({opSnippet:gee,packedOpSnippet:Aee}),xee={kernelName:pu,backendName:"webgl",kernelFunc:yee},bee=yr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vee=st({opSnippet:bee}),wee={kernelName:du,backendName:"webgl",kernelFunc:vee},mp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${y});
}
`}},dx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",y="0.0";if(x||(y="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,C=a%4,N=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${N}
}
int xC = xCCorner + ${k};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${N}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${N}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${N}
}
}
setOutput(${w});
}
}
`}};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;rc(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ys({inputs:{x:r},backend:n});let d=new mp(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var See={kernelName:Ea,backendName:"webgl",kernelFunc:kee};function Iee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new dx(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Cee={kernelName:Qc,backendName:"webgl",kernelFunc:Iee},Tee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Nee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function Eee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new Nee(p);return n.runWebGLProgram(h,[r],o.dtype)}var Ree={kernelName:Ah,backendName:"webgl",kernelFunc:Eee};function $ee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;rc([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new Tee(u);return n.runWebGLProgram(d,[r],o.dtype)}var _ee={kernelName:gh,backendName:"webgl",kernelFunc:$ee};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Um({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Pee={kernelName:Ra,backendName:"webgl",kernelFunc:Dee},Fee=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},Oee=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},Mee=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=K().getBool("WEBGL_PACK_NORMALIZATION")?new Oee(s.shape,r.shape,a.shape,u,d,l):new Fee(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},zee={kernelName:Ua,backendName:"webgl",kernelFunc:Mee},Lee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Bee(this.rank),s,r=e.map((a,o)=>`sourceLoc.${px[o]} = start[${o}] + coords.${px[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},px=["x","y","z","w","u","v"];function Bee(e){if(e===1)return"sourceLoc";if(e<=6)return px.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Wee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=Hn("coords",this.rank),s=Hn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function Vee(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ft.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function dc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=TJ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Ft.isSliceContinous(r.shape,i,l);if(c||!u){let d=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wee(l):new Lee(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),Vee(r,i,l,n)}var Uee={kernelName:Wi,backendName:"webgl",kernelFunc:dc},Gee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:u}}),A=dc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),A},Hee={kernelName:pi,backendName:"webgl",kernelFunc:Gee};function jee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=qI(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var qee={kernelName:yh,backendName:"webgl",kernelFunc:jee};function Xee(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Kee={kernelName:xh,backendName:"webgl",kernelFunc:Xee},Zee="return float(a != b);",v4=Tn({opSnippet:Zee,cpuKernelImpl:wJ,dtype:"bool"}),Yee={kernelName:Ei,backendName:"webgl",kernelFunc:v4};function gp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ys({inputs:{x:r.complexTensorInfos.real},backend:n})}var Jee={kernelName:ud,backendName:"webgl",kernelFunc:gp},Qee="return float(int(x));";function ete(e,t){let n=new Uo(e.shape,Qee),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function hx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ys({inputs:{x:r},backend:n});let o=Gt(r.shape),i=hx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Go({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=gp({inputs:{input:r},backend:n}),i=hx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=ys({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return ete(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=v4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var tte={kernelName:$a,backendName:"webgl",kernelFunc:hx},w4="return ceil(x);",nte=st({opSnippet:w4,packedOpSnippet:w4,cpuKernelImpl:sJ}),ste={kernelName:_a,backendName:"webgl",kernelFunc:nte},rte=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},ate=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function ote(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;K().getBool("WEBGL_PACK_CLIP")?i=new ate(r.shape):i=new rte(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var ite={kernelName:jr,backendName:"webgl",kernelFunc:ote},lte=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function k4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function ute(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new lte(s.shape),o=[k4(s,r.complexTensorInfos.real),k4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var cte={kernelName:td,backendName:"webgl",kernelFunc:ute},dte=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},pte=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=Hn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${Hm(o,l,m)}),
vec2(${Hm(c,l,m)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${Hm(o,l,h)}),
vec2(${Hm(c,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Hm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function jm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ys({inputs:{x:r.complexTensorInfos.imag},backend:n})}var hte={kernelName:ad,backendName:"webgl",kernelFunc:jm};function pc(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>gp({inputs:{input:m},backend:n})),d=e.map(m=>jm({inputs:{input:m},backend:n})),p=pc(u,t,n),h=pc(d,t,n),f=Go({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return ve({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=rJ(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=pc(e.slice(0,u),t,n),p=pc(e.slice(u),t,n),h=pc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new pte(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=fte(e,t,n),i=new dte(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function fte(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function S4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return ys({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),pc(i,a,n)}var mte={kernelName:hi,backendName:"webgl",kernelFunc:S4},I4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,x=m?3:1,y="",b="";n&&(s?y=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${A}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},gte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},Ate=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let{dataFormat:n}=t,s=Gn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
blockIndex = rc.y + ${u};
pos = rc.x + ${c};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${c*2+u}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+u}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function C4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>m4)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(dp(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let C=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(C);let N=Um({a:w,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(N.dataId);v.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,R.shape=n.outShape,g=ys({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=Um({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),A.push(w),A.push(k),A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function T4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],x=!0,y=!1,b=[],w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let C=new Ate(A,n),N=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=s.runWebGLProgram(C,[w],"float32",N),F=ve({inputs:{x:R},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(R),b.push(F);let _=r!=null,P=a!=null,T=i==="leakyrelu",M=i?Bm(i,!0):null,U=new c4(F.shape,k.shape,[1,g,n.outChannels],x,y,_,M,P,T),j=[F,k];if(r&&j.push(r),P&&j.push(a),T){let J=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));j.push(J),b.push(J)}let z=s.runWebGLProgram(U,j,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Z=ve({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let J of b)s.disposeIntermediateTensorInfo(J);return Z}function yte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=C4({x:r,filter:a,convInfo:p,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=T4({x:r,filter:a,convInfo:p,backend:n});else{let m=new I4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var xte={kernelName:Da,backendName:"webgl",kernelFunc:yte},bte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},wte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},kte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function Ste(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new bte(p);return n.runWebGLProgram(h,[r,a],"float32")}var Ite={kernelName:bh,backendName:"webgl",kernelFunc:Ste};function Cte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new vte(p);return n.runWebGLProgram(h,[r,a],"float32")}var Tte={kernelName:Pa,backendName:"webgl",kernelFunc:Cte};function Nte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new gte(c);return n.runWebGLProgram(u,[r,a],"float32")}var Ete={kernelName:nd,backendName:"webgl",kernelFunc:Nte};function Rte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new wte(c);return n.runWebGLProgram(u,[r,a],"float32")}var $te={kernelName:vh,backendName:"webgl",kernelFunc:Rte};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new kte(c);return n.runWebGLProgram(u,[r,a],"float32")}var Dte={kernelName:wh,backendName:"webgl",kernelFunc:_te},Pte=u4+`
return cos(x);
`,Fte=st({opSnippet:Pte}),Ote={kernelName:Fa,backendName:"webgl",kernelFunc:Fte},Mte=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,zte=st({opSnippet:Mte}),Lte={kernelName:Oa,backendName:"webgl",kernelFunc:zte},Bte=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,y,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${y};
float in_y = ${A};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Wte=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Bte(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},Vte={kernelName:mi,backendName:"webgl",kernelFunc:Wte},N4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${E4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${yt(s)} coords = getOutputCoords();
int end = ${R4(s,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${R4(s,"coords")} = idx;
val += getX(${E4(s,"coords")});
}
setOutput(val);
}
`}};function E4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function R4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ute(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=jn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ys({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new N4(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new N4(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=jn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var Gte={kernelName:fi,backendName:"webgl",kernelFunc:Ute};function Hte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=qI(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=nJ(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var jte={kernelName:kh,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Xte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new qte(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Kte={kernelName:gi,backendName:"webgl",kernelFunc:Xte},$4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Os(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${u}
${c}
setOutput(result);
}
`}},_4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Os(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${c}; r++) {
`;for(let g=0;g<u;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
xC = xCCorner + ${A*l};
`,i===1){if(A<u&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
`,l===1&&A>0?p+=`
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
} else {
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xC${A} = xTexelC${A};
`,A+1<u)){let x=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
xTexelC${A}Ready = 1;
}
`),p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
`):x===1?p+=`
xC${A+1} = xTexelC${A};
`:p+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A+1} = xTexelC${A+1};
`}}else A<u&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`,A+1<u&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(
xTexelC${A}.xy, xTexelC${A+1}.xy);
`,A+1<u&&(p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`)));A<u&&(p+=`
wTexel = getW(r, ${A}, d1, q);
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
`,A+1<u&&(p+=`
wTexel = getW(r, ${A+1}, d1, q);
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function Zte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new _4(d):p=new $4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Yte={kernelName:Ma,backendName:"webgl",kernelFunc:Zte},Jte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Qte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function ene(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new Jte(d);return n.runWebGLProgram(p,[r,a],"float32")}var tne={kernelName:Sh,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new Qte(d);return n.runWebGLProgram(p,[r,a],"float32")}var sne={kernelName:Ih,backendName:"webgl",kernelFunc:nne},rne=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function ane(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new rne(a),l=n.runWebGLProgram(i,[o],o.dtype),c=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var one={kernelName:Ch,backendName:"webgl",kernelFunc:ane},ine=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${u}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function lne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new ine(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=ve({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var une={kernelName:sd,backendName:"webgl",kernelFunc:lne};function cne(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=jn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=ve({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=cx({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Vm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var dne={kernelName:rd,backendName:"webgl",kernelFunc:cne},pne="return (x >= 0.0) ? x : (exp(x) - 1.0);",hne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,fne=st({opSnippet:pne,packedOpSnippet:hne}),mne={kernelName:La,backendName:"webgl",kernelFunc:fne},gne="return (b >= 1.0) ? a : a * (b + 1.0);",Ane=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,yne=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fp(Ane,s.shape,r.shape):new cc(gne,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},xne={kernelName:Eh,backendName:"webgl",kernelFunc:yne},bne=`
return vec4(equal(a, b));
`,vne="return float(a == b);",wne=Tn({opSnippet:vne,packedOpSnippet:bne,dtype:"bool",cpuKernelImpl:aJ}),kne={kernelName:Ai,backendName:"webgl",kernelFunc:wne},Sne=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${E.ERF_P};
float a1 = ${E.ERF_A1};
float a2 = ${E.ERF_A2};
float a3 = ${E.ERF_A3};
float a4 = ${E.ERF_A4};
float a5 = ${E.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Ine=st({opSnippet:Sne}),Cne={kernelName:hu,backendName:"webgl",kernelFunc:Ine},D4="return exp(x);",P4=st({opSnippet:D4,packedOpSnippet:D4,cpuKernelImpl:oJ,dtype:"float32"}),Tne={kernelName:Ba,backendName:"webgl",kernelFunc:P4};function fx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Nne={kernelName:yi,backendName:"webgl",kernelFunc:fx},F4="return exp(x) - 1.0;",Ene=st({opSnippet:F4,packedOpSnippet:F4,cpuKernelImpl:iJ}),Rne={kernelName:xi,backendName:"webgl",kernelFunc:Ene},O4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function M4(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new O4("real",l,t),u=new O4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Go({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function $ne(e){let{inputs:t,backend:n}=e,{input:s}=t;return M4(s,!1,n)}var _ne={kernelName:Rh,backendName:"webgl",kernelFunc:$ne},Dne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Ap(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Dne(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Pne={kernelName:fu,backendName:"webgl",kernelFunc:Ap},Fne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},One={kernelName:bi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Fne(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},z4="return floor(x);",Mne=st({opSnippet:z4,packedOpSnippet:z4,cpuKernelImpl:lJ}),zne={kernelName:Wa,backendName:"webgl",kernelFunc:Mne},Lne=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Bne=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Wne=Tn({opSnippet:Lne,packedOpSnippet:Bne,dtype:"int32"}),Vne={kernelName:Va,backendName:"webgl",kernelFunc:Wne},Une=class{constructor(e){this.variableNames=["A"];let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Gne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Hne={kernelName:hd,backendName:"webgl",kernelFunc:jne},hc;function jne(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(hc==null&&(hc=document.createElement("canvas").getContext("2d")),hc.canvas.width=l,hc.canvas.height=c,hc.drawImage(r,0,0,l,c),r=hc.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Ps.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=K().getBool("WEBGL_PACK")?new Gne(d):new Une(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function qne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=C4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=T4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",C=h?Bm(h,!1):null,N=new I4(g,b,C,w,k),R=[r,a];if(o&&R.push(o),i&&R.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(F),x.push(F)}A=n.runWebGLProgram(N,R,"float32")}let y=ve({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return x.push(A),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Xne={kernelName:bo,backendName:"webgl",kernelFunc:qne};function Kne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,x=p?Bm(p,A):null,y=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&y.push(o),w&&y.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));y.push(F),f.push(F)}let C;A?C=new _4(g,b,x,w,k):C=new $4(g,b,x,w,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(C,y,"float32",N);return f.forEach(F=>n.disposeIntermediateTensorInfo(F)),R}var Zne={kernelName:vo,backendName:"webgl",kernelFunc:Kne},Yne=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${s} strides = ${s}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function Jne(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=ve({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),y=uJ(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,y.values)}let f=new Yne(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Qne={kernelName:wi,backendName:"webgl",kernelFunc:Jne},ese=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=tse(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function tse(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function L4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=ve({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),w=n.bufferSync(f),k=cJ(w,b,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new ese(f.shape,g),x=n.runWebGLProgram(A,[f,m],f.dtype);h.push(x);let y=ve({inputs:{x},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var nse={kernelName:vi,backendName:"webgl",kernelFunc:L4},sse="return float(a > b);",rse=`
return vec4(greaterThan(a, b));
`,ase=Tn({opSnippet:sse,packedOpSnippet:rse,cpuKernelImpl:dJ,dtype:"bool"}),ose={kernelName:ki,backendName:"webgl",kernelFunc:ase},ise="return float(a >= b);",lse=`
return vec4(greaterThanEqual(a, b));
`,use=Tn({opSnippet:ise,packedOpSnippet:lse,dtype:"bool",cpuKernelImpl:pJ}),cse={kernelName:Ga,backendName:"webgl",kernelFunc:use};function dse(e){let{inputs:t,backend:n}=e,{input:s}=t;return M4(s,!0,n)}var pse={kernelName:$h,backendName:"webgl",kernelFunc:dse},hse="return float(!isnan(x) && !isinf(x));",fse=st({opSnippet:hse,dtype:"bool"}),mse={kernelName:mu,backendName:"webgl",kernelFunc:fse},gse="return float(isinf(x));",Ase=st({opSnippet:gse,dtype:"bool"}),yse={kernelName:gu,backendName:"webgl",kernelFunc:Ase},xse="return float(isnan(x));",bse=st({opSnippet:xse,dtype:"bool"}),vse={kernelName:Au,backendName:"webgl",kernelFunc:bse},wse="return float(a < b);",kse=`
return vec4(lessThan(a, b));
`,Sse=Tn({opSnippet:wse,packedOpSnippet:kse,cpuKernelImpl:hJ,dtype:"bool"}),Ise={kernelName:Ii,backendName:"webgl",kernelFunc:Sse},Cse="return float(a <= b);",Tse=`
return vec4(lessThanEqual(a, b));
`,Nse=Tn({opSnippet:Cse,packedOpSnippet:Tse,cpuKernelImpl:fJ,dtype:"bool"}),Ese={kernelName:Ci,backendName:"webgl",kernelFunc:Nse};function Rse(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=mJ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var $se={kernelName:_h,backendName:"webgl",kernelFunc:Rse},_se=`if (x < 0.0) return NAN;
return log(x);`,Dse=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,Pse=st({opSnippet:_se,packedOpSnippet:Dse,cpuKernelImpl:gJ}),Fse={kernelName:ja,backendName:"webgl",kernelFunc:Pse},Ose="return log(1.0 + x);",Mse=st({opSnippet:Ose}),zse={kernelName:yu,backendName:"webgl",kernelFunc:Mse},Lse="return float(a >= 1.0 && b >= 1.0);",Bse=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Wse=Tn({opSnippet:Lse,packedOpSnippet:Bse,dtype:"bool"}),Vse={kernelName:Ti,backendName:"webgl",kernelFunc:Wse},Use="return float(!(x >= 1.0));",Gse=st({opSnippet:Use}),Hse={kernelName:xu,backendName:"webgl",kernelFunc:Gse},jse="return float(a >= 1.0 || b >= 1.0);",qse=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Xse=Tn({opSnippet:jse,packedOpSnippet:qse,dtype:"bool"}),Kse={kernelName:od,backendName:"webgl",kernelFunc:Xse},Zse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Yse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},Jse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=K().getBool("WEBGL_PACK_NORMALIZATION")?new Yse(r.shape,a,o,i,l):new Zse(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Qse={kernelName:id,backendName:"webgl",kernelFunc:Jse},ere=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},tre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new ere(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},nre={kernelName:Dh,backendName:"webgl",kernelFunc:tre};function sre(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,e.dtype,"max",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function B4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let y=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[u[C]];let w=ux(y,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=Wm(r,u,n);c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("max",c,i);let[f,m]=E.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=E.expandShapeToKeepDim(f,l));let A;if(p){let y=n.texData.get(h.dataId).values,b=AJ(y,v.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(A.dataId);w.values=b}else A=sre(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var rre={kernelName:qa,backendName:"webgl",kernelFunc:B4},are=r4+`
return max(a, b);
`,ore=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Lm+`
return result;
`,ire=Tn({opSnippet:are,packedOpSnippet:ore,cpuKernelImpl:yJ}),lre={kernelName:Xa,backendName:"webgl",kernelFunc:ire};function ure(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;rc(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ys({inputs:{x:r},backend:n});let d=new mp(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var cre={kernelName:Ka,backendName:"webgl",kernelFunc:ure};function dre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new dx(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var pre={kernelName:ld,backendName:"webgl",kernelFunc:dre},hre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},fre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function mre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new dx(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new fre(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var gre={kernelName:Fh,backendName:"webgl",kernelFunc:mre};function Are(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;rc([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new mp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new hre(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var yre={kernelName:Ph,backendName:"webgl",kernelFunc:Are};function xre(e,t,n,s){let r=new mp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new mp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var bre={kernelName:Oh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=xre(s,i,u,l);return[d,p]}};function vre(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,"float32","mean",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var wre={kernelName:Za,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let N=0;N<w.length;N++)w[N]=s.shape[u[N]];let k=ux(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let C=o.texData.get(f.dataId);C.values=k}else f=Wm(s,u,o);h.push(f),c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=E.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=E.expandShapeToKeepDim(m,l));let x=vre(f,g,A,o);for(let y of h)o.disposeIntermediateTensorInfo(y);return x}};function kre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"min",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var Sre={kernelName:Ya,backendName:"webgl",kernelFunc:kre},Ire=r4+`
return min(a, b);
`,Cre=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Lm+`
return result;
`,Tre=Tn({opSnippet:Ire,packedOpSnippet:Cre,cpuKernelImpl:xJ}),Nre={kernelName:Ja,backendName:"webgl",kernelFunc:Tre},Ere=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=yt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},Rre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},$re=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Rre(s.shape,r,a):new Ere(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},_re={kernelName:Qa,backendName:"webgl",kernelFunc:$re},Dre=`if (b == 0.0) return NAN;
return mod(a, b);`,Pre=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Lm+`
return result;
`,Fre=Tn({opSnippet:Dre,packedOpSnippet:Pre}),Ore={kernelName:bu,backendName:"webgl",kernelFunc:Fre},Mre=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},zre=`
if (a == b) {
return 1.0;
};
return a / b;`,Lre=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,W4=Tn({opSnippet:zre,packedOpSnippet:Lre,checkOutOfBounds:!0}),Bre={kernelName:za,backendName:"webgl",kernelFunc:W4},V4="return a - b;",U4=Tn({opSnippet:V4,packedOpSnippet:V4,supportsComplex:!0,cpuKernelImpl:FJ}),Wre={kernelName:mo,backendName:"webgl",kernelFunc:U4};function G4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=B4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),u=U4({inputs:{a:r,b:c},backend:n}),d=P4({inputs:{x:u},backend:n}),p=Vm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:p},backend:n,attrs:{shape:l}}),f=W4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Vre={kernelName:ho,backendName:"webgl",kernelFunc:G4};function Ure(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:G4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Mre(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Gre={kernelName:Mh,backendName:"webgl",kernelFunc:Ure},H4="return -x;";function Hre(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=vJ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new uc(s.shape,H4):r=new Uo(s.shape,H4),n.runWebGLProgram(r,[s],s.dtype)}var jre={kernelName:Ni,backendName:"webgl",kernelFunc:Hre},qre=Ks.nonMaxSuppressionV3Impl;function Xre(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=qre(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Kre={kernelName:Ri,backendName:"webgl",kernelFunc:Xre},Zre=Ks.nonMaxSuppressionV4Impl;function Yre(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Zre(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Jre={kernelName:vu,backendName:"webgl",kernelFunc:Yre},Qre=Ks.nonMaxSuppressionV5Impl;function eae(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Qre(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var tae={kernelName:$i,backendName:"webgl",kernelFunc:eae},nae=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},sae=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new nae(l,a,o,i),u=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=ve({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},rae={kernelName:Di,backendName:"webgl",kernelFunc:sae};function qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=gp({inputs:{input:s},backend:n}),a=qm({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Go({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ap({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var aae={kernelName:Zi,backendName:"webgl",kernelFunc:qm};function j4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=gp({inputs:{input:s},backend:n}),a=j4({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Go({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ap({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var oae={kernelName:_i,backendName:"webgl",kernelFunc:j4};function iae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return fx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=fx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=S4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var lae={kernelName:Pi,backendName:"webgl",kernelFunc:iae},uae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},cae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=yt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${c}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${d[f]}
if (${p}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},q4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Ap({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cae(r.shape,a,o):new uae(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},dae={kernelName:to,backendName:"webgl",kernelFunc:q4},pae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,hae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Lm+`
return result;
`,fae=Tn({opSnippet:pae,packedOpSnippet:hae}),mae={kernelName:no,backendName:"webgl",kernelFunc:fae};function gae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=jn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=kJ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),A=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),x=wd(r.dtype),y=Rl(A,x,"prod",n);h=ve({inputs:{x:y},backend:n,attrs:{shape:f}}),l.push(A),l.push(y)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Aae={kernelName:Fi,backendName:"webgl",kernelFunc:gae},X4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=SJ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},yae={kernelName:wu,backendName:"webgl",kernelFunc:X4},xae="return 1.0 / x;",bae=st({opSnippet:xae}),vae={kernelName:ku,backendName:"webgl",kernelFunc:bae},wae=yr+`
return (x < 0.0) ? 0.0 : x;
`,kae=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Sae=st({opSnippet:wae,packedOpSnippet:kae}),Iae={kernelName:ro,backendName:"webgl",kernelFunc:Sae},Cae=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Tae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Nae=st({opSnippet:Cae,packedOpSnippet:Tae}),Eae={kernelName:oo,backendName:"webgl",kernelFunc:Nae},Rae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},$ae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function _ae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new $ae(r.shape,l,c,a,o):new Rae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Dae={kernelName:ao,backendName:"webgl",kernelFunc:_ae},Pae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Pae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Oae={kernelName:Lh,backendName:"webgl",kernelFunc:Fae},Mae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},zae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zae(r.shape,l,c,a,o):new Mae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Bae={kernelName:Su,backendName:"webgl",kernelFunc:Lae},Wae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Vae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Wae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Uae={kernelName:zh,backendName:"webgl",kernelFunc:Vae},Gae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Hae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Hn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${c(s.slice())};
if(${r}) {
result.a = ${u(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,x)=>p(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ys({inputs:{x:r},backend:n});let l=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hae(r.shape,i):new Gae(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var qae={kernelName:Mi,backendName:"webgl",kernelFunc:jae},Xae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Kae={kernelName:Yi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Xae(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Zae=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Yae=st({opSnippet:Zae}),Jae={kernelName:zi,backendName:"webgl",kernelFunc:Yae},Qae="return inversesqrt(x);",eoe=st({opSnippet:Qae,cpuKernelImpl:IJ}),toe={kernelName:io,backendName:"webgl",kernelFunc:eoe},K4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function noe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new K4(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),x}var soe={kernelName:Li,backendName:"webgl",kernelFunc:noe},roe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function aoe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new roe(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var ooe={kernelName:Bi,backendName:"webgl",kernelFunc:aoe},ioe=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${E.SELU_SCALEALPHA};
float scale = ${E.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,loe=st({opSnippet:ioe}),uoe={kernelName:Iu,backendName:"webgl",kernelFunc:loe},Z4="return 1.0 / (1.0 + exp(-1.0 * x));",coe=st({opSnippet:Z4,packedOpSnippet:Z4,cpuKernelImpl:CJ}),doe={kernelName:uo,backendName:"webgl",kernelFunc:coe},poe=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,hoe=st({opSnippet:poe}),foe={kernelName:Cu,backendName:"webgl",kernelFunc:hoe},moe=u4+`
return sin(x);
`,goe=st({opSnippet:moe}),Aoe={kernelName:lo,backendName:"webgl",kernelFunc:goe},yoe=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,xoe=st({opSnippet:yoe}),boe={kernelName:Vi,backendName:"webgl",kernelFunc:xoe},voe=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,woe=st({opSnippet:voe}),koe={kernelName:Tu,backendName:"webgl",kernelFunc:woe},Soe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=q4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=ve({inputs:{x:u},backend:n,attrs:{shape:d}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Ioe={kernelName:Ui,backendName:"webgl",kernelFunc:Soe};function Coe(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=NJ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Toe={kernelName:Bh,backendName:"webgl",kernelFunc:Coe};function Noe(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=EJ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Eoe={kernelName:Wh,backendName:"webgl",kernelFunc:Noe};function Roe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=KI(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var $oe={kernelName:Vh,backendName:"webgl",kernelFunc:Roe};function _oe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=KI(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Doe={kernelName:Uh,backendName:"webgl",kernelFunc:_oe};function Poe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new K4(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Foe={kernelName:cd,backendName:"webgl",kernelFunc:Poe};function Ooe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=dc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Moe={kernelName:Gi,backendName:"webgl",kernelFunc:Ooe},Y4="return sqrt(x);",zoe=st({opSnippet:Y4,packedOpSnippet:Y4,cpuKernelImpl:RJ}),Loe={kernelName:co,backendName:"webgl",kernelFunc:zoe},Boe="return x * x;",Woe=st({opSnippet:Boe}),Voe={kernelName:Nu,backendName:"webgl",kernelFunc:Woe},J4="return (a - b) * (a - b);",Uoe=Tn({opSnippet:J4,packedOpSnippet:J4}),Goe={kernelName:fo,backendName:"webgl",kernelFunc:Uoe};function Hoe({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=yr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new Uo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var joe={kernelName:yo,backendName:"webgl",kernelFunc:Hoe},qoe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function Xoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Ft.computeOutShape(x,y,b),N=dc({inputs:{x:r},backend:n,attrs:{begin:x,size:C}});w=ve({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else if(n.shouldExecuteOnCPU([r])){let N=n.readSync(r.dataId),R=ze(r.shape,r.dtype,N),F=$J(h,R,b,x);w=n.makeTensorInfo(f,r.dtype,F.values)}else{let N=new qoe(x,b,h);w=n.runWebGLProgram(N,[r],r.dtype)}let k=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var Koe={kernelName:Hi,backendName:"webgl",kernelFunc:Xoe};function Zoe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=_J(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Yoe={kernelName:dd,backendName:"webgl",kernelFunc:Zoe};function Joe(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=DJ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Qoe={kernelName:Gh,backendName:"webgl",kernelFunc:Joe};function eie(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=PJ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var tie={kernelName:Hh,backendName:"webgl",kernelFunc:eie},nie="return tan(x);",sie=st({opSnippet:nie}),rie={kernelName:ji,backendName:"webgl",kernelFunc:sie},aie=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,oie=st({opSnippet:aie}),iie={kernelName:go,backendName:"webgl",kernelFunc:oie},lie=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=uie(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function uie(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function Q4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=OJ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new lie(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var cie={kernelName:qr,backendName:"webgl",kernelFunc:Q4},die=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},pie=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function $l(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function eC(e){let t=1;for(;t<e;)t*=2;return t}function hie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let F=n.readSync(r.dataId),[_,P]=MJ(F,c,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Ap({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=ve({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&$l(n,h);let A=eC(a),x=eC(u),y=null,b=()=>y===null?[g,g]:[g,y],w=(F,_,P)=>{let T=b(),M=new die(P),j=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[F],[_]],z=y;y=n.runWebGLProgram(M,T,"int32",j),$l(n,z)};for(let F=1;F<A;F*=2){let _=F*2;for(let P=F;P>=1;P/=2)w(_,P,[m,x])}for(let F=x;F>A;F/=2){let _=b(),P=new pie([m,F/2]),M=[[u],[y===null?1:0],[A]],U=y;y=n.runWebGLProgram(P,_,"int32",M),$l(n,U);let j=A/2,z=j*2;for(let X=j;X>=1;X/=2)w(z,X,y.shape)}let k=y;y=dc({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),$l(n,k);let C=L4({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});$l(n,g);let N=c.slice(0,-1);N.push(a),k=y,y=ve({inputs:{x:y},attrs:{shape:N},backend:n}),$l(n,k);let R=C;return C=ve({inputs:{x:C},attrs:{shape:N},backend:n}),$l(n,R),[C,y]}var fie={kernelName:qi,backendName:"webgl",kernelFunc:hie},mie=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function gie(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new mie(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Aie={kernelName:Xi,backendName:"webgl",kernelFunc:gie};function yie(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;rc(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=zJ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var xie={kernelName:jh,backendName:"webgl",kernelFunc:yie};function bie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=dc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ve({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var vie={kernelName:Ki,backendName:"webgl",kernelFunc:bie},wie=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";r%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function kie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=wd(r.dtype),g=(b,w,k,C,N)=>{let R=b.shape[0],F=b.shape[1],_=E.segment_util.segOpComputeOptimalWindowSize(F,N),P={windowSize:_,inSize:F,batchSize:R,numSegments:N},T=new wie(P,w),M=n.compileAndRun(T,[b,k],C);if(l.push(M),M.shape[1]===N)return M;let U=X4({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),j=Q4({inputs:{x:U},backend:n,attrs:{reps:[F/_]}});return l.push(U),l.push(j),g(M,w,j,C,N)},A=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:A},backend:n,attrs:{shape:p}}),y=x;if(u!=null){l.push(x);let b=E.getUndoAxesPermutation(u);y=jn({inputs:{x:y},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Sie={kernelName:pd,backendName:"webgl",kernelFunc:kie},Iie=[Qse,nre,MQ,LQ,VQ,HQ,qQ,ZQ,JQ,eee,ree,oee,uee,pee,xee,mee,wee,Cee,See,Ree,_ee,Pee,zee,Hee,qee,Kee,tte,ste,ite,cte,yQ,mte,Ite,Tte,xte,$te,Dte,Ete,Ote,Lte,Vte,Gte,jte,Kte,tne,sne,Yte,one,une,dne,mne,xne,kne,Cne,Tne,Nne,Rne,_ne,Pne,One,zne,Vne,Hne,Xne,Zne,Qne,nse,ose,cse,AQ,pse,hte,mse,yse,vse,bQ,Ise,Ese,$se,zse,Fse,Vse,Hse,Kse,rre,pre,cre,gre,yre,bre,lre,wre,Sre,Nre,_re,Ore,Gre,IQ,jre,Kre,Jre,tae,Yee,rae,oae,lae,dae,mae,wQ,Aae,yae,Jee,Bre,vae,Eae,Iae,TQ,Dae,Oae,Bae,Uae,qae,Kae,Jae,toe,soe,ooe,uoe,doe,foe,Aoe,boe,Uee,Vre,koe,Ioe,Toe,Eoe,$oe,Doe,Foe,Moe,Loe,Voe,Goe,joe,Koe,Yoe,Qoe,tie,Wre,PQ,rie,iie,cie,fie,Aie,FQ,xie,vie,Sie,aae];for(let e of Iie)ar(e);var Br=K();Br.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Br.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Br.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Br.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Br.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Br.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Br.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Br.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Br.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Br.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Cie(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function wn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function Xm(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Km(){return`
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
`}function mx(){return`
${Km()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>,
[[builtin(num_workgroups)]] numWorkgroups: vec3<u32>)
`}function Ho(){return`
${Km()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>)
`}function nt(){return`
${mx()} {
let index = getGlobalIndex(globalId, localId, numWorkgroups);
`}function Tie(e,t,n,s=!1){let r=`
let workGroupSizeX = ${n.workGroupSize[0]}u;
let workGroupSizeY = ${n.workGroupSize[1]}u;
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=sC(t.shape),f=`
[[block]] struct Matrix0 {
numbers: array<${Xm(t.dtype,n.isVec4)}>;
};
[[block]] struct Uniform {
size : i32;
numChannels : i32;
outShapeStrides : vec2<i32>;
dispatchSize : vec3<u32>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
`;return[tC,f,r,nC,h,n.getUserCode()].join(`
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${wn(e[f].shape.length)}; `}),o+=`outShape : ${wn(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
outShapeStrides: ${wn(i)}; `,n.size&&(o+="size : i32; "),n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
[[block]] struct Matrix0 {
numbers: array<atomic<i32>>;
};
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
`):a.push(`
[[block]] struct Matrix0 {
numbers: array<${Xm(t.dtype,n.isVec4)}>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
`),n.variableNames.forEach((h,f)=>{a.push(`
[[block]] struct Matrix${1+f} {
numbers: array<${Xm(e[f].dtype,n.isVec4)}>;
};
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
`)}),o!==""&&a.push(`
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
`),a.push(r);let[l,c]=Die(t.shape,n.dispatchLayout),u=sC(t.shape),d=[tC,a.join(`
`),nC,u,l,Nie(t.shape.length)];if(n.atomic||d.push(Eie(t.shape,t.dtype,n.isVec4)),c===t.shape.length){let h=e.map(f=>Rie(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
`)}var tC=`
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
fn isNanCustom(val : f32) -> bool {
if (val > 0.0) {
return false;
}
if (val < 0.0) {
return false;
}
if (val == 0.0) {
return false;
}
return true;
}
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
var res = vec4<f32> (0.0);
for (var i = 0u; i < 4u; i = i + 1u) {
if (isNanCustom(val[i])) {
res[i] = 1.0;
} else {
res[i] = 0.0;
}
}
return res;
}
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) &&
all(coord < shape);
}
`,nC=`
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
}
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
}
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
}
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> i32 {
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
return i32(globalId.x);
}
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
}
`;function Nie(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputFlatIndex(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
}
`;break;case 3:t+=`
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
}
`;break;case 4:t+=`
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Eie(e,t,n){let s=e.length,r=Xm(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
result.numbers[flatIndex] = ${r}(value);
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : i32) {
result.numbers[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=wn(s);n?a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex / 4, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex / 4, value);
}
`:a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex, value);
}
`}return a}function Rie(e,t,n,s){let r=$ie(e,n);return e.shape.length<=t.length&&(r+=_ie(e,t,n,s)),r}function $ie(e,t){let n=e.name,s=e.shape.length,r=wn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}.numbers[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}.numbers[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l})]);
}
`}function _ie(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=wn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
return f32(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> f32 {
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
}
`;let u=E.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> f32{
return get${a}();
}
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=wn(i),A=e.shape.map((x,y)=>`coords[${y+d}]`).join(", ");h=`${g}(${A})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
var coords = coordsIn;
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
`}function Die(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoordsWithFlatDispatchLayout(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> ${wn(a)}{
let globalIndex = getGlobalIndex(globalId, localId, numWorkgroups);
return getCoordsFromFlatIndex(globalIndex);
}
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=Cie(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=wn(l),d=`fn getOutputCoordsWithNonFlatDispatchLayout(globalId : vec3<u32>) -> ${u} {
${o}
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function sC(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=wn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}var rC={};Oe(rC,{ArrayBufferToTypedArray:()=>aC,GPUBytesPerElement:()=>xx,computeDispatch:()=>Fe,computeWorkGroupSizeForConv2d:()=>gx,computeWorkGroupSizeForMatMul:()=>Ax,computeWorkPerThreadForConv2d:()=>yx,flatDispatchLayout:()=>je,isWebGPUSupported:()=>bx,tilesFitEvenlyIntoShape:()=>aa});var fc=65535,_l=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function aa(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Fe(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(_l(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(_l(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(_l(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=fc&&a<=fc&&o<=fc)return[r,a,o];v.assert(r>fc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>fc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=fc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function gx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function Ax(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function yx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function je(e){return{x:e.map((t,n)=>n)}}function xx(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function aC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function bx(){return!!navigator.gpu}var Vt;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Vt||(Vt={}));var Pie="return a + b;",Fie="return areal * breal - aimag * bimag;",Oie="return areal * bimag + aimag * breal;",Mie="return a / b;",zie="return a * b;",Lie="return (a - b) * (a - b);",Bie="return a - b;",Wie="return f32(a == b);",Vie="return vec4<f32>(a == b);",Uie="return f32(a > b);",Gie="return vec4<f32>(a > b);",Hie="return f32(a >= b);",jie="return vec4<f32>(a >= b);",qie="return f32(a < b);",Xie="return vec4<f32>(a < b);",Kie="return f32(a <= b);",Zie="return vec4<f32>(a <= b);",Yie="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Jie=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Qie=`
if (isNanCustom(a)) { return a; }
if (isNanCustom(b)) { return b; }
`,oC=`
if (isNaN.r > 0.) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g > 0.) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b > 0.) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a > 0.) {
resultTemp.a = uniforms.NAN;
}
`,ele=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,tle=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,nle="return f32(a != b);",sle="return vec4<f32>(a != b);",rle=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,ale=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
${oC}
return resultTemp;
`,ole="if (a < 0.0) { return b * a; } return a;",ile=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function iC(e,t){let n=t?oC:Qie;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function yp(e,t){switch(e){case 0:return zie;case 1:return Pie;case 2:return Bie;case 3:return Mie;case 4:return t?Vie:Wie;case 5:return t?Gie:Uie;case 6:return t?jie:Hie;case 7:return t?Xie:qie;case 8:return t?Zie:Kie;case 9:return t?Jie:Yie;case 10:return t?sle:nle;case 11:return Lie;case 12:return t?tle:ele;case 14:return t?ile:ole;case 15:return iC("max",t);case 16:return iC("min",t);case 13:return t?ale:rle;case 17:return Fie;case 18:return Oie;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var xt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(xt||(xt={}));var lle="return abs(a);",ule="return ceil(a);",cle="return cos(a);",dle=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,ple="return exp(a) - 1.0;",hle="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",fle=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,mle="return exp(a);",gle="return floor(a);",Ale="return a;",yle=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,xle="return f32(!(a >= 1.0));",ble="return -a;",vle="return (a < 0.0) ? b * a : a;",wle="return max(a, 0.0);",kle="return clamp(a, 0.0, 6.0);",Sle="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Ile=`
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
let isNaN = isNan(a);
if (isNaN.r) {
resFloat.r = a.r;
}
if (isNaN.g) {
resFloat.g = a.g;
}
if (isNaN.b) {
resFloat.b = a.b;
}
if (isNaN.a) {
resFloat.a = a.a;
}
return resFloat;
`,Cle="return 1.0/sqrt(a);",Tle="return 1.0 / (1.0 + exp(-1.0 * a));",Nle="return sin(a);",Ele=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,Rle="return sqrt(a);",$le="return a * a;",_le=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,Dle="return f32(i32((a)));";function mc(e,t){switch(e){case 0:return lle;case 2:return cle;case 3:return dle;case 1:return ule;case 4:return t?fle:hle;case 5:return mle;case 6:return ple;case 7:return gle;case 8:return Ale;case 9:return yle;case 10:return xle;case 11:return ble;case 12:return vle;case 13:return t?Ile:wle;case 14:return t?Sle:kle;case 15:return Cle;case 18:return Tle;case 16:return Nle;case 17:return Ele;case 19:return Rle;case 20:return $le;case 21:return _le;case 22:return Dle;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function oa(e,t=!1){if(e===null)return null;if(e==="linear")return mc(xt.LINEAR);if(e==="relu")return mc(xt.RELU,t);if(e==="elu")return mc(xt.ELU,t);if(e==="relu6")return mc(xt.RELU6,t);if(e==="prelu")return yp(Vt.PRELU,t);if(e==="sigmoid")return mc(xt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function lC(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
let RowPerThread = ${n.RowPerThread};
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
let TileAOuter = ${n.TileAOuter};
let TileBOuter = ${n.TileBOuter};
let TileInner = ${n.TileInner};
${Ho()} {
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x);
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, ${n.RowPerThread}>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
var globalColA = tileCol;
let RowPerThreadB = TileInner / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
for (var i = 0; i < RowPerThread; i = i + 1) {
ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}function Ple(e){return`
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
let tileSize = ${e[0]*4};
${Ho()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
// Without this initialization strange values show up in acc.
var acc = vec4<f32>(0.0);
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * tileSize / 4 + tileCol;
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileSize / 4; k = k + 1) {
let rowB = t * tileSize + k * 4;
let BCached0 = mm_readB(rowB, globalCol, globalId);
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
let ACached = mm_Asub[k];
acc = acc + BCached0 * ACached.x;
acc = acc + BCached1 * ACached.y;
acc = acc + BCached2 * ACached.z;
acc = acc + BCached3 * ACached.w;
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var Fle=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=Ax(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[aa(o,this.aShape.slice(1)),aa(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=oa(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${r}
${s}
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${this.outputShape[1]>1?lC([this.vecSize,this.workPerThread,1],this.workGroupSize):Ple(this.workGroupSize)}
`}};function vx(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
${Ho()} {
let tileRow = i32(localId.y) * ${e[1]};
let tileCol = i32(localId.x) * ${e[0]};
let globalRow = i32(globalId.y) * ${e[1]};
let globalCol = i32(globalId.x) * ${e[0]};
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
var ACached : f32;
var BCached : array<f32, ${e[0]}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let ColPerThreadA = ${r} / ${t[0]};
let tileColA = i32(localId.x) * ColPerThreadA;
let RowPerThreadB = ${r} / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * ${r} + inputCol, globalId);
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${r} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${r}; k = k + 1) {
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
if ((globalCol + innerCol) < uniforms.dimBOuter &&
(globalRow + innerRow) < uniforms.dimAOuter) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
}
`}function Ole(e){return`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Ho()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId));
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var uC=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=Ax(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[aa(r,this.aShape.slice(1)),aa(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
}
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
}
return 0.0;`;let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${this.outputShape[1]>1?vx([this.workPerThread,this.workPerThread,1],this.workGroupSize):Ole(this.workGroupSize)}
`}};function Mle(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Ho()} {
let coords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var zle=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${e}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${Mle()}
`}};function Lle(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${Ho()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var Ble=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${r}
${s}
setOutput(batch, row, col, value);
}
}
${Lle(this.workGroupSize)}
`}};function Ge(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Wle={kernelName:Oi,backendName:"webgpu",kernelFunc:Ge};function wx({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],C=Ge({inputs:{x:e},backend:r,attrs:{shape:w}}),N=Ge({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[C,N],F=Math.max(A,x),_=d%4==0&&f%4==0&&!n&&!s&&f>=32,P;h*f<=32?P=new zle([F,h,f],n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?P=new Ble(w,k,[F,h,f],a,l,o):_?P=new Fle(w,[F,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):P=new uC(w,[F,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let T=[C,N];a&&T.push(a),o&&T.push(o);let M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],U=r.runWebGPUProgram(P,T,e.dtype,M),j=Ge({inputs:{x:U},backend:r,attrs:{shape:b}});R.push(U);for(let z of R)r.disposeData(z.dataId);return j}function Vle(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return wx({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var Ule={kernelName:xo,backendName:"webgpu",kernelFunc:Vle},cC=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${yp(this.op,!1)}
}
${nt()}
if(index < uniforms.size) {
let areal = getARealAtOutCoordsByGlobalIndex(index);
let aimag = getAImagAtOutCoordsByGlobalIndex(index);
let breal = getBRealAtOutCoordsByGlobalIndex(index);
let bimag = getBImagAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},Gle=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBAtOutCoordsByCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${yp(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${nt()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${t}
setOutputFlat(flatIndex, binaryOperation(a, b));
}
}
}
`}},Hle=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${yp(this.op,this.isVec4)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}},dC=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${yp(this.op,!1)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}};function pC(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new Hle(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Gle(e,t,n,a):new dC(e,t,n)}function Qs(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var jle={kernelName:Ha,backendName:"webgpu",kernelFunc:Qs};function gc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Qs({inputs:{x:s},backend:n}),l=Qs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var qle={kernelName:ed,backendName:"webgpu",kernelFunc:gc},Zm=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${mc(this.op,!1)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, unaryOperation(a));
}
}
`}};function Nn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Zm(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function qn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==Vt.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[A,x]=g,y={dataId:A.dataId,dtype:A.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=pC(e,o.shape,i.shape);return l.runWebGPUProgram(w,[y,b],Ln(A.dtype,x.dtype))});else{let g=new cC(Vt.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),A=new cC(Vt.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(A,x,"float32")}let m=gc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Ln(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?E.fromUint8ToStringArray(d):d,f=o.dtype==="string"?E.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=pC(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Xle,ceilImpl:Kle,concatImpl:Zle,equalImpl:Yle,expImpl:Jle,expm1Impl:Qle,floorImpl:eue,gatherNdImpl:tue,gatherV2Impl:nue,greaterEqualImpl:sue,greaterImpl:rue,lessEqualImpl:aue,lessImpl:oue,logImpl:iue,maxImpl:lue,maximumImpl:uue,minimumImpl:cue,multiplyImpl:due,negImpl:pue,notEqualImpl:hue,prodImpl:fue,rangeImpl:mue,rsqrtImpl:gue,simpleAbsImpl:Aue,sliceImpl:yue,stridedSliceImpl:xue,stringNGramsImpl:bue,subImpl:vue,tileImpl:wue,topKImpl:kue,transposeImpl:Sue,uniqueImpl:P2e}=vm,Iue=Nn({opType:xt.ABS,cpuKernelImpl:Aue}),Cue={kernelName:di,backendName:"webgpu",kernelFunc:Iue},Tue=qn({opSnippet:Vt.ADD,cpuKernelImpl:Xle,supportsComplex:!0}),Nue={kernelName:Hr,backendName:"webgpu",kernelFunc:Tue},Eue=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${nt()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${e.join(`
`)}
setOutputFlat(flatIndex, ${t});
}
}
}
`}};function Rue(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Qs({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Ln(i,l)),a=s.map(i=>i.shape),o=new Eue(a);return n.runWebGPUProgram(o,s,r)}var $ue={kernelName:Ta,backendName:"webgpu",kernelFunc:Rue},hC=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];E.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=E.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,n=`
xBestIndices[localId.x] = bestIndex;
xBestValues[localId.x] = bestValue;
for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) {
workgroupBarrier();
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
let i = i32(localId.x) * ${this.reductionFactor} + w;
if (i < currentSize) {
let candidateIndex = xBestIndices[i];
let candidate = xBestValues[i];
if(candidate ${this.op} bestValue && !isNanCustom(candidate)) {
bestValue = candidate;
bestIndex = candidateIndex;
}
}
}
xBestIndices[localId.x] = bestIndex;
xBestValues[localId.x] = bestValue;
}
if (localId.x == 0u) {
setOutputFlatI32(flatOutputIndex, i32(bestIndex));
}
`,s=(o,i)=>this.outputShape.length===1?o:`${o}[${i}]`,r=o=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${o}]`;return`
fn DIV_CEIL(a : i32, b : i32) -> i32 {
return ((a - 1) / b + 1);
}
let WorkGroupSize = ${this.workGroupSize[0]};
${e?t:""}
// In order to get a flattened index into the input tensor, we need to
// add back the index along the reduced dimension to |outputCoords|.
// This function outputs the offset to the first value along
// |axis| and the stride to get the next value of the input along |axis|.
fn getInputCoordInfo(globalId : vec3<u32>) -> vec2<i32>{
let outputCoords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
var i = ${this.outputShape.length-1};
var stride = 1;
var inputStride = 1;
var offset = 0;
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
let length = ${r(`${this.inputShape.length} - r`)};
if (${this.inputShape.length} - r == uniforms.axis) {
inputStride = stride;
} else {
offset = offset + ${s("outputCoords","i")} * stride;
i = i - 1;
}
stride = stride * length;
}
return vec2<i32>(offset, inputStride);
}
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
return coordInfo[0] + coordInfo[1] * index;
}
${Ho()} {
let coordInfo = getInputCoordInfo(globalId);
var bestIndex = 0;
var bestValue = f32(x.numbers[getInputIndex(coordInfo, bestIndex)]);
let Length = ${r("uniforms.axis")};
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
for (var w = 0; w < WorkPerThread; w = w + 1) {
let i = i32(globalId.x) * WorkPerThread + w;
if (i < Length) {
let candidate = f32(x.numbers[getInputIndex(coordInfo, i)]);
if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) {
bestValue = candidate;
bestIndex = i;
}
}
}
let flatOutputIndex = i32(globalId.y);
${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"}
}
`}},_ue=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${Km()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(workgroup_id)]] workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] =
A.numbers[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputFlat((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},Due=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=wn(this.outputShape.length),t=Pue(this.newDim);return`
${nt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromFlatIndex(flatIndex);
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function Pue(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function Dl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=Sue(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new _ue(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new Due(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var Fue={kernelName:Ao,backendName:"webgpu",kernelFunc:Dl};function Oue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new hC(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Mue={kernelName:Na,backendName:"webgpu",kernelFunc:Oue};function zue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new hC(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Lue={kernelName:iu,backendName:"webgpu",kernelFunc:zue},fC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputFlat(index, ${t});
}
}
`}},mC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputFlat(index, value);
}
}
`}};function Bue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Qs({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new mC(u):(d=new fC(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var Wue={kernelName:Ea,backendName:"webgpu",kernelFunc:Bue};function Vue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return wx({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Uue={kernelName:Ra,backendName:"webgpu",kernelFunc:Vue},Gue=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${wn(e.length)}; `,this.shaderKey="slice"}getUserCode(){let e=wn(this.rank),t=Hue(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${kx[a]} = uniforms.start[${a}] + coords.${kx[a]};`),`
${nt()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromFlatIndex(index);
${n.join(`
`)}
setOutputFlat(index, getSource(${t}));
}
}
`}},kx=["x","y","z","w","u","v"];function Hue(e){if(e===1)return"sourceLoc";if(e<=6)return kx.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ac(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=yue(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new Gue(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var jue={kernelName:Wi,backendName:"webgpu",kernelFunc:Ac},que=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=Ge({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:c}}),g=Ge({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ac({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),A},Xue={kernelName:pi,backendName:"webgpu",kernelFunc:que},gC=qn({opSnippet:Vt.NOT_EQUAL,dtype:"bool",cpuKernelImpl:hue}),Kue={kernelName:Ei,backendName:"webgpu",kernelFunc:gC};function xp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Qs({inputs:{x:r.complexTensorInfos.real},backend:n})}var Zue={kernelName:ud,backendName:"webgpu",kernelFunc:xp};function Yue(e,t){let n=new Zm(e.shape,xt.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Sx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Qs({inputs:{x:r},backend:n});let o=Gt(r.shape),i=Sx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=gc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=xp({inputs:{input:r},backend:n}),i=Sx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Qs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Yue(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=gC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Jue={kernelName:$a,backendName:"webgpu",kernelFunc:Sx},Que=Nn({opType:xt.CEIL,cpuKernelImpl:Kle}),ece={kernelName:_a,backendName:"webgpu",kernelFunc:Que},tce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${nt()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isNanCustom(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputFlat(index, clampedValue);
}
}
`}},nce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${nt()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
if (isNanCustom(value)) {
setOutputFlat(index, value);
return;
}
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function sce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new tce(r.shape):i=new nce(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var rce={kernelName:jr,backendName:"webgpu",kernelFunc:sce},ace=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
${nt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${t.join(`
`)}
}
}
}
`}};function Ym(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Qs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var oce={kernelName:ad,backendName:"webgpu",kernelFunc:Ym};function Ix(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>xp({inputs:{input:m},backend:n})),d=e.map(m=>Ym({inputs:{input:m},backend:n})),p=Ix(u,t,n),h=Ix(d,t,n),f=gc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return Ge({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=Zle(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeData(A.dataId)),g}let{tensors2D:a,outShape:o}=ice(e,t,n),i=new ace(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=Ge({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function ice(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ge({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function AC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Qs({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),Ix(i,a,n)}var lce={kernelName:hi,backendName:"webgpu",kernelFunc:AC},uce=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
${nt()}
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
let rc = getCoordsFromFlatIndex(flatIndex);
if(flatIndex < uniforms.size) {
let blockIndex = rc[0];
let pos = rc[1];
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
var value = 0.0;
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
uniforms.pad[0];
let d1 = offsetX + uniforms.dilation[0] * ((pos %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = pos % uniforms.inChannels;
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
value = getA(d0, d1, ch);
}
}
setOutputFlat(flatIndex, value);
}
}
}
`}};function yC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=Ge({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=Ge({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=wx({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ge({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function cce({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:A,dataFormat:x}=n,y=x==="channelsLast",b=l*c*u,w=m*f,k=[w,b],C=!1,N=!1,R=[],F=Ge({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),_=Ge({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});R.push(F),R.push(_);let P=new uce(k,y),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,A]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],M=s.runWebGPUProgram(P,[F],F.dtype,T),U=Ge({inputs:{x:M},backend:s,attrs:{shape:[1,k[0],k[1]]}});R.push(M),R.push(U);let j=[1,k[0],k[1]],z=new uC(j,[1,w,n.outChannels],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),C,N),X=j[1],Z=j[2],J=n.outChannels,ee=[{type:"int32",data:[X]},{type:"int32",data:[J]},{type:"int32",data:[Z]}],re=s.runWebGPUProgram(z,[U,_],U.dtype,ee),Q=y?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],te=Ge({inputs:{x:re},backend:s,attrs:{shape:Q}});R.push(re);for(let oe of R)s.disposeData(oe.dataId);return te}var xC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(r,[o,l]),aa(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
let divBy4Remainder${e} = flatIndex${e} % 4;
let divBy4Index${e} = flatIndex${e} / 4;
let curData${e} = x.numbers[divBy4Index${e}];
if (divBy4Remainder${e} == 0) {
temp = curData${e};
} else {
// TODO: This could end up being a redundant load with another one in
// the same shader invocation. Perhaps there's an opportunity for
// optimization
let nextData${e} = x.numbers[divBy4Index${e} + 1];
if (divBy4Remainder${e} == 1) {
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
} elseif (divBy4Remainder${e} == 2) {
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
} elseif (divBy4Remainder${e} == 3) {
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
}
}
`}getUserCode(){let t=lC([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
let outCol = r % uniforms.outShape[2];
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
let inChCoord = c % uniforms.xShape[3];
var coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
inChCoord);
var resData = vec4<f32>(0.0);
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (coordsInBounds4D(coord, uniforms.xShape)) {
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
} else {
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
${this.getSampleAWithRemainder(1)}
resData = temp;
if (WCol == (uniforms.filterDims[1] - 1)) {
coord = vec4<i32>(
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
${this.getSampleAWithRemainder(2)}
if (inChCoord == 0) {
resData = vec4<f32>(resData.xyz, temp.x);
} elseif (inChCoord == 1) {
resData = vec4<f32>(resData.xy, temp.xy);
} else {
resData = vec4<f32>(resData.x, temp.xyz);
}
}
`}
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
${r}
}
return vec4<f32>(0.0);
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0);
`,i="",l="";if(this.activation){let d=oa(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${d}
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
let b = getLeakyreluAlphaAtOutCoords();
${d}
}`,new Error("Leakyrelu is not supported.");i=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${d}
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${i}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let r = row;
let c = col * 4;
var batch = i32(globalId.z);
${a}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${o}
}
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col * 4);
${c}
${l}
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
value);
}
}
${t}
`}},bC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=gx(this.dispatchLayout,this.outputShape),this.elementsPerThread=yx(this.dispatchLayout,this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(s,[a,i]),aa(r,[i,o])]}getUserCode(){let e=vx(this.elementsPerThread,this.workGroupSize),t=`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
let coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
col % uniforms.xShape[3]);
// The bounds checking is always needed since we use it to pad zero for the
// 'same' padding type.
if(coordsInBounds4D(coord, uniforms.xShape)) {
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${t}
}
return 0.0;
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter + col];
}
return 0.0;
`,r="",a="";if(this.activation){let l=oa(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${l}
}`:r=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${l}
}
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
${n}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${s}
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
${o}
${a}
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${e}
`}},vC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
${r}
}
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${e}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
let coord = vec4<i32>(batch, row, col, chan);
if(coordsInBounds4D(coord, uniforms.xShape)) {
return getX(batch, row, col, chan);
}
return 0.0;
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coord = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coord, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
}
return 0.0;
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
${n}
${t}
setOutput(batch, row, col, chan, value);
}
}
${mx()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let outChannel = coords[3];
var acc = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
let v = readInp(batch, coordRow, coordCol, xChannel);
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, coords[1], coords[2], outChannel, acc);
}
`}};function dce(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return yC({x:r,filter:a,convInfo:p,backend:s});if(K().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return cce({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=K().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new vC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new xC(p):h=new bC(p),!g){let A=p.outShape[1]*p.outShape[2],x=p.outShape[3],y=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[A]},{type:"int32",data:[x]},{type:"int32",data:[y]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var pce={kernelName:Da,backendName:"webgpu",kernelFunc:dce},hce=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=gx(this.dispatchLayout,this.outputShape),this.elementsPerThread=yx(this.dispatchLayout,this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${vx(this.elementsPerThread,this.workGroupSize)}
`}},fce=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${nt()} {
if(index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputFlat(index, dotProd);
}
}
`}};function mce(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new fce(p);else{f=new hce(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],A=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[A]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var gce={kernelName:Pa,backendName:"webgpu",kernelFunc:mce},Ace=Nn({opType:xt.COS}),yce={kernelName:Fa,backendName:"webgpu",kernelFunc:Ace},xce=Nn({opType:xt.COSH}),bce={kernelName:Oa,backendName:"webgpu",kernelFunc:xce},vce=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputFlat(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputFlat(index, newValue);
}
}
}
`}},wce=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new vce(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},kce={kernelName:mi,backendName:"webgpu",kernelFunc:wce},Sce=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputFlat(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new Sce(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Cce={kernelName:gi,backendName:"webgpu",kernelFunc:Ice},wC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${r}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
${e}
${Km()}
fn main([[builtin(global_invocation_id)]] globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${n}
${t}
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},kC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=oa(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${a}
}`:t=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${a}
}
`,n="dotProd = activation(dotProd, coords);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByCoords(coords);":"";return`
${t}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutput(batch, row, col, chan, value);
}
}
${mx()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / ${e};
let q = d2 - d1 * ${e};
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${s}
${n}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function Tce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new wC(d):p=new kC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var Nce={kernelName:Ma,backendName:"webgpu",kernelFunc:Tce},SC=qn({opSnippet:Vt.MUL,cpuKernelImpl:due,supportsComplex:!0}),Ece={kernelName:eo,backendName:"webgpu",kernelFunc:SC},Rce=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=E.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=`
if (isNanCustom(candidate)) {
bestValue = uniforms.NAN;
} elseif (candidate ${this.reduceType==="min"?"<":">"}
bestValue)
{ bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,a=`
xBestValues[localId.x] = bestValue;
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "}
var currentSize = WorkGroupSize;
for(; currentSize > 1;) {
workgroupBarrier();
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
let i = i32(localId.x) * ${this.reductionFactor} + w;
if (i < currentSize) {
let candidate = xBestValues[i];
${t}
}
}
workgroupBarrier();
xBestValues[localId.x] = bestValue;
currentSize = DIV_CEIL(currentSize, ${this.reductionFactor});
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""}
}
if (localId.x == 0u) {
${s}
}
`;return`
fn DIV_CEIL(a : i32, b : i32) -> i32 {
return ((a - 1) / b + 1);
}
let WorkGroupSize = ${this.workGroupSize[0]};
${e?r:""}
fn getOffset(globalId : vec3<u32>) -> i32 {
let outputCoords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ho()} {
let offset = getOffset(globalId);
var bestValue = ${n};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
for (var w = 0; w < WorkPerThread; w = w + 1) {
let i = i32(globalId.x) * WorkPerThread + w;
if (i < Length) {
let candidate = f32(x.numbers[offset + i]);
${t}
}
}
let flatOutputIndex = i32(globalId.y);
${e?a:s}
}
`}};function bp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=E.getAxesPermutation(l,a),u=e;c!=null&&(u=Dl({inputs:{x:e},attrs:{perm:c},backend:r}),l=E.getInnerMostAxes(l.length,a),o.push(u)),E.assertAxesAreInnerMostDims(s,l,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=lue(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:A,outShape:x,outDtype:y}=fue(u.shape,u.dtype,m,l);f=r.makeTensorInfo(x,y,A);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),A=v.sizeFromShape(u.shape)/m,x={windowSize:m,inSize:m,batchSize:A,outSize:1},y=s==="mean"?"float32":wd(e.dtype),b=[{type:"int32",data:[m]}],w=new Rce(x,s,y),k=r.runWebGPUProgram(w,[u],y,b);o.push(k),f=Ge({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Cx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return bp(r,a,o,"sum",n)}var $ce={kernelName:po,backendName:"webgpu",kernelFunc:Cx};function _ce(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Dl({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Ge({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=SC({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Cx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var Dce={kernelName:rd,backendName:"webgpu",kernelFunc:_ce},Pce=Nn({opType:xt.ELU}),Fce={kernelName:La,backendName:"webgpu",kernelFunc:Pce},Oce=qn({opSnippet:Vt.EQUAL,dtype:"bool",cpuKernelImpl:Yle}),Mce={kernelName:Ai,backendName:"webgpu",kernelFunc:Oce},IC=Nn({opType:xt.EXP,cpuKernelImpl:Jle,dtype:"float32"}),zce={kernelName:Ba,backendName:"webgpu",kernelFunc:IC};function Tx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ge({inputs:{x:a},backend:s,attrs:{shape:i}})}var Lce={kernelName:yi,backendName:"webgpu",kernelFunc:Tx},Bce=Nn({opType:xt.EXPM1,cpuKernelImpl:Qle}),Wce={kernelName:xi,backendName:"webgpu",kernelFunc:Bce},Vce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
setOutputFlat(index, uniforms.value);
}
}
`}};function yc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Vce(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Uce={kernelName:fu,backendName:"webgpu",kernelFunc:yc},Gce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputFlat(index, outputValue);
}
}
`}},Hce={kernelName:bi,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Gce(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},jce=Nn({opType:xt.FLOOR,cpuKernelImpl:eue}),qce={kernelName:Wa,backendName:"webgpu",kernelFunc:jce},Xce=qn({opSnippet:Vt.INT_DIV,dtype:"int32"}),Kce={kernelName:Va,backendName:"webgpu",kernelFunc:Xce},Zce=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},CC=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=Tie(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function TC(e,t,n,s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}function NC(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=TC(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>CC(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let A=[i,o,...l,...u.dispatch];u.setUniform(n.device,A);let x;if(a){let y={source:t};x=n.device.importExternalTexture(y)}else x=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,x,c.dataId),c}var Yce={kernelName:hd,backendName:"webgpu",kernelFunc:Jce},xc;function Jce(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(K().getBool("WEBGPU_USE_IMPORT")&&o)return NC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(xc==null&&(xc=document.createElement("canvas").getContext("2d")),xc.canvas.width=u,xc.canvas.height=d,xc.drawImage(r,0,0,u,d),r=xc.canvas),c||l||o||i)return NC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let A=h.length,x=0;for(let y=0;y<A;y++)y%4<a&&(f[x++]=h[y])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var Qce=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalIndex(index)"),`
${nt()}
if (index < uniforms.size)
{
let xValue = getXAtOutCoordsByGlobalIndex(index);
let meanValue = getMeanAtOutCoordsByGlobalIndex(index);
let varianValue = getVarianceAtOutCoordsByGlobalIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputFlat(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},ede={kernelName:Ua,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new Qce(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function tde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A=o!=null,x=i!=null,y;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return yC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=K().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],C=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)y=new vC(g,A,h,x);else{w?y=new xC(g,A,h,x):y=new bC(g,A,h,x);let R=g.outShape[1]*g.outShape[2],F=g.outShape[3],_=g.filterHeight*g.filterWidth*g.inShape[3];C.push({type:"int32",data:[R]},{type:"int32",data:[F]},{type:"int32",data:[_]})}let N=[r,a];return A&&N.push(o),x&&N.push(i),n.runWebGPUProgram(y,N,r.dtype,C)}var nde={kernelName:bo,backendName:"webgpu",kernelFunc:tde};function sde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=E.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,A=i!=null;g&&m.push(o),A&&m.push(i);let x;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?x=new wC(f,g,p,A):x=new kC(f,g,p,A);let y=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(x,m,"float32",y)}var rde={kernelName:vo,backendName:"webgpu",kernelFunc:sde},ade=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${wn(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputFlat(index, getA(flattenIndex, coords[1]));
}
}
`}};function ode(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=Ge({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=Ge({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),y=n.bufferSync(s),b=tue(x,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new ade(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),A=Ge({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),A}var ide={kernelName:wi,backendName:"webgpu",kernelFunc:ode},lde=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=ude(this.aShape,"i32");return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function ude(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function EC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=Ge({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=Ge({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let y=n.tensorMap.get(h.dataId).values,b=ze(h.shape,h.dtype,y),k=n.tensorMap.get(p.dataId).values,C=ze(p.shape,p.dtype,k),N=nue(C,b,f);return d.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(c.outputShape,N.dtype,N.values)}let m=new lde(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let A=Ge({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(x=>n.disposeData(x.dataId)),A}var cde={kernelName:vi,backendName:"webgpu",kernelFunc:EC},dde=qn({opSnippet:Vt.GREATER,cpuKernelImpl:rue,dtype:"bool"}),pde={kernelName:ki,backendName:"webgpu",kernelFunc:dde},hde=qn({opSnippet:Vt.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:sue}),fde={kernelName:Ga,backendName:"webgpu",kernelFunc:hde},mde=qn({opSnippet:Vt.LESS,dtype:"bool",cpuKernelImpl:oue}),gde={kernelName:Ii,backendName:"webgpu",kernelFunc:mde},Ade=qn({opSnippet:Vt.LESS_EQUAL,dtype:"bool",cpuKernelImpl:aue}),yde={kernelName:Ci,backendName:"webgpu",kernelFunc:Ade},xde=Nn({opType:xt.LOG,cpuKernelImpl:iue}),bde={kernelName:ja,backendName:"webgpu",kernelFunc:xde},vde=qn({opSnippet:Vt.LOGICAL_AND,dtype:"bool"}),wde={kernelName:Ti,backendName:"webgpu",kernelFunc:vde},kde=Nn({opType:xt.LOGICAL_NOT}),Sde={kernelName:xu,backendName:"webgpu",kernelFunc:kde};function RC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return bp(r,a,o,"max",n)}var Ide={kernelName:qa,backendName:"webgpu",kernelFunc:RC},Cde=qn({opSnippet:Vt.MAX,cpuKernelImpl:uue}),Tde={kernelName:Xa,backendName:"webgpu",kernelFunc:Cde};function Nde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return Qs({inputs:{x:r},backend:n});d=new mC(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new fC(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var Ede={kernelName:Ka,backendName:"webgpu",kernelFunc:Nde};function Rde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return bp(r,o,a,"mean",n)}var $de={kernelName:Za,backendName:"webgpu",kernelFunc:Rde};function _de(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return bp(r,a,o,"min",n)}var Dde={kernelName:Ya,backendName:"webgpu",kernelFunc:_de},Pde=qn({opSnippet:Vt.MIN,cpuKernelImpl:cue}),Fde={kernelName:Ja,backendName:"webgpu",kernelFunc:Pde},Ode=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=wn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${nt()}
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromFlatIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} elseif(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputFlat(index, getX(${i}));
}
}
`}},Mde={kernelName:Qa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Ode(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function zde(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=pue(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Zm(s.shape,xt.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var Lde={kernelName:Ni,backendName:"webgpu",kernelFunc:zde};function Bde(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Ks.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Wde={kernelName:Ri,backendName:"webgpu",kernelFunc:Bde};function Vde(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Ks.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Ude={kernelName:$i,backendName:"webgpu",kernelFunc:Vde};function Jm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=xp({inputs:{input:s},backend:n}),a=Jm({inputs:{x:r},backend:n}),o=Ym({inputs:{input:s},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=gc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Gde={kernelName:Zi,backendName:"webgpu",kernelFunc:Jm};function $C(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=xp({inputs:{input:s},backend:n}),a=$C({inputs:{x:r},backend:n}),o=Ym({inputs:{input:s},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=gc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Hde={kernelName:_i,backendName:"webgpu",kernelFunc:$C};function jde(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Tx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Tx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=AC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var qde={kernelName:Pi,backendName:"webgpu",kernelFunc:jde},Xde=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=wn(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${nt()}
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromFlatIndex(index);
if (${o} || ${i}) {
setOutputFlat(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputFlat(index, getX(${l}));
}
}
}
`}},_C=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return Qs({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return yc({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Xde(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},Kde={kernelName:to,backendName:"webgpu",kernelFunc:_C},Zde=qn({opSnippet:Vt.POW}),Yde={kernelName:no,backendName:"webgpu",kernelFunc:Zde};function Jde(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new dC(Vt.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Qde={kernelName:so,backendName:"webgpu",kernelFunc:Jde};function epe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return bp(r,a,o,"prod",n)}var tpe={kernelName:Fi,backendName:"webgpu",kernelFunc:epe},npe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=mue(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},spe={kernelName:wu,backendName:"webgpu",kernelFunc:npe},DC=qn({opSnippet:Vt.DIV}),rpe={kernelName:za,backendName:"webgpu",kernelFunc:DC},ape=Nn({opType:xt.RELU}),ope={kernelName:ro,backendName:"webgpu",kernelFunc:ape},ipe=Nn({opType:xt.RELU6}),lpe={kernelName:oo,backendName:"webgpu",kernelFunc:ipe},upe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputFlat(index, newValue);
}
}
`}};function cpe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new upe(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var dpe={kernelName:ao,backendName:"webgpu",kernelFunc:cpe},ppe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${t};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputFlat(index, newValue);
}
}
`}};function hpe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new ppe(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var fpe={kernelName:Su,backendName:"webgpu",kernelFunc:hpe},mpe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
cosRadians : f32;`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputFlat(index, outputValue);
}
}
`}},gpe={kernelName:Yi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new mpe(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},Ape=Nn({opType:xt.RSQRT,cpuKernelImpl:gue}),ype={kernelName:io,backendName:"webgpu",kernelFunc:Ape},xpe=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=je(e),this.dispatch=Fe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`;let i=wn(r.length);this.uniforms=`sliceDim : i32; strides: ${i}; size: i32;`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"ignore(atomicAdd(&(result.numbers[flatIndex]), i32(updateValue)));":`
var assumed = atomicLoad(&(result.numbers[flatIndex]));
var success = 0;
for (; success == 0;) {
let new = bitcast<f32>(assumed) + updateValue;
let newI32 = bitcast<i32>(new);
let resValue = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32);
assumed = resValue[0];
success = resValue[1];
}
`;return`
${a}
${nt()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue = ${o};
let flatIndex = getOutputFlatIndex(${r});
${i}
}
}`}};function bpe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=Ge({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ge({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=f.dtype,g=yc({backend:n,attrs:{shape:p,value:0,dtype:m}}),A=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:u},{type:"int32",data:[A]}],y=new xpe(f.shape,i,h.shape.length,f.shape.length,u,p,m),b=n.runWebGPUProgram(y,[f,h],m,x,g),w=Ge({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var vpe={kernelName:Li,backendName:"webgpu",kernelFunc:bpe},wpe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputFlat(index, getA(${t}));
} else {
setOutputFlat(index, getB(${t}));
}
}
}
`}};function kpe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new wpe(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var Spe={kernelName:Bi,backendName:"webgpu",kernelFunc:kpe},Ipe=Nn({opType:xt.SIGMOID}),Cpe={kernelName:uo,backendName:"webgpu",kernelFunc:Ipe},Tpe=Nn({opType:xt.SIN}),Npe={kernelName:lo,backendName:"webgpu",kernelFunc:Tpe},Epe=Nn({opType:xt.SINH}),Rpe={kernelName:Vi,backendName:"webgpu",kernelFunc:Epe},PC=qn({opSnippet:Vt.SUB,cpuKernelImpl:vue,supportsComplex:!0}),$pe={kernelName:mo,backendName:"webgpu",kernelFunc:PC};function _pe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=RC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=Ge({inputs:{x:i},backend:n,attrs:{shape:l}}),u=PC({inputs:{a:r,b:c},backend:n}),d=IC({inputs:{x:u},backend:n}),p=Cx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ge({inputs:{x:p},backend:n,attrs:{shape:l}}),f=DC({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var Dpe={kernelName:ho,backendName:"webgpu",kernelFunc:_pe},Ppe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=_C({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=Ge({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:p}}),g=Ge({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeData(A.dataId)),g},Fpe={kernelName:Ui,backendName:"webgpu",kernelFunc:Ppe},Ope=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`;let l=wn(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${nt()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromFlatIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function Mpe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new Ope(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=Ge({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var zpe={kernelName:cd,backendName:"webgpu",kernelFunc:Mpe};function Lpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Ac({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Bpe={kernelName:Gi,backendName:"webgpu",kernelFunc:Lpe},Wpe=Nn({opType:xt.SQRT}),Vpe={kernelName:co,backendName:"webgpu",kernelFunc:Wpe},Upe={kernelName:Nu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Zm(n.shape,xt.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},Gpe=qn({opSnippet:Vt.SQUARED_DIFFERENCE}),Hpe={kernelName:fo,backendName:"webgpu",kernelFunc:Gpe},jpe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=wn(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
setOutputFlat(index, getX(${t}));
}
}
`}};function qpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Ge({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),C=Ac({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Ge({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeData(C.dataId)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),N=ze(r.shape,r.dtype,C),R=xue(h,N,b,x);w=n.makeTensorInfo(f,r.dtype,R.values)}else{let C=new jpe(h),N=[{type:"int32",data:x},{type:"int32",data:b}],R=n.runWebGPUProgram(C,[r],r.dtype,N);w=Ge({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeData(R.dataId)}return w}var Xpe={kernelName:Hi,backendName:"webgpu",kernelFunc:qpe};function Kpe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=bue(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Zpe={kernelName:dd,backendName:"webgpu",kernelFunc:Kpe},Ype=Nn({opType:xt.TANH}),Jpe={kernelName:go,backendName:"webgpu",kernelFunc:Ype},Qpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=ehe(this.rank,"uniforms.");return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function ehe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function the(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=wue(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Qpe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var nhe={kernelName:qr,backendName:"webgpu",kernelFunc:the},she=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
dir : i32; inc : i32;`,this.shaderKey="swap"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}},rhe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}};function bc(e,t){t!==null&&e.disposeData(t.dataId)}function FC(e){let t=1;for(;t<e;)t*=2;return t}function ahe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,C]=kue(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(C.shape,C.dtype,C.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,yc({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let u=v.sizeFromShape(i)/l,d=Ge({inputs:{x:r},attrs:{shape:[u,l]},backend:n}),p=FC(a),h=FC(l),f=null,m=()=>f===null?[d,d]:[d,f],g=(w,k,C)=>{let N=m(),R=new she(C),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],P=f;f=n.runWebGPUProgram(R,N,"int32",_),bc(n,P)};for(let w=1;w<p;w*=2){let k=w*2;for(let C=w;C>=1;C/=2)g(k,C,[u,h])}for(let w=h;w>p;w/=2){let k=m(),C=new rhe([u,w/2]),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],F=f;f=n.runWebGPUProgram(C,k,"int32",R),bc(n,F);let _=p/2,P=_*2;for(let T=_;T>=1;T/=2)g(P,T,f.shape)}let A=f;f=Ac({inputs:{x:f},backend:n,attrs:{begin:0,size:[u,a]}}),bc(n,A);let x=EC({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});bc(n,d);let y=i.slice(0,-1);y.push(a),A=f,f=Ge({inputs:{x:f},attrs:{shape:y},backend:n}),bc(n,A);let b=x;return x=Ge({inputs:{x},attrs:{shape:y},backend:n}),bc(n,b),[x,f]}var ohe={kernelName:qi,backendName:"webgpu",kernelFunc:ahe},ihe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputFlat(index, outputValue);
}
}
`}};function lhe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new ihe(g),x=o==="nearest"?1:2,y;switch(i){case"constant":y=1;break;case"reflect":y=2;break;case"wrap":y=3;break;case"nearest":y=4;break;default:y=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[y]},{type:"float32",data:[l]}];return n.runWebGPUProgram(A,[r,a],"float32",b)}var uhe={kernelName:Xi,backendName:"webgpu",kernelFunc:lhe};function che(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Ac({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=Ge({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var dhe={kernelName:Ki,backendName:"webgpu",kernelFunc:che},phe=[Ule,Cue,Nue,$ue,Mue,Lue,Wue,Uue,Xue,Jue,ece,rce,qle,lce,pce,gce,yce,bce,kce,Cce,Nce,Dce,Fce,Mce,Lce,zce,Wce,Uce,Hce,Yce,qce,Kce,ede,nde,rde,ide,cde,pde,fde,jle,oce,gde,yde,bde,wde,Sde,Ide,Tde,Ede,$de,Dde,Fde,Mde,Ece,Lde,Wde,Ude,Kue,Hde,qde,Kde,Qde,tpe,Yde,spe,Zue,rpe,ope,lpe,Wle,dpe,fpe,gpe,ype,vpe,Spe,Cpe,Npe,Rpe,jue,Xpe,Zpe,Dpe,Fpe,Bpe,zpe,Vpe,Upe,Hpe,$pe,$ce,Jpe,nhe,ohe,uhe,Fue,dhe,Gde];for(let e of phe)ar(e);var hhe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=OC(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=OC(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function OC(e,t){return`${e}_${t}`}var MC=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${nt()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndexBase);
let values = ${e};
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},fhe=class extends MC{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},mhe=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),zC=class extends eu{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!bx())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new hhe(this.device),this.tensorMap=new Zc(this,ss()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return zC.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*xx(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*xx(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new MC),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new fhe),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=E.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=aC(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let N=this.tensorMap.get(r.dataId);return N.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(N=>N.shape),i="int32";o.map(N=>{a.push({type:i,data:N})});let l=v.computeStrides(r.shape);if(a.push({type:i,data:l}),e.size){let N=v.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?N/4:N]})}s&&(a=[...a,...s]);let c=null,u=this.computePadding(a),d=u.byteLength;c=this.makeUniformsDataView(u);let p=t.map((N,R)=>{if(N.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(N.dataId),{dtype:this.tensorMap.get(N.dataId).dtype,shape:N.shape,name:e.variableNames[R]}}),h=p.map(N=>N.dtype).concat(r.dtype),f=p.map(N=>E.getBroadcastDims(N.shape,r.shape)),m=p.map(N=>v.arraysEqual(N.shape,r.shape)).join("_"),g=f.map(N=>N.join("_")).join(";"),A=TC(e,o,h,g,m),{bindGroupLayout:x,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),b=this.getAndSavePipeline(A,()=>CC(this.device,e,y,p,r)),w=this.activeTimers!=null,k=Zce(this.device,x,t.map(N=>this.tensorToBinding(N)),this.tensorToBinding(r),c);this.ensureCommandEncoderReady();let C=this.getComputePass();if(w&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,0),C.setPipeline(b),C.setBindGroup(0,k),C.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),w&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(N=>{this.commandQueueOwnedIds.add(N.dataId)}),this.commandQueueOwnedIds.add(r.dataId),c){let N={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:c.buffer};this.uniformDisposalQueue.push(N)}return K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),w&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=mhe){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Nx=zC;Nx.nextDataId=0;var LC={};Oe(LC,{WebGPUBackend:()=>Nx,webgpu_util:()=>rC});$u.isBrowser()&&bx()&&ol("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new Nx(r,s)},3);var Jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Jt||(Jt={}));var vp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(vp||(vp={}));var BC;function ghe(e){BC=e.wasm.cwrap(xo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ahe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=vp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],x=c?a.shape[1]:a.shape[2],y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...y,A,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return BC(p,k,r.shape.length,h,C,a.shape.length,l,c,g,f,m,d||0,w),b}var yhe={kernelName:xo,backendName:"wasm",setupFunc:ghe,kernelFunc:Ahe};function En(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return v.sizeFromShape(c.shape)===0||n(l,Jt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var xhe=En(di);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),x=i.dataIdMap.get(m.dataId).id,y=()=>s(d,g,c.shape.length,p,A,u.shape.length,Jt[c.dtype],x);if(t&&c.dtype==="float32")return y(),m;let b=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),k=b.every((N,R)=>N===R),C=w.every((N,R)=>N===R);if(k&&C)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var bhe=!0,vhe=Xn(Hr,bhe),WC;function whe(e){WC=e.wasm.cwrap(Ta,null,["array","number","number","number"])}function khe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return WC(a,r.length,Jt[s.dtype],o),s}var She={kernelName:Ta,backendName:"wasm",setupFunc:whe,kernelFunc:khe};function Qm(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Ihe={kernelName:Ha,backendName:"wasm",kernelFunc:Qm},VC;function Che(e){VC=e.wasm.cwrap(Ao,null,["number","array","number","number","number","array","number"])}function vc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Nhe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=The(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Qm({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return VC(u,h,l.shape.length,Jt[l.dtype],d,p,a.length),c}function The(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Nhe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Ehe={kernelName:Ao,backendName:"wasm",kernelFunc:vc,setupFunc:Che};function jo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=E.getInnerMostAxes(o.length,r),l=vc({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var UC;function Rhe(e){UC=e.wasm.cwrap(au,null,["number, number, number"])}function $he(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("all",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;UC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var _he={kernelName:au,backendName:"wasm",setupFunc:Rhe,kernelFunc:$he},GC;function Dhe(e){GC=e.wasm.cwrap(ou,null,["number, number, number"])}function Phe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("any",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;GC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Fhe={kernelName:ou,backendName:"wasm",setupFunc:Dhe,kernelFunc:Phe},HC;function Ohe(e){HC=e.wasm.cwrap(Na,null,["number","number","number","number","number"])}function Mhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=jo(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return HC(i,Jt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var zhe={kernelName:Na,backendName:"wasm",kernelFunc:Mhe,setupFunc:Ohe},jC;function Lhe(e){jC=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bhe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,x=u.strideWidth,y=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return jC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,w),b}var Whe={kernelName:Ea,backendName:"wasm",setupFunc:Lhe,kernelFunc:Bhe};function ls(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Vhe={kernelName:Oi,backendName:"wasm",kernelFunc:ls},qC;function Uhe(e){qC=e.wasm.cwrap(Ra,null,["number","array","number","number","array","number","number","number","number"])}function Ghe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=ls({inputs:{x:r},backend:n,attrs:{shape:b}}),C=ls({inputs:{x:a},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(k.dataId).id,R=n.dataIdMap.get(C.dataId).id,F=o?k.shape[2]:k.shape[1],_=i?C.shape[1]:C.shape[2],P=Math.max(g,A),T=n.makeOutput([P,F,_],k.dtype),M=n.dataIdMap.get(T.dataId).id,U=new Uint8Array(new Int32Array(k.shape).buffer),j=new Uint8Array(new Int32Array(C.shape).buffer);return qC(N,U,k.shape.length,R,j,C.shape.length,o,i,M),n.disposeData(k.dataId),n.disposeData(C.dataId),T.shape=y,T}var Hhe={kernelName:Ra,backendName:"wasm",setupFunc:Uhe,kernelFunc:Ghe};function wp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ft.parseSliceParams(t,n,s),i=Ft.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Ft.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=Sm(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)jhe(l,u[0],p,a,o);else if(h===3)qhe(l,u[0],u[1],p,a,o);else if(h===4)Xhe(l,u[0],u[1],u[2],p,a,o);else{let f=Sm(l,a,o,t.shape,t.dtype);p.set(f)}return c}function jhe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function qhe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Xhe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let x=m*t+g*n+A*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var Khe={kernelName:Wi,backendName:"wasm",kernelFunc:wp};function Zhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=ls({inputs:{x:r},backend:n,attrs:{shape:l}}),f=vc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=ls({inputs:{x:f},backend:n,attrs:{shape:u}}),g=wp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Yhe={kernelName:pi,backendName:"wasm",kernelFunc:Zhe};function kp(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Jhe={kernelName:$a,backendName:"wasm",kernelFunc:kp},Qhe=En(_a),XC;function efe(e){XC=e.wasm.cwrap(jr,null,["number","number","number","number"])}function tfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return XC(i,a,o,c),l}var nfe={kernelName:jr,backendName:"wasm",setupFunc:efe,kernelFunc:tfe};function KC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return Qm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(y=>{let b=v.sizeFromShape(y.shape.slice(s));return ls({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));r=E.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=My(f,r,t[0].dtype,m),A=E.computeOutShape(a.map(y=>y.shape),s);o.shape=A;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=E.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,x=d[m].subarray(A,A+g);p.set(x,f),f+=g}}return o}var sfe={kernelName:hi,backendName:"wasm",kernelFunc:KC},ZC;function rfe(e){ZC=e.wasm.cwrap(Da,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function afe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=E.convertConv2DDataFormat(p),f=E.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,x=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,C=f.strideHeight,N=f.strideWidth,R=f.inChannels,F=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(P.dataId).id;return ZC(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,x,y,b,_,w,k,C,N,R,F,T),P}var ofe={kernelName:Da,backendName:"wasm",setupFunc:rfe,kernelFunc:afe},YC;function ife(e){YC=e.wasm.cwrap(Pa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lfe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:x,inWidth:y,outChannels:b,outHeight:w,outWidth:k,strideHeight:C,strideWidth:N}=h,R=m-1-h.padInfo.top,F=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",P=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[M,U,j]=v.computeStrides(a.shape),z=P[0],X=_?P[1]:P[2],Z=_?P[2]:1,J=_?1:P[1],ee=T[0],re=_?T[1]:T[2],Q=_?T[2]:1,te=_?1:T[1],oe=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,be=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(a.dataId).id;return YC(be,we,f,m,g,x,y,A,w,k,b,C,N,R,F,M,U,j,z,X,Z,J,ee,re,Q,te,fe),oe}var ufe={kernelName:Pa,backendName:"wasm",setupFunc:ife,kernelFunc:lfe},cfe=En(Fa),dfe=En(Oa),Ex;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Ex||(Ex={}));var JC;function pfe(e){JC=e.wasm.cwrap(mi,null,["number","number","number","number","array","number","number","number","number","number"])}function hfe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=kp({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(c.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return JC(g,A,x,u,w,d,p,Ex[r],a,b),m!=null&&t.disposeData(m.dataId),y}var ffe={kernelName:mi,backendName:"wasm",setupFunc:pfe,kernelFunc:hfe},QC;function mfe(e){QC=e.wasm.cwrap(fi,null,["number","number","number","number","number","number"])}function gfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=vc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;QC(f,o?1:0,i?1:0,h,m,Jt[r.dtype]);let g=p;if(c!==null){let A=E.getUndoAxesPermutation(c);g=vc({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var Afe={kernelName:fi,backendName:"wasm",setupFunc:mfe,kernelFunc:gfe},e6;function yfe(e){e6=e.wasm.cwrap(gi,null,["number","number","number","array","number","array","array","number","number"])}function xfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return e6(A,a,o==="NHWC"?1:0,x,r.shape.length-1,y,b,f.length,w),m}var bfe={kernelName:gi,backendName:"wasm",setupFunc:yfe,kernelFunc:xfe},t6;function vfe(e){t6=e.wasm.cwrap(Ma,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,x=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,C=h.strideWidth,N=h.inChannels,R=h.outChannels,F=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(_.dataId).id;return t6(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,x,y,F,b,w,k,C,N,R,P),_}var kfe={kernelName:Ma,backendName:"wasm",setupFunc:vfe,kernelFunc:wfe},Sfe=En(La),Ife=!1,Cfe=Xn(Ai,Ife,"bool"),Tfe=En(Ba,"float32");function Rx(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ls({inputs:{x:r},backend:s,attrs:{shape:i}})}var Nfe={kernelName:yi,backendName:"wasm",kernelFunc:Rx};function n6(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Efe={kernelName:fu,backendName:"wasm",kernelFunc:n6},s6;function Rfe(e){s6=e.wasm.cwrap(bi,null,["number","number","number","number","number","number"])}function $fe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return s6(a,i,l,c,u,o),r}var _fe={kernelName:bi,backendName:"wasm",kernelFunc:$fe,setupFunc:Rfe},Dfe=En(Wa),Pfe=!1,Ffe=Xn(Va,Pfe),r6;function Ofe(e){r6=e.wasm.cwrap(Ua,null,["number","number","number","number","number","number","number"])}function Mfe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return r6(u,d,p,h,f,r,g),m}var zfe={kernelName:Ua,backendName:"wasm",setupFunc:Ofe,kernelFunc:Mfe},a6;function Lfe(e){a6=e.wasm.cwrap(bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=vp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${y})`);b=Q.id}let w=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,R=m.padInfo.bottom,F=m.padInfo.left,_=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(J.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return a6(A,z,X,Z,x,w,k,b,C,N,R,F,j,_,P,T,M,U,y,g,re,f||0,ee),J}var Wfe={kernelName:bo,backendName:"wasm",setupFunc:Lfe,kernelFunc:Bfe},o6;function Vfe(e){o6=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ufe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=vp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${y})`);b=Q.id}let w=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,R=m.padInfo.bottom,F=m.padInfo.left,_=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(J.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return o6(A,z,X,Z,x,w,k,b,C,N,R,F,j,_,P,T,M,U,y,g,re,f||0,ee),J}var Gfe={kernelName:vo,backendName:"wasm",setupFunc:Vfe,kernelFunc:Ufe},i6;function Hfe(e){i6=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","array","number"])}function jfe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=_2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return i6(h,Jt[s.dtype],m,o,d,i,g,A),c}var qfe={kernelName:wi,backendName:"wasm",setupFunc:Hfe,kernelFunc:jfe},l6;function Xfe(e){l6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Kfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let R=0;R<c.length;++R){let F=c[R];v.assert(F<=u-1&&F>=0,()=>`GatherV2: the index value ${F} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=ls({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=ls({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return l6(y,Jt[r.dtype],C,A,w,d.batchSize,N,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Zfe={kernelName:vi,backendName:"wasm",setupFunc:Xfe,kernelFunc:Kfe},Yfe=!1,Jfe=Xn(ki,Yfe,"bool"),Qfe=!1,eme=Xn(Ga,Qfe,"bool"),u6;function tme(e){u6=e.wasm.cwrap(Si,null,["number","number","number","number"])}function nme(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;u6(r,Jt[t.dtype],n,o)}return a}var sme={kernelName:Si,backendName:"wasm",setupFunc:tme,kernelFunc:nme},rme=!1,ame=Xn(Ii,rme,"bool"),ome=!1,ime=Xn(Ci,ome,"bool"),lme=En(ja),ume=!1,cme=Xn(Ti,ume,"bool"),c6;function dme(e){c6=e.wasm.cwrap(qa,null,["number","number","number","number"])}function pme(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;c6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var hme={kernelName:qa,backendName:"wasm",setupFunc:dme,kernelFunc:pme},fme=!1,mme=Xn(Xa,fme),d6;function gme(e){d6=e.wasm.cwrap(Ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ame(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,x=u.dilationWidth,y=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(C.dataId).id;return d6(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,b,w,k,N),C}var yme={kernelName:Ka,backendName:"wasm",setupFunc:gme,kernelFunc:Ame},p6;function xme(e){p6=e.wasm.cwrap(Za,null,["number, number, number"])}function bme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=c;c.dtype!=="float32"&&(x=kp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let y=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;p6(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(y.shape,p);y.shape=b}return c.dtype!=="float32"&&t.disposeData(x.dataId),y}var vme={kernelName:Za,backendName:"wasm",setupFunc:xme,kernelFunc:bme},h6;function wme(e){h6=e.wasm.cwrap(Ya,null,["number","number","number","number"])}function kme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;h6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Sme={kernelName:Ya,backendName:"wasm",setupFunc:wme,kernelFunc:kme},Ime=!1,Cme=Xn(Ja,Ime),$x;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})($x||($x={}));var f6;function Tme(e){f6=e.wasm.cwrap(Qa,null,["number","array","number","number","array","array","number","number"])}function Nme(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return f6(o,c,t.shape.length,Jt[t.dtype],p,h,$x[r],l),i}var Eme={kernelName:Qa,backendName:"wasm",kernelFunc:Nme,setupFunc:Tme},Rme=!0,$me=Xn(eo,Rme),_me=En(Ni);function _x(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var m6;function Dme(e){m6=e.wasm.cwrap(Ri,"number",["number","number","number","number","number"])}function Pme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=m6(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=_x(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Fme={kernelName:Ri,backendName:"wasm",setupFunc:Dme,kernelFunc:Pme},g6;function Ome(e){g6=e.wasm.cwrap(vu,"number",["number","number","number","number","number","bool"])}function Mme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=g6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=_x(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[A,x]}var zme={kernelName:vu,backendName:"wasm",setupFunc:Ome,kernelFunc:Mme},A6;function Lme(e){A6=e.wasm.cwrap($i,"number",["number","number","number","number","number","number"])}function Bme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=A6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=_x(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[A,x]}var Wme={kernelName:$i,backendName:"wasm",setupFunc:Lme,kernelFunc:Bme},Vme=!1,Ume=Xn(Ei,Vme,"bool"),y6;function Gme(e){y6=e.wasm.cwrap(Di,null,["number","number","number","number","number"])}function Hme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return y6(d,a,o,i,c),l}var jme={kernelName:Di,backendName:"wasm",setupFunc:Gme,kernelFunc:Hme};function qme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Xme={kernelName:_i,backendName:"wasm",kernelFunc:qme};function Kme(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Rx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Rx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=KC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Zme={kernelName:Pi,backendName:"wasm",kernelFunc:Kme},x6;function Yme(e){x6=e.wasm.cwrap(to,null,["number","array","number","number","array","array","number","number"])}function Jme(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return n6({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return x6(o,u,t.shape.length,Jt[t.dtype],h,f,r,c),i}var b6={kernelName:to,backendName:"wasm",kernelFunc:Jme,setupFunc:Yme},Qme=!1,e0e=Xn(no,Qme),v6;function t0e(e){v6=e.wasm.cwrap(so,null,["number","number","number"])}function n0e(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=kp({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return v6(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var s0e={kernelName:so,backendName:"wasm",setupFunc:t0e,kernelFunc:n0e},w6;function r0e(e){w6=e.wasm.cwrap(Fi,null,["number","number","number","number"])}function a0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;w6(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var o0e={kernelName:Fi,backendName:"wasm",setupFunc:r0e,kernelFunc:a0e},i0e=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=By(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},l0e={kernelName:wu,backendName:"wasm",kernelFunc:i0e},u0e=!0,c0e=Xn(za,u0e),d0e=En(ro),p0e=En(oo),k6;function h0e(e){k6=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","number","number","number","number"])}function f0e(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=kp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let y=t.dataIdMap.get(x.dataId).id;return k6(A,u,d,p,h,l,c,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),x}var m0e={kernelName:ao,backendName:"wasm",setupFunc:h0e,kernelFunc:f0e},S6;function g0e(e){S6=e.wasm.cwrap(Mi,null,["number","array","number","array","number","number"])}function A0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return Qm({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);S6(l,u,o.length,d,r.shape.length,c);let p=ls({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var y0e={kernelName:Mi,backendName:"wasm",kernelFunc:A0e,setupFunc:g0e},I6;function x0e(e){I6=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function b0e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),A=o===0,x=255,y=typeof o=="number"?[o,o,o,A?0:x]:[...o,x],b=new Uint8Array(new Int32Array(y).buffer);return I6(c,d,p,h,f,a,m,g,b,y.length,u),l}var v0e={kernelName:Yi,backendName:"wasm",kernelFunc:b0e,setupFunc:x0e},w0e=En(zi),k0e=En(io),C6;function S0e(e){C6=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","array","number","number"])}function I0e(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=D2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),x=t.dataIdMap.get(i.dataId).id;return C6(f,g,Jt[a.dtype],l,c,u,A,p,x),i}var C0e={kernelName:Li,backendName:"wasm",setupFunc:S0e,kernelFunc:I0e},T6;function T0e(e){T6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function N0e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return T6(o,i,l,h,u),c}var E0e={kernelName:Bi,backendName:"wasm",kernelFunc:N0e,setupFunc:T0e},N6;function R0e(e){N6=e.wasm.cwrap(uo,null,["number","number"])}function $0e(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||N6(s,a),r}var _0e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:R0e,kernelFunc:$0e},D0e=En(lo),E6;function P0e(e){E6=e.wasm.cwrap(ho,null,["number","number","number","number"])}function F0e(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||E6(r,o,i,l),a}var O0e={kernelName:ho,backendName:"wasm",setupFunc:P0e,kernelFunc:F0e};function M0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=b6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=ls({inputs:{x:c},backend:n,attrs:{shape:u}}),x=vc({inputs:{x:m},backend:n,attrs:{perm:d}}),w=ls({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var z0e={kernelName:Ui,backendName:"wasm",kernelFunc:M0e};function L0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=wp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var B0e={kernelName:Gi,backendName:"wasm",kernelFunc:L0e},W0e=En(co),V0e=En(Nu),U0e=!0,G0e=Xn(fo,U0e),R6;function H0e(e){R6=e.wasm.cwrap(yo,null,["number","number","number","number"])}function j0e(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return R6(o,r,Jt[a.dtype],l),i}var q0e={kernelName:yo,backendName:"wasm",setupFunc:H0e,kernelFunc:j0e},$6;function X0e(e){$6=e.wasm.cwrap(Hi,null,["number","array","number","array","array","array","array","array","number","number"])}function K0e(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=ls({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),C=wp({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=ls({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let k=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,N=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(y).buffer),_=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(k.dataId).id;$6(C,N,r.shape.length,R,F,_,P,T,h.length,M),w=ls({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var Z0e={kernelName:Hi,backendName:"wasm",setupFunc:X0e,kernelFunc:K0e},Y0e=!0,J0e=Xn(mo,Y0e),_6;function Q0e(e){_6=e.wasm.cwrap(po,null,["number","number","number","number"])}function ege(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;_6(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var tge={kernelName:po,backendName:"wasm",setupFunc:Q0e,kernelFunc:ege},nge=En(ji),sge=En(go),D6;function rge(e){D6=e.wasm.cwrap(qr,null,["number","array","number","array","number","number"])}function age(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return D6(a,l,r.shape.length,c,i.length,Jt[u.dtype],d),u}var oge={kernelName:qr,backendName:"wasm",setupFunc:rge,kernelFunc:age},P6;function ige(e){P6=e.wasm.cwrap(qi,null,["number","array","number","number","number","bool","number","number"])}var lge=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return P6(o,i,s.shape.length,Jt[s.dtype],r,a,u,p),[c,d]},uge={kernelName:qi,backendName:"wasm",setupFunc:ige,kernelFunc:lge},F6;function cge(e){F6=e.wasm.cwrap(Xi,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function dge(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),y=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,C=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return F6(w,C,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,R,l,y),x}var pge={kernelName:Xi,backendName:"wasm",setupFunc:cge,kernelFunc:dge};function hge(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=wp({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var fge={kernelName:Ki,backendName:"wasm",kernelFunc:hge};function mge(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var gge={kernelName:Zi,backendName:"wasm",kernelFunc:mge},Age=[xhe,vhe,She,_he,Fhe,zhe,Whe,Hhe,Yhe,Jhe,Qhe,nfe,sfe,ofe,ufe,cfe,dfe,ffe,Afe,bfe,kfe,Sfe,Cfe,Tfe,Nfe,Efe,_fe,Dfe,Ffe,yhe,zfe,Wfe,Gfe,qfe,Zfe,Jfe,eme,Ihe,sme,ame,ime,lme,cme,hme,mme,yme,vme,Sme,Cme,Eme,$me,_me,Fme,zme,Wme,Ume,jme,Xme,Zme,b6,e0e,s0e,o0e,l0e,c0e,d0e,p0e,Vhe,m0e,y0e,v0e,k0e,w0e,C0e,E0e,_0e,D0e,Khe,O0e,z0e,B0e,W0e,V0e,G0e,q0e,Z0e,J0e,tge,nge,sge,oge,uge,pge,Ehe,fge,gge];for(let e of Age)ar(e);var Dx=K();Dx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Dx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Dx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var O6=li(pE()),yge='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',xge=li(hE()),M6=class extends eu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(B6),Fx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Zc(this,ss())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return wge(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function bge(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function z6(e,t,n){if(e0!=null)return e0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ip!=null&&Ip[s]!=null?Ip[s]:n+s}async function vge(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=yge,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?z6(e,t,Sp!=null?Sp:l):l+i},Px&&(r.instantiateWasm=bge(z6(e,t,Sp!=null?Sp:"")));let a=!1;r.onAbort=()=>{if(a||Cp)return;Cp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&e0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+O6.default.toString()],{type:"text/javascript"}),o=(0,O6.default)(r)):o=(0,xge.default)(r),o.then(i=>{a=!0,Cp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function wge(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var kge=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],e0=null,Sp=null,Ip={},Cp=!1,Px=!1;function Sge(e,t=!1){if(B2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Cp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");e0=e,Px=t}function L6(e,t=!1){if(Cp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Sp=e;else{Ip=e;let n=kge.filter(s=>Ip[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Px=t}var B6=-1,Fx=-1;function Ige(e){B6=e}function Cge(){if(Fx===-1)throw new Error("WASM backend not initialized.");return Fx}var Tge="0.0.0",Nge=2;ol("wasm",async()=>{let{wasm:e}=await vge();return new M6(e)},Nge);var qo="3.11.0-20211110",W6={tfjs:qo,"tfjs-core":qo,"tfjs-data":qo,"tfjs-layers":qo,"tfjs-converter":qo,"tfjs-backend-cpu":qo,"tfjs-backend-webgl":qo,"tfjs-backend-wasm":qo},Tp=W6["tfjs-core"];var V6=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var U6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,G6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,H6=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,j6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,q6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var Ox=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},X6=class{constructor(t,n,s){de(this,"uniform",{});de(this,"attribute",{});de(this,"gl");de(this,"id");de(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),Ox(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Ox(n,"uniform",this.uniform),Ox(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function K6(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Kn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(x,y){if(!(x===l.width&&y===l.height)){if(l.width=x,l.height=y,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,y){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let w=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,w);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,x,y,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let y=null,b=null,w=!1;e===0?y=t:y=f(s).texture||null,e++,n&&!(x&u.INTERMEDIATE)?(b=null,w=e%2==0):(s=(s+1)%2,b=f(s).fbo||null),d.bindTexture(d.TEXTURE_2D,y),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,w?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(x){if(c[x])return i=c[x],d.useProgram((i?i.id:null)||null),i;i=new X6(d,V6,x);let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*y),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*y),c[x]=i,i}let A={colorMatrix:x=>{let y=new Float32Array(x);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?G6:U6,w=g(b);d.uniform1fv(w.uniform.m,y),m()},brightness:x=>{let y=(x||0)+1;A.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:x=>{let y=(x||0)*2/3+1,b=(y-1)*-.5;A.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let y=(x||0)+1,b=-128*(y-1);A.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let y=Math.cos(x),b=Math.sin(x),w=.213,k=.715,C=.072;A.colorMatrix([w+y*(1-w)+b*-w,k+y*-k+b*-k,C+y*-C+b*(1-C),0,0,w+y*-w+b*.143,k+y*(1-k)+b*.14,C+y*-C+b*-.283,0,0,w+y*-w+b*-(1-w),k+y*-k+b*k,C+y*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let y=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(q6);d.uniform1fv(k.uniform.m,y),d.uniform2f(k.uniform.px,b,w),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let y=x||1;A.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:x=>{let y=x||1;A.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:x=>{let y=x/7/l.width,b=x/7/l.height,w=g(j6);d.uniform2f(w.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(w.uniform.px,y,0),m()},pixelate:x=>{let y=x/l.width,b=x/l.height,w=g(H6);d.uniform2f(w.uniform.size,y,b),m()}};this.add=function(x){let y=Array.prototype.slice.call(arguments,1),b=A[x];a.push({func:b,args:y})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){p(x.width,x.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,x);for(let y=0;y<a.length;y++){n=y===a.length-1;let b=a[y];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function t0(e){let t=e.shape.length===4?ot(e):e,n=sn(t,3,2),s=[Ro(n[0]),Ro(n[1]),Ro(n[2])],r=[An(n[0]),An(n[1]),An(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],c=[he(o,l[0]),he(o,l[1]),he(o,l[2])],u=[L(i[0],c[0]),L(i[1],c[1]),L(i[2],c[2])],d=yn([u[0],u[1],u[2]],2),p=G(d,[1,t.shape[0],t.shape[1],3]);return ne([...n,...s,...r,...i,...l,...c,...u,d,t]),p}var n0=2048,it=null,ln=null,wc=null,$t,ia={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Kn(e,t){let n;if(ge.browser)if(ge.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof ge.Canvas!="undefined"?n=new ge.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function Mx(e,t){let n=t||Kn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function kc(e,t,n=!0){if(!e)return t.debug&&se("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Je)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ge.Canvas!="undefined"&&e instanceof ge.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Je){let s=null;if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape)throw new Error("input tensor has no shape");if(e.shape.length===3){if(e.shape[2]===3)s=Xt(e,0);else if(e.shape[2]===4){let r=dl(e,[0,0,0],[-1,-1,3]);s=Xt(r,0),ne(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Bn(e):e.shape[3]===4&&(s=pl(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`could not process input tensor with shape: ${e.shape}`);if(s.dtype==="int32"){let r=pe(s,"float32");ne(s),s=r}return{tensor:s,canvas:t.filter.return?ln:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&se("input stream is not ready"),{tensor:null,canvas:it};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&se("cannot determine input dimensions"),{tensor:null,canvas:it};let a=s,o=r;if(a>n0&&(a=n0,o=Math.trunc(a*r/s)),o>n0&&(o=n0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!it||(it==null?void 0:it.width)!==a||(it==null?void 0:it.height)!==o)&&(it=Kn(a,o));let i=it.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,it==null?void 0:it.width,it==null?void 0:it.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,it==null?void 0:it.width,it==null?void 0:it.height),(!ln||it.width!==ln.width||(it==null?void 0:it.height)!==(ln==null?void 0:ln.height))&&(ln=Kn(it.width,it.height)),t.filter.enabled&&ge.webgl.supported){if($t||($t=ge.browser?new K6:null),ge.filter=!!$t,!$t)return{tensor:null,canvas:it};$t.reset(),t.filter.brightness!==0&&$t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.add("blur",t.filter.blur),t.filter.saturation!==0&&$t.add("saturation",t.filter.saturation),t.filter.hue!==0&&$t.add("hue",t.filter.hue),t.filter.negative&&$t.add("negative"),t.filter.sepia&&$t.add("sepia"),t.filter.vintage&&$t.add("brownie"),t.filter.sepia&&$t.add("sepia"),t.filter.kodachrome&&$t.add("kodachrome"),t.filter.technicolor&&$t.add("technicolor"),t.filter.polaroid&&$t.add("polaroid"),t.filter.pixelate!==0&&$t.add("pixelate",t.filter.pixelate),$t.get()>0?ln=$t.apply(it):ln=$t.draw(it)}else Mx(it,ln),$t&&($t=null),ge.filter=!!$t;if(!n)return{tensor:null,canvas:ln};if(!ln)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ge.browser&&Hs)l=Hs?Hs.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Pt(p,[e.height,e.width,c],"int32")}else if((!wc||ln.width!==wc.width||ln.height!==wc.height)&&(wc=Kn(ln.width,ln.height)),Hs&&ge.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Hs.fromPixels(ln):(wc=Mx(ln),l=Hs.fromPixels(wc));else{let f=Mx(ln).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Pt(m,[a,o,c])}if(c===4){let p=dl(l,[0,0,0],[-1,-1,3]);ne(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=pe(l,"float32"),d=t.filter.equalization?await t0(u):Xt(u,0);return ne([l,u]),{tensor:d,canvas:t.filter.return?ln:null}}}async function Z6(e,t){let n=!1;if(e.cacheSensitivity===0)return n;if(!ia.inputTensor)ia.inputTensor=Bn(t);else if(ia.inputTensor.shape[1]!==t.shape[1]||ia.inputTensor.shape[2]!==t.shape[2])ne(ia.inputTensor),ia.inputTensor=Bn(t);else{let s={};s.diff=me(t,ia.inputTensor),s.squared=L(s.diff,s.diff),s.sum=Se(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ne([ia.inputTensor,s.diff,s.squared,s.sum]),ia.inputTensor=Bn(t),n=a<=e.cacheSensitivity}return n}async function Y6(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||se("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||se("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Bn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?$e.resizeBilinear(n,[t.shape[1],t.shape[2]]):Bn(n),s.diff=me(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=Se(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ne([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var J6=class{constructor(){de(this,"browser");de(this,"node");de(this,"worker");de(this,"platform","");de(this,"agent","");de(this,"backends",[]);de(this,"initial");de(this,"filter");de(this,"tfjs");de(this,"offscreen");de(this,"perfadd",!1);de(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});de(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});de(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});de(this,"cpu",{model:void 0,flags:[]});de(this,"kernels",[]);de(this,"Canvas");de(this,"Image");de(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Tp},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(ss().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Cs()==="wasm"&&(this.wasm.simd=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Cs()==="webgl"||Cs()==="humangl")){let s=Nr().gpgpu!=="undefined"?await Nr().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name),this.kernels=Xr(Cs()).map(s=>s.kernelName.toLowerCase())}async updateCPU(){let t={model:"",flags:[]};if(this.node&&this.platform.startsWith("linux")){let n=wa("fs");try{let s=n.readFileSync("/proc/cpuinfo").toString();for(let r of s.split(`
`))r.startsWith("model name")&&(t.model=r.match(/:(.*)/g)[0].replace(":","").trim()),r.startsWith("flags")&&(t.flags=r.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(s){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},ge=new J6;var zx="2.5.1";var Xo;var e1e=Number.MAX_SAFE_INTEGER;async function Q6(e){return ge.initial&&(Xo=null),Xo?e.debug&&se("cached model:",Xo.modelUrl):(Xo=await Xe(Ze(e.modelBasePath,e.face.agegenderrace.modelPath)),!Xo||!Xo.modelUrl?se("load model failed:",e.face.agegenderrace.modelPath):e.debug&&se("load model:",Xo.modelUrl)),Xo}var un,s0=[],Lx=Number.MAX_SAFE_INTEGER,e8=0,t8=0;async function n8(e){var t,n;return ge.initial&&(un=null),un?e.debug&&se("cached model:",un.modelUrl):(un=await Xe(Ze(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!un||!un.modelUrl?se("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&se("load model:",un.modelUrl)),un}async function Bx(e,t,n,s){var o,i;if(!un)return null;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>ce()-t8,a=Lx<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&e8===s&&s0[n]?(Lx++,s0[n]):(Lx=0,new Promise(async l=>{let c=$e.resizeBilinear(e,[(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[2]:0,(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[1]:0],!1),u=un==null?void 0:un.execute(c),d=(await u.data())[0];s0[n]=Math.round(100*d)/100,e8=s,t8=ce(),ne([c,u]),l(s0[n])}))}var Wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Wx={count:468,mouth:13,symmetryLine:[13,Wr.midwayBetweenEyes[0]]},Np={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Vx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Ep=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Fl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Rge=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],$ge=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],_ge=[33,133,362,263,1,78,308],o1e=Rge.map(e=>Ep[e]),i1e=$ge.map(e=>Ep[e]),l1e=_ge.map(e=>Ep[e]);var Rp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],r0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],Ux=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Gx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],s8=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Hx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=$e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n),o=he(a,255);return ne(a),o},$p=(e,t)=>{let n=r0(e),s=Rp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},_p=e=>{let t=r0(e),n=Rp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},a0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},jx=[[1,0,0],[0,1,0],[0,0,1]],Dge=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Pge=(e,t)=>Dge(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var r8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ol=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Fge=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},a8=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ol(e[r],Fge(t,a)))}return n},o8=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=r8(t[0],t[1]),o=a8(a,r),i=r8(-t[0],-t[1]);return a8(o,i)},Oge=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ol(t[0],n),-Ol(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Mge=(e,t)=>[Ol(e,t[0]),Ol(e,t[1])];function i8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function l8(e,t,n,s,r){let a=Rp(t),o=e.map(p=>[a[0]/r*(p[0]-r/2),a[1]/r*(p[1]-r/2),p[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?o8(n,[0,0]):jx,c=i?o.map(p=>[...Mge(p,l),p[2]]):o,u=i?Oge(s):jx,d=[...r0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return c.map(p=>[Math.round(p[0]+Ol(d,u[0])),Math.round(p[1]+Ol(d,u[1])),Math.round(p[2]||0)])}function qx(e,t,n,s){let r=t.landmarks.length>=Wx.count?Wx.symmetryLine:Np.symmetryLine,a=0,o=jx,i;if(e&&ge.kernels.includes("rotatewithoffset"))if(a=Pge(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let c=r0({startPoint:t.startPoint,endPoint:t.endPoint}),u=[c[0]/n.shape[2],c[1]/n.shape[1]],d=$e.rotateWithOffset(n,a,0,u);o=o8(-a,c),i=Hx(t,d,[s,s]),ne(d)}else i=Hx(t,n,[s,s]);else i=Hx(t,n,[s,s]);return[a,o,i]}var u8=6,Ms,c8=[],d8=null,zs=0,Xx=()=>zs;async function p8(e){var t,n;return ge.initial&&(Ms=null),Ms?e.debug&&se("cached model:",Ms.modelUrl):(Ms=await Xe(Ze(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Ms||!Ms.modelUrl?se("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&se("load model:",Ms.modelUrl)),zs=Ms.inputs[0].shape?Ms.inputs[0].shape[2]:0,zs===-1&&(zs=64),c8=i8(zs),d8=ur(c8),Ms}function zge(e){let t={};t.boxStarts=De(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,d8),t.boxSizes=De(e,[0,3],[-1,2]),t.boxSizesNormalized=he(t.boxSizes,zs),t.centersNormalized=he(t.centers,zs),t.halfBoxSize=he(t.boxSizesNormalized,2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,zs),t.endNormalized=L(t.ends,zs);let n=Mu([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ne(t[s])),n}async function h8(e,t){var i,l,c,u;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let n={};n.resized=$e.resizeBilinear(e,[zs,zs]),n.div=he(n.resized,127.5),n.normalized=me(n.div,.5);let s=Ms==null?void 0:Ms.execute(n.normalized);if(Array.isArray(s)){let d=s.sort((p,h)=>p.size-h.size);n.concat384=vt([d[0],d[2]],2),n.concat512=vt([d[1],d[3]],2),n.concat=vt([n.concat512,n.concat384],1),n.batch=ot(n.concat,0)}else n.batch=ot(s);ne(s),n.boxes=zge(n.batch),n.logits=De(n.batch,[0,0],[-1,1]),n.sigmoid=ds(n.logits),n.scores=ot(n.sigmoid),n.nms=await $e.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let d=0;d<r.length;d++){let p=o[r[d]];if(p>(((u=t.face.detector)==null?void 0:u.minConfidence)||0)){let h={};h.bbox=De(n.boxes,[r[d],0],[1,-1]),h.slice=De(n.batch,[r[d],u8-1],[1,-1]),h.squeeze=ot(h.slice),h.landmarks=G(h.squeeze,[u8,-1]),h.startPoint=De(h.bbox,[0,0],[-1,2]),h.endPoint=De(h.bbox,[0,2],[-1,2]),a.push({box:{startPoint:await h.startPoint.data(),endPoint:await h.endPoint.data()},landmarks:await h.landmarks.array(),confidence:p}),Object.keys(h).forEach(f=>ne(h[f]))}}return Object.keys(n).forEach(d=>ne(n[d])),{boxes:a,scaleFactor:[e.shape[2]/zs,e.shape[1]/zs]}}var Yx={};jc(Yx,{connected:()=>Zx,kpt:()=>Kx});var Kx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],Zx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var f8={initial:!0},cn=[null,null],Ko=[[0,0],[0,0]],Jx=Number.MAX_SAFE_INTEGER,Qx,o0=null,Zo=[[0,0],[0,0],[0,0],[0,0]],m8=0;async function g8(e){var t,n,s;if(f8.initial&&(cn[0]=null),!cn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){cn[0]=await Xe(Ze(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(cn[0].modelSignature.inputs);Ko[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Ko[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!cn[0]||!cn[0].modelUrl?se("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&se("load model:",cn[0].modelUrl)}else e.debug&&cn[0]&&se("cached model:",cn[0].modelUrl);return cn[0]}async function A8(e){var t;if(f8.initial&&(cn[1]=null),cn[1])e.debug&&se("cached model:",cn[1].modelUrl);else{cn[1]=await Xe(Ze(e.modelBasePath,e.body.modelPath||""));let n=Object.values(cn[1].modelSignature.inputs);Ko[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ko[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?Qx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:Qx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!cn[1]||!cn[1].modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",cn[1].modelUrl)}return cn[1]}function Lge(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function Bge(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Zo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=Xs(e,Zo),t.resize=$e.resizeBilinear(t.pad,[Ko[1][0],Ko[1][1]]);let n=he(t.resize,255);return Object.keys(t).forEach(s=>ne(t[s])),n}function Wge(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Zo[2][0]+Zo[2][1])/t[0]-Zo[2][0],n.position[1]*(t[1]+Zo[1][0]+Zo[1][1])/t[1]-Zo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var y8=e=>1-1/(1+Math.exp(e));async function Vge(e,t,n){var h;let s={};s.input=await Bge(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(h=cn[1])==null?void 0:h.execute(s.input,Qx);let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=y8(o[l*f+3]),g=y8(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,x=[o[l*f+0]/Ko[1][0],o[l*f+1]/Ko[1][1],o[l*f+2]+0],y=[Math.trunc(n[0]*x[0]),Math.trunc(n[1]*x[1]),x[2]];i.push({part:Kx[f],positionRaw:x,position:y,score:A})}if(a<(t.body.minConfidence||0))return null;let c=Wge(i,n),u=Lge(c,[n[0],n[1]]);Object.keys(s).forEach(f=>ne(s[f]));let d={};for(let[f,m]of Object.entries(Zx)){let g=[];for(let A=0;A<m.length-1;A++){let x=c.find(b=>b.part===m[A]),y=c.find(b=>b.part===m[A+1]);x&&y&&x.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&g.push([x.position,y.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function eb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ce()-m8,r=Jx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&o0!==null?Jx++:(o0=await Vge(e,t,n),m8=ce(),Jx=0),o0?[o0]:[]}var Sc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var er,Ml=0,tb=[],x8=0,nb=Number.MAX_SAFE_INTEGER;async function b8(e){if(ge.initial&&(er=null),er)e.debug&&se("cached model:",er.modelUrl);else{er=await Xe(Ze(e.modelBasePath,e.object.modelPath||""));let t=Object.values(er.modelSignature.inputs);Ml=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!er||!er.modelUrl?se("load model failed:",e.object.modelPath):e.debug&&se("load model:",er.modelUrl)}return er}async function Uge(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=ot(e);ne(e);let o=sn(a,6,1);ne(a);let i=yn([o[1],o[0],o[3],o[2]],1),l=ot(i);ne(i);let c=ot(o[4]),u=ot(o[5]);o.forEach(f=>ne(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);ne(l),ne(c),ne(u);let p=await d.data();ne(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Sc[g].label,[x,y]=[r[0][f][0]/Ml,r[0][f][1]/Ml],b=[x,y,r[0][f][2]/Ml-x,r[0][f][3]/Ml-y],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:w,boxRaw:b})}return s}async function sb(e,t){let n=(t.object.skipTime||0)>ce()-x8,s=nb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&tb.length>0?(nb++,tb):(nb=0,new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[Ml,Ml]),i=t.object.enabled?er==null?void 0:er.execute(o,["tower_0/detections"]):null;x8=ce(),ne(o);let l=await Uge(i,a,t);tb=l,r(l)}))}var ob={};jc(ob,{connected:()=>ab,kpt:()=>rb});var rb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],ab={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var dn,v8=0,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},ib=Number.MAX_SAFE_INTEGER;async function lb(e){return ge.initial&&(dn=null),dn?e.debug&&se("cached model:",dn.modelUrl):(dn=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!dn||!dn.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",dn.modelUrl)),dn}function Gge(e,t){let[n,s]=e.shape;return q(()=>{let r=G(e,[s*n]),a=An(r,0).dataSync()[0];if(a>t){let o=js(r,0),i=_d(o,n).dataSync()[0],l=he(o,Re(n,"int32")).dataSync()[0];return[i,l,a]}return[0,0,a]})}async function ub(e,t){let n=(t.body.skipTime||0)>ce()-v8,s=ib<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Zn.keypoints).length>0?(ib++,[Zn]):(ib=0,new Promise(async r=>{var d;let a=q(()=>{if(!(dn==null?void 0:dn.inputs[0].shape))return null;let p=$e.resizeBilinear(e,[dn.inputs[0].shape[2],dn.inputs[0].shape[1]],!1);return L(p,2).sub(1)}),o;if(t.body.enabled&&(o=dn==null?void 0:dn.execute(a)),v8=ce(),ne(a),o){Zn.keypoints.length=0;let p=o.squeeze();ne(o);let h=p.unstack(2);ne(p);for(let f=0;f<h.length;f++){let[m,g,A]=Gge(h[f],t.body.minConfidence);A>(((d=t.body)==null?void 0:d.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*A)/100,part:rb[f],positionRaw:[m/dn.inputs[0].shape[2],g/dn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/dn.inputs[0].shape[2]),Math.round(e.shape[1]*g/dn.inputs[0].shape[1])]})}h.forEach(f=>ne(f))}Zn.score=Zn.keypoints.reduce((p,h)=>h.score>p?h.score:p,0);let i=Zn.keypoints.map(p=>p.position[0]),l=Zn.keypoints.map(p=>p.position[1]);Zn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Zn.keypoints.map(p=>p.positionRaw[0]),u=Zn.keypoints.map(p=>p.positionRaw[1]);Zn.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[p,h]of Object.entries(ab)){let f=[];for(let m=0;m<h.length-1;m++){let g=Zn.keypoints.find(x=>x.part===h[m]),A=Zn.keypoints.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}Zn.annotations[p]=f}r([Zn])}))}var Hge=["angry","disgust","fear","happy","sad","surprise","neutral"],Yn,i0=[],w8=0,k8=0,cb=Number.MAX_SAFE_INTEGER,db=[.2989,.587,.114];async function S8(e){var t,n;return ge.initial&&(Yn=null),Yn?e.debug&&se("cached model:",Yn.modelUrl):(Yn=await Xe(Ze(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!Yn||!Yn.modelUrl?se("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&se("load model:",Yn.modelUrl)),Yn}async function pb(e,t,n,s){var o,i;if(!Yn)return null;let r=cb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>ce()-k8;return t.skipAllowed&&a&&r&&w8===s&&i0[n]&&i0[n].length>0?(cb++,i0[n]):(cb=0,new Promise(async l=>{var u,d;let c=[];if((u=t.face.emotion)==null?void 0:u.enabled){let p={},h=(Yn==null?void 0:Yn.inputs[0].shape)?Yn.inputs[0].shape[2]:0;p.resize=$e.resizeBilinear(e,[h,h],!1),[p.red,p.green,p.blue]=sn(p.resize,3,3),p.redNorm=L(p.red,db[0]),p.greenNorm=L(p.green,db[1]),p.blueNorm=L(p.blue,db[2]),p.grayscale=rf([p.redNorm,p.greenNorm,p.blueNorm]),p.grayscaleSub=me(p.grayscale,.5),p.grayscaleMul=L(p.grayscaleSub,2),p.emotion=Yn==null?void 0:Yn.execute(p.grayscaleMul),k8=ce();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((d=t.face.emotion)==null?void 0:d.minConfidence)||0)&&c.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:Hge[m]});c.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>ne(p[m]))}i0[n]=c,w8=s,l(c)}))}var tr,Yo=0,jge=2.3,hb=Wr.leftEyeLower0,fb=Wr.rightEyeLower0,Ic={leftBounds:[hb[0],hb[hb.length-1]],rightBounds:[fb[0],fb[fb.length-1]]},Cc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function I8(e){var t,n;return ge.initial&&(tr=null),tr?e.debug&&se("cached model:",tr.modelUrl):(tr=await Xe(Ze(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!tr||!tr.modelUrl?se("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&se("load model:",tr.modelUrl)),Yo=tr.inputs[0].shape?tr.inputs[0].shape[2]:0,Yo===-1&&(Yo=64),tr}function l0(e,t,n,s){for(let r=0;r<Vx.length;r++){let{key:a,indices:o}=Vx[r],i=Wr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var qge=e=>{let t=e[Ic.leftBounds[0]][2],n=e[Ic.rightBounds[0]][2];return t-n},C8=(e,t,n,s,r,a=!1)=>{let o=_p($p(a0([e[n],e[s]]),jge)),i=Rp(o),l=$e.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[Yo,Yo]);if(a&&ge.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);ne(l),l=c}return{box:o,boxSize:i,crop:l}},T8=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Cc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Yo:o/Yo)*n[0]+t.startPoint[0],i/Yo*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Cc.index)}},N8=(e,t,n)=>{let s=e[Wr[`${n}EyeUpper0`][Cc.upperCenter]][2],r=e[Wr[`${n}EyeLower0`][Cc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function E8(e,t,n,s){if(!tr)return n.debug&&se("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=C8(e,t,Ic.leftBounds[0],Ic.leftBounds[1],s,!0),{box:i,boxSize:l,crop:c}=C8(e,t,Ic.rightBounds[0],Ic.rightBounds[1],s,!0),u=vt([o,c]);ne(o),ne(c);let d=tr.execute(u);ne(u);let p=await d.data();ne(d);let h=p.slice(0,Cc.numCoordinates*3),{rawCoords:f,iris:m}=T8(h,r,a,!0),g=p.slice(Cc.numCoordinates*3),{rawCoords:A,iris:x}=T8(g,i,l),y=qge(e);Math.abs(y)<30?(l0(e,f,"left",null),l0(e,A,"right",null)):y<1?l0(e,f,"left",["EyeUpper0","EyeLower0"]):l0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=N8(e,m,"left"),w=N8(e,x,"right");return e.concat(b).concat(w)}var Tc=[],nr=null,la=0,mb=Number.MAX_SAFE_INTEGER,R8=0,$8=1.6;async function _8(e,t){var i,l,c,u,d,p,h,f;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>ce()-R8,s=mb<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);if(!t.skipAllowed||!n||!s||Tc.length===0){let m=await h8(e,t);R8=ce(),Tc=[];for(let g of m.boxes){let A={startPoint:g.box.startPoint,endPoint:g.box.endPoint,landmarks:g.landmarks,confidence:g.confidence};Tc.push(_p($p(s8(A,m.scaleFactor),Math.sqrt($8))))}mb=0}else mb++;let r=[],a=[],o=0;for(let m=0;m<Tc.length;m++){let g=Tc[m],A=0,x,y={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([A,x,y.tensor]=qx(!1,g,e,la),(u=t==null?void 0:t.filter)==null?void 0:u.equalization){let b=await t0(y.tensor);ne(y.tensor),y.tensor=b}if(y.boxScore=Math.round(100*g.confidence)/100,(d=t.face.mesh)==null?void 0:d.enabled)if(!nr)t.debug&&se("face mesh detection requested, but model is not loaded");else{let[b,w,k]=nr.execute(y.tensor),C=await w.data();y.faceScore=Math.round(100*C[0])/100;let N=G(k,[-1,3]),R=await N.array();if(ne([k,N,w,b]),y.faceScore<(((p=t.face.detector)==null?void 0:p.minConfidence)||1))g.confidence=y.faceScore;else{((h=t.face.iris)==null?void 0:h.enabled)&&(R=await E8(R,y.tensor,t,la)),y.mesh=l8(R,g,A,x,la),y.meshRaw=y.mesh.map(F=>[F[0]/(e.shape[2]||0),F[1]/(e.shape[1]||0),(F[2]||0)/la]);for(let F of Object.keys(Wr))y.annotations[F]=Wr[F].map(_=>y.mesh[_]);g=_p({...$p(a0(y.mesh),$8),confidence:g.confidence}),y.box=Ux(g,e),y.boxRaw=Gx(g,e),y.score=y.faceScore,a.push(g),ne(y.tensor),[A,x,y.tensor]=qx((f=t.face.detector)==null?void 0:f.rotation,g,e,la)}}else{y.box=Ux(g,e),y.boxRaw=Gx(g,e),y.score=y.boxScore,y.mesh=g.landmarks.map(b=>[(g.startPoint[0]+g.endPoint[0])/2+(g.endPoint[0]+g.startPoint[0])*b[0]/Xx(),(g.startPoint[1]+g.endPoint[1])/2+(g.endPoint[1]+g.startPoint[1])*b[1]/Xx()]),y.meshRaw=y.mesh.map(b=>[b[0]/(e.shape[2]||0),b[1]/(e.shape[1]||0),(b[2]||0)/la]);for(let b of Object.keys(Np))y.annotations[b]=[y.mesh[Np[b]]]}r.push(y)}return Tc=[...a],r}async function D8(e){var t,n;return ge.initial&&(nr=null),nr?e.debug&&se("cached model:",nr.modelUrl):(nr=await Xe(Ze(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!nr||!nr.modelUrl?se("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&se("load model:",nr.modelUrl)),la=nr.inputs[0].shape?nr.inputs[0].shape[2]:0,la===-1&&(la=64),nr}var P8=Fl,F8=Ep;var xs,u0=[],O8=0,M8=0,gb=Number.MAX_SAFE_INTEGER;async function z8(e){var n,s;let t=Ze(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return ge.initial&&(xs=null),xs?e.debug&&se("cached model:",t):(xs=await Xe(t),xs?e.debug&&se("load model:",t):se("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),xs}function Ab(e){let t=e.image||e.tensor||e;if(!(xs==null?void 0:xs.inputs[0].shape))return t;let n=$e.resizeBilinear(t,[xs.inputs[0].shape[2],xs.inputs[0].shape[1]],!1),s=L(n,255);return ne(n),s}async function yb(e,t,n,s){var o,i,l,c;if(!xs)return null;let r=gb<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>ce()-O8;return t.skipAllowed&&r&&a&&M8===s&&((l=u0[n])==null?void 0:l.age)&&((c=u0[n])==null?void 0:c.age)>0?(gb++,u0[n]):(gb=0,new Promise(async u=>{var p,h;let d={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)==null?void 0:p.enabled){let f=Ab(e),m=xs==null?void 0:xs.execute(f);O8=ce(),ne(f);let A=await(await m.find(R=>R.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(A[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(d.gender=A[0]<=.5?"female":"male",d.genderScore=Math.min(.99,x));let y=js(m.find(R=>R.shape[1]===100),1),b=(await y.data())[0];ne(y);let k=await m.find(R=>R.shape[1]===100).data();d.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let C=m.find(R=>R.shape[1]===1024),N=C?await C.data():[];d.descriptor=Array.from(N),m.forEach(R=>ne(R))}u0[n]=d,M8=s,u(d)}))}function c0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Dp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function L8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function B8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function d0(e,t=1.5){let n=Dp(e),s=c0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function p0(e){let t=Dp(e),n=c0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Xge(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function W8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Xge(n)}var V8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Jo(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Kge(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function U8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Jo(e[r],Kge(t,a)))}return n}function xb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=V8(t[0],t[1]),o=U8(a,r),i=V8(-t[0],-t[1]);return U8(o,i)}function G8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Jo(t[0],n),-Jo(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function bb(e,t){return[Jo(e,t[0]),Jo(e,t[1])]}var H8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var vb=class{constructor(t){de(this,"model");de(this,"anchors");de(this,"anchorsTensor");de(this,"inputSize");de(this,"inputSizeTensor");de(this,"doubleInputSizeTensor");this.model=t,this.anchors=H8.map(n=>[n.x,n.y]),this.anchorsTensor=ur(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Kt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Kt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=De(t,[0,0],[-1,2]),n.boxSizes=De(t,[0,2],[-1,2]),n.div=he(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=le(n.div,this.anchorsTensor),n.halfBoxSizes=he(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=le(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=Mu([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ne(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=G(t,[-1,7,2]),s.div=he(s.reshape,this.inputSizeTensor),s.landmarks=le(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ne(s[a])),r}async predict(t,n){let s={};s.resize=$e.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=he(s.resize,127.5),s.image=me(s.div,1),s.batched=this.model.execute(s.image),s.predictions=ot(s.batched),s.slice=De(s.predictions,[0,0],[-1,1]),s.sigmoid=ds(s.slice),s.scores=ot(s.sigmoid);let r=await s.scores.data();s.boxes=De(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=De(s.norm,[i,0],[1,-1]),l.slice=De(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=G(l.norm,[-1,2]);let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array(),h={startPoint:u,endPoint:d,palmLandmarks:p,confidence:r[i]},f=B8(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ne(l[m]))}return Object.keys(s).forEach(i=>ne(s[i])),o}};var Zge=5,j8=1.65,q8=[0,5,9,13,17,1,2],Yge=0,Jge=2,X8=0,wb=class{constructor(t,n){de(this,"handDetector");de(this,"handPoseModel");de(this,"inputSize");de(this,"storedBoxes");de(this,"skipped");de(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>bb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return d0(p0(r),Zge)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=d0(p0(n),j8);s.palmLandmarks=[];for(let r=0;r<q8.length;r++)s.palmLandmarks.push(t[q8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=c0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=xb(s,[0,0]),c=i.map(h=>[...bb(h,l),h[2]]),u=G8(r),d=[...Dp(n),1],p=[Jo(d,u[0]),Jo(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ce()-X8,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?W8(c.palmLandmarks[Yge],c.palmLandmarks[Jge]):0,d=Dp(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&ge.kernels.includes("rotatewithoffset")?$e.rotateWithOffset(t,u,0,p):t.clone(),f=xb(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=L8(m,h,[this.inputSize,this.inputSize]),A=he(g,255);ne(g),ne(h);let[x,y]=this.handPoseModel.execute(A);X8=ce(),ne(A);let b=(await x.data())[0];if(ne(x),b>=n.hand.minConfidence/4){let w=G(y,[-1,3]),k=await w.array();ne(y),ne(w);let C=this.transformRawCoords(k,m,u,f),N=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...N,confidence:b};let R={landmarks:C,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:N.startPoint,bottomRight:N.endPoint}};i.push(R)}else this.storedBoxes[l]=null;ne(y)}else{let u=d0(p0(c),j8),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var Jn={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Jn.nameMapping[e],getPoints:e=>Jn.pointsMapping[e]},Qo={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Qo.nameMapping[e]},zt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>zt.nameMapping[e]},zl=class{constructor(t){de(this,"name");de(this,"curls");de(this,"directions");de(this,"weights");de(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:xr,index:ua,middle:ca,ring:Ll,pinky:Bl}=Jn,{none:br,half:Qge,full:vr}=Qo,{verticalUp:Nc,verticalDown:AAe,horizontalLeft:kb,horizontalRight:e2e,diagonalUpRight:t2e,diagonalUpLeft:Ec,diagonalDownRight:yAe,diagonalDownLeft:xAe}=zt,ei=new zl("thumbs up");ei.curl(xr,br,1);ei.direction(xr,Nc,1);ei.direction(xr,Ec,.25);ei.direction(xr,t2e,.25);for(let e of[Jn.index,Jn.middle,Jn.ring,Jn.pinky])ei.curl(e,vr,1),ei.direction(e,kb,1),ei.direction(e,e2e,1);var Qt=new zl("victory");Qt.curl(xr,Qge,.5);Qt.curl(xr,br,.5);Qt.direction(xr,Nc,1);Qt.direction(xr,Ec,1);Qt.curl(ua,br,1);Qt.direction(ua,Nc,.75);Qt.direction(ua,Ec,1);Qt.curl(ca,br,1);Qt.direction(ca,Nc,1);Qt.direction(ca,Ec,.75);Qt.curl(Ll,vr,1);Qt.direction(Ll,Nc,.2);Qt.direction(Ll,Ec,1);Qt.direction(Ll,kb,.2);Qt.curl(Bl,vr,1);Qt.direction(Bl,Nc,.2);Qt.direction(Bl,Ec,1);Qt.direction(Bl,kb,.2);Qt.weight(ua,2);Qt.weight(ca,2);var ti=new zl("point");ti.curl(xr,vr,1);ti.curl(ua,br,.5);ti.curl(ca,vr,.5);ti.curl(Ll,vr,.5);ti.curl(Bl,vr,.5);ti.weight(ua,2);ti.weight(ca,2);var ni=new zl("middle finger");ni.curl(xr,br,1);ni.curl(ua,vr,.5);ni.curl(ca,vr,.5);ni.curl(Ll,vr,.5);ni.curl(Bl,vr,.5);ni.weight(ua,2);ni.weight(ca,2);var Rc=new zl("open palm");Rc.curl(xr,br,.75);Rc.curl(ua,br,.75);Rc.curl(ca,br,.75);Rc.curl(Ll,br,.75);Rc.curl(Bl,br,.75);var K8=[ei,Qt,ti,ni,Rc];var n2e=.7,Wl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function Z8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function Y8(e,t){if(!e||!t)return[0,0];let n=Z8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=Z8(e[1],e[2],t[1],t[2]);return[n,s]}function J8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function s2e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Wl.NO_CURL_START_LIMIT?A=Qo.none:g>Wl.HALF_CURL_START_LIMIT?A=Qo.half:A=Qo.full,A}function Q8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=zt.horizontalLeft:r=zt.horizontalRight:s===Math.abs(t)?t>0?r=zt.horizontalLeft:r=zt.horizontalRight:n>0?r=zt.horizontalLeft:r=zt.horizontalRight,r}function eT(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=zt.verticalDown:r=zt.verticalUp:s===Math.abs(t)?t<0?r=zt.verticalDown:r=zt.verticalUp:n<0?r=zt.verticalDown:r=zt.verticalUp,r}function r2e(e,t,n,s,r,a,o,i){let l,c=eT(e,t,n,s),u=Q8(r,a,o,i);return c===zt.verticalUp?u===zt.horizontalLeft?l=zt.diagonalUpLeft:l=zt.diagonalUpRight:u===zt.horizontalLeft?l=zt.diagonalDownLeft:l=zt.diagonalDownRight,l}function a2e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Wl.DISTANCE_VOTE_POWER:m>.66?h+=Wl.DISTANCE_VOTE_POWER:f+=Wl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+c*c),y=Math.max(g,A,x),b=e[0],w=e[1],k=n[0],C=n[1];y===g?(k=n[0],C=n[1]):y===x&&(b=t[0],w=t[1]);let F=Y8([b,w],[k,C]),_=J8(F,Wl.TOTAL_ANGLE_VOTE_POWER);p+=_[0],h+=_[1],f+=_[2];for(let T of s){let M=J8(T,Wl.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let P;return p===Math.max(p,h,f)?P=eT(l,i,c,d):f===Math.max(h,f)?P=Q8(a,r,o,u):P=r2e(l,i,c,d,a,r,o,u),P}function tT(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Jn.all){let o=Jn.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=Y8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Jn.all){let o=a===Jn.thumb?1:0,i=Jn.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=s2e(l,c,u),p=a2e(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function h0(e){if(!e||e.length===0)return null;let t=tT(e),n={};for(let s of Jn.all)n[Jn.getName(s)]={curl:Qo.getName(t.curls[s]),direction:zt.getName(t.directions[s])};return n}function nT(e){let t=[];if(!e||e.length===0)return t;let n=tT(e);for(let s of K8){let r=s.matchAgainst(n.curls,n.directions);r>=n2e&&t.push({name:s.name,confidence:r})}return t}var sT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},da,pa,rT;async function Sb(e,t){let n=await rT.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(sT))a[u]=sT[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=h0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Ib(e){var n,s,r,a,o,i;ge.initial&&(da=null,pa=null),!da||!pa?([da,pa]=await Promise.all([e.hand.enabled?Xe(Ze(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Xe(Ze(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!da||!da.modelUrl?se("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&se("load model:",da.modelUrl),!pa||!pa.modelUrl?se("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&se("load model:",pa.modelUrl))):(e.debug&&se("cached model:",da.modelUrl),e.debug&&se("cached model:",pa.modelUrl));let t=new vb(da);return rT=new wb(t,pa),[da,pa]}function Vl(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function aT(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function f0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Cb(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var St=[null,null],o2e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],si=[[0,0],[0,0]],i2e=["hand","fist","pinch","point","face","tip","pinchtip"],oT=4,iT=1.6,l2e=512,u2e=1.4,m0=Number.MAX_SAFE_INTEGER,Tb=0,ha=[0,0],jt={boxes:[],hands:[]},lT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function uT(e){var t,n;if(ge.initial&&(St[0]=null),St[0])e.debug&&se("cached model:",St[0].modelUrl);else{g0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),St[0]=await Xe(Ze(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(St[0].modelSignature.inputs);si[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!St[0]||!St[0].modelUrl?se("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&se("load model:",St[0].modelUrl)}return St[0]}async function cT(e){var t,n;if(ge.initial&&(St[1]=null),St[1])e.debug&&se("cached model:",St[1].modelUrl);else{St[1]=await Xe(Ze(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(St[1].modelSignature.inputs);si[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!St[1]||!St[1].modelUrl?se("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&se("load model:",St[1].modelUrl)}return St[1]}async function c2e(e,t){let n=[];if(!e||!St[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,l2e),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await St[0].executeAsync(s.cast,o2e),s.boxes=ot(s.rawBoxes,[0,2]),s.scores=ot(s.rawScores,[0]);let i=rs(s.scores,1);ne(i[oT]),i.splice(oT,1),s.filtered=yn(i,1),ne(i),s.max=An(s.filtered,1),s.argmax=js(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=De(s.boxes,p,1),f=await h.data();ne(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=f0(m,u2e),A=Cb(g),x=[Math.trunc(m[0]*ha[0]),Math.trunc(m[1]*ha[1]),Math.trunc(m[2]*ha[0]),Math.trunc(m[3]*ha[1])],y=u[p],b=i2e[d[p]],w={id:l++,score:y,box:x,boxRaw:g,boxCrop:A,label:b};n.push(w)}return Object.keys(s).forEach(p=>ne(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Nb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&St[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[si[1][0],si[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=he(r.cast,255),[r.score,r.keypoints]=St[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=G(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/si[1][1],u[1]/si[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[ha[0]*(u[0]+t.boxRaw[0]),ha[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=h0(s.keypoints);for(let u of Object.keys(lT))s.annotations[u]=lT[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>ne(r[i]))}return s}async function Eb(e,t){var r,a;if(!St[0]||!St[1]||!((r=St[0])==null?void 0:r.inputs[0].shape)||!((a=St[1])==null?void 0:a.inputs[0].shape))return[];ha=[e.shape[2]||0,e.shape[1]||0],m0++;let n=(t.hand.skipTime||0)>ce()-Tb,s=m0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?jt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>ce()-Tb,l=m0<3*(t.hand.skipFrames||0);t.skipAllowed&&jt.hands.length===t.hand.maxDetected?jt.hands=await Promise.all(jt.boxes.map(u=>Nb(e,u,t))):t.skipAllowed&&i&&l&&jt.hands.length>0?jt.hands=await Promise.all(jt.boxes.map(u=>Nb(e,u,t))):(jt.boxes=await c2e(e,t),Tb=ce(),jt.hands=await Promise.all(jt.boxes.map(u=>Nb(e,u,t))),m0=0);let c=[...jt.boxes];if(jt.boxes.length=0,t.cacheSensitivity>0)for(let u=0;u<jt.hands.length;u++){let d=aT(jt.hands[u].keypoints,ha);if(d.box[2]/(e.shape[2]||1)>.05&&d.box[3]/(e.shape[1]||1)>.05&&jt.hands[u].fingerScore&&jt.hands[u].fingerScore>(t.hand.minConfidence||0)){let p=f0(d.box,iT),h=f0(d.boxRaw,iT),f=Cb(h);jt.boxes.push({...c[u],box:p,boxRaw:h,boxCrop:f})}}for(let u=0;u<jt.hands.length;u++){let d=Vl(jt.hands[u].keypoints,ha);jt.hands[u].box=d.box,jt.hands[u].boxRaw=d.boxRaw}o(jt.hands)})}var pn,A0=[],Rb=Number.MAX_SAFE_INTEGER,dT=0,pT=0;async function hT(e){var t,n;return ge.initial&&(pn=null),pn?e.debug&&se("cached model:",pn.modelUrl):(pn=await Xe(Ze(e.modelBasePath,((t=e.face.liveness)==null?void 0:t.modelPath)||"")),!pn||!pn.modelUrl?se("load model failed:",(n=e.face.liveness)==null?void 0:n.modelPath):e.debug&&se("load model:",pn.modelUrl)),pn}async function $b(e,t,n,s){var o,i;if(!pn)return null;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>ce()-pT,a=Rb<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&dT===s&&A0[n]?(Rb++,A0[n]):(Rb=0,new Promise(async l=>{let c=$e.resizeBilinear(e,[(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[2]:0,(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[1]:0],!1),u=pn==null?void 0:pn.execute(c),d=(await u.data())[0];A0[n]=Math.round(100*d)/100,dT=s,pT=ce(),ne([c,u]),l(A0[n])}))}var Fb={};jc(Fb,{connected:()=>x0,horizontal:()=>_b,kpt:()=>y0,relative:()=>Pb,vertical:()=>Db});var y0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],_b=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Db=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Pb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],x0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var fT=.005,bs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Ob(e){for(let t of _b){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Db){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Pb){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function mT(e){for(let t=0;t<e.length;t++)if(e[t]&&bs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-bs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-bs.keypoints[t].positionRaw[1])];n[0]<fT&&n[1]<fT?e[t]=bs.keypoints[t]:bs.keypoints[t]=e[t]}else bs.keypoints[t]=e[t];return e}function gT(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;bs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Xs(e,bs.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=pe(n.resize,"int32");return Object.keys(n).forEach(r=>ne(n[r])),s}function AT(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+bs.padding[2][0]+bs.padding[2][1])/t[0]-bs.padding[2][0],s.position[1]*(t[1]+bs.padding[1][0]+bs.padding[1][1])/t[1]-bs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Vl(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Pn,b0=0,Mb=Number.MAX_SAFE_INTEGER,Ul={boxes:[],bodies:[],last:0};async function yT(e){return ge.initial&&(Pn=null),Pn?e.debug&&se("cached model:",Pn.modelUrl):(g0(["size"],e),Pn=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!Pn||!Pn.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",Pn.modelUrl)),b0=Pn.inputs[0].shape?Pn.inputs[0].shape[2]:0,b0===-1&&(b0=256),Pn}async function d2e(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:y0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Vl(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(x0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return Ob(u),i.push(u),i}async function p2e(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:y0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Vl(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(x0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(x=>x.part===h[m]),A=l.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};Ob(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function zb(e,t){if(!Pn||!(Pn==null?void 0:Pn.inputs[0].shape))return[];t.skipAllowed||(Ul.boxes.length=0),Mb++;let n=(t.body.skipTime||0)>ce()-Ul.last,s=Mb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Ul.bodies:new Promise(async r=>{let a={};Mb=0,a.input=gT(e,b0),a.res=Pn==null?void 0:Pn.execute(a.input),Ul.last=ce();let o=await a.res.array();Ul.bodies=a.res.shape[2]===17?await d2e(o,t,e,[0,0,1,1]):await p2e(o,t,e,[0,0,1,1]);for(let i of Ul.bodies)AT(i,[e.shape[2]||1,e.shape[1]||1]),mT(i.keypoints);Object.keys(a).forEach(i=>ne(a[i])),r(Ul.bodies)})}var vs,v0=[],xT=0,Lb=Number.MAX_SAFE_INTEGER,w0=2.5;async function bT(e){if(!vs||ge.initial){vs=await Xe(Ze(e.modelBasePath,e.object.modelPath||""));let t=Object.values(vs.modelSignature.inputs);if(vs.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!vs.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!vs||!vs.modelUrl?se("load model failed:",e.object.modelPath):e.debug&&se("load model:",vs.modelUrl)}else e.debug&&se("cached model:",vs.modelUrl);return vs}async function h2e(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])q(async()=>{var g,A;let u=c*13,d=(g=e.find(x=>x.shape[1]===u**2&&x.shape[2]===Sc.length))==null?void 0:g.squeeze(),p=(A=e.find(x=>x.shape[1]===u**2&&x.shape[2]<Sc.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let x=0;x<d.shape[0];x++)for(let y=0;y<d.shape[1];y++){let b=m[x][y];if(b>s.object.minConfidence&&y!==61){let w=(.5+Math.trunc(x%u))/u,k=(.5+Math.trunc(x/u))/u,C=f[x].map(U=>U*(u/c/t)),[N,R]=[w-w0/c*C[0],k-w0/c*C[1]],[F,_]=[w+w0/c*C[2]-N,k+w0/c*C[3]-R],P=[N,R,F,_];P=P.map(U=>Math.max(0,Math.min(U,1)));let T=[P[0]*n[0],P[1]*n[1],P[2]*n[0],P[3]*n[1]],M={id:r++,score:Math.round(100*b)/100,class:y+1,label:Sc[y].label,box:T.map(U=>Math.trunc(U)),boxRaw:P};a.push(M)}}});e.forEach(c=>ne(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),ne(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function Bb(e,t){let n=(t.object.skipTime||0)>ce()-xT,s=Lb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&v0.length>0?(Lb++,v0):(Lb=0,!ge.kernels.includes("mod")||!ge.kernels.includes("sparsetodense")?v0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[vs.inputSize,vs.inputSize],!1),i=he(o,255),l=i.transpose([0,3,1,2]);ne(i),ne(o);let c;t.object.enabled&&(c=vs.execute(l)),xT=ce(),ne(l);let u=await h2e(c,vs.inputSize,a,t);v0=u,r(u)}))}var Pp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],f2e=Pp.length,Fp=Pp.reduce((e,t,n)=>(e[t]=n,e),{}),m2e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],oye=m2e.map(([e,t])=>[Fp[e],Fp[t]]),vT=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function wT(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function kT(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var Wb=class{constructor(t,n){de(this,"priorityQueue");de(this,"numberOfElements");de(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Vb(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+f2e)}}function Ub(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Vb(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Gb(e,t,n){return e<t?t:e>n?n:e}function ST(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Hb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ws,g2e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],k0=1,$c=16,A2e=50**2;function IT(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,x,y)=>({y:Gb(Math.round(A.y/$c),0,x-1),x:Gb(Math.round(A.x/$c),0,y-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=Hb(t.position,p);for(let A=0;A<o;A++){let x=l(f,c,u),y=Vb(x.y,x.x,n,r);f=Hb({x:x.x*$c,y:x.y*$c},{x:y.x,y:y.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:Pp[n],score:g}}function y2e(e,t,n,s,r){let a=vT.map(([p,h])=>[Fp[p],Fp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=Ub(e.part,$c,n);u[e.part.id]={score:e.score,part:Pp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=IT(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=IT(p,u[h],f,t,n,s))}return u}function x2e(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-k0,0),c=Math.min(n+k0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-k0,0),p=Math.min(s+k0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function b2e(e,t){let[n,s,r]=t.shape,a=new Wb(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||x2e(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function CT(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?ST(n,t,a.y,a.x)<=A2e:!1})}function v2e(e,t){return t.reduce((s,{position:r,score:a},o)=>(CT(e,r,o)||(s+=a),s),0)/t.length}function w2e(e,t,n,s,r,a){let o=[],i=b2e(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=Ub(l.part,$c,e);if(CT(o,c,l.part.id))continue;let u=y2e(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=v2e(o,u),p=wT(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function jb(e,t){let n=q(()=>{if(!ws.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[ws.inputs[0].shape[2],ws.inputs[0].shape[1]]),i=me(he(pe(o,"float32"),127.5),1),c=ws.execute(i,g2e).map(u=>ot(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ne(o);let r=await w2e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ws.inputs[0].shape?kT(r,[e.shape[1],e.shape[2]],[ws.inputs[0].shape[2],ws.inputs[0].shape[1]]):[]}async function TT(e){return!ws||ge.initial?(ws=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!ws||!ws.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",ws.modelUrl)):e.debug&&se("cached model:",ws.modelUrl),ws}var Ls,qb=!1;async function Xb(e){return!Ls||ge.initial?(Ls=await Xe(Ze(e.modelBasePath,e.segmentation.modelPath||"")),!Ls||!Ls.modelUrl?se("load model failed:",e.segmentation.modelPath):e.debug&&se("load model:",Ls.modelUrl)):e.debug&&se("cached model:",Ls.modelUrl),Ls}async function NT(e,t,n){var m,g;if(qb)return{data:[],canvas:null,alpha:null};qb=!0,Ls||await Xb(n);let s=await kc(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[Ls.inputs[0].shape?Ls.inputs[0].shape[1]:0,Ls.inputs[0].shape?Ls.inputs[0].shape[2]:0],!1),ne(s.tensor),o.norm=he(o.resize,255),o.res=Ls.execute(o.norm),o.squeeze=ot(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Gu(o.squeeze),[o.bg,o.fg]=rs(o.softmax,2),o.expand=Xt(o.fg,2),o.pad=Xt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=ot(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(ge.node&&!ge.Canvas&&typeof ImageData=="undefined")return n.debug&&se("canvas support missing"),Object.keys(o).forEach(A=>ne(o[A])),{data:i,canvas:null,alpha:null};let l=Kn(r,a);await Hs.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Kn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Kn(r,a);let A=await kc(t,n);ne(A.tensor);let x=f.getContext("2d");x.drawImage(A.canvas,0,0,f.width,f.height),x.drawImage(d,0,0)}return Object.keys(o).forEach(A=>ne(o[A])),qb=!1,{data:i,canvas:f||d,alpha:l}}var Kb=class{constructor(){de(this,"age",null);de(this,"agegenderrace",null);de(this,"blazeposedetect",null);de(this,"blazepose",null);de(this,"centernet",null);de(this,"efficientpose",null);de(this,"embedding",null);de(this,"emotion",null);de(this,"facedetect",null);de(this,"faceiris",null);de(this,"facemesh",null);de(this,"faceres",null);de(this,"gender",null);de(this,"handpose",null);de(this,"handskeleton",null);de(this,"handtrack",null);de(this,"liveness",null);de(this,"movenet",null);de(this,"nanodet",null);de(this,"posenet",null);de(this,"segmentation",null);de(this,"antispoof",null)}};function Zb(e){for(let t of Object.keys(e.models))e.models[t]=null}async function ET(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,C,N,R,F,_,P,T,M,U,j;ge.initial&&Zb(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Ib(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Ib(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=A8(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((i=e.config.body.detector)==null?void 0:i.modelPath)&&((c=(l=e.config.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))&&(e.models.blazeposedetect=g8(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("efficientpose"))&&(e.models.efficientpose=lb(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("efficientpose"))&&(e.models.efficientpose=lb(e.config)),e.config.body.enabled&&!e.models.movenet&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("movenet"))&&(e.models.movenet=yT(e.config)),e.config.body.enabled&&!e.models.posenet&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("posenet"))&&(e.models.posenet=TT(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=p8(e.config)),e.config.face.enabled&&((x=e.config.face.antispoof)==null?void 0:x.enabled)&&!e.models.antispoof&&(e.models.antispoof=n8(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=hT(e.config)),e.config.face.enabled&&((b=e.config.face.description)==null?void 0:b.enabled)&&!e.models.faceres&&(e.models.faceres=z8(e.config)),e.config.face.enabled&&((w=e.config.face.emotion)==null?void 0:w.enabled)&&!e.models.emotion&&(e.models.emotion=S8(e.config)),e.config.face.enabled&&((k=e.config.face.iris)==null?void 0:k.enabled)&&!e.models.faceiris&&(e.models.faceiris=I8(e.config)),e.config.face.enabled&&((C=e.config.face.mesh)==null?void 0:C.enabled)&&!e.models.facemesh&&(e.models.facemesh=D8(e.config)),e.config.face.enabled&&((N=e.config.face.agegenderrace)==null?void 0:N.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=Q6(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((F=(R=e.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:F.includes("handtrack"))&&(e.models.handtrack=uT(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((P=(_=e.config.hand.detector)==null?void 0:_.modelPath)==null?void 0:P.includes("handtrack"))&&(e.models.handskeleton=cT(e.config)),e.config.object.enabled&&!e.models.centernet&&((M=(T=e.config.object)==null?void 0:T.modelPath)==null?void 0:M.includes("centernet"))&&(e.models.centernet=b8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=(U=e.config.object)==null?void 0:U.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=bT(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Xb(e.config));for await(let z of Object.keys(e.models))e.models[z]&&typeof e.models[z]!="undefined"&&(e.models[z]=await e.models[z])}async function RT(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&se("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&se("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&se("model validation:",n,i)}}}var It={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function k2e(){let e=It.gl;!e||(It.extensions=e.getSupportedExtensions())}async function $T(e){var t;if(e.config.backend==="humangl"&&(It.name in ss().registry&&(!It.gl||!It.gl.getParameter(It.gl.VERSION))&&(se("error: humangl backend invalid context"),Zb(e)),!W2(It.name))){try{It.canvas=await Kn(100,100)}catch(s){se("error: cannot create canvas:",s);return}try{if(It.gl=(t=It.canvas)==null?void 0:t.getContext("webgl2",It.webGLattr),!It.gl.getParameter(It.gl.VERSION).includes("2.0")){se("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}It.canvas&&(It.canvas.addEventListener("webglcontextlost",async r=>{throw se("error: humangl:",r.type),se("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),It.canvas.addEventListener("webglcontextrestored",r=>{se("error: humangl context restored:",r)}),It.canvas.addEventListener("webglcontextcreationerror",r=>{se("error: humangl context create:",r)}))}catch(s){se("error: cannot get WebGL context:",s);return}try{Tm(2,It.gl)}catch(s){se("error: cannot set WebGL context:",s);return}try{let s=new Om(It.gl);ol(It.name,()=>new hp(s),It.priority)}catch(s){se("error: cannot register WebGL backend:",s);return}try{Xr("webgl").forEach(r=>{let a={...r,backendName:It.name};ar(a)})}catch(s){se("error: cannot update WebGL backend registration:",s);return}let n=Nr().getGPGPUContext?Nr().getGPGPUContext().gl:null;if(n)se(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{se("error: no current gl context:",n,It.gl);return}try{Ir.set("WEBGL_VERSION",2)}catch(s){se("error: cannot set WebGL backend flags:",s);return}k2e(),se("backend registered:",It.name)}}function S2e(){if(!ge.kernels.includes("mod")){let e={kernelName:"Mod",backendName:Cs(),kernelFunc:t=>q(()=>me(t.inputs.a,L(he(t.inputs.a,t.inputs.b),t.inputs.b)))};ar(e),ge.kernels.push("mod")}if(!ge.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:Cs(),kernelFunc:t=>q(()=>sf(t.inputs.a/t.inputs.b)*t.inputs.b+_d(t.inputs.a,t.inputs.b))};ar(e),ge.kernels.push("floormod")}}async function S0(e,t=!1){if(e.state="backend",t||ge.initial||e.config.backend&&e.config.backend.length>0&&Cs()!==e.config.backend){let n=ce();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&se("running inside web worker"),ge.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&se("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ge.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&se(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ge.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")se("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&se("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await $T(e);let s=Object.keys(ss().registryFactory);if(e.config.debug&&se("available backends:",s),s.includes(e.config.backend)||(se(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ge.node?"tensorflow":"webgl",e.config.debug&&se(`override: setting backend ${e.config.backend}`)),e.config.debug&&se("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&se("wasm path:",e.config.wasmPath),typeof(Pl==null?void 0:Pl.setWasmPaths)!="undefined")await L6(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&se(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&se("warning: wasm simd support is not enabled")}try{await O3(e.config.backend),await nf()}catch(r){return se("error: cannot set backend:",e.config.backend,r),!1}}if(Cs()==="humangl"&&(Ir.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Ir.set("WEBGL_CPU_FORWARD",!0),Ir.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Ir.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Ir.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Nr().getGPGPUContext)){let s=await Nr().getGPGPUContext().gl;e.config.debug&&se(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Cs()==="webgpu",F3(),await nf(),e.performance.initBackend=Math.trunc(ce()-n),e.config.backend=Cs(),await ge.updateBackend(),S2e()}return!0}function g0(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&se("kernelFunc",n,t.backend)}};ar(s)}ge.kernels=Xr(Cs()).map(n=>n.kernelName.toLowerCase())}var fa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},Yb=0,Gl=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},_c=e=>Math.round(e*180/Math.PI);function Jb(e,t,n,s,r){s=s||0,e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Op(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function _T(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function I2e(e,t,n){if(!(t.length<2)){if(!n.useCurves||t.length<=2){_T(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function DT(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function Qb(e,t,n){let s=$n(fa,n);if(!(!t||!e)&&s.drawGestures){let r=Gl(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function e5(e,t,n){var a,o,i,l,c;let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Op(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.live&&d.push(`live: ${Math.trunc(100*u.live)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${_c(u.rotation.angle.roll)}\xB0 yaw:${_c(u.rotation.angle.yaw)}\xB0 pitch:${_c(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${_c(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Jb(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<Fl.length/3;d++){let p=[Fl[d*3+0],Fl[d*3+1],Fl[d*3+2]].map(h=>u.mesh[h]);_T(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)&&typeof Path2D!="undefined"){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*_c(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*_c(u.rotation.angle.pitch)/90,h=new Path2D(`
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
C
${d} ${u.box[1]},
${d} ${u.box[1]+u.box[3]},
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
`),f=new Path2D(`
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
C
${u.box[0]} ${p},
${u.box[0]+u.box[2]} ${p},
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];DT(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];DT(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function t5(e,t,n){var a;let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Op(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Jb(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)I2e(r,l,s)}}async function n5(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Jb(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+l*i[l][2]}, ${127.5-l*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function s5(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function PT(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function FT(e,t){if(!e||!t)return;Gl(t).drawImage(e,0,0)}async function OT(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ce(),r=$n(fa,n),a=Promise.all([e5(e,t.face,r),t5(e,t.body,r),n5(e,t.hand,r),s5(e,t.object,r),Qb(e,t.gesture,r)]);return Yb=ge.perfadd?Yb+Math.round(ce()-s):Math.round(ce()-s),t.performance.draw=Yb,a}var C2e=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},MT=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let x=g[0]-A[0],y=g[1]-A[1],b=g[2]-A[2];return[x,y,b]},r=(g,A)=>{let x=g[1]*A[2]-g[2]*A[1],y=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[x,y,b]},a=g=>{let[A,x,y,b,w,k,C,N,R]=g,F,_,P;return b<1?b>-1?(P=Math.asin(b),_=Math.atan2(-C,A),F=Math.atan2(-k,w)):(P=-Math.PI/2,_=-Math.atan2(N,R),F=0):(P=Math.PI/2,_=Math.atan2(N,R),F=0),isNaN(F)&&(F=0),isNaN(_)&&(_=0),isNaN(P)&&(P=0),{pitch:2*-F,yaw:2*-_,roll:2*-P}},o=g=>{let A=(y,b,w,k)=>Math.atan2(k-b,w-y);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?C2e(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var r5=async(e,t)=>{var h,f,m,g;let n,s,r,a,o,i,l,c,u,d=[];e.state="run:face",n=ce();let p=await _8(t,e.config);if(e.performance.face=ge.perfadd?(e.performance.face||0)+Math.trunc(ce()-n):Math.trunc(ce()-n),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let A=0;A<p.length;A++){if(e.analyze("Get Face"),!p[A].tensor||p[A].tensor.isDisposedInternal){se("Face object is disposed:",p[A].tensor);continue}let x=MT(p[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?pb(p[A].tensor||Pt([]),e.config,A,p.length):null:(e.state="run:emotion",n=ce(),o=e.config.face.emotion.enabled?await pb(p[A].tensor||Pt([]),e.config,A,p.length):null,e.performance.emotion=ge.perfadd?(e.performance.emotion||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?Bx(p[A].tensor||Pt([]),e.config,A,p.length):null:(e.state="run:antispoof",n=ce(),l=e.config.face.antispoof.enabled?await Bx(p[A].tensor||Pt([]),e.config,A,p.length):null,e.performance.antispoof=ge.perfadd?(e.performance.antispoof||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=e.config.face.liveness.enabled?$b(p[A].tensor||Pt([]),e.config,A,p.length):null:(e.state="run:liveness",n=ce(),c=e.config.face.liveness.enabled?await $b(p[A].tensor||Pt([]),e.config,A,p.length):null,e.performance.antispoof=ge.perfadd?(e.performance.antispoof||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Liveness:"),e.analyze("Start Description:"),e.config.async?u=e.config.face.description.enabled?yb(p[A].tensor||Pt([]),e.config,A,p.length):null:(e.state="run:description",n=ce(),u=e.config.face.description.enabled?await yb(p[A].tensor||Pt([]),e.config,A,p.length):null,e.performance.description=ge.perfadd?(e.performance.description||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,u,r,l,c]=await Promise.all([s,a,o,i,u,r,l,c])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((f=(h=p[A])==null?void 0:h.annotations)==null?void 0:f.leftEyeIris)&&((g=(m=p[A])==null?void 0:m.annotations)==null?void 0:g.rightEyeIris)&&(delete p[A].annotations.leftEyeIris,delete p[A].annotations.rightEyeIris);let y=p[A].annotations&&p[A].annotations.leftEyeIris&&p[A].annotations.leftEyeIris[0]&&p[A].annotations.rightEyeIris&&p[A].annotations.rightEyeIris[0]&&p[A].annotations.leftEyeIris.length>0&&p[A].annotations.rightEyeIris.length>0&&p[A].annotations.leftEyeIris[0]!==null&&p[A].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[A].annotations.leftEyeIris[3][0]-p[A].annotations.leftEyeIris[1][0]),Math.abs(p[A].annotations.rightEyeIris[4][1]-p[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0,b=e.config.face.detector.return?ot(p[A].tensor):null;ne(p[A].tensor),p[A].tensor&&delete p[A].tensor,d.push({...p[A],id:A,age:u==null?void 0:u.age,gender:u==null?void 0:u.gender,genderScore:u==null?void 0:u.genderScore,embedding:u==null?void 0:u.descriptor,emotion:o,real:l,live:c,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:x,tensor:b}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var zT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},LT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},BT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(d>.06||p>.06)&&(c=!1),d>p?d>.05&&t.push({iris:n,gesture:"looking right"}):p>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},WT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=nT(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0},a5=0;function VT(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,C,N,R,F,_,P,T,M,U,j;let n=ce();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((Q,te)=>((r-1)*Pe.body[z].box[te]+Q)/r),Z=e.body[z].boxRaw.map((Q,te)=>((r-1)*Pe.body[z].boxRaw[te]+Q)/r),J=e.body[z].keypoints.map((Q,te)=>({score:Q.score,part:Q.part,position:[Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].position[0]+Q.position[0])/r:Q.position[0],Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].position[1]+Q.position[1])/r:Q.position[1]],positionRaw:[Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].positionRaw[0]+Q.positionRaw[0])/r:Q.position[0],Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].positionRaw[1]+Q.positionRaw[1])/r:Q.position[1]]})),ee={},re={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?re=ob:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?re=Yx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(re=Fb);for(let[Q,te]of Object.entries(re.connected)){let oe=[];for(let fe=0;fe<te.length-1;fe++){let be=J.find(Ce=>Ce.part===te[fe]),we=J.find(Ce=>Ce.part===te[fe+1]);be&&we&&be.score>(t.body.minConfidence||0)&&we.score>(t.body.minConfidence||0)&&oe.push([be.position,we.position])}ee[Q]=oe}Pe.body[z]={...e.body[z],box:X,boxRaw:Z,keypoints:J,annotations:ee}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((re,Q)=>((r-1)*Pe.hand[z].box[Q]+re)/r),Z=e.hand[z].boxRaw.map((re,Q)=>((r-1)*Pe.hand[z].boxRaw[Q]+re)/r);Pe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Pe.hand[z].keypoints=e.hand[z].keypoints);let J=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((re,Q)=>re.map((te,oe)=>((r-1)*(Pe.hand[z].keypoints[Q][oe]||1)+(te||0))/r)):[],ee={};if(Object.keys(Pe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Pe.hand[z].annotations=e.hand[z].annotations,ee=Pe.hand[z].annotations;else if(e.hand[z].annotations)for(let re of Object.keys(e.hand[z].annotations))ee[re]=e.hand[z].annotations[re]&&e.hand[z].annotations[re][0]?e.hand[z].annotations[re].map((Q,te)=>Q.map((oe,fe)=>((r-1)*Pe.hand[z].annotations[re][te][fe]+oe)/r)):null;Pe.hand[z]={...e.hand[z],box:X,boxRaw:Z,keypoints:J,annotations:ee}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((ee,re)=>((r-1)*Pe.face[z].box[re]+ee)/r),Z=e.face[z].boxRaw.map((ee,re)=>((r-1)*Pe.face[z].boxRaw[re]+ee)/r),J={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};J.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,J.angle={roll:((r-1)*(((f=(h=Pe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(A=Pe.face[z].rotation)==null?void 0:A.angle)==null?void 0:x.yaw)||0)+(((b=(y=e.face[z].rotation)==null?void 0:y.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Pe.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((N=(C=e.face[z].rotation)==null?void 0:C.angle)==null?void 0:N.pitch)||0))/r},J.gaze={bearing:((r-1)*(((F=(R=Pe.face[z].rotation)==null?void 0:R.gaze)==null?void 0:F.bearing)||0)+(((P=(_=e.face[z].rotation)==null?void 0:_.gaze)==null?void 0:P.bearing)||0))/r,strength:((r-1)*(((M=(T=Pe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:M.strength)||0)+(((j=(U=e.face[z].rotation)==null?void 0:U.gaze)==null?void 0:j.strength)||0))/r},Pe.face[z]={...e.face[z],rotation:J,box:X,boxRaw:Z}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((J,ee)=>((r-1)*Pe.object[z].box[ee]+J)/r),Z=e.object[z].boxRaw.map((J,ee)=>((r-1)*Pe.object[z].boxRaw[ee]+J)/r);Pe.object[z]={...e.object[z],box:X,boxRaw:Z}}if(e.persons){let z=e.persons;if(!Pe.persons||z.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Pe.persons[X].box=z[X].box.map((Z,J)=>((r-1)*Pe.persons[X].box[J]+Z)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=ce();return a5=ge.perfadd?a5+Math.round(a-n):Math.round(a-n),e.performance&&(Pe.performance={...e.performance,interpolate:a5}),Pe}function I0(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var UT=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function GT(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=I0(e,t,n);return UT(s,n.order||2,n.min||0,n.max||1)}function HT(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=I0(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=UT(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function jT(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k;let a=0,o=[];for(let C of e){let N={id:a++,face:C,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let M of t)C.box[0]>M.box[0]&&C.box[0]<M.box[0]+M.box[2]&&C.box[1]+C.box[3]>M.box[1]&&C.box[1]+C.box[3]<M.box[1]+M.box[3]&&(N.body=M);if(N.body)for(let M of n)M.box[0]+M.box[2]>N.body.box[0]&&M.box[0]+M.box[2]<N.body.box[0]+N.body.box[2]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=M),M.box[0]<N.body.box[0]+N.body.box[2]&&M.box[0]>N.body.box[0]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=M);for(let M of s)M.face!==void 0&&M.face===C.id?(i=N.gestures)==null||i.push(M):M.iris!==void 0&&M.iris===C.id?(l=N.gestures)==null||l.push(M):M.body!==void 0&&M.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(M):M.hand!==void 0&&M.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(M):M.hand!==void 0&&M.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(M));let R=[],F=[],_=M=>{M&&M.length===4&&(R.push(M[0],M[0]+M[2]),F.push(M[1],M[1]+M[3]))};_((A=N.face)==null?void 0:A.box),_((x=N.body)==null?void 0:x.box),_((b=(y=N.hands)==null?void 0:y.left)==null?void 0:b.box),_((k=(w=N.hands)==null?void 0:w.right)==null?void 0:k.box);let P=Math.min(...R),T=Math.min(...F);N.box=[P,T,Math.max(...R)-P,Math.max(...F)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var C0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,T0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function T2e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(C0);break;case"body":case"full":n=await t(T0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function N2e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+C0;break;case"full":case"body":n="data:image/jpeg;base64,"+T0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:ge.Image&&(s=new ge.Image),s.onload=async()=>{let r=Kn(s.naturalWidth,s.naturalHeight);if(!r)se("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function E2e(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(C0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(T0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&se("Warmup tfjs-node not loaded");return s}async function qT(e,t){let n=ce();if(e.state="warmup",t&&(e.config=$n(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await T2e(e):typeof Image!="undefined"||ge.Canvas!==void 0?s=await N2e(e):s=await E2e(e);let a=ce();e.config.debug&&se("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Dc,Mp,zp,N0,KT=class{constructor(t){de(this,"version");de(this,"config");de(this,"result");de(this,"state");de(this,"process");de(this,"tf");de(this,"env");de(this,"draw");de(this,"models");de(this,"events");de(this,"faceTriangulation");de(this,"faceUVMap");de(this,"performance");Xc(this,Dc,void 0);Xc(this,Mp,void 0);Xc(this,zp,void 0);de(this,"gl");de(this,"analyze",(...t)=>{if(!qc(this,Mp))return;let n=this.tf.engine().state.numTensors,s=qc(this,Dc);Kc(this,Dc,n);let r=n-s;r!==0&&se(...t,r)});Xc(this,N0,t=>{if(!qc(this,zp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Je))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});de(this,"similarity",GT);de(this,"distance",I0);de(this,"match",HT);de(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=ge,ka.wasmPath=Tp.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Tp}/dist/`,ka.modelBasePath=ge.browser?"../models/":"file://models/",ka.backend=ge.browser?"humangl":"tensorflow",this.version=zx,Object.defineProperty(this,"version",{value:zx}),this.config=JSON.parse(JSON.stringify(ka)),Object.seal(this.config),t&&(this.config=$n(this.config,t)),this.tf=Pl,this.state="idle",Kc(this,Dc,0),Kc(this,Mp,!1),Kc(this,zp,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Kb,this.draw={options:fa,canvas:(n,s)=>FT(n,s),face:(n,s,r)=>e5(n,s,r),body:(n,s,r)=>t5(n,s,r),hand:(n,s,r)=>n5(n,s,r),gesture:(n,s,r)=>Qb(n,s,r),object:(n,s,r)=>s5(n,s,r),person:(n,s,r)=>PT(n,s,r),all:(n,s,r)=>OT(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=P8,this.faceUVMap=F8,this.gl=It,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ka)),this.config.backend=t}validate(t){return Jg(ka,t||this.config)}now(){return ce()}image(t,n=!0){return kc(t,this.config,n)}async segmentation(t,n){return NT(t,n,this.config)}enhance(t){return Ab(t)}compare(t,n){return Y6(this.config,t,n)}async init(){await S0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ce(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=$n(this.config,t)),this.env.initial&&(this.config.debug&&se(`version: ${this.version}`),this.config.debug&&se(`tfjs version: ${this.tf.version_core}`),await S0(this)||se("error: backend check failed"),await nf(),this.env.browser&&(this.config.debug&&se("configuration:",this.config),this.config.debug&&se("environment:",this.env),this.config.debug&&se("tf flags:",this.tf.ENV.flags))),await ET(this),this.env.initial&&this.config.debug&&se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await RT(this),this.emit("load"));let a=Math.trunc(ce()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return VT(t,this.config)}async warmup(t){let n=ce(),s=await qT(this,t),r=ce();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,A,x,y,b,w,k,C,N,R,F,_,P,T,M,U,j,z,X,Z,J,ee;this.state="config";let r;this.config=$n(this.config,n),this.state="check";let a=qc(this,N0).call(this,t);a&&(se(a,t),s({error:a}));let o=ce();await S0(this),await this.load(),r=ce(),this.state="image";let i=await kc(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&se("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=ce(),this.config.skipAllowed=await Z6(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?r5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ce(),l=this.config.face.enabled?await r5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?$n(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(((g=this.config.body.modelPath)==null?void 0:g.includes("posenet"))?c=this.config.body.enabled?jb(i.tensor,p):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?c=this.config.body.enabled?eb(i.tensor,p):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?c=this.config.body.enabled?ub(i.tensor,p):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("movenet"))&&(c=this.config.body.enabled?zb(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=ce(),((b=this.config.body.modelPath)==null?void 0:b.includes("posenet"))?c=this.config.body.enabled?await jb(i.tensor,p):[]:((w=this.config.body.modelPath)==null?void 0:w.includes("blazepose"))?c=this.config.body.enabled?await eb(i.tensor,p):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("efficientpose"))?c=this.config.body.enabled?await ub(i.tensor,p):[]:((C=this.config.body.modelPath)==null?void 0:C.includes("movenet"))&&(c=this.config.body.enabled?await zb(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?$n(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(((R=(N=this.config.hand.detector)==null?void 0:N.modelPath)==null?void 0:R.includes("handdetect"))?u=this.config.hand.enabled?Sb(i.tensor,h):[]:((_=(F=this.config.hand.detector)==null?void 0:F.modelPath)==null?void 0:_.includes("handtrack"))&&(u=this.config.hand.enabled?Eb(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ce(),((T=(P=this.config.hand.detector)==null?void 0:P.modelPath)==null?void 0:T.includes("handdetect"))?u=this.config.hand.enabled?await Sb(i.tensor,h):[]:((U=(M=this.config.hand.detector)==null?void 0:M.modelPath)==null?void 0:U.includes("handtrack"))&&(u=this.config.hand.enabled?await Eb(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((j=this.config.object.modelPath)==null?void 0:j.includes("nanodet"))?d=this.config.object.enabled?Bb(i.tensor,this.config):[]:((z=this.config.object.modelPath)==null?void 0:z.includes("centernet"))&&(d=this.config.object.enabled?sb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ce(),((X=this.config.object.modelPath)==null?void 0:X.includes("nanodet"))?d=this.config.object.enabled?await Bb(i.tensor,this.config):[]:((Z=this.config.object.modelPath)==null?void 0:Z.includes("centernet"))&&(d=this.config.object.enabled?await sb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ce(),f=[...LT(l),...zT(c),...WT(u),...BT(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ce()-o):Math.trunc(ce()-o);let m=((ee=(J=this.process)==null?void 0:J.tensor)==null?void 0:ee.shape)||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return jT(l,c,u,f,m)}},ne(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Dc=new WeakMap,Mp=new WeakMap,zp=new WeakMap,N0=new WeakMap;return R2e;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */