mirror of https://github.com/vladmandic/human
5532 lines
1.3 MiB
5532 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
var Human=(()=>{var Yy=Object.defineProperty;var fI=e=>Yy(e,"__esModule",{value:!0});var wm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var km=(e,t)=>{fI(e);for(var n in t)Yy(e,n,{get:t[n],enumerable:!0})};var Jy=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var hn=(e,t,n)=>(Jy(e,t,"read from private field"),n?n.call(e):t.get(e)),ts=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ss=(e,t,n,s)=>(Jy(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Hie={};km(Hie,{Human:()=>S8,default:()=>S8});function pt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function de(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ke=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function pn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=pn(a,o):n[r]=o}),n),{})}var Qy={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function e5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let s=n[0].match(/\(([^()]+)\)/g);e=s?s[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Qc={};km(Qc,{Abs:()=>di,Acos:()=>hi,Acosh:()=>pi,AdadeltaOptimizer:()=>ap,AdagradOptimizer:()=>op,AdamOptimizer:()=>ip,AdamaxOptimizer:()=>lp,Add:()=>Dr,AddN:()=>ga,All:()=>fi,Any:()=>mi,ArgMax:()=>ya,ArgMin:()=>Nu,Asin:()=>Ai,Asinh:()=>gi,Atan:()=>yi,Atan2:()=>bi,Atanh:()=>xi,AvgPool:()=>xa,AvgPool3D:()=>Eu,AvgPool3DGrad:()=>Ld,AvgPoolGrad:()=>zd,BackendWasm:()=>wk,BatchMatMul:()=>ba,BatchToSpaceND:()=>vi,Bincount:()=>Bd,BroadcastTo:()=>y5,Callback:()=>wv,CallbackList:()=>f3,Cast:()=>va,Ceil:()=>wa,ClipByValue:()=>Or,Complex:()=>Wd,ComplexAbs:()=>Ru,Concat:()=>wi,Conv2D:()=>ka,Conv2DBackpropFilter:()=>Vd,Conv2DBackpropInput:()=>Ia,Conv3D:()=>_u,Conv3DBackpropFilterV2:()=>Ud,Conv3DBackpropInputV2:()=>Hd,Cos:()=>Sa,Cosh:()=>Ca,CropAndResize:()=>ki,Cumsum:()=>Ta,CustomCallback:()=>A3,DataStorage:()=>Fd,DenseBincount:()=>Gd,DepthToSpace:()=>Ii,DepthwiseConv2dNative:()=>Na,DepthwiseConv2dNativeBackpropFilter:()=>jd,DepthwiseConv2dNativeBackpropInput:()=>qd,Diag:()=>Xd,Dilation2D:()=>$u,Dilation2DBackpropFilter:()=>Zd,Dilation2DBackpropInput:()=>Kd,ENV:()=>ns,EarlyStopping:()=>Iv,Einsum:()=>Yd,Elu:()=>Si,EluGrad:()=>Jd,Environment:()=>A5,Equal:()=>Ti,Erf:()=>Ci,Exp:()=>Ra,ExpandDims:()=>Ni,Expm1:()=>Ei,FFT:()=>Qd,Fill:()=>Fu,FlipLeftRight:()=>Ri,Floor:()=>_a,FloorDiv:()=>$a,FromPixels:()=>bh,FusedBatchNorm:()=>Fa,FusedConv2D:()=>fo,FusedDepthwiseConv2D:()=>mo,GPGPUContext:()=>uf,GatherNd:()=>$i,GatherV2:()=>_i,GraphModel:()=>n7,Greater:()=>Fi,GreaterEqual:()=>Da,History:()=>m3,IFFT:()=>eh,Identity:()=>Oa,Imag:()=>th,InputSpec:()=>Pt,IsFinite:()=>Di,IsInf:()=>Oi,IsNan:()=>Pi,KernelBackend:()=>Su,LRN:()=>Pu,LRNGrad:()=>sh,LayerVariable:()=>u3,LayersModel:()=>wr,LeakyRelu:()=>Pa,Less:()=>Mi,LessEqual:()=>zi,LinSpace:()=>nh,Log:()=>Ma,Log1p:()=>Li,LogSoftmax:()=>x5,LogicalAnd:()=>Bi,LogicalNot:()=>Du,LogicalOr:()=>Ou,MathBackendCPU:()=>Kp,MathBackendWebGL:()=>Jl,Max:()=>za,MaxPool:()=>Ba,MaxPool3D:()=>Mu,MaxPool3DGrad:()=>ah,MaxPoolGrad:()=>rh,MaxPoolWithArgmax:()=>oh,Maximum:()=>La,Mean:()=>Wa,Min:()=>Va,Minimum:()=>Ua,MirrorPad:()=>Ha,Mod:()=>Wi,MomentumOptimizer:()=>up,Multinomial:()=>ih,Multiply:()=>Ga,Neg:()=>Vi,NonMaxSuppressionV3:()=>Hi,NonMaxSuppressionV4:()=>Gi,NonMaxSuppressionV5:()=>ji,NotEqual:()=>Ui,OP_SCOPE_SUFFIX:()=>D5,OneHot:()=>ja,OnesLike:()=>qi,Optimizer:()=>xr,Pack:()=>Xi,PadV2:()=>qa,Pool:()=>yS,Pow:()=>Xa,Prelu:()=>Ka,Prod:()=>Ki,RMSPropOptimizer:()=>cp,RNN:()=>sr,Range:()=>zu,Rank:()=>Dm,Real:()=>lh,RealDiv:()=>Ea,Reciprocal:()=>Zi,Reduction:()=>yn,Relu:()=>Za,Relu6:()=>Ja,Reshape:()=>Yi,ResizeBilinear:()=>Ya,ResizeBilinearGrad:()=>ch,ResizeNearestNeighbor:()=>Lu,ResizeNearestNeighborGrad:()=>uh,Reverse:()=>Qa,RotateWithOffset:()=>hl,Round:()=>eo,Rsqrt:()=>to,SGDOptimizer:()=>hc,ScatterNd:()=>Ji,Select:()=>Qi,Selu:()=>el,Sequential:()=>Ml,Sigmoid:()=>so,Sign:()=>sl,Sin:()=>no,Sinh:()=>nl,Slice:()=>tl,Softmax:()=>oo,Softplus:()=>rl,SpaceToBatchND:()=>al,SparseFillEmptyRows:()=>dh,SparseReshape:()=>hh,SparseSegmentMean:()=>ph,SparseSegmentSum:()=>fh,SparseToDense:()=>mh,SplitV:()=>ol,Sqrt:()=>ro,Square:()=>Bu,SquaredDifference:()=>io,Step:()=>Mr,StridedSlice:()=>il,StringNGrams:()=>Ah,StringSplit:()=>gh,StringToHashBucketFast:()=>yh,Sub:()=>lo,Sum:()=>ao,SymbolicTensor:()=>Ps,Tan:()=>uo,Tanh:()=>co,Tensor:()=>Ue,TensorBuffer:()=>Bt,Tile:()=>Pr,TopK:()=>ll,Transform:()=>ul,Transpose:()=>ho,Unique:()=>xh,Unpack:()=>cl,UnsortedSegmentSum:()=>Wu,Variable:()=>Ku,ZerosLike:()=>dl,_FusedMatMul:()=>po,abs:()=>Wt,acos:()=>yx,acosh:()=>xx,add:()=>ae,addN:()=>$h,all:()=>uA,any:()=>Fh,argMax:()=>Xs,argMin:()=>bx,asin:()=>vx,asinh:()=>wx,atan:()=>kx,atan2:()=>Ix,atanh:()=>Sx,avgPool:()=>Oh,avgPool3d:()=>hA,backend:()=>gx,backend_util:()=>$,basicLSTMCell:()=>sT,batchNorm:()=>kl,batchNorm2d:()=>Ex,batchNorm3d:()=>Rx,batchNorm4d:()=>_x,batchToSpaceND:()=>Ph,bincount:()=>pA,booleanMaskAsync:()=>mR,broadcastTo:()=>nc,browser:()=>rs,buffer:()=>Be,callbacks:()=>_z,cast:()=>ue,ceil:()=>$x,clipByValue:()=>Wn,clone:()=>Ns,complex:()=>Lr,concat:()=>dt,concat1d:()=>Fx,concat2d:()=>Il,concat3d:()=>Dx,concat4d:()=>Ox,constraints:()=>Vb,conv1d:()=>fA,conv2d:()=>Hr,conv2dTranspose:()=>AA,conv3d:()=>gA,conv3dTranspose:()=>Mx,copyRegisteredKernels:()=>vS,cos:()=>Mh,cosh:()=>yA,cosineWindow:()=>UA,cumsum:()=>xA,customGrad:()=>Zs,data:()=>s7,denseBincount:()=>zx,deprecationWarn:()=>oA,depthToSpace:()=>Lx,depthwiseConv2d:()=>sc,deregisterOp:()=>Fz,device_util:()=>Yu,diag:()=>$T,dilation2d:()=>Bx,disableDeprecationWarnings:()=>AC,dispose:()=>Z,disposeVariables:()=>gC,div:()=>ce,divNoNan:()=>Wx,dot:()=>BT,dropout:()=>gb,einsum:()=>Vx,elu:()=>rc,enableDebugMode:()=>mC,enableProdMode:()=>fC,enclosingPowerOfTwo:()=>yb,engine:()=>Ar,env:()=>ee,equal:()=>as,erf:()=>Ux,exp:()=>os,expandDims:()=>Ft,expm1:()=>Hx,eye:()=>bA,fft:()=>Yh,fill:()=>Sl,findBackend:()=>iA,findBackendFactory:()=>IC,floor:()=>ac,floorDiv:()=>lA,forceHalfFloat:()=>R6,fused:()=>qr,gather:()=>Cl,gatherND:()=>Ab,gather_util:()=>Qm,getBackend:()=>wC,getGradient:()=>Rm,getKernel:()=>vh,getKernelsForBackend:()=>fl,gpgpu_util:()=>e6,grad:()=>dN,grads:()=>hN,greater:()=>Vn,greaterEqual:()=>Io,ifft:()=>uc,imag:()=>zh,image:()=>Re,inTopKAsync:()=>CR,initializers:()=>Kb,input:()=>L3,io:()=>Tn,irfft:()=>MA,isFinite:()=>tN,isInf:()=>sN,isNaN:()=>Gx,keep:()=>Kt,kernel_impls:()=>Js,layers:()=>o3,leakyRelu:()=>Lh,less:()=>vA,lessEqual:()=>So,linalg:()=>Nb,linspace:()=>jx,loadGraphModel:()=>ht,loadLayersModel:()=>WP,localResponseNormalization:()=>qx,log:()=>is,log1p:()=>Bh,logSigmoid:()=>yN,logSoftmax:()=>wA,logSumExp:()=>Jx,logicalAnd:()=>Rs,logicalNot:()=>Vh,logicalOr:()=>SA,logicalXor:()=>RN,losses:()=>l$,matMul:()=>We,math:()=>J5,max:()=>ls,maxPool:()=>Uh,maxPool3d:()=>CA,maxPoolWithArgmax:()=>Qx,maximum:()=>gr,mean:()=>Et,memory:()=>_h,meshgrid:()=>PN,metrics:()=>xv,min:()=>Hh,minimum:()=>oc,mirrorPad:()=>eb,mod:()=>tb,model:()=>LP,models:()=>bv,moments:()=>Gh,movingAverage:()=>yR,mul:()=>z,multiRNNCell:()=>HN,multinomial:()=>nb,neg:()=>St,nextFrame:()=>dp,norm:()=>WA,notEqual:()=>Nl,oneHot:()=>ec,ones:()=>Un,onesLike:()=>us,op:()=>V,outerProduct:()=>KN,pad:()=>Gr,pad1d:()=>JN,pad2d:()=>eE,pad3d:()=>nE,pad4d:()=>rE,pool:()=>uE,pow:()=>jr,prelu:()=>qh,print:()=>j5,prod:()=>TA,profile:()=>yC,rand:()=>fE,randomGamma:()=>yE,randomNormal:()=>sb,randomUniform:()=>El,range:()=>Rl,ready:()=>vC,real:()=>ic,reciprocal:()=>rb,registerBackend:()=>bl,registerCallbackConstructor:()=>VP,registerGradient:()=>b5,registerKernel:()=>Ao,registerOp:()=>$z,regularizers:()=>vv,relu:()=>Ys,relu6:()=>RA,removeBackend:()=>kC,reshape:()=>U,reverse:()=>cs,reverse1d:()=>TE,reverse2d:()=>EE,reverse3d:()=>_E,reverse4d:()=>FE,rfft:()=>Jh,round:()=>_A,rsqrt:()=>$A,scalar:()=>Ie,scatterND:()=>mb,scatter_util:()=>eA,selu:()=>FA,separableConv2d:()=>ab,sequential:()=>BP,serialization:()=>oe,setBackend:()=>bC,setPlatform:()=>SC,setWasmPath:()=>oie,setWasmPaths:()=>iie,setWebGLContext:()=>tf,setdiff1dAsync:()=>ob,shared:()=>Q2,sigmoid:()=>Bn,sign:()=>ib,signal:()=>i$,sin:()=>DA,sinh:()=>OA,slice:()=>_e,slice1d:()=>Xh,slice2d:()=>PA,slice3d:()=>Kh,slice4d:()=>lc,slice_util:()=>An,softmax:()=>Zh,softplus:()=>Tl,spaceToBatchND:()=>jh,sparse:()=>dc,sparseToDense:()=>VA,spectral:()=>o$,split:()=>nn,sqrt:()=>ln,square:()=>it,squaredDifference:()=>zA,squeeze:()=>mt,stack:()=>Nn,step:()=>cc,stridedSlice:()=>lb,string:()=>rp,sub:()=>Ae,sum:()=>ve,sumOutType:()=>Ch,tan:()=>ub,tanh:()=>wl,tensor:()=>on,tensor1d:()=>Ot,tensor2d:()=>_s,tensor3d:()=>Eh,tensor4d:()=>aR,tensor5d:()=>oR,tensor6d:()=>iR,tensor_util:()=>Cs,test_util:()=>fx,tidy:()=>H,tile:()=>Es,time:()=>xC,topk:()=>cb,train:()=>No,transpose:()=>je,truncatedNormal:()=>Qh,unique:()=>LA,unregisterGradient:()=>bS,unregisterKernel:()=>xS,unsortedSegmentSum:()=>db,unstack:()=>ds,upcastType:()=>bs,util:()=>I,valueAndGrad:()=>pN,valueAndGrads:()=>fN,variable:()=>hb,variableGrads:()=>Xx,version:()=>cie,version_converter:()=>PL,version_core:()=>pC,version_cpu:()=>gW,version_layers:()=>Ig,version_wasm:()=>lie,version_webgl:()=>WX,webgl:()=>VX,webgl_util:()=>Tw,where:()=>gn,whereAsync:()=>BA,zeros:()=>Dt,zerosLike:()=>qe});var mI=Object.create,$d=Object.defineProperty,AI=Object.getOwnPropertyDescriptor,gI=Object.getOwnPropertyNames,yI=Object.getPrototypeOf,xI=Object.prototype.hasOwnProperty,t5=e=>$d(e,"__esModule",{value:!0}),li=e=>{if(typeof wm!="undefined")return wm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Pe=(e,t)=>{t5(e);for(var n in t)$d(e,n,{get:t[n],enumerable:!0})},bI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of gI(t))!xI.call(e,s)&&s!=="default"&&$d(e,s,{get:()=>t[s],enumerable:!(n=AI(t,s))||n.enumerable});return e},fa=e=>bI(t5($d(e!=null?mI(yI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),vI=xt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function s(_,T,O){this.low=_|0,this.high=T|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(_){return(_&&_.__isLong__)===!0}s.isLong=r;var a={},o={};function i(_,T){var O,W,j;return T?(_>>>=0,(j=0<=_&&_<256)&&(W=o[_],W)?W:(O=u(_,(_|0)<0?-1:0,!0),j&&(o[_]=O),O)):(_|=0,(j=-128<=_&&_<128)&&(W=a[_],W)?W:(O=u(_,_<0?-1:0,!1),j&&(a[_]=O),O))}s.fromInt=i;function l(_,T){if(isNaN(_))return T?b:x;if(T){if(_<0)return b;if(_>=A)return E}else{if(_<=-g)return P;if(_+1>=g)return C}return _<0?l(-_,T).neg():u(_%f|0,_/f|0,T)}s.fromNumber=l;function u(_,T,O){return new s(_,T,O)}s.fromBits=u;var c=Math.pow;function d(_,T,O){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof T=="number"?(O=T,T=!1):T=!!T,O=O||10,O<2||36<O)throw RangeError("radix");var W;if((W=_.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return d(_.substring(1),T,O).neg();for(var j=l(c(O,8)),q=x,X=0;X<_.length;X+=8){var Q=Math.min(8,_.length-X),ne=parseInt(_.substring(X,X+Q),O);if(Q<8){var te=l(c(O,Q));q=q.mul(te).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=T,q}s.fromString=d;function h(_,T){return typeof _=="number"?l(_,T):typeof _=="string"?d(_,T):u(_.low,_.high,typeof T=="boolean"?T:_.unsigned)}s.fromValue=h;var p=1<<16,m=1<<24,f=p*p,A=f*f,g=A/2,y=i(m),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var w=i(-1);s.NEG_ONE=w;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var E=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=E;var P=u(0,2147483648|0,!1);s.MIN_VALUE=P;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var O=l(T),W=this.div(O),j=W.mul(O).sub(this);return W.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(c(T,6),this.unsigned),X=this,Q="";;){var ne=X.div(q),te=X.sub(ne.mul(q)).toInt()>>>0,se=te.toString(T);if(X=ne,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,O=31;O>0&&(T&1<<O)==0;O--);return this.high!=0?O+33:O+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(T){return r(T)||(T=h(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=h(T)),this.eq(T))return 0;var O=this.isNegative(),W=T.isNegative();return O&&!W?-1:!O&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(v)},R.neg=R.negate,R.add=function(T){r(T)||(T=h(T));var O=this.high>>>16,W=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,Q=T.high&65535,ne=T.low>>>16,te=T.low&65535,se=0,J=0,ie=0,le=0;return le+=q+te,ie+=le>>>16,le&=65535,ie+=j+ne,J+=ie>>>16,ie&=65535,J+=W+Q,se+=J>>>16,J&=65535,se+=O+X,se&=65535,u(ie<<16|le,se<<16|J,this.unsigned)},R.subtract=function(T){return r(T)||(T=h(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=h(T)),n){var O=n.mul(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(P))return T.isOdd()?P:x;if(T.eq(P))return this.isOdd()?P:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,Q=T.high>>>16,ne=T.high&65535,te=T.low>>>16,se=T.low&65535,J=0,ie=0,le=0,he=0;return he+=X*se,le+=he>>>16,he&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*te,ie+=le>>>16,le&=65535,ie+=j*se,J+=ie>>>16,ie&=65535,ie+=q*te,J+=ie>>>16,ie&=65535,ie+=X*ne,J+=ie>>>16,ie&=65535,J+=W*se+j*te+q*ne+X*Q,J&=65535,u(le<<16|he,J<<16|ie,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=h(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(P)){if(T.eq(v)||T.eq(w))return P;if(T.eq(P))return v;var X=this.shr(1);return W=X.div(T).shl(1),W.eq(x)?T.isNegative()?v:w:(j=this.sub(T.mul(W)),q=W.add(j.div(T)),q)}else if(T.eq(P))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){W=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Q=Math.ceil(Math.log(W)/Math.LN2),ne=Q<=48?1:c(2,Q-48),te=l(W),se=te.mul(T);se.isNegative()||se.gt(j);)W-=ne,te=l(W,this.unsigned),se=te.mul(T);te.isZero()&&(te=v),q=q.add(te),j=j.sub(se)}return q},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=h(T)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=h(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=h(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=h(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var O=this.high;if(T<32){var W=this.low;return u(W>>>T|O<<32-T,O>>>T,this.unsigned)}else return T===32?u(O,0,this.unsigned):u(O>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,O=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(T,O,W){return W?s.fromBytesLE(T,O):s.fromBytesBE(T,O)},s.fromBytesLE=function(T,O){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,O)},s.fromBytesBE=function(T,O){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],O)}}}),wI=xt({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),kI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),II=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,m,f;return p=d[h],p^=p>>>7,m=p^p<<24,p=d[h+1&7],m^=p^p>>>10,p=d[h+3&7],m^=p^p>>>3,p=d[h+4&7],m^=p^p<<7,p=d[h+7&7],p=p^p<<13,m^=p^p<<9,d[h]=m,u.i=h+1&7,m};function c(d,h){var p,m,f=[];if(h===(h|0))m=f[0]=h;else for(h=""+h,p=0;p<h.length;++p)f[p&7]=f[p&7]<<15^h.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],d.x=f,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),TI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,m,f;return u.w=d=d+1640531527|0,f=h[p+34&127],m=h[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=h[p]=f^m,u.i=p,f+(d^d>>>16)|0};function c(d,h){var p,m,f,A,g,y=[],x=128;for(h===(h|0)?(m=h,h=null):(h=h+"\0",m=0,x=Math.max(x,h.length)),f=0,A=-32;A<x;++A)h&&(m^=h.charCodeAt((A+32)%h.length)),A===0&&(g=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=m+g,f=p==0?f+1:0);for(f>=128&&(y[(h&&h.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=y[f+34&127],p=y[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,y[f]=m^p;d.w=g,d.X=y,d.i=f}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),NI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,m=u.d,f=u.a;return h=h<<25^h>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),n5=xt({"(disabled):crypto"(){}}),EI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function m(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(n)]:v==null?x():v,3),C),P=new f(C),R=function(){for(var _=P.g(o),T=u,O=0;_<c;)_=(_+O)*a,T*=a,O=P.g(1);for(;_>=d;)_/=2,T/=2,O>>>=1;return(_+O)/T};return R.int32=function(){return P.g(4)|0},R.quick=function(){return P.g(4)/4294967296},R.double=R,y(b(P.S),n),(k.pass||w||function(_,T,O,W){return W&&(W.S&&A(W,P),_.state=function(){return A(P,{})}),O?(s[l]=_,T):_})(R,E,"global"in k?k.global:this==s,k.state)}s["seed"+l]=m;function f(v){var k,w=v.length,C=this,E=0,P=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E<a;)R[E]=E++;for(E=0;E<a;E++)R[E]=R[P=h&P+v[E%w]+(k=R[E])],R[P]=k;(C.g=function(_){for(var T,O=0,W=C.i,j=C.j,q=C.S;_--;)T=q[W=h&W+1],O=O*a+q[h&(q[W]=q[j=h&j+T])+(q[j]=T)];return C.i=W,C.j=j,O})(a)}function A(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function g(v,k){var w=[],C=typeof v,E;if(k&&C=="object")for(E in v)try{w.push(g(v[E],k-1))}catch(P){}return w.length?w:C=="string"?v:v+"\0"}function y(v,k){for(var w=v+"",C,E=0;E<w.length;)k[h&E]=h&(C^=k[h&E]*19)+w.charCodeAt(E++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,w=k&&k.plugins;return[+new Date,r,w,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=n5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}}),s5=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=kI(),s=II(),r=SI(),a=CI(),o=TI(),i=NI(),l=EI();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),RI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=String(d);for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,m,f;return p=d[h],p^=p>>>7,m=p^p<<24,p=d[h+1&7],m^=p^p>>>10,p=d[h+3&7],m^=p^p>>>3,p=d[h+4&7],m^=p^p<<7,p=d[h+7&7],p=p^p<<13,m^=p^p<<9,d[h]=m,u.i=h+1&7,m};function c(d,h){var p,m,f=[];if(h===(h|0))m=f[0]=h;else for(h=""+h,p=0;p<h.length;++p)f[p&7]=f[p&7]<<15^h.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],d.x=f,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),DI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,m,f;return u.w=d=d+1640531527|0,f=h[p+34&127],m=h[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=h[p]=f^m,u.i=p,f+(d^d>>>16)|0};function c(d,h){var p,m,f,A,g,y=[],x=128;for(h===(h|0)?(m=h,h=null):(h=h+"\0",m=0,x=Math.max(x,h.length)),f=0,A=-32;A<x;++A)h&&(m^=h.charCodeAt((A+32)%h.length)),A===0&&(g=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=m+g,f=p==0?f+1:0);for(f>=128&&(y[(h&&h.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=y[f+34&127],p=y[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,y[f]=m^p;d.w=g,d.X=y,d.i=f}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),OI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,m=u.d,f=u.a;return h=h<<25^h>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),PI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function m(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(s)]:v==null?x():v,3),C),P=new f(C),R=function(){for(var _=P.g(o),T=u,O=0;_<c;)_=(_+O)*a,T*=a,O=P.g(1);for(;_>=d;)_/=2,T/=2,O>>>=1;return(_+O)/T};return R.int32=function(){return P.g(4)|0},R.quick=function(){return P.g(4)/4294967296},R.double=R,y(b(P.S),s),(k.pass||w||function(_,T,O,W){return W&&(W.S&&A(W,P),_.state=function(){return A(P,{})}),O?(r[l]=_,T):_})(R,E,"global"in k?k.global:this==r,k.state)}function f(v){var k,w=v.length,C=this,E=0,P=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E<a;)R[E]=E++;for(E=0;E<a;E++)R[E]=R[P=h&P+v[E%w]+(k=R[E])],R[P]=k;(C.g=function(_){for(var T,O=0,W=C.i,j=C.j,q=C.S;_--;)T=q[W=h&W+1],O=O*a+q[h&(q[W]=q[j=h&j+T])+(q[j]=T)];return C.i=W,C.j=j,O})(a)}function A(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function g(v,k){var w=[],C=typeof v,E;if(k&&C=="object")for(E in v)try{w.push(g(v[E],k-1))}catch(P){}return w.length?w:C=="string"?v:v+"\0"}function y(v,k){for(var w=v+"",C,E=0;E<w.length;)k[h&E]=h&(C^=k[h&E]*19)+w.charCodeAt(E++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,w=k&&k.plugins;return[+new Date,n,w,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=m;try{p=n5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}}),r5=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=RI(),s=_I(),r=$I(),a=FI(),o=DI(),i=OI(),l=PI();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),MI=xt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),Iu=xt({"(disabled):path"(){}}),zI=xt({"(disabled):worker_threads"(){}}),LI=xt({"(disabled):perf_hooks"(){}}),BI=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return J.buffer!=Ve&&en(J.buffer),In}function o(){return J.buffer!=Ve&&en(J.buffer),kt}function i(){return J.buffer!=Ve&&en(J.buffer),gs}function l(){return J.buffer!=Ve&&en(J.buffer),cn}function u(){return J.buffer!=Ve&&en(J.buffer),Jn}var c=typeof r!="undefined"?r:{},d,h;c.ready=new Promise(function(N,F){d=N,h=F});var p={},m;for(m in c)c.hasOwnProperty(m)&&(p[m]=c[m]);var f=[],A="./this.program",g=function(N,F){throw F},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ve=c.buffer);var w="";function C(N){return c.locateFile?c.locateFile(N,w):w+N}var E,P,R,_,T,O;if(b){x?w=Iu().dirname(w)+"/":w=__dirname+"/",E=function(F,B){return T||(T=li("fs")),O||(O=Iu()),F=O.normalize(F),T.readFileSync(F,B?null:"utf8")},R=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),ge(B.buffer),B},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof ku))throw N}),process.on("unhandledRejection",dr),g=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var W;try{W=zI()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=W.Worker}else v?(typeof read!="undefined"&&(E=function(F){return read(F)}),R=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),ge(typeof B=="object"),B)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(g=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?w=self.location.href:typeof document!="undefined"&&document.currentScript&&(w=document.currentScript.src),typeof s!="undefined"&&s&&(w=s),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",b?(E=function(F,B){return T||(T=li("fs")),O||(O=Iu()),F=O.normalize(F),T.readFileSync(F,B?null:"utf8")},R=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),ge(B.buffer),B}):(E=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},x&&(R=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),P=function(N,F,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){F(K.response);return}B()},K.onerror=B,K.send(null)}),_=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=LI().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(c[m]=p[m]);p=null,c.arguments&&(f=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(g=c.quit);var X=Atomics.load,Q=Atomics.store,ne=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&dr("no native wasm support detected");var J,ie,le=!1,he;function ge(N,F){N||dr("Assertion failed: "+F)}function Ce(N){var F=c["_"+N];return ge(F,"Cannot call unknown function "+N+", make sure it is exported"),F}function Te(N,F,B,K,me){var pe={string:function(dn){var ii=0;if(dn!=null&&dn!==0){var Zy=(dn.length<<2)+1;ii=ri(Zy),et(dn,ii,Zy)}return ii},array:function(dn){var ii=ri(dn.length);return Je(dn,ii),ii}};function fe(dn){return F==="string"?De(dn):F==="boolean"?Boolean(dn):dn}var we=Ce(N),nt=[],jt=0;if(K)for(var Lt=0;Lt<K.length;Lt++){var _r=pe[B[Lt]];_r?(jt===0&&(jt=wu()),nt[Lt]=_r(K[Lt])):nt[Lt]=K[Lt]}var oi=we.apply(null,nt);return oi=fe(oi),jt!==0&&si(jt),oi}function $e(N,F,B,K){B=B||[];var me=B.every(function(fe){return fe==="number"}),pe=F!=="string";return pe&&me&&!K?Ce(N):function(){return Te(N,F,B,arguments,K)}}function Me(N,F,B){for(var K=F+B,me="";!(F>=K);){var pe=N[F++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var fe=N[F++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|fe);continue}var we=N[F++]&63;if((pe&240)==224?pe=(pe&15)<<12|fe<<6|we:pe=(pe&7)<<18|fe<<12|we<<6|N[F++]&63,pe<65536)me+=String.fromCharCode(pe);else{var nt=pe-65536;me+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return me}function De(N,F){return N?Me(o(),N,F):""}function ot(N,F,B,K){if(!(K>0))return 0;for(var me=B,pe=B+K-1,fe=0;fe<N.length;++fe){var we=N.charCodeAt(fe);if(we>=55296&&we<=57343){var nt=N.charCodeAt(++fe);we=65536+((we&1023)<<10)|nt&1023}if(we<=127){if(B>=pe)break;F[B++]=we}else if(we<=2047){if(B+1>=pe)break;F[B++]=192|we>>6,F[B++]=128|we&63}else if(we<=65535){if(B+2>=pe)break;F[B++]=224|we>>12,F[B++]=128|we>>6&63,F[B++]=128|we&63}else{if(B+3>=pe)break;F[B++]=240|we>>18,F[B++]=128|we>>12&63,F[B++]=128|we>>6&63,F[B++]=128|we&63}}return F[B]=0,B-me}function et(N,F,B){return ot(N,o(),F,B)}function tt(N){for(var F=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++F:K<=2047?F+=2:K<=65535?F+=3:F+=4}return F}function Je(N,F){a().set(N,F)}function at(N,F){return N%F>0&&(N+=F-N%F),N}var Ve,In,kt,Mn,Qt,gs,cn,Yn,Jn;function en(N){Ve=N,c.HEAP8=In=new Int8Array(N),c.HEAP16=Mn=new Int16Array(N),c.HEAP32=gs=new Int32Array(N),c.HEAPU8=kt=new Uint8Array(N),c.HEAPU16=Qt=new Uint16Array(N),c.HEAPU32=cn=new Uint32Array(N),c.HEAPF32=Yn=new Float32Array(N),c.HEAPF64=Jn=new Float64Array(N)}var Qn=c.INITIAL_MEMORY||16777216;if(k)J=c.wasmMemory,Ve=c.buffer;else if(c.wasmMemory)J=c.wasmMemory;else if(J=new WebAssembly.Memory({initial:Qn/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ve=J.buffer),Qn=Ve.byteLength,en(Ve);var es,zn=[],Hs=[],ur=[],Cr=[],Yo=[],Gs=!1,cd=!1;k||Hs.push({func:function(){Sd()}});function Yf(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)hd(c.preRun.shift());Qo(zn)}}function pu(){Gs=!0,!k&&Qo(Hs)}function Jf(){k||Qo(ur)}function dd(){k||(cd=!0)}function Sn(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Qf(c.postRun.shift());Qo(Yo)}}function hd(N){zn.unshift(N)}function Qf(N){Yo.unshift(N)}var cr=0,Tr=null,da=null;function e0(N){ge(!k,"addRunDependency cannot be used in a pthread worker"),cr++,c.monitorRunDependencies&&c.monitorRunDependencies(cr)}function t0(N){if(cr--,c.monitorRunDependencies&&c.monitorRunDependencies(cr),cr==0&&(Tr!==null&&(clearInterval(Tr),Tr=null),da)){var F=da;da=null,F()}}c.preloadedImages={},c.preloadedAudios={};function dr(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),le=!0,he=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw h(F),F}function pd(N,F){return String.prototype.startsWith?N.startsWith(F):N.indexOf(F)===0}var Jo="data:application/octet-stream;base64,";function fd(N){return pd(N,Jo)}var n0="file://";function md(N){return pd(N,n0)}var Cn="tfjs-backend-wasm-threaded-simd.wasm";fd(Cn)||(Cn=C(Cn));function Ad(N){try{if(N==Cn&&te)return new Uint8Array(te);if(R)return R(N);throw"both async and sync fetching of the wasm failed"}catch(F){dr(F)}}function s0(){if(!te&&(y||x)){if(typeof fetch=="function"&&!md(Cn))return fetch(Cn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Cn+"'";return N.arrayBuffer()}).catch(function(){return Ad(Cn)});if(P)return new Promise(function(N,F){P(Cn,function(B){N(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return Ad(Cn)})}function r0(){var N={a:X0};function F(fe,we){var nt=fe.exports;if(c.asm=nt,es=c.asm.F,ie=we,!k){var jt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Lt){Se.loadWasmModuleToWorker(Lt,function(){--jt||t0("wasm-instantiate")})})}}k||e0("wasm-instantiate");function B(fe){F(fe.instance,fe.module)}function K(fe){return s0().then(function(we){return WebAssembly.instantiate(we,N)}).then(fe,function(we){q("failed to asynchronously prepare wasm: "+we),dr(we)})}function me(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!fd(Cn)&&!md(Cn)&&typeof fetch=="function"?fetch(Cn,{credentials:"same-origin"}).then(function(fe){var we=WebAssembly.instantiateStreaming(fe,N);return we.then(B,function(nt){return q("wasm streaming compile failed: "+nt),q("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(c.instantiateWasm)try{var pe=c.instantiateWasm(N,F);return pe}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(h),{}}var a0={9832:function(){throw"Canceled!"},9850:function(N,F){setTimeout(function(){Hy(N,F)},0)}};function gd(){Se.initRuntime()}function Qo(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(c);continue}var B=F.func;typeof B=="number"?F.arg===void 0?es.get(B)():es.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function fu(N,F){if(N<=0||N>a().length||N&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var B=Atomics.load(i(),ai>>2),K=0;if(B==N){var me=Atomics.compareExchange(i(),ai>>2,B,0);if(me==B&&(--F,K=1,F<=0))return 1}var pe=Atomics.notify(i(),N>>2,F);if(pe>=0)return pe+K;throw"Atomics.notify returned an unexpected value "+pe}c._emscripten_futex_wake=fu;function o0(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var F=Se.pthreads[N];F.worker.terminate(),Se.freeThreadData(F),Se.runningWorkers.splice(Se.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function i0(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Se.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function l0(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Se.pthreads[N];if(F){i()[N+12>>2]=0;var B=F.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F<N;++F)Se.allocateUnusedWorker()},initRuntime:function(){for(var N=pa(228),F=0;F<228/4;++F)l()[N/4+F]=0;i()[N+12>>2]=N;var B=N+152;i()[B>>2]=B;for(var K=pa(512),F=0;F<128;++F)l()[K/4+F]=0;Atomics.store(l(),N+100>>2,K),Atomics.store(l(),N+40>>2,N),bm(N,!x,1),Uy(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();k&&ni()&&Vy()},runExitHandlersAndDeinitThread:function(N,F){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Se.runExitHandlers(),Atomics.store(l(),N+4>>2,F),Atomics.store(l(),N+0>>2,1),fu(N+0,2147483647),bm(0,0,0)},threadExit:function(N){var F=ni();F&&(Se.runExitHandlersAndDeinitThread(F,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(ni(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Se.pthreads){var F=Se.pthreads[N];F&&F.worker&&Se.returnWorkerToPool(F.worker)}Se.pthreads={};for(var B=0;B<Se.unusedWorkers.length;++B){var K=Se.unusedWorkers[B];K.terminate()}Se.unusedWorkers=[];for(var B=0;B<Se.runningWorkers.length;++B){var K=Se.runningWorkers[B],F=K.pthread;Se.freeThreadData(F),K.terminate()}Se.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var F=i()[N.threadInfoStruct+100>>2];i()[N.threadInfoStruct+100>>2]=0,vu(F),vu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&vu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[N.pthread.threadInfoStruct],Se.unusedWorkers.push(N),Se.runningWorkers.splice(Se.runningWorkers.indexOf(N),1),Se.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[Ky>>2]=0;try{N()}finally{i()[Ky>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,F){N.onmessage=function(B){var K=B.data,me=K.cmd;if(N.pthread&&(Se.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=ni()){var pe=Se.pthreads[K.targetThread];pe?pe.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")ym();else if(me==="spawnThread")kd(B.data);else if(me==="cleanupThread")l0(K.thread);else if(me==="killThread")o0(K.thread);else if(me==="cancelThread")i0(K.thread);else if(me==="loaded")N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(me==="print")j("Thread "+K.threadId+": "+K.text);else if(me==="printErr")q("Thread "+K.threadId+": "+K.text);else if(me==="alert")alert("Thread "+K.threadId+": "+K.text);else if(me==="exit"){var fe=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);fe&&Se.returnWorkerToPool(N)}else if(me==="exitProcess")try{pI(K.returnCode)}catch(we){if(we instanceof ku)return;throw we}else me==="cancelDone"?Se.returnWorkerToPool(N):me==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+me);Se.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(N){for(var F=performance.now()+N;performance.now()<F;);}};function u0(N,F){qy(N,F),si(N)}c.establishStackSpace=u0;function c0(){return se}c.getNoExitRuntime=c0;function d0(N,F){return es.get(N)(F)}c.invokeEntryPoint=d0;function h0(N,F,B,K){dr("Assertion failed: "+De(N)+", at: "+[F?De(F):"unknown filename",B,K?De(K):"unknown function"])}function p0(N,F){var B=_main(N,F)}var ha;b?ha=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?ha=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?ha=dateNow:ha=function(){return performance.now()};function f0(N){return i()[By()>>2]=N,N}function m0(N,F){if(k)return Nr(1,1,N,F)}function A0(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Se.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function g0(){dr()}function y0(N,F,B){var K=k0(F,B);return a0[N].apply(null,K)}function x0(N,F){}function b0(N,F,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=F)return-6;for(var me=performance.now(),pe=me+B,fe=Atomics.exchange(i(),ai>>2,N);;){if(me=performance.now(),me>pe)return fe=Atomics.exchange(i(),ai>>2,0),-73;if(fe=Atomics.exchange(i(),ai>>2,0),fe==0)break;if(ym(),Atomics.load(i(),N>>2)!=F)return-6;fe=Atomics.exchange(i(),ai>>2,N)}return 0}else{var K=Atomics.wait(i(),N>>2,F,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function v0(N,F,B){o().copyWithin(N,F,F+B)}function w0(){return b?li("os").cpus().length:navigator.hardwareConcurrency}function Nr(N,F){for(var B=arguments.length-2,K=wu(),me=B,pe=ri(me*8),fe=pe>>3,we=0;we<B;we++){var nt=arguments[2+we];u()[fe+we]=nt}var jt=jy(N,me,pe,F);return si(K),jt}var mu=[],Au=[];function k0(N,F){Au.length=0;var B;for(F>>=2;B=o()[N++];){var K=B<105;K&&F&1&&F++,Au.push(K?u()[F++>>1]:i()[F]),++F}return Au}function I0(N,F,B){mu.length=F;for(var K=B>>3,me=0;me<F;me++)mu[me]=u()[K+me];var pe=N<0,fe=pe?a0[-N-1]:q0[N];return fe.apply(null,mu)}function S0(){return o().length}function C0(N){try{return J.grow(N-Ve.byteLength+65535>>>16),en(J.buffer),1}catch(F){}}function T0(N){var F=S0();if(N<=F)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var me=F*(1+.2/K);me=Math.min(me,N+100663296);var pe=Math.min(B,at(Math.max(N,me),65536)),fe=C0(pe);if(fe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var N=Le.eventHandlers.length-1;N>=0;--N)Le._removeHandler(N);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Cr.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,B){function K(fe,we){if(fe.length!=we.length)return!1;for(var nt in fe)if(fe[nt]!=we[nt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==N&&K(pe.argsList,B))return}Le.deferredCalls.push({targetFunction:N,precedence:F,argsList:B}),Le.deferredCalls.sort(function(fe,we){return fe.precedence<we.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Le.deferredCalls.length;++F)Le.deferredCalls[F].targetFunction==N&&(Le.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Le.canPerformEventHandlerRequests())for(var N=0;N<Le.deferredCalls.length;++N){var F=Le.deferredCalls[N];Le.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N&&(!F||F==Le.eventHandlers[B].eventTypeString)&&Le._removeHandler(B--)},_removeHandler:function(N){var F=Le.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Le.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(me){++Le.inEventHandler,Le.currentEventHandler=N,Le.runDeferredCalls(),N.handlerFunc(me),Le.runDeferredCalls(),--Le.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Le.eventHandlers.push(N),Le.registerRemoveEventListeners();else for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N.target&&Le.eventHandlers[B].eventTypeString==N.eventTypeString&&Le._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,F,B,K,me){var pe=wu(),fe=ri(12);i()[fe>>2]=B,i()[fe+4>>2]=K,i()[fe+8>>2]=me,xm(0,N,637534208,F,K,fe),si(pe)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function N0(N){var F=tt(N)+1,B=pa(F);return et(N,B,F),B}function E0(N,F,B,K){var me=wu(),pe=ri(12),fe=0;F&&(fe=N0(F)),i()[pe>>2]=fe,i()[pe+4>>2]=B,i()[pe+8>>2]=K,xm(0,N,657457152,0,fe,pe),si(me)}function R0(N,F,B,K){F=F?De(F):"",E0(N,F,B,K)}function _0(N){return N>2?De(N):N}var $0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function F0(N){N=_0(N);var F=$0[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function gu(N){return F0(N)}function yd(N,F,B){var K=gu(N);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=F,i()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var me=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var pe=K.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===K.width&&pe[3]===K.height}K.width=F,K.height=B,me&&K.GLctxObject.GLctx.viewport(0,0,F,B)}else if(K.canvasSharedPtr){var fe=i()[K.canvasSharedPtr+8>>2];return R0(fe,N,F,B),1}else return-4;return 0}function xd(N,F,B){return k?Nr(2,1,N,F,B):yd(N,F,B)}function D0(N,F,B){var K=gu(N);return K?yd(N,F,B):xd(N,F,B)}function O0(N){}function P0(N,F){}function M0(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(B,K){F.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,me,pe){F.drawArraysInstancedANGLE(B,K,me,pe)},N.drawElementsInstanced=function(B,K,me,pe,fe){F.drawElementsInstancedANGLE(B,K,me,pe,fe)},1}function z0(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){F.bindVertexArrayOES(B)},N.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function L0(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(B,K){F.drawBuffersWEBGL(B,K)},1}function B0(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){Qe.lastError||(Qe.lastError=F)},getNewId:function(N){for(var F=Qe.counter++,B=N.length;B<F;B++)N[B]=null;return F},getSource:function(N,F,B,K){for(var me="",pe=0;pe<F;++pe){var fe=K?i()[K+pe*4>>2]:-1;me+=De(i()[B+pe*4>>2],fe<0?void 0:fe)}return me},createContext:function(N,F){var B=N.getContext("webgl",F);if(!B)return 0;var K=Qe.registerContext(B,F);return K},registerContext:function(N,F){var B=pa(8);i()[B+4>>2]=ni();var K={handle:B,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),Qe.contexts[B]=K,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Qe.initExtensions(K),B},makeContextCurrent:function(N){return Qe.currentContext=Qe.contexts[N],c.ctx=Er=Qe.currentContext&&Qe.currentContext.GLctx,!(N&&!Er)},getContext:function(N){return Qe.contexts[N]},deleteContext:function(N){Qe.currentContext===Qe.contexts[N]&&(Qe.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(Qe.contexts[N].GLctx.canvas),Qe.contexts[N]&&Qe.contexts[N].GLctx.canvas&&(Qe.contexts[N].GLctx.canvas.GLctxObject=void 0),vu(Qe.contexts[N].handle),Qe.contexts[N]=null},initExtensions:function(N){if(N||(N=Qe.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;M0(F),z0(F),L0(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),B0(F);var B=F.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&F.getExtension(K)})}},populateUniformTable:function(N){for(var F=Qe.programs[N],B=Qe.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,me=Er.getProgramParameter(F,35718),pe=0;pe<me;++pe){var fe=Er.getActiveUniform(F,pe),we=fe.name;B.maxUniformLength=Math.max(B.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var nt=Er.getUniformLocation(F,we);if(nt){var jt=Qe.getNewId(Qe.uniforms);K[we]=[fe.size,jt],Qe.uniforms[jt]=nt;for(var Lt=1;Lt<fe.size;++Lt){var _r=we+"["+Lt+"]";nt=Er.getUniformLocation(F,_r),jt=Qe.getNewId(Qe.uniforms),Qe.uniforms[jt]=nt}}}}},W0=["default","low-power","high-performance"];function V0(N,F){var B=F>>2,K=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:W0[K],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},pe=gu(N);if(!pe||me.explicitSwapControl)return 0;var fe=Qe.createContext(pe,me);return fe}function U0(N,F){return V0(N,F)}var ei={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var B=ei.buffers[N];F===0||F===10?((N===1?j:q)(Me(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){ei.varargs+=4;var N=i()[ei.varargs-4>>2];return N},getStr:function(N){var F=De(N);return F},get64:function(N,F){return N}};function bd(N){return k?Nr(3,1,N):0}function vd(N,F,B,K,me){if(k)return Nr(4,1,N,F,B,K,me)}function wd(N,F,B,K){if(k)return Nr(5,1,N,F,B,K);for(var me=0,pe=0;pe<B;pe++){for(var fe=i()[F+pe*8>>2],we=i()[F+(pe*8+4)>>2],nt=0;nt<we;nt++)ei.printChar(N,o()[fe+nt]);me+=we}return i()[K>>2]=me,0}function H0(N){var F=Se.threadExitHandlers.pop();N&&F()}function G0(N,F){Se.threadExitHandlers.push(function(){es.get(N)(F)})}function kd(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Se.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(F);for(var B=pa(128*4),K=0;K<128;++K)i()[B+K*4>>2]=0;var me=N.stackBase+N.stackSize,pe=Se.pthreads[N.pthread_ptr]={worker:F,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},fe=pe.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),N.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),pe.threadInfoStruct),Atomics.store(l(),fe+(80>>2),N.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),N.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),N.detached);var we=Wy(),nt=we+40;Atomics.store(l(),fe+(172>>2),nt),F.pthread=pe;var jt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};F.runPthread=function(){jt.time=performance.now(),F.postMessage(jt,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function j0(N,F,B,K){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return Gy(687865856,N,F,B,K);if(pe)return pe;var fe=0,we=0,nt=0;F&&F!=-1?(fe=i()[F>>2],fe+=81920,we=i()[F+8>>2],nt=i()[F+12>>2]!==0):fe=2097152;var jt=we==0;jt?we=Xy(16,fe):(we-=fe,ge(we>0));for(var Lt=pa(228),_r=0;_r<228>>2;++_r)l()[(Lt>>2)+_r]=0;i()[N>>2]=Lt,i()[Lt+12>>2]=Lt;var oi=Lt+152;i()[oi>>2]=oi;var dn={stackBase:we,stackSize:fe,allocatedOwnStack:jt,detached:nt,startRoutine:B,pthread_ptr:Lt,arg:K,transferList:me};return k?(dn.cmd="spawnThread",postMessage(dn,me)):kd(dn),0}function Id(N){if(k)return Nr(6,1,N);switch(N){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return f0(28),-1}k||Se.initMainThreadBlock();var Er,q0=[null,m0,xd,bd,vd,wd,Id],X0={e:h0,r:p0,x:A0,b:g0,y:y0,j:x0,c:b0,d:fu,f:ha,p:v0,z:w0,u:I0,q:T0,v:D0,i:O0,t:P0,w:U0,m:bd,n:vd,g:wd,o:gd,a:J||c.wasmMemory,k:H0,l:G0,h:j0,s:Id},Ly=r0(),Sd=c.___wasm_call_ctors=function(){return(Sd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},K0=c._init=function(){return(K0=c._init=c.asm.B).apply(null,arguments)},Z0=c._register_tensor=function(){return(Z0=c._register_tensor=c.asm.C).apply(null,arguments)},Y0=c._dispose_data=function(){return(Y0=c._dispose_data=c.asm.D).apply(null,arguments)},J0=c._dispose=function(){return(J0=c._dispose=c.asm.E).apply(null,arguments)},Q0=c._Abs=function(){return(Q0=c._Abs=c.asm.G).apply(null,arguments)},em=c._Add=function(){return(em=c._Add=c.asm.H).apply(null,arguments)},tm=c._AddN=function(){return(tm=c._AddN=c.asm.I).apply(null,arguments)},nm=c._All=function(){return(nm=c._All=c.asm.J).apply(null,arguments)},sm=c._Any=function(){return(sm=c._Any=c.asm.K).apply(null,arguments)},rm=c._ArgMax=function(){return(rm=c._ArgMax=c.asm.L).apply(null,arguments)},am=c._AvgPool=function(){return(am=c._AvgPool=c.asm.M).apply(null,arguments)},om=c._BatchMatMul=function(){return(om=c._BatchMatMul=c.asm.N).apply(null,arguments)},im=c._Ceil=function(){return(im=c._Ceil=c.asm.O).apply(null,arguments)},lm=c._ClipByValue=function(){return(lm=c._ClipByValue=c.asm.P).apply(null,arguments)},um=c._Conv2D=function(){return(um=c._Conv2D=c.asm.Q).apply(null,arguments)},cm=c._Conv2DBackpropInput=function(){return(cm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},dm=c._Cos=function(){return(dm=c._Cos=c.asm.S).apply(null,arguments)},hm=c._Cosh=function(){return(hm=c._Cosh=c.asm.T).apply(null,arguments)},pm=c._CropAndResize=function(){return(pm=c._CropAndResize=c.asm.U).apply(null,arguments)},fm=c._Cumsum=function(){return(fm=c._Cumsum=c.asm.V).apply(null,arguments)},mm=c._DepthToSpace=function(){return(mm=c._DepthToSpace=c.asm.W).apply(null,arguments)},Am=c._DepthwiseConv2dNative=function(){return(Am=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Cd=c._Equal=function(){return(Cd=c._Equal=c.asm.Y).apply(null,arguments)},Td=c._Exp=function(){return(Td=c._Exp=c.asm.Z).apply(null,arguments)},Nd=c._FlipLeftRight=function(){return(Nd=c._FlipLeftRight=c.asm._).apply(null,arguments)},yu=c._Floor=function(){return(yu=c._Floor=c.asm.$).apply(null,arguments)},ti=c._FloorDiv=function(){return(ti=c._FloorDiv=c.asm.aa).apply(null,arguments)},gm=c._FusedBatchNorm=function(){return(gm=c._FusedBatchNorm=c.asm.ba).apply(null,arguments)},xu=c._FusedConv2D=function(){return(xu=c._FusedConv2D=c.asm.ca).apply(null,arguments)},Y=c._FusedDepthwiseConv2D=function(){return(Y=c._FusedDepthwiseConv2D=c.asm.da).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.ea).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.fa).apply(null,arguments)},Ye=c._Greater=function(){return(Ye=c._Greater=c.asm.ga).apply(null,arguments)},Tt=c._GreaterEqual=function(){return(Tt=c._GreaterEqual=c.asm.ha).apply(null,arguments)},yt=c._LeakyRelu=function(){return(yt=c._LeakyRelu=c.asm.ia).apply(null,arguments)},He=c._Less=function(){return(He=c._Less=c.asm.ja).apply(null,arguments)},Ge=c._LessEqual=function(){return(Ge=c._LessEqual=c.asm.ka).apply(null,arguments)},tn=c._Log=function(){return(tn=c._Log=c.asm.la).apply(null,arguments)},hr=c._LogicalAnd=function(){return(hr=c._LogicalAnd=c.asm.ma).apply(null,arguments)},pr=c._Max=function(){return(pr=c._Max=c.asm.na).apply(null,arguments)},Ed=c._MaxPool=function(){return(Ed=c._MaxPool=c.asm.oa).apply(null,arguments)},bu=c._Maximum=function(){return(bu=c._Maximum=c.asm.pa).apply(null,arguments)},Ln=c._Mean=function(){return(Ln=c._Mean=c.asm.qa).apply(null,arguments)},Rr=c._Min=function(){return(Rr=c._Min=c.asm.ra).apply(null,arguments)},Rd=c._Minimum=function(){return(Rd=c._Minimum=c.asm.sa).apply(null,arguments)},C8=c._MirrorPad=function(){return(C8=c._MirrorPad=c.asm.ta).apply(null,arguments)},T8=c._Multiply=function(){return(T8=c._Multiply=c.asm.ua).apply(null,arguments)},N8=c._Neg=function(){return(N8=c._Neg=c.asm.va).apply(null,arguments)},E8=c._NonMaxSuppressionV3=function(){return(E8=c._NonMaxSuppressionV3=c.asm.wa).apply(null,arguments)},R8=c._NonMaxSuppressionV4=function(){return(R8=c._NonMaxSuppressionV4=c.asm.xa).apply(null,arguments)},_8=c._NonMaxSuppressionV5=function(){return(_8=c._NonMaxSuppressionV5=c.asm.ya).apply(null,arguments)},$8=c._NotEqual=function(){return($8=c._NotEqual=c.asm.za).apply(null,arguments)},F8=c._OneHot=function(){return(F8=c._OneHot=c.asm.Aa).apply(null,arguments)},D8=c._PadV2=function(){return(D8=c._PadV2=c.asm.Ba).apply(null,arguments)},O8=c._Pow=function(){return(O8=c._Pow=c.asm.Ca).apply(null,arguments)},P8=c._Prelu=function(){return(P8=c._Prelu=c.asm.Da).apply(null,arguments)},M8=c._Prod=function(){return(M8=c._Prod=c.asm.Ea).apply(null,arguments)},z8=c._RealDiv=function(){return(z8=c._RealDiv=c.asm.Fa).apply(null,arguments)},L8=c._Relu=function(){return(L8=c._Relu=c.asm.Ga).apply(null,arguments)},B8=c._Relu6=function(){return(B8=c._Relu6=c.asm.Ha).apply(null,arguments)},W8=c._ResizeBilinear=function(){return(W8=c._ResizeBilinear=c.asm.Ia).apply(null,arguments)},V8=c._Reverse=function(){return(V8=c._Reverse=c.asm.Ja).apply(null,arguments)},U8=c._RotateWithOffset=function(){return(U8=c._RotateWithOffset=c.asm.Ka).apply(null,arguments)},H8=c._Round=function(){return(H8=c._Round=c.asm.La).apply(null,arguments)},G8=c._Rsqrt=function(){return(G8=c._Rsqrt=c.asm.Ma).apply(null,arguments)},j8=c._ScatterNd=function(){return(j8=c._ScatterNd=c.asm.Na).apply(null,arguments)},q8=c._SelectV2=function(){return(q8=c._SelectV2=c.asm.Oa).apply(null,arguments)},X8=c._Sigmoid=function(){return(X8=c._Sigmoid=c.asm.Pa).apply(null,arguments)},K8=c._Sin=function(){return(K8=c._Sin=c.asm.Qa).apply(null,arguments)},Z8=c._Softmax=function(){return(Z8=c._Softmax=c.asm.Ra).apply(null,arguments)},Y8=c._Sqrt=function(){return(Y8=c._Sqrt=c.asm.Sa).apply(null,arguments)},J8=c._Square=function(){return(J8=c._Square=c.asm.Ta).apply(null,arguments)},Q8=c._SquaredDifference=function(){return(Q8=c._SquaredDifference=c.asm.Ua).apply(null,arguments)},eI=c._Step=function(){return(eI=c._Step=c.asm.Va).apply(null,arguments)},tI=c._StridedSlice=function(){return(tI=c._StridedSlice=c.asm.Wa).apply(null,arguments)},nI=c._Sub=function(){return(nI=c._Sub=c.asm.Xa).apply(null,arguments)},sI=c._Sum=function(){return(sI=c._Sum=c.asm.Ya).apply(null,arguments)},rI=c._Tan=function(){return(rI=c._Tan=c.asm.Za).apply(null,arguments)},aI=c._Tanh=function(){return(aI=c._Tanh=c.asm._a).apply(null,arguments)},oI=c._Tile=function(){return(oI=c._Tile=c.asm.$a).apply(null,arguments)},iI=c._TopK=function(){return(iI=c._TopK=c.asm.ab).apply(null,arguments)},lI=c._Transform=function(){return(lI=c._Transform=c.asm.bb).apply(null,arguments)},uI=c._Transpose=function(){return(uI=c._Transpose=c.asm.cb).apply(null,arguments)},cI=c.__FusedMatMul=function(){return(cI=c.__FusedMatMul=c.asm.db).apply(null,arguments)},pa=c._malloc=function(){return(pa=c._malloc=c.asm.eb).apply(null,arguments)},vu=c._free=function(){return(vu=c._free=c.asm.fb).apply(null,arguments)},By=c.___errno_location=function(){return(By=c.___errno_location=c.asm.gb).apply(null,arguments)},Wy=c._emscripten_get_global_libc=function(){return(Wy=c._emscripten_get_global_libc=c.asm.hb).apply(null,arguments)},ni=c._pthread_self=function(){return(ni=c._pthread_self=c.asm.ib).apply(null,arguments)},Vy=c.___pthread_tsd_run_dtors=function(){return(Vy=c.___pthread_tsd_run_dtors=c.asm.jb).apply(null,arguments)},ym=c._emscripten_main_thread_process_queued_calls=function(){return(ym=c._emscripten_main_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},dI=c._emscripten_current_thread_process_queued_calls=function(){return(dI=c._emscripten_current_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},Uy=c._emscripten_register_main_browser_thread_id=function(){return(Uy=c._emscripten_register_main_browser_thread_id=c.asm.mb).apply(null,arguments)},Hy=c.__emscripten_do_dispatch_to_thread=function(){return(Hy=c.__emscripten_do_dispatch_to_thread=c.asm.nb).apply(null,arguments)},Gy=c._emscripten_sync_run_in_main_thread_4=function(){return(Gy=c._emscripten_sync_run_in_main_thread_4=c.asm.ob).apply(null,arguments)},jy=c._emscripten_run_in_main_runtime_thread_js=function(){return(jy=c._emscripten_run_in_main_runtime_thread_js=c.asm.pb).apply(null,arguments)},xm=c.__emscripten_call_on_thread=function(){return(xm=c.__emscripten_call_on_thread=c.asm.qb).apply(null,arguments)},hI=c._emscripten_tls_init=function(){return(hI=c._emscripten_tls_init=c.asm.rb).apply(null,arguments)},bm=c.__emscripten_thread_init=function(){return(bm=c.__emscripten_thread_init=c.asm.sb).apply(null,arguments)},wu=c.stackSave=function(){return(wu=c.stackSave=c.asm.tb).apply(null,arguments)},si=c.stackRestore=function(){return(si=c.stackRestore=c.asm.ub).apply(null,arguments)},ri=c.stackAlloc=function(){return(ri=c.stackAlloc=c.asm.vb).apply(null,arguments)},qy=c._emscripten_stack_set_limits=function(){return(qy=c._emscripten_stack_set_limits=c.asm.wb).apply(null,arguments)},Xy=c._memalign=function(){return(Xy=c._memalign=c.asm.xb).apply(null,arguments)},Ky=c.__emscripten_allow_main_runtime_queued_calls=9824,ai=c.__emscripten_main_thread_futex=11448;c.cwrap=$e,c.PThread=Se,c.PThread=Se,c.wasmMemory=J,c.ExitStatus=ku;var _d;function ku(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}da=function N(){_d||vm(),_d||(da=N)};function vm(N){if(N=N||f,cr>0)return;if(k){d(c),pu(),postMessage({cmd:"loaded"});return}if(Yf(),cr>0)return;function F(){_d||(_d=!0,c.calledRun=!0,!le&&(pu(),Jf(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Sn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=vm;function pI(N,F){if(!(F&&se&&N===0)){if(!F&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new ku(N);se||(Se.terminateAllThreads(),he=N,dd(),c.onExit&&c.onExit(N),le=!0),g(N,new ku(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Se.initWorker()),vm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),WI=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Y,re){o=Y,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(Y,re){throw re},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var g="";function y(Y){return a.locateFile?a.locateFile(Y,g):g+Y}var x,b,v,k,w,C;f?(m?g=Iu().dirname(g)+"/":g=__dirname+"/",x=function(re,xe){return w||(w=li("fs")),C||(C=Iu()),re=C.normalize(re),w.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof gm))throw Y}),process.on("unhandledRejection",Gs),h=function(Y){process.exit(Y)},a.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.lastIndexOf("/")+1):g="",x=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.send(null),re.responseText},m&&(v=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(Y,re,xe){var Ye=new XMLHttpRequest;Ye.open("GET",Y,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){re(Ye.response);return}xe()},Ye.onerror=xe,Ye.send(null)},k=function(Y){document.title=Y});var E=a.print||console.log.bind(console),P=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Gs("no native wasm support detected");var T,O=!1,W;function j(Y,re){Y||Gs("Assertion failed: "+re)}function q(Y){var re=a["_"+Y];return j(re,"Cannot call unknown function "+Y+", make sure it is exported"),re}function X(Y,re,xe,Ye,Tt){var yt={string:function(Ln){var Rr=0;if(Ln!=null&&Ln!==0){var Rd=(Ln.length<<2)+1;Rr=yu(Rd),ie(Ln,Rr,Rd)}return Rr},array:function(Ln){var Rr=yu(Ln.length);return le(Ln,Rr),Rr}};function He(Ln){return re==="string"?se(Ln):re==="boolean"?Boolean(Ln):Ln}var Ge=q(Y),tn=[],hr=0;if(Ye)for(var pr=0;pr<Ye.length;pr++){var Ed=yt[xe[pr]];Ed?(hr===0&&(hr=Td()),tn[pr]=Ed(Ye[pr])):tn[pr]=Ye[pr]}var bu=Ge.apply(null,tn);return bu=He(bu),hr!==0&&Nd(hr),bu}function Q(Y,re,xe,Ye){xe=xe||[];var Tt=xe.every(function(He){return He==="number"}),yt=re!=="string";return yt&&Tt&&!Ye?q(Y):function(){return X(Y,re,xe,arguments,Ye)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(Y,re,xe){for(var Ye=re+xe,Tt=re;Y[Tt]&&!(Tt>=Ye);)++Tt;if(Tt-re>16&&Y.subarray&&ne)return ne.decode(Y.subarray(re,Tt));for(var yt="";re<Tt;){var He=Y[re++];if(!(He&128)){yt+=String.fromCharCode(He);continue}var Ge=Y[re++]&63;if((He&224)==192){yt+=String.fromCharCode((He&31)<<6|Ge);continue}var tn=Y[re++]&63;if((He&240)==224?He=(He&15)<<12|Ge<<6|tn:He=(He&7)<<18|Ge<<12|tn<<6|Y[re++]&63,He<65536)yt+=String.fromCharCode(He);else{var hr=He-65536;yt+=String.fromCharCode(55296|hr>>10,56320|hr&1023)}}return yt}function se(Y,re){return Y?te(Te,Y,re):""}function J(Y,re,xe,Ye){if(!(Ye>0))return 0;for(var Tt=xe,yt=xe+Ye-1,He=0;He<Y.length;++He){var Ge=Y.charCodeAt(He);if(Ge>=55296&&Ge<=57343){var tn=Y.charCodeAt(++He);Ge=65536+((Ge&1023)<<10)|tn&1023}if(Ge<=127){if(xe>=yt)break;re[xe++]=Ge}else if(Ge<=2047){if(xe+1>=yt)break;re[xe++]=192|Ge>>6,re[xe++]=128|Ge&63}else if(Ge<=65535){if(xe+2>=yt)break;re[xe++]=224|Ge>>12,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}else{if(xe+3>=yt)break;re[xe++]=240|Ge>>18,re[xe++]=128|Ge>>12&63,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}}return re[xe]=0,xe-Tt}function ie(Y,re,xe){return J(Y,Te,re,xe)}function le(Y,re){Ce.set(Y,re)}function he(Y,re){return Y%re>0&&(Y+=re-Y%re),Y}var ge,Ce,Te,$e,Me,De,ot,et,tt;function Je(Y){ge=Y,a.HEAP8=Ce=new Int8Array(Y),a.HEAP16=$e=new Int16Array(Y),a.HEAP32=De=new Int32Array(Y),a.HEAPU8=Te=new Uint8Array(Y),a.HEAPU16=Me=new Uint16Array(Y),a.HEAPU32=ot=new Uint32Array(Y),a.HEAPF32=et=new Float32Array(Y),a.HEAPF64=tt=new Float64Array(Y)}var at=a.INITIAL_MEMORY||16777216,Ve,In=[],kt=[],Mn=[],Qt=[],gs=!1;kt.push({func:function(){gd()}});function cn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Qn(a.preRun.shift());Tr(In)}function Yn(){gs=!0,Tr(kt)}function Jn(){Tr(Mn)}function en(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)es(a.postRun.shift());Tr(Qt)}function Qn(Y){In.unshift(Y)}function es(Y){Qt.unshift(Y)}var zn=0,Hs=null,ur=null;function Cr(Y){zn++,a.monitorRunDependencies&&a.monitorRunDependencies(zn)}function Yo(Y){if(zn--,a.monitorRunDependencies&&a.monitorRunDependencies(zn),zn==0&&(Hs!==null&&(clearInterval(Hs),Hs=null),ur)){var re=ur;ur=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Gs(Y){a.onAbort&&a.onAbort(Y),Y+="",P(Y),O=!0,W=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(Y);throw i(re),re}function cd(Y,re){return String.prototype.startsWith?Y.startsWith(re):Y.indexOf(re)===0}var Yf="data:application/octet-stream;base64,";function pu(Y){return cd(Y,Yf)}var Jf="file://";function dd(Y){return cd(Y,Jf)}var Sn="tfjs-backend-wasm.wasm";pu(Sn)||(Sn=y(Sn));function hd(Y){try{if(Y==Sn&&R)return new Uint8Array(R);if(v)return v(Y);throw"both async and sync fetching of the wasm failed"}catch(re){Gs(re)}}function Qf(){if(!R&&(p||m)){if(typeof fetch=="function"&&!dd(Sn))return fetch(Sn,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Sn+"'";return Y.arrayBuffer()}).catch(function(){return hd(Sn)});if(b)return new Promise(function(Y,re){b(Sn,function(xe){Y(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return hd(Sn)})}function cr(){var Y={a:r0};function re(He,Ge){var tn=He.exports;a.asm=tn,T=a.asm.i,Je(T.buffer),Ve=a.asm.o,Yo("wasm-instantiate")}Cr("wasm-instantiate");function xe(He){re(He.instance)}function Ye(He){return Qf().then(function(Ge){return WebAssembly.instantiate(Ge,Y)}).then(He,function(Ge){P("failed to asynchronously prepare wasm: "+Ge),Gs(Ge)})}function Tt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!pu(Sn)&&!dd(Sn)&&typeof fetch=="function"?fetch(Sn,{credentials:"same-origin"}).then(function(He){var Ge=WebAssembly.instantiateStreaming(He,Y);return Ge.then(xe,function(tn){return P("wasm streaming compile failed: "+tn),P("falling back to ArrayBuffer instantiation"),Ye(xe)})}):Ye(xe)}if(a.instantiateWasm)try{var yt=a.instantiateWasm(Y,re);return yt}catch(He){return P("Module.instantiateWasm callback failed with error: "+He),!1}return Tt().catch(i),{}}function Tr(Y){for(;Y.length>0;){var re=Y.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?Ve.get(xe)():Ve.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function da(){Gs()}function e0(Y,re,xe){Te.copyWithin(Y,re,re+xe)}function t0(){return Te.length}function dr(Y){try{return T.grow(Y-ge.byteLength+65535>>>16),Je(T.buffer),1}catch(re){}}function pd(Y){var re=t0(),xe=2147483648;if(Y>xe)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Tt=re*(1+.2/Ye);Tt=Math.min(Tt,Y+100663296);var yt=Math.min(xe,he(Math.max(Y,Tt),65536)),He=dr(yt);if(He)return!0}return!1}var Jo={mappings:{},buffers:[null,[],[]],printChar:function(Y,re){var xe=Jo.buffers[Y];re===0||re===10?((Y===1?E:P)(te(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){Jo.varargs+=4;var Y=De[Jo.varargs-4>>2];return Y},getStr:function(Y){var re=se(Y);return re},get64:function(Y,re){return Y}};function fd(Y){return 0}function n0(Y,re,xe,Ye,Tt){}function md(Y,re,xe,Ye){for(var Tt=0,yt=0;yt<xe;yt++){for(var He=De[re+yt*8>>2],Ge=De[re+(yt*8+4)>>2],tn=0;tn<Ge;tn++)Jo.printChar(Y,Te[He+tn]);Tt+=Ge}return De[Ye>>2]=Tt,0}function Cn(){return 6}function Ad(Y){return De[Cd()>>2]=Y,Y}function s0(Y){switch(Y){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ad(28),-1}var r0={a:da,d:e0,e:pd,f:fd,c:n0,b:md,g:Cn,h:s0},a0=cr(),gd=a.___wasm_call_ctors=function(){return(gd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},Qo=a._init=function(){return(Qo=a._init=a.asm.k).apply(null,arguments)},fu=a._register_tensor=function(){return(fu=a._register_tensor=a.asm.l).apply(null,arguments)},o0=a._dispose_data=function(){return(o0=a._dispose_data=a.asm.m).apply(null,arguments)},i0=a._dispose=function(){return(i0=a._dispose=a.asm.n).apply(null,arguments)},l0=a._Abs=function(){return(l0=a._Abs=a.asm.p).apply(null,arguments)},Se=a._Add=function(){return(Se=a._Add=a.asm.q).apply(null,arguments)},u0=a._AddN=function(){return(u0=a._AddN=a.asm.r).apply(null,arguments)},c0=a._All=function(){return(c0=a._All=a.asm.s).apply(null,arguments)},d0=a._Any=function(){return(d0=a._Any=a.asm.t).apply(null,arguments)},h0=a._ArgMax=function(){return(h0=a._ArgMax=a.asm.u).apply(null,arguments)},p0=a._AvgPool=function(){return(p0=a._AvgPool=a.asm.v).apply(null,arguments)},ha=a._BatchMatMul=function(){return(ha=a._BatchMatMul=a.asm.w).apply(null,arguments)},f0=a._Ceil=function(){return(f0=a._Ceil=a.asm.x).apply(null,arguments)},m0=a._ClipByValue=function(){return(m0=a._ClipByValue=a.asm.y).apply(null,arguments)},A0=a._Conv2D=function(){return(A0=a._Conv2D=a.asm.z).apply(null,arguments)},g0=a._Conv2DBackpropInput=function(){return(g0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},y0=a._Cos=function(){return(y0=a._Cos=a.asm.B).apply(null,arguments)},x0=a._Cosh=function(){return(x0=a._Cosh=a.asm.C).apply(null,arguments)},b0=a._CropAndResize=function(){return(b0=a._CropAndResize=a.asm.D).apply(null,arguments)},v0=a._Cumsum=function(){return(v0=a._Cumsum=a.asm.E).apply(null,arguments)},w0=a._DepthToSpace=function(){return(w0=a._DepthToSpace=a.asm.F).apply(null,arguments)},Nr=a._DepthwiseConv2dNative=function(){return(Nr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},mu=a._Equal=function(){return(mu=a._Equal=a.asm.H).apply(null,arguments)},Au=a._Exp=function(){return(Au=a._Exp=a.asm.I).apply(null,arguments)},k0=a._FlipLeftRight=function(){return(k0=a._FlipLeftRight=a.asm.J).apply(null,arguments)},I0=a._Floor=function(){return(I0=a._Floor=a.asm.K).apply(null,arguments)},S0=a._FloorDiv=function(){return(S0=a._FloorDiv=a.asm.L).apply(null,arguments)},C0=a._FusedBatchNorm=function(){return(C0=a._FusedBatchNorm=a.asm.M).apply(null,arguments)},T0=a._FusedConv2D=function(){return(T0=a._FusedConv2D=a.asm.N).apply(null,arguments)},Le=a._FusedDepthwiseConv2D=function(){return(Le=a._FusedDepthwiseConv2D=a.asm.O).apply(null,arguments)},N0=a._Gather=function(){return(N0=a._Gather=a.asm.P).apply(null,arguments)},E0=a._GatherNd=function(){return(E0=a._GatherNd=a.asm.Q).apply(null,arguments)},R0=a._Greater=function(){return(R0=a._Greater=a.asm.R).apply(null,arguments)},_0=a._GreaterEqual=function(){return(_0=a._GreaterEqual=a.asm.S).apply(null,arguments)},$0=a._LeakyRelu=function(){return($0=a._LeakyRelu=a.asm.T).apply(null,arguments)},F0=a._Less=function(){return(F0=a._Less=a.asm.U).apply(null,arguments)},gu=a._LessEqual=function(){return(gu=a._LessEqual=a.asm.V).apply(null,arguments)},yd=a._Log=function(){return(yd=a._Log=a.asm.W).apply(null,arguments)},xd=a._LogicalAnd=function(){return(xd=a._LogicalAnd=a.asm.X).apply(null,arguments)},D0=a._Max=function(){return(D0=a._Max=a.asm.Y).apply(null,arguments)},O0=a._MaxPool=function(){return(O0=a._MaxPool=a.asm.Z).apply(null,arguments)},P0=a._Maximum=function(){return(P0=a._Maximum=a.asm._).apply(null,arguments)},M0=a._Mean=function(){return(M0=a._Mean=a.asm.$).apply(null,arguments)},z0=a._Min=function(){return(z0=a._Min=a.asm.aa).apply(null,arguments)},L0=a._Minimum=function(){return(L0=a._Minimum=a.asm.ba).apply(null,arguments)},B0=a._MirrorPad=function(){return(B0=a._MirrorPad=a.asm.ca).apply(null,arguments)},Qe=a._Multiply=function(){return(Qe=a._Multiply=a.asm.da).apply(null,arguments)},W0=a._Neg=function(){return(W0=a._Neg=a.asm.ea).apply(null,arguments)},V0=a._NonMaxSuppressionV3=function(){return(V0=a._NonMaxSuppressionV3=a.asm.fa).apply(null,arguments)},U0=a._NonMaxSuppressionV4=function(){return(U0=a._NonMaxSuppressionV4=a.asm.ga).apply(null,arguments)},ei=a._NonMaxSuppressionV5=function(){return(ei=a._NonMaxSuppressionV5=a.asm.ha).apply(null,arguments)},bd=a._NotEqual=function(){return(bd=a._NotEqual=a.asm.ia).apply(null,arguments)},vd=a._OneHot=function(){return(vd=a._OneHot=a.asm.ja).apply(null,arguments)},wd=a._PadV2=function(){return(wd=a._PadV2=a.asm.ka).apply(null,arguments)},H0=a._Pow=function(){return(H0=a._Pow=a.asm.la).apply(null,arguments)},G0=a._Prelu=function(){return(G0=a._Prelu=a.asm.ma).apply(null,arguments)},kd=a._Prod=function(){return(kd=a._Prod=a.asm.na).apply(null,arguments)},j0=a._RealDiv=function(){return(j0=a._RealDiv=a.asm.oa).apply(null,arguments)},Id=a._Relu=function(){return(Id=a._Relu=a.asm.pa).apply(null,arguments)},Er=a._Relu6=function(){return(Er=a._Relu6=a.asm.qa).apply(null,arguments)},q0=a._ResizeBilinear=function(){return(q0=a._ResizeBilinear=a.asm.ra).apply(null,arguments)},X0=a._Reverse=function(){return(X0=a._Reverse=a.asm.sa).apply(null,arguments)},Ly=a._RotateWithOffset=function(){return(Ly=a._RotateWithOffset=a.asm.ta).apply(null,arguments)},Sd=a._Round=function(){return(Sd=a._Round=a.asm.ua).apply(null,arguments)},K0=a._Rsqrt=function(){return(K0=a._Rsqrt=a.asm.va).apply(null,arguments)},Z0=a._ScatterNd=function(){return(Z0=a._ScatterNd=a.asm.wa).apply(null,arguments)},Y0=a._SelectV2=function(){return(Y0=a._SelectV2=a.asm.xa).apply(null,arguments)},J0=a._Sigmoid=function(){return(J0=a._Sigmoid=a.asm.ya).apply(null,arguments)},Q0=a._Sin=function(){return(Q0=a._Sin=a.asm.za).apply(null,arguments)},em=a._Softmax=function(){return(em=a._Softmax=a.asm.Aa).apply(null,arguments)},tm=a._Sqrt=function(){return(tm=a._Sqrt=a.asm.Ba).apply(null,arguments)},nm=a._Square=function(){return(nm=a._Square=a.asm.Ca).apply(null,arguments)},sm=a._SquaredDifference=function(){return(sm=a._SquaredDifference=a.asm.Da).apply(null,arguments)},rm=a._Step=function(){return(rm=a._Step=a.asm.Ea).apply(null,arguments)},am=a._StridedSlice=function(){return(am=a._StridedSlice=a.asm.Fa).apply(null,arguments)},om=a._Sub=function(){return(om=a._Sub=a.asm.Ga).apply(null,arguments)},im=a._Sum=function(){return(im=a._Sum=a.asm.Ha).apply(null,arguments)},lm=a._Tan=function(){return(lm=a._Tan=a.asm.Ia).apply(null,arguments)},um=a._Tanh=function(){return(um=a._Tanh=a.asm.Ja).apply(null,arguments)},cm=a._Tile=function(){return(cm=a._Tile=a.asm.Ka).apply(null,arguments)},dm=a._TopK=function(){return(dm=a._TopK=a.asm.La).apply(null,arguments)},hm=a._Transform=function(){return(hm=a._Transform=a.asm.Ma).apply(null,arguments)},pm=a._Transpose=function(){return(pm=a._Transpose=a.asm.Na).apply(null,arguments)},fm=a.__FusedMatMul=function(){return(fm=a.__FusedMatMul=a.asm.Oa).apply(null,arguments)},mm=a._malloc=function(){return(mm=a._malloc=a.asm.Pa).apply(null,arguments)},Am=a._free=function(){return(Am=a._free=a.asm.Qa).apply(null,arguments)},Cd=a.___errno_location=function(){return(Cd=a.___errno_location=a.asm.Ra).apply(null,arguments)},Td=a.stackSave=function(){return(Td=a.stackSave=a.asm.Sa).apply(null,arguments)},Nd=a.stackRestore=function(){return(Nd=a.stackRestore=a.asm.Ta).apply(null,arguments)},yu=a.stackAlloc=function(){return(yu=a.stackAlloc=a.asm.Ua).apply(null,arguments)};a.cwrap=Q;var ti;function gm(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}ur=function Y(){ti||xu(),ti||(ur=Y)};function xu(Y){if(Y=Y||c,zn>0||(cn(),zn>0))return;function re(){ti||(ti=!0,a.calledRun=!0,!O&&(Yn(),Jn(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),en()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=xu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return xu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),VI="3.8.0",UI="3.8.0",HI="3.8.0",GI="3.8.0",jI="3.8.0",qI="3.8.0",XI="3.8.0",KI="3.8.0",ZI=1e-7,YI=1e-4,Fd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Su=class{refCount(e){return ys("refCount")}incRef(e){return ys("incRef")}timerAvailable(){return!0}time(e){return ys("time")}read(e){return ys("read")}readSync(e){return ys("readSync")}numDataIds(){return ys("numDataIds")}disposeData(e,t){return ys("disposeData")}write(e,t,n){return ys("write")}move(e,t,n,s,r){return ys("move")}memory(){return ys("memory")}floatPrecision(){return ys("floatPrecision")}epsilon(){return this.floatPrecision()===32?ZI:YI}dispose(){return ys("dispose")}};function ys(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function a5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Dd(e,t,n)}function JI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Dd(e,n,s),Dd(t,n,s)}function Cu(e,t,n){return Math.max(e,Math.min(t,n))}function QI(e){return e%2==0?e:e+1}function Dd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function eS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function tS(e,t){let n=Math.random();return t*n+(1-n)*e}function nS(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function fn(e,t,n=""){M(fr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ma(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Aa(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let s=0;s<e.length;++s)Aa(e[s],t,n);else t.push(e);return t}function _t(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function sS(e){return e.length===0}function fr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function qt(e){return e%1==0}function rS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function aS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function oS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return a5(t),t}function Tu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function iS(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function lS(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function xs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>qt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function o5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:xs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function i5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function l5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function u5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function c5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function uS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Im(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function d5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function $r(e){return typeof e=="string"||e instanceof String}function h5(e){return typeof e=="boolean"}function p5(e){return typeof e=="number"}function Od(e){return Array.isArray(e)?Od(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":p5(e)?"float32":$r(e)?"string":h5(e)?"bool":"float32"}function Fr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Pd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ui(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function f5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=f5(e+l*i,o,n,s)}return r}function ci(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return f5(0,e,t,n)}function Sm(e,t){let n=Md(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Md(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function cS(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ci(e,new Float32Array(n));if(t==="int32")return ci(e,new Int32Array(n));if(t==="bool")return ci(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Cm(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function dS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function hS(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Tm(e){return e&&e.then&&typeof e.then=="function"}var m5="tfjsflags",A5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=pS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Tm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);m5 in e&&e[m5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=mS(s,r)})}};function pS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(fS(t,s[0],s[1]),s.join("="))),t}function fS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function mS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return ns}var ns=null;function AS(e){ns=e}var Nm;function g5(){if(Nm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Nm=e}return Nm}function gS(){let e=g5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Em(e,t){let n=gS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var di="Abs",hi="Acos",pi="Acosh",Dr="Add",ga="AddN",fi="All",mi="Any",ya="ArgMax",Nu="ArgMin",Ai="Asin",gi="Asinh",yi="Atan",xi="Atanh",bi="Atan2",xa="AvgPool",zd="AvgPoolGrad",Eu="AvgPool3D",Ld="AvgPool3DGrad",ba="BatchMatMul",vi="BatchToSpaceND",Bd="Bincount",y5="BroadcastTo",va="Cast",wa="Ceil",Or="ClipByValue",Wd="Complex",Ru="ComplexAbs",wi="Concat",ka="Conv2D",Vd="Conv2DBackpropFilter",Ia="Conv2DBackpropInput",_u="Conv3D",Ud="Conv3DBackpropFilterV2",Hd="Conv3DBackpropInputV2",Sa="Cos",Ca="Cosh",Ta="Cumsum",ki="CropAndResize",Gd="DenseBincount",Ii="DepthToSpace",Na="DepthwiseConv2dNative",jd="DepthwiseConv2dNativeBackpropFilter",qd="DepthwiseConv2dNativeBackpropInput",Xd="Diag",$u="Dilation2D",Kd="Dilation2DBackpropInput",Zd="Dilation2DBackpropFilter",Ea="RealDiv",Yd="Einsum",Si="Elu",Jd="EluGrad",Ci="Erf",Ti="Equal",Ra="Exp",Ni="ExpandDims",Ei="Expm1",Qd="FFT",Fu="Fill",Ri="FlipLeftRight",_a="Floor",$a="FloorDiv",Fa="FusedBatchNorm",_i="GatherV2",$i="GatherNd",Fi="Greater",Da="GreaterEqual",Oa="Identity",eh="IFFT",th="Imag",Di="IsFinite",Oi="IsInf",Pi="IsNan",Pa="LeakyRelu",Mi="Less",zi="LessEqual",nh="LinSpace",Ma="Log",Li="Log1p",Bi="LogicalAnd",Du="LogicalNot",Ou="LogicalOr",x5="LogSoftmax",Pu="LRN",sh="LRNGrad",za="Max",La="Maximum",Ba="MaxPool",rh="MaxPoolGrad",Mu="MaxPool3D",ah="MaxPool3DGrad",oh="MaxPoolWithArgmax",Wa="Mean",Va="Min",Ua="Minimum",Ha="MirrorPad",Wi="Mod",ih="Multinomial",Ga="Multiply",Vi="Neg",Ui="NotEqual",Hi="NonMaxSuppressionV3",Gi="NonMaxSuppressionV4",ji="NonMaxSuppressionV5",qi="OnesLike",ja="OneHot",Xi="Pack",qa="PadV2",yS="Pool",Xa="Pow",Ka="Prelu",Ki="Prod",zu="Range",lh="Real",Zi="Reciprocal",Za="Relu",Yi="Reshape",Lu="ResizeNearestNeighbor",uh="ResizeNearestNeighborGrad",Ya="ResizeBilinear",ch="ResizeBilinearGrad",Ja="Relu6",Qa="Reverse",eo="Round",to="Rsqrt",Ji="ScatterNd",Qi="Select",el="Selu",tl="Slice",no="Sin",nl="Sinh",sl="Sign",so="Sigmoid",rl="Softplus",ro="Sqrt",ao="Sum",al="SpaceToBatchND",ol="SplitV",oo="Softmax",dh="SparseFillEmptyRows",hh="SparseReshape",ph="SparseSegmentMean",fh="SparseSegmentSum",mh="SparseToDense",io="SquaredDifference",Bu="Square",il="StridedSlice",Ah="StringNGrams",gh="StringSplit",yh="StringToHashBucketFast",lo="Sub",uo="Tan",co="Tanh",Pr="Tile",ll="TopK",ul="Transform",ho="Transpose",xh="Unique",cl="Unpack",Wu="UnsortedSegmentSum",dl="ZerosLike",Mr="Step",bh="FromPixels",hl="RotateWithOffset",po="_FusedMatMul",fo="FusedConv2D",mo="FusedDepthwiseConv2D",pl=Em("kernelRegistry",()=>new Map),Vu=Em("gradRegistry",()=>new Map);function vh(e,t){let n=_m(e,t);return pl.get(n)}function Rm(e){return Vu.get(e)}function fl(e){let t=pl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Ao(e){let{kernelName:t,backendName:n}=e,s=_m(t,n);pl.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),pl.set(s,e)}function b5(e){let{kernelName:t}=e;Vu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Vu.set(t,e)}function xS(e,t){let n=_m(e,t);if(!pl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);pl.delete(n)}function bS(e){if(!Vu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Vu.delete(e)}function vS(e,t){fl(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Ao(r)})}function _m(e,t){return`${t}_${e}`}var I={};Pe(I,{arraysEqual:()=>fr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Cm,assertNonNull:()=>ma,assertShapesMatch:()=>fn,bytesFromStringArray:()=>d5,bytesPerElement:()=>Im,checkConversionForErrors:()=>u5,clamp:()=>Cu,computeStrides:()=>ui,createScalarValue:()=>TS,createShuffledIndices:()=>oS,decodeString:()=>Ih,distSquared:()=>nS,encodeString:()=>Gu,fetch:()=>ES,fingerPrint64:()=>CS,flatten:()=>Aa,getArrayFromDType:()=>l5,getTypedArrayFromDType:()=>i5,hasEncodingLoss:()=>uS,hexToLong:()=>Uu,indexToLoc:()=>hS,inferDtype:()=>Od,inferFromImplicitShape:()=>lS,isBoolean:()=>h5,isFunction:()=>Fr,isInt:()=>qt,isNumber:()=>p5,isPromise:()=>Tm,isScalarShape:()=>sS,isString:()=>$r,isTypedArray:()=>an,isValidDtype:()=>c5,locToIndex:()=>dS,makeOnesTypedArray:()=>Sm,makeZerosNestedTypedArray:()=>cS,makeZerosTypedArray:()=>Md,nearestDivisor:()=>Pd,nearestLargerEven:()=>QI,now:()=>Hu,parseAxisParam:()=>xs,randUniform:()=>tS,repeatedTry:()=>iS,rightPad:()=>Tu,shuffle:()=>a5,shuffleCombo:()=>JI,sizeFromShape:()=>_t,sizeToSquarishShape:()=>aS,squeezeShape:()=>o5,sum:()=>eS,swap:()=>Dd,tanh:()=>rS,toNestedArray:()=>ci,toTypedArray:()=>kh});var v5=fa(vI()),go=v5.default||v5;function Uu(e){return go.fromString(e,!0,16)}var w5=Uu("c3a5c85c97cb3127"),yo=Uu("b492b66fbe98f273"),mn=Uu("9ae16a3b2f90404f");function $m(e){return e.xor(e.shru(47))}function k5(e,t,n){let s=e.slice(t,t+n);return go.fromBytes(Array.from(s),!0,!0)}function ct(e,t){return k5(e,t,8)}function I5(e,t){return k5(e,t,4)}function Xt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function zr(e,t,n=Uu("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function wS(e,t,n,s,r,a){r=r.add(e),a=Xt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Xt(r,44)),[r.add(s),a.add(o)]}function wh(e,t,n,s){return wS(ct(e,t),ct(e,t+8),ct(e,t+16),ct(e,t+24),n,s)}function kS(e,t=e.length){if(t>=8){let n=mn.add(t*2),s=ct(e,0).add(mn),r=ct(e,t-8),a=Xt(r,37).mul(n).add(s),o=Xt(s,25).add(r).mul(n);return zr(a,o,n)}if(t>=4){let n=mn.add(t*2),s=I5(e,0);return zr(s.shl(3).add(t),I5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return $m(mn.mul(a).xor(w5.mul(o))).mul(mn)}return mn}function IS(e,t=e.length){let n=mn.add(t*2),s=ct(e,0).mul(yo),r=ct(e,8),a=ct(e,t-8).mul(n),o=ct(e,t-16).mul(mn);return zr(Xt(s.add(r),43).add(Xt(a,30)).add(o),s.add(Xt(r.add(mn),18)).add(a),n)}function SS(e,t=e.length){let n=mn.add(t*2),s=ct(e,0).mul(mn),r=ct(e,8),a=ct(e,t-8).mul(n),o=ct(e,t-16).mul(mn),i=Xt(s.add(r),43).add(Xt(a,30)).add(o),l=zr(i,s.add(Xt(r.add(mn),18)).add(a),n),u=ct(e,16).mul(n),c=ct(e,24),d=i.add(ct(e,t-32)).mul(n),h=l.add(ct(e,t-24)).mul(n);return zr(Xt(u.add(c),43).add(Xt(d,30)).add(h),u.add(Xt(c.add(s),18)).add(d),n)}function CS(e,t=e.length){let n=go.fromNumber(81,!0);if(t<=32)return t<=16?kS(e,t):IS(e,t);if(t<=64)return SS(e,t);let s=n,r=n.mul(yo).add(113),a=$m(r.mul(mn).add(113)).mul(mn),o=[go.UZERO,go.UZERO],i=[go.UZERO,go.UZERO];s=s.mul(mn).add(ct(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Xt(s.add(r).add(o[0]).add(ct(e,l+8)),37).mul(yo),r=Xt(r.add(o[1]).add(ct(e,l+48)),42).mul(yo),s=s.xor(i[1]),r=r.add(o[0]).add(ct(e,l+40)),a=Xt(a.add(i[0]),33).mul(yo),o=wh(e,l,o[1].mul(yo),s.add(i[0])),i=wh(e,l+32,a.add(i[1]),r.add(ct(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=yo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Xt(s.add(r).add(o[0]).add(ct(e,l+8)),37).mul(d),r=Xt(r.add(o[1]).add(ct(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(ct(e,l+40))),a=Xt(a.add(i[0]),33).mul(d),o=wh(e,l,o[1].mul(d),s.add(i[0])),i=wh(e,l+32,a.add(i[1]),r.add(ct(e,l+16))),[a,s]=[s,a],zr(zr(o[0],i[0],d).add($m(r).mul(w5)).add(a),zr(o[1],i[1],d).add(s),d)}function TS(e,t){return t==="string"?Gu(e):kh([e],t)}function NS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function kh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Aa(e)),ee().getBool("DEBUG")&&u5(e,t),NS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Hu(){return ee().platform.now()}function ES(e,t){return ee().platform.fetch(e,t)}function Gu(e,t="utf-8"){return t=t||"utf-8",ee().platform.encode(e,t)}function Ih(e,t="utf-8"){return t=t||"utf-8",ee().platform.decode(e,t)}var RS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new $S)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Hu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Hu()-o})}if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{_S(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function _S(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var $S=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Tu(`${s}ms`,9):s.error,i=Tu(e,25),l=t.rank,u=t.size,c=Tu(t.shape.toString(),14),d="";for(let h in r){let p=r[h];if(p!=null){let m=p.shape||t.shape,f=m.length;d+=`${h}: ${f}D ${f>0?m:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function FS(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let h=c[d],p=!1;for(let m=0;m<t.length;m++)if(s[h.id]){u.outputs.forEach(f=>s[f.id]=!0),p=!0,r[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let h in c)a[c[h].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let h in u.inputs){let p=u.inputs[h];s[p.id]&&(c[h]=p)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function DS(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!fr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var S5=20,ju=3,Fm=7;function OS(e,t,n,s){let r=ui(t),a=PS(e,t,n,r),o=t.length,i=Sh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function PS(e,t,n,s){let r=_t(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Xu(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],qu(l[c+d],0,n).length)}return o}function qu(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Fm))} + ${parseFloat(e[1].toFixed(Fm))}j`:$r(e)?s=`'${e}'`:n==="bool"?s=C5(e):s=parseFloat(e.toFixed(Fm)).toString(),Tu(s,t)}function C5(e){return e===0?"false":"true"}function Sh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Xu(e);return[qu(f[0],0,n)]}return n==="bool"?[C5(e[0])]:[e[0].toString()]}if(l===1){if(i>S5){let A=ju*o,g=Array.from(e.slice(0,A)),y=Array.from(e.slice((i-ju)*o,i*o));return n==="complex64"&&(g=Xu(g),y=Xu(y)),["["+g.map((x,b)=>qu(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>qu(x,r[i-ju+b],n)).join(", ")+"]"]}let f=n==="complex64"?Xu(e):Array.from(e);return["["+f.map((A,g)=>qu(A,r[g],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,h=[];if(i>S5){for(let f=0;f<ju;f++){let A=f*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,!1))}h.push("...");for(let f=i-ju;f<i;f++){let A=f*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,f===i-1))}}else for(let f=0;f<i;f++){let A=f*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,f===i-1))}let p=l===2?",":"";h[0]="["+h[0]+p;for(let f=1;f<h.length-1;f++)h[f]=" "+h[f]+p;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":m),h}function Xu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Bt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=_t(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||l5(t,this.size),this.strides=ui(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return js().makeTensor(this.values,this.shape,this.dtype)}},js=null,ml=null,MS=null;function zS(e){js=e}function LS(e){ml=e}function BS(e){MS=e}var Ue=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=_t(e),this.strides=ui(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ml.buffer(this.shape,this.dtype,e)}bufferSync(){return ml.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ci(this.shape,e,this.dtype==="complex64")}arraySync(){return ci(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=js().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Ih(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=js().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ih(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await js().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(js().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ml.print(this,e)}clone(){return this.throwIfDisposed(),ml.clone(this)}toString(e=!1){let t=this.dataSync();return OS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ml.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),js().makeVariable(this,e,t,n)}};Object.defineProperty(Ue,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function WS(){return Em("Tensor",()=>Ue)}WS();var Ku=class extends Ue{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!fr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);js().disposeTensor(this),this.dataId=e.dataId,js().incRef(this,null)}dispose(){js().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ku,Symbol.hasInstance,{value:e=>e instanceof Ue&&e.assign!=null&&e.assign instanceof Function});var Cs={};Pe(Cs,{assertTypesMatch:()=>T5,getTensorsInContainer:()=>Lm,isTensorInList:()=>US,makeTypesMatch:()=>It});var Dm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Dm||(Dm={}));var Om;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Om||(Om={}));var Pm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pm||(Pm={}));var Mm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Mm||(Mm={}));var zm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(zm||(zm={}));var VS={float32:Mm,int32:Om,bool:Pm,complex64:zm};function bs(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return VS[e][t]}function Ch(e){return bs(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=bs(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function T5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function US(e,t){return t.some(n=>n.id===e.id)}function Lm(e){let t=[],n=new Set;return N5(e,t,n),t}function N5(e,t,n){if(e==null)return;if(e instanceof Ue){t.push(e);return}if(!HS(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),N5(a,t,n))}}function HS(e){return Array.isArray(e)||typeof e=="object"}function Bm(e){return e.kernelName!=null}var E5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Zu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new E5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new RS(this.backendInstance),!0}setupRegisteredKernels(){fl(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){fl(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Su)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Zu.nextTensorId++}nextVariableId(){return Zu.nextVariableId++}clone(e){let t=L.runKernel(Oa,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(va,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(vh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Bm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bm(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=vh(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let g=this.backend.numDataIds();i=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,g,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:w}=b;return this.makeTensorFromDataId(v,k,w)});if(s){let b=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,m=f=>{!s||(n=f.map(A=>this.keep(this.clone(A))))};o=()=>{let f=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,m));let A=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,d=Bm(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Rm(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&$r(e[0])&&(r=e.map(i=>Gu(i)));let a=s.write(r,t,n),o=new Ue(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=d5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ue(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Ku(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Im(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Ku||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Im(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Rm(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=Md(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Lm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ue,()=>"The result y returned by f() must be a tensor.");let a=FS(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?GS(r.shape):n,DS(o,a,l=>this.tidy(l),jS);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Fr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ue),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ue,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Fr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof Ue),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Hu(),n=await this.backend.time(e);return n.wallMs=Hu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new E5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Zu.nextTensorId=0;Zu.nextVariableId=0;function GS(e){let t=Sm(_t(e),"float32");return L.makeTensor(t,e,"float32")}function R5(){let e=g5();if(e._tfengine==null){let t=new A5(e);e._tfengine=new Zu(t)}return AS(e._tfengine.ENV),zS(()=>e._tfengine),e._tfengine}var L=R5();function jS(e,t){let n={a:e,b:t};return L.runKernel(Dr,n)}var Yu={};Pe(Yu,{isBrowser:()=>_5,isMobile:()=>XS});function qS(){return typeof navigator!="undefined"&&navigator!=null}function XS(e){if(e||qS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function _5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ts=ee();Ts.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ts.registerFlag("IS_BROWSER",()=>_5());Ts.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ts.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ts.registerFlag("PROD",()=>!1);Ts.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ts.getBool("DEBUG"));Ts.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ts.registerFlag("IS_TEST",()=>!1);Ts.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ts.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function qs(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||an(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&$5(e,s,[]),s}function $5(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)$5(e[r],s,n.concat(r))}function F5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof Ue)return F5(s,e.dtype,t,n),e;let r=Od(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),F5(s,r,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=qs(e,r);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?kh(e,r):Aa(e,[],!0);return L.makeTensor(i,a,r)}function Ju(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var D5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+D5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Tm(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function KS(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");fn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Wd,r)}var Lr=V({complex_:KS});function Br(e,t,n,s){if(s==null&&(s=Od(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Cm(t);let r=_t(t),a=_t(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==_t(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?kh(e,s):Aa(e,[],!0),L.makeTensor(e,t,s)}function on(e,t,n){let s=qs(e,n);return Br(e,t,s,n)}var Wm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Th=4;async function ZS(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let h=await l.bytes(),p=h.reduce((A,g)=>A+g.length,0)+Th*h.length,m=new Uint8Array(p),f=0;for(let A=0;A<h.length;A++){let g=h[A],y=new Uint8Array(new Uint32Array([g.length]).buffer);m.set(y,f),f+=Th,m.set(g,f),f+=g.length}d(m)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:YS(a),specs:n}}function O5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=_t(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let h=Wm[d.dtype],p=e.slice(r,r+u*h),m=d.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=A*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=s9()),c=s(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=Math.round(A*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*h}else if(i==="string"){let d=_t(a.shape);c=[];for(let h=0;h<d;h++){let p=new Uint32Array(e.slice(r,r+Th))[0];r+=Th;let m=new Uint8Array(e.slice(r,r+p));c.push(m),r+=p}}else{let d=Wm[i],h=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(h);else if(i==="int32")c=new Int32Array(h);else if(i==="bool")c=new Uint8Array(h);else if(i==="complex64"){c=new Float32Array(h);let p=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let g=0;g<p.length;g++)p[g]=c[g*2],m[g]=c[g*2+1];let f=on(p,l,"float32"),A=on(m,l,"float32");n[o]=Lr(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=on(c,l,i))}return n}function YS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Vm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function P5(e){return Vm?Buffer.byteLength(e):new Blob([e]).size}function JS(e){if(Vm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function QS(e){if(Vm){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Um(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function M5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function z5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Hm(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:P5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:P5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function e9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function t9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function n9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function s9(){let e=e9(),t=t9(),n=n9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},r9=e=>Nt.registerSaveRouter(e),a9=e=>Nt.registerLoadRouter(e),o9=e=>Nt.getSaveHandlers(e),i9=(e,t)=>Nt.getLoadHandlers(e,t),Gm="tensorflowjs",jm=1,xo="models_store",Wr="model_info_store";function L5(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qm(e){let t=e.result;t.createObjectStore(xo,{keyPath:"modelPath"}),t.createObjectStore(Wr,{keyPath:"modelPath"})}var bo=class{constructor(e){if(this.indexedDB=L5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Gm,jm);r.onupgradeneeded=()=>qm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(xo,"readonly"),l=o.objectStore(xo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Qu(t),i=a.transaction(Wr,"readwrite"),l=i.objectStore(Wr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(xo,"readwrite");let h=c.objectStore(xo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Wr);let m=l.delete(this.modelPath);m.onsuccess=()=>(a.close(),s(h.error)),m.onerror=f=>(a.close(),s(h.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};bo.URL_SCHEME="indexeddb://";var B5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bo.URL_SCHEME)?l9(e.slice(bo.URL_SCHEME.length)):null;Nt.registerSaveRouter(B5);Nt.registerLoadRouter(B5);function l9(e){return new bo(e)}function u9(e){return e.startsWith(bo.URL_SCHEME)?e.slice(bo.URL_SCHEME.length):e}var c9=class{constructor(){this.indexedDB=L5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Gm,jm);n.onupgradeneeded=()=>qm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Wr,"readonly"),o=r.objectStore(Wr).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=u9(e),new Promise((t,n)=>{let s=this.indexedDB.open(Gm,jm);s.onupgradeneeded=()=>qm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Wr,"readwrite"),o=a.objectStore(Wr),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(xo,"readwrite");let h=l.objectStore(xo).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},mr="/",Al="tensorflowjs_models",W5="info",d9="model_topology",h9="weight_specs",p9="weight_data",f9="model_metadata";function V5(e){return{info:[Al,e,W5].join(mr),topology:[Al,e,d9].join(mr),weightSpecs:[Al,e,h9].join(mr),weightData:[Al,e,p9].join(mr),modelMetadata:[Al,e,f9].join(mr)}}function U5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function m9(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function A9(e){return e.startsWith(vo.URL_SCHEME)?e.slice(vo.URL_SCHEME.length):e}var vo=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=V5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,JS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw U5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=QS(a),t}};vo.URL_SCHEME="localstorage://";var H5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vo.URL_SCHEME)?g9(e.slice(vo.URL_SCHEME.length)):null;Nt.registerSaveRouter(H5);Nt.registerLoadRouter(H5);function g9(e){return new vo(e)}var y9=class{constructor(){M(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Al+mr,n=mr+W5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=m9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=A9(e);let t=V5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return U5(t),n}},gl="://",ss=class{constructor(){this.managers={}}static getInstance(){return ss.instance==null&&(ss.instance=new ss),ss.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(gl)&&(e=e.slice(0,e.indexOf(gl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=ss.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Nh(e){if(e.indexOf(gl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ss.getSchemes().join(",")}`);return{scheme:e.split(gl)[0],path:e.split(gl)[1]}}async function G5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Nt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Nt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Nh(e).scheme,l=Nh(e).path,u=i===Nh(e).scheme,c=await r.load();n&&u&&await ss.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await ss.getManager(i).removeModel(l),d.modelArtifactsInfo}async function x9(){let e=ss.getSchemes(),t={};for(let n of e){let s=await ss.getManager(n).listModels();for(let r in s){let a=n+gl+r;t[a]=s[r]}}return t}async function b9(e){let t=Nh(e);return ss.getManager(t.scheme).removeModel(t.path)}async function v9(e,t){return G5(e,t,!1)}async function w9(e,t){return G5(e,t,!0)}var k9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new k9);try{ss.registerManager(vo.URL_SCHEME,new y9)}catch(e){}try{ss.registerManager(bo.URL_SCHEME,new c9)}catch(e){}}var I9={importFetch:()=>wI()},Xm,S9=class{constructor(){this.util=li("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(Xm==null&&(Xm=I9.importFetch()),Xm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new S9);function Be(e,t="float32",n){return t=t||"float32",Cm(e),new Bt(e,t,n)}function C9(e,t){let n=D(e,"x","cast");if(!c5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(va,s,r)}var ue=V({cast_:C9});function T9(e){let n={x:D(e,"x","clone","string_or_numeric")};return L.runKernel(Oa,n)}var Ns=V({clone_:T9});function j5(e,t=!1){console.log(e.toString(t))}R5();var N9={buffer:Be,cast:ue,clone:Ns,print:j5};LS(N9);var Tn={};Pe(Tn,{browserFiles:()=>O9,browserHTTPRequest:()=>B9,concatenateArrayBuffers:()=>Um,copyModel:()=>v9,decodeWeights:()=>O5,encodeWeights:()=>ZS,fromMemory:()=>V9,getLoadHandlers:()=>i9,getModelArtifactsForJSON:()=>Hm,getModelArtifactsInfoForJSON:()=>Qu,getSaveHandlers:()=>o9,http:()=>Ym,isHTTPScheme:()=>Zm,listModels:()=>x9,loadWeights:()=>P9,moveModel:()=>w9,registerLoadRouter:()=>a9,registerSaveRouter:()=>r9,removeModel:()=>b9,weightsLoaderFactory:()=>Z5,withSaveHandler:()=>U9});var E9="model",R9=".json",_9=".weights.bin";function q5(e){return new Promise(t=>setTimeout(t)).then(e)}var yl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(yl.URL_SCHEME)&&(e=e.slice(yl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=E9),this.modelJsonFileName=e+R9,this.weightDataFileName=e+_9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=z5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await q5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await q5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Qu(e)}}}};yl.URL_SCHEME="downloads://";var $9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Hm(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Um(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>M5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=M5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},F9=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(yl.URL_SCHEME)?D9(e.slice(yl.URL_SCHEME.length)):null;Nt.registerSaveRouter(F9);function D9(e="model"){return new yl(e)}function O9(e){return new $9(e)}function X5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function K5(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await X5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await X5(i,t.onProgress,l,u)}async function P9(e,t="",n,s){return Z5(o=>K5(o,{requestInit:s}))(e,t,n)}function Z5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let g="quantization"in A?A.quantization.dtype:A.dtype,y=Wm[g]*_t(A.shape),x=()=>{r[m]=!0,a[m]==null&&(a[m]=[]),a[m].push({manifestEntry:A,groupOffset:f,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===A.name&&(x(),o[v]=!0)}):x(),i.push(A.name),f+=y})}),!o.every(p=>p)){let p=s.filter((m,f)=>!o[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let b=0;b<m;b++)f+=c[h+b].byteLength;let A=new ArrayBuffer(f),g=new Uint8Array(A),y=0;for(let b=0;b<m;b++){let v=new Uint8Array(c[h+b]);g.set(v,y),y+=v.byteLength}a[p].forEach(b=>{let v=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=O5(v,[b.manifestEntry]);for(let w in k)d[w]=k[w]}),h+=m}),d}}var M9="application/octet-stream",z9="application/json",Km=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=z5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:z9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:M9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Qu(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Hm(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=L9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await K5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Um(l)]}};Km.URL_SCHEME_REGEX=/^https?:\/\//;function L9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function Zm(e){return e.match(Km.URL_SCHEME_REGEX)!=null}var Y5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Zm(s)):n=Zm(e),n)return Ym(e,t)}return null};Nt.registerSaveRouter(Y5);Nt.registerLoadRouter(Y5);function Ym(e,t){return new Km(e,t)}function B9(e,t){return Ym(e,t)}var Jm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},W9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function V9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function U9(e){return new W9(e)}var J5={};Pe(J5,{confusionMatrix:()=>X9});function H9(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=It(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(ba,o,i)}var We=V({matMul_:H9});function G9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(ja,a,o)}var ec=V({oneHot_:G9});function j9(e,t){let n=D(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(ho,s,r)}var je=V({transpose_:j9});function q9(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=ec(ue(s,"int32"),n),o=ec(ue(r,"int32"),n),i=je(a),l=We(i,o);return ue(l,"int32")}var X9=V({confusionMatrix_:q9}),rs={};Pe(rs,{fromPixels:()=>tC,fromPixelsAsync:()=>Q9,toPixels:()=>eC});function Eh(e,t,n){if(ma(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=qs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}var xl;function Q5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let m=2;if(r&&e.readyState<m)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(vh(bh,L.backendName)!=null){let m={pixels:e},f={numChannels:t};return L.runKernel(bh,m,f)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(xl==null&&(xl=document.createElement("canvas").getContext("2d")),xl.canvas.width=u,xl.canvas.height=c,xl.drawImage(e,0,0,u,c),d=xl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let m=u*c;h=new Int32Array(m*t);for(let f=0;f<m;f++)for(let A=0;A<t;++A)h[f*t+A]=d[f*4+A]}return Eh(h,[c,u,t],"int32")}function K9(e){return e!=null&&e.data instanceof Uint8Array}function Z9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function Y9(e){return e!=null&&e.width!==0&&e.height!==0}function J9(e){return Z9()&&!(e instanceof ImageBitmap)&&Y9(e)&&!K9(e)}async function Q9(e,t=3){let n=null;if(ee().getBool("WRAP_TO_IMAGEBITMAP")&&J9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Q5(n,t)}async function eC(e,t){let n=D(e,"img","toPixels");if(!(e instanceof Ue)){let u=n;n=ue(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let h=0;h<a;h++){let p=o[u*a+h];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var tC=V({fromPixels_:Q5}),Qm={};Pe(Qm,{prepareAndValidate:()=>ex});function ex(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(_t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...ui(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var eA={};Pe(eA,{calculateShapes:()=>tx,validateInput:()=>nA,validateUpdateShape:()=>tA});function tA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function nA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}tA(n,t,e)}function tx(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=_t(t.shape)/i,u=[...ui(n.slice(0,r)),1],c=_t(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var An={};Pe(An,{assertParamsValid:()=>nC,computeFlatOffset:()=>rC,computeOutShape:()=>nx,getNormalizedAxes:()=>ox,isSliceContinous:()=>sC,maskToAxes:()=>Rh,parseSliceParams:()=>hx,sliceInfo:()=>aC,startForAxis:()=>cx,startIndicesWithElidedDims:()=>ix,stopForAxis:()=>dx,stopIndicesWithElidedDims:()=>lx,stridesForAxis:()=>ux,stridesWithElidedDims:()=>sx});function nC(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Rh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function nx(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function sx(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function rx(e,t,n){return n<=e?n:n-(t-1)}function ax(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function ox(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),h=new Array(u);if(t.length&&n>0){let p=t[0],m=n+1;c=ix(o,p,m,s,e),d=lx(i,p,m,r,e),h=sx(a,p,m,e)}else for(let p=0;p<u;p++)c[p]=cx(o,s,a,e,p,l),d[p]=dx(i,r,a,e,p,l),h[p]=ux(a,p,l);return{begin:c,end:d,strides:h}}function ix(e,t,n,s,r){let a=[...r],o=ax(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=rx(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function lx(e,t,n,s,r){let a=[...r],o=ax(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=rx(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Cu(0,a[i],r[i])}return a}function ux(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function cx(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Cu(0,o,l-1),o}function dx(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Cu(0,o,l):o=Cu(-1,o,l-1),o}function sC(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function rC(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function hx(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function aC(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let h=Rh(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Rh(i),f=e.slice();m.forEach(w=>{u[w]=0,c[w]=1,f.splice(w,0,1)});let{begin:A,end:g,strides:y}=ox(f,h,p,u,c,d,r,a,o);u=A,c=g,d=y;let x=Rh(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=nx(u,c,d),v=b.filter((w,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:f,outShape:v}}var oe={};Pe(oe,{Serializable:()=>px,SerializationMap:()=>wo,registerClass:()=>Vr});var px=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},wo=class{constructor(){this.classNameMap={}}static getMap(){return wo.instance==null&&(wo.instance=new wo),wo.instance}static register(e){wo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Vr(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),wo.register(e)}var fx={};Pe(fx,{TEST_EPSILON_FLOAT16:()=>mx,encodeStrings:()=>Ax,expectArrayBuffersEqual:()=>hC,expectArraysClose:()=>iC,expectArraysEqual:()=>uC,expectNumbersClose:()=>cC,expectPromiseToFail:()=>lC,expectValuesInRange:()=>dC,testEpsilon:()=>sA});var oC=.001,mx=.1;function iC(e,t,n){return n==null&&(n=sA()),rA(e,t,(s,r)=>aA(s,r,n))}function sA(){return L.backend.floatPrecision()===32?oC:mx}function rA(e,t,n){let s=!0;if((an(e)||an(t))&&(s=!1),an(e)&&an(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=qs(e),i=qs(t);if(!fr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=an(e)?e:Aa(e),a=an(t)?t:Aa(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function lC(e,t){e().then(()=>t.fail(),()=>t())}function uC(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return $r(e)||$r(e[0])||$r(t)||$r(t[0])?rA(e,n,(s,r)=>s==r):rA(e,t,(s,r)=>aA(s,r,0))}function cC(e,t,n){if(n==null&&(n=sA()),!aA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function aA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function dC(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function hC(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Ax(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Ax(n):e[t]=Gu(n)}return e}var pC="3.8.0";function fC(){ee().set("PROD",!0)}function mC(){ee().set("DEBUG",!0)}function AC(){ee().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function oA(e){ee().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}BS(oA);function gC(){L.disposeVariables()}function Ar(){return L}function _h(){return L.memory()}function yC(e){return L.profile(e)}function H(e,t){return L.tidy(e,t)}function Z(e){Lm(e).forEach(n=>n.dispose())}function Kt(e){return L.keep(e)}function xC(e){return L.time(e)}function bC(e){return L.setBackend(e)}function vC(){return L.ready()}function wC(){return L.backendName}function kC(e){L.removeBackend(e)}function iA(e){return L.findBackend(e)}function IC(e){return L.findBackendFactory(e)}function bl(e,t,n=1){return L.registerBackend(e,t,n)}function gx(){return L.backend}function SC(e,t){ee().setPlatform(e,t)}function CC(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Dr,r)}var ae=V({add_:CC});function TC(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel($a,r)}var lA=V({floorDiv_:TC});function NC(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=It(n,s),n.dtype==="int32"&&s.dtype==="int32")return lA(n,s);let r={a:n,b:s},a={};return L.runKernel(Ea,r,a)}var ce=V({div_:NC});function EC(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Ga,r)}var z=V({mul_:EC});function RC(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Ru,n)}else{let n={x:t};return L.runKernel(di,n)}}var Wt=V({abs_:RC});function _C(e){let n={x:D(e,"x","acos")};return L.runKernel(hi,n)}var yx=V({acos_:_C});function $C(e){let n={x:D(e,"x","acosh")};return L.runKernel(pi,n)}var xx=V({acosh_:$C});function FC(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!fr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(ga,s)}var $h=V({addN_:FC});function DC(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(fi,r,a)}var uA=V({all_:DC});function OC(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(mi,r,a)}var Fh=V({any_:OC});function PC(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return L.runKernel(ya,s,r)}var Xs=V({argMax_:PC});function MC(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return L.runKernel(Nu,s,r)}var bx=V({argMin_:MC});function zC(e){let n={x:D(e,"x","asin")};return L.runKernel(Ai,n)}var vx=V({asin_:zC});function LC(e){let n={x:D(e,"x","asinh")};return L.runKernel(gi,n)}var wx=V({asinh_:LC});function BC(e){let n={x:D(e,"x","atan")};return L.runKernel(yi,n)}var kx=V({atan_:BC});function WC(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(bi,r)}var Ix=V({atan2_:WC});function VC(e){let n={x:D(e,"x","atanh")};return L.runKernel(xi,n)}var Sx=V({atanh_:VC});function UC(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Nx(r);return tc(e,i,n,a,s,null,null,l)}function Cx(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Dh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return tc(e,u,n,s,r,a,!1,o)}function HC(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=dA(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Tx(e,c,n,s,r,!1,d,a)}function tc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,m]=t,[f,A]=Dh(n),[g,y]=Dh(s),x=vl(h,g),b=vl(p,y),{padInfo:v,outHeight:k,outWidth:w}=qC(r,u,c,f,A,x,b,a,i),C=o?m*d:m,E;return i==="channelsFirst"?E=[l,C,k,w]:i==="channelsLast"&&(E=[l,k,w,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:w,outChannels:C,padInfo:v,strideHeight:f,strideWidth:A,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:g,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function Tx(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,m,f,,A]=t,[g,y,x]=dA(n),[b,v,k]=dA(s),w=vl(p,b),C=vl(m,v),E=vl(f,k),{padInfo:P,outDepth:R,outHeight:_,outWidth:T}=XC(r,u,c,d,g,y,x,w,C,E,i),O=a?A*h:A,W;return o==="channelsFirst"?W=[l,O,R,_,T]:o==="channelsLast"&&(W=[l,R,_,T,O]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:R,outHeight:_,outWidth:T,outChannels:O,padInfo:P,strideDepth:g,strideHeight:y,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:w,effectiveFilterHeight:C,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function GC(e,t,n,s,r){s==null&&(s=cA(e,t,n));let a=e[0],o=e[1],i=ko((a-t+2*s)/n+1,r),l=ko((o-t+2*s)/n+1,r);return[i,l]}function jC(e,t,n,s,r,a){r==null&&(r=cA(e,t,s));let o=e[0],i=e[1],l=e[2],u=ko((o-t+2*r)/s+1,a),c=ko((i-t+2*r)/s+1,a),d=ko((l-t+2*r)/s+1,a);return[u,c,d,n]}function cA(e,t,n,s=1){let r=vl(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Dh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function dA(e){return typeof e=="number"?[e,e,e]:e}function vl(e,t){return t<=1?e:e+(e-1)*(t-1)}function qC(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=GC([t,n],a,s,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let h=Math.max(0,(c-1)*s+a-t),p=Math.max(0,(d-1)*r+o-n),m=Math.floor(h/2),f=h-m,A=Math.floor(p/2),g=p-A;u={top:m,bottom:f,left:A,right:g,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:m,right:f,type:h===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=ko((t-a+h+p)/s+1,i),d=ko((n-o+m+f)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function XC(e,t,n,s,r,a,o,i,l,u,c){let d,h,p,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let A=jC([t,n,s,1],i,1,r,e,c);h=A[0],p=A[1],m=A[2]}else if(e==="same"){h=Math.ceil(t/r),p=Math.ceil(n/a),m=Math.ceil(s/o);let f=(h-1)*r+i-t,A=(p-1)*a+l-n,g=(m-1)*o+u-s,y=Math.floor(f/2),x=f-y,b=Math.floor(A/2),v=A-b,k=Math.floor(g/2),w=g-k;d={top:b,bottom:v,left:k,right:w,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/r),p=Math.ceil((n-l+1)/a),m=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:m}}function ko(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ur(e){let[t,n,s]=Dh(e);return t===1&&n===1&&s===1}function Ks(e,t){return Ur(e)||Ur(t)}function Nx(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function KC(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Yi,s,r)}var U=V({reshape_:KC});function ZC(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;M(Ks(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(qt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(xa,u,c);return d=ue(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Oh=V({avgPool_:ZC});function YC(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(qt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Eu,u,c);return d=ue(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var hA=V({avgPool3d_:YC});function JC(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ju(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Ns(n[0]);let s=n,r={axis:t};return L.runKernel(wi,s,r)}var dt=V({concat_:JC});function QC(e){let n={x:D(e,"x","sigmoid")};return L.runKernel(so,n)}var Bn=V({sigmoid_:QC});function eT(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(tl,r,a)}var _e=V({slice_:eT});function tT(e){let n={x:D(e,"x","tanh")};return L.runKernel(co,n)}var wl=V({tanh_:tT});function nT(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),u=D(s,"data","basicLSTMCell"),c=D(r,"c","basicLSTMCell"),d=D(a,"h","basicLSTMCell"),h=dt([u,d],1),p=We(h,i),m=ae(p,l),f=m.shape[0],A=m.shape[1]/4,g=[f,A],y=_e(m,[0,0],g),x=_e(m,[0,A],g),b=_e(m,[0,A*2],g),v=_e(m,[0,A*3],g),k=ae(z(Bn(y),wl(x)),z(c,Bn(ae(o,b)))),w=z(wl(k),Bn(v));return[k,w]}var sT=V({basicLSTMCell_:nT});function rT(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(vi,a,o)}var Ph=V({batchToSpaceND_:rT});function aT(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function oT(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;s!=null&&(c=D(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:aT(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},m=L.runKernel(Fa,h,p);return U(m,o.shape)}var kl=V({batchNorm_:oT});function iT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var Ex=V({batchNorm2d_:iT});function lT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var Rx=V({batchNorm3d_:lT});function uT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var _x=V({batchNorm4d_:uT});function cT(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(Bd,a,o)}var pA=V({bincount_:cT});function dT(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ns(n);let i={x:n},l={reps:a};return L.runKernel(Pr,i,l)}var nc=V({broadcastTo_:dT});function hT(e){let n={x:D(e,"x","ceil")};return L.runKernel(wa,n)}var $x=V({ceil_:hT});function pT(e,t,n){let s=D(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Or,r,a)}var Wn=V({clipByValue_:pT});function fT(e){return dt(e,0)}var Fx=V({concat1d_:fT});function mT(e,t){return dt(e,t)}var Il=V({concat2d_:mT});function AT(e,t){return dt(e,t)}var Dx=V({concat3d_:AT});function gT(e,t){return dt(e,t)}var Ox=V({concat4d_:gT});function yT(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d"),l=D(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(qt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},m=L.runKernel(ka,h,p);return c?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Hr=V({conv2d_:yT});function xT(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(qt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Ks(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),A=Hr(h,d,[1,n],s,"NHWC",[1,a],o);return c?U(A,[A.shape[2],A.shape[3]]):U(A,[A.shape[0],A.shape[2],A.shape[3]])}var fA=V({conv1d_:xT});function bT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(qt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let h={dy:l,filter:n},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},m=L.runKernel(Ia,h,p);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var mA=V({conv2DBackpropInput_:bT});function vT(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return mA(n,o,i,s,r,"NHWC",a)}var AA=V({conv2dTranspose_:vT});function wT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Ks(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},h=L.runKernel(_u,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gA=V({conv3d_:wT});function kT(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},h=L.runKernel(Hd,c,d);return i?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Px=V({conv3DBackpropInput_:kT});function IT(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return Px(n,a,o,s,r)}var Mx=V({conv3dTranspose_:IT});function ST(e){let n={x:D(e,"x","cos")};return L.runKernel(Sa,n)}var Mh=V({cos_:ST});function CT(e){let n={x:D(e,"x","cosh")};return L.runKernel(Ca,n)}var yA=V({cosh_:CT});function TT(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Ta,a,o)}var xA=V({cumsum_:TT});function NT(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(Gd,o,i)}var zx=V({denseBincount_:NT});function ET(e,t,n="NHWC"){let s=D(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Ii,i,l)}var Lx=V({depthToSpace_:ET});function RT(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d"),l=D(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(qt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},p=L.runKernel(Na,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var sc=V({depthwiseConv2d_:RT});function _T(e){let n={x:D(e,"x","diag")};return L.runKernel(Xd,n)}var $T=V({diag_:_T});function FT(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},h=L.runKernel($u,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Bx=V({dilation2d_:FT});function DT(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Vt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function ft(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function OT(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ti,r)}var as=V({equal_:OT});function PT(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=ft(ft(a.shape,s.shape),r.shape),i=nc(a,o),l=nc(s,o),u=nc(r,o),c={condition:i,t:l,e:u};return L.runKernel(Qi,c)}var gn=V({where_:PT});function MT(e){let n={x:D(e,"x","zerosLike")};return L.runKernel(dl,n)}var qe=V({zerosLike_:MT});function zT(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=It(n,s);let r=ce(n,s),a=qe(r),o=as(s,a);return gn(o,a,r)}var Wx=V({divNoNan_:zT});function LT(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=We(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=We(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=We(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return We(n,o)}}var BT=V({dot_:LT});function WT(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Yd,n,s)}var Vx=V({einsum_:WT});function VT(e){let n={x:D(e,"x","elu")};return L.runKernel(Si,n)}var rc=V({elu_:VT});function UT(e){let t=D(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return L.runKernel(Ci,n)}var Ux=V({erf_:UT});function HT(e){let n={x:D(e,"x","exp")};return L.runKernel(Ra,n)}var os=V({exp_:HT});function GT(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Ni,s,r)}var Ft=V({expandDims_:GT});function jT(e){let n={x:D(e,"x","expm1")};return L.runKernel(Ei,n)}var Hx=V({expm1_:jT});function qT(e,t){let n=D(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Pr,s,r)}var Es=V({tile_:qT});function XT(e,t,n,s="float32"){t==null&&(t=e);let r=Be([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Es(Ft(o,0),[n[0],1,1]);if(n.length===2)return Es(Ft(Ft(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Es(Ft(Ft(Ft(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var bA=V({eye_:XT});function Sl(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(Fu,{},s)}function KT(e){let n={x:D(e,"x","floor")};return L.runKernel(_a,n)}var ac=V({floor_:KT});function ZT(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(_i,o,i)}var Cl=V({gather_:ZT});function YT(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Fi,r)}var Vn=V({greater_:YT});function JT(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Da,r)}var Io=V({greaterEqual_:JT});function QT(e){let n={input:D(e,"input","imag")};return L.runKernel(th,n)}var zh=V({imag_:QT});function eN(e){let n={x:D(e,"x","isFinite")};return L.runKernel(Di,n)}var tN=V({isFinite_:eN});function nN(e){let n={x:D(e,"x","isInf")};return L.runKernel(Oi,n)}var sN=V({isInf_:nN});function rN(e){let n={x:D(e,"x","isNaN")};return L.runKernel(Pi,n)}var Gx=V({isNaN_:rN});function aN(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(Pa,s,r)}var Lh=V({leakyRelu_:aN});function oN(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Mi,r)}var vA=V({less_:oN});function iN(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(zi,r)}var So=V({lessEqual_:iN});function jx(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(nh,{},s)}function lN(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(qt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(Pu,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var qx=V({localResponseNormalization_:lN});function uN(e){let n={x:D(e,"x","log")};return L.runKernel(Ma,n)}var is=V({log_:uN});function cN(e){let n={x:D(e,"x","log1p")};return L.runKernel(Li,n)}var Bh=V({log1p_:cN});function dN(e){return M(Fr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Wh(o),o[0]})}}function hN(e){return M(Fr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Ju(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Wh(o),o})}}function pN(e){return M(Fr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ue,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Wh(s),{grad:s[0],value:r}}}function fN(e){return M(Fr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ue),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&fn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Wh(s.grads),s}}function Xx(e,t){M(Fr(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof Ku),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Zs(e){return L.customGrad(e)}function Wh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function mN(e){let n={x:D(e,"x","neg")};return L.runKernel(Vi,n)}var St=V({neg_:mN});function AN(e){let n={x:D(e,"x","softplus")};return L.runKernel(rl,n)}var Tl=V({softplus_:AN});function gN(e){let t=D(e,"x","logSigmoid");return Zs(s=>({value:St(Tl(St(s))),gradFunc:o=>z(o,Bn(St(s)))}))(t)}var yN=V({logSigmoid_:gN});function xN(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(za,r,a)}var ls=V({max_:xN});function bN(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(lo,r)}var Ae=V({sub_:bN});function vN(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=ue(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(ao,r,a)}var ve=V({sum_:vN});function wN(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Zs((r,a)=>{let o=!0,i=ls(r,t,!0),l=Ae(r,i),u=Ae(ue(l,"float32"),is(ve(os(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,m=!0,f=os(p);return Ae(d,z(ve(d,t,m),f))}}})(n)}var wA=V({logSoftmax_:wN});function kA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Kx(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Zx(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Co(e,t){let n=t.map(s=>1);return Kx(e,n,t)}function kN(e,t,n){M(kA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Yx(e,t){if(kA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function IA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function IN(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function SN(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=xs(t,s.shape),a=ls(s,r,!0),o=Ae(s,a),i=os(o),l=ve(i,r),u=is(l),c=ae(U(a,u.shape),u);if(n){let d=Co(c.shape,r);return U(c,d)}return c}var Jx=V({logSumExp_:SN});function CN(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Bi,r)}var Rs=V({logicalAnd_:CN});function TN(e){let n={x:D(e,"x","logicalNot","bool")};return L.runKernel(Du,n)}var Vh=V({logicalNot_:TN});function NN(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ou,r)}var SA=V({logicalOr_:NN});function EN(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return ft(n.shape,s.shape),Rs(SA(e,t),Vh(Rs(e,t)))}var RN=V({logicalXor_:EN});function _N(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Ks(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(qt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Ba,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Uh=V({maxPool_:_N});function $N(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(qt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Mu,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var CA=V({maxPool3d_:$N});function FN(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(oh,o,i);return{result:l[0],indexes:l[1]}}var Qx=V({maxPoolWithArgmax_:FN});function DN(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ue(n,"int32"),s=ue(s,"int32")),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(La,r)}var gr=V({maximum_:DN});function ON(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(Wa,r,a)}var Et=V({mean_:ON});function Dt(e,t="float32"){if(t==="complex64"){let s=Dt(e,"float32"),r=Dt(e,"float32");return Lr(s,r)}let n=Md(_t(e),t);return L.makeTensor(n,e,t)}function Un(e,t="float32"){if(t==="complex64"){let s=Un(e,"float32"),r=Dt(e,"float32");return Lr(s,r)}let n=Sm(_t(e),t);return L.makeTensor(n,e,t)}function PN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof Ue?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof Ue?t.dtype:"float32"),a=_t(s.shape),o=_t(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[We(Un([o,1],s.dtype),s),We(r,Un([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[We(s,Un([1,o],s.dtype)),We(Un([a,1],r.dtype),r)])}function MN(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(Va,r,a)}var Hh=V({min_:MN});function zN(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ue(n,"int32"),s=ue(s,"int32")),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ua,r)}var oc=V({minimum_:zN});function LN(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(Ha,o,a)}var eb=V({mirrorPad_:LN});function BN(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Wi,r)}var tb=V({mod_:BN});function WN(e){let t=D(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var it=V({square_:WN});function VN(e,t=null,n=!1){e=D(e,"x","moments");let s=xs(t,e.shape),r=Et(e,s,n),a=r.shape;n||(a=Co(r.shape,s));let o=it(Ae(ue(e,"float32"),U(r,a))),i=Et(o,s,n);return{mean:r,variance:i}}var Gh=V({moments_:VN});function UN(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=Ju(n,"c","multiRNNCell"),o=Ju(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let h=e[d](i,a[d],o[d]);l.push(h[0]),l.push(h[1]),i=h[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var HN=V({multiRNNCell_:UN});function GN(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(ih,l,u);return o===1?U(c,[c.size]):c}var nb=V({multinomial_:GN});function jN(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ui,r)}var Nl=V({notEqual_:jN});function qN(e){let n={x:D(e,"x","onesLike")};return L.runKernel(qi,n)}var us=V({onesLike_:qN});function XN(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return We(r,a)}var KN=V({outerProduct_:XN});function ZN(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(qa,a,r)}var Gr=V({pad_:ZN});function YN(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Gr(e,[t],n)}var JN=V({pad1d_:YN});function QN(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var eE=V({pad2d_:QN});function tE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var nE=V({pad3d_:tE});function sE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var rE=V({pad4d_:sE});function aE(e,t,n){let s=D(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(al,r,a)}var jh=V({spaceToBatchND_:aE});function oE(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=D(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Ks(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=Cx(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=lE([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,m]=iE([u.inHeight,u.inWidth],c,d),f=h?s:"valid",A=h?i:jh(i,c,p),y=(n==="avg"?()=>Oh(A,t,a,f):()=>Uh(A,t,a,f))(),x=h?y:Ph(y,c,m);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function iE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function lE(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var uE=V({pool_:oE});function cE(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Xa,r)}var jr=V({pow_:cE});function dE(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(Ka,r)}var qh=V({prelu_:dE});function hE(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=ue(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Ki,r,a)}var TA=V({prod_:hE});function pE(e,t,n){let s=_t(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var fE=V({rand_:pE}),NA=fa(s5()),EA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=NA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},mE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=NA.alea(r.toString()),this.randn=new EA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},AE=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=NA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function gE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new mE(t,n,s,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var yE=V({randomGamma_:gE});function xE(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new EA(t,n,s,!1,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var sb=V({randomNormal_:xE});function bE(e,t=0,n=1,s="float32",r){let a=Be(e,s),o=new AE(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var El=V({randomUniform_:bE});function Rl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(zu,{},r)}function vE(e){let n={input:D(e,"input","real")};return L.runKernel(lh,n)}var ic=V({real_:vE});function wE(e){let n={x:D(e,"x","reciprocal")};return L.runKernel(Zi,n)}var rb=V({reciprocal_:wE});function kE(e){let n={x:D(e,"x","relu")};return L.runKernel(Za,n)}var Ys=V({relu_:kE});function IE(e){let n={x:D(e,"x","relu6")};return L.runKernel(Ja,n)}var RA=V({relu6_:IE});function SE(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return L.runKernel(Qa,s,r)}var cs=V({reverse_:SE});function CE(e){let t=D(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),cs(t,0)}var TE=V({reverse1d_:CE});function NE(e,t){let n=D(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),cs(n,t)}var EE=V({reverse2d_:NE});function RE(e,t){let n=D(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),cs(n,t)}var _E=V({reverse3d_:RE});function $E(e,t){let n=D(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),cs(n,t)}var FE=V({reverse4d_:$E});function DE(e){let n={x:D(e,"x","round")};return L.runKernel(eo,n)}var _A=V({round_:DE});function OE(e){let n={x:D(e,"x","rsqrt")};return L.runKernel(to,n)}var $A=V({rsqrt_:OE});function Ie(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Br(e,[],[],t)}function PE(e){let n={x:D(e,"x","selu")};return L.runKernel(el,n)}var FA=V({selu_:PE});function ME(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),u=D(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];M(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let m=sc(c,l,s,r,o,a),A=Hr(m,u,1,"valid",o);return d?U(A,[A.shape[1],A.shape[2],A.shape[3]]):A}var ab=V({separableConv2d_:ME});async function zE(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Bt([i],n.dtype),u=new Bt([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var ob=zE;function LE(e){let n={x:D(e,"x","sign")};return L.runKernel(sl,n)}var ib=V({sign_:LE});function BE(e){let n={x:D(e,"x","sin")};return L.runKernel(no,n)}var DA=V({sin_:BE});function WE(e){let n={x:D(e,"x","sinh")};return L.runKernel(nl,n)}var OA=V({sinh_:WE});function VE(e,t,n){let s=D(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var Xh=V({slice1d_:VE});function UE(e,t,n){let s=D(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var PA=V({slice2d_:UE});function HE(e,t,n){let s=D(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Kh=V({slice3d_:HE});function GE(e,t,n){let s=D(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var lc=V({slice4d_:GE});function jE(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(oo,s,r)}var Zh=V({softmax_:jE});function qE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Qd,t)}var Yh=V({fft_:qE});function XE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(eh,t)}var uc=V({ifft_:XE});function KE(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=uc(r)}else{let r=[n,2*(t-1)],a=U(ic(e),[n,t]),o=U(zh(e),[n,t]),i=cs(_e(a,[0,1],[n,t-2]),1),l=z(cs(_e(o,[0,1],[n,t-2]),1),Ie(-1)),u=dt([a,i],1),c=dt([o,l],1),d=U(Lr(u,c),[r[0],r[1]]);s=uc(d)}if(s=ic(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var MA=V({irfft_:KE});function ZE(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(ol,r,a)}var nn=V({split_:ZE});function YE(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,r=_e(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=dt([e,Dt(m)],e.shape.length-1),n=t}else r=e;let a=qe(r),o=U(Lr(r,a),[s,n]),i=Yh(o),l=Math.floor(n/2)+1,u=ic(i),c=zh(i),d=nn(u,[l,n-l],u.shape.length-1),h=nn(c,[l,n-l],c.shape.length-1),p=r.shape.slice();return p[r.shape.length-1]=l,U(Lr(d[0],h[0]),p)}var Jh=V({rfft_:YE});function JE(e){let n={x:D(e,"x","sqrt")};return L.runKernel(ro,n)}var ln=V({sqrt_:JE});function QE(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=It(n,s),ft(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(io,r,a)}var zA=V({squaredDifference_:QE});function eR(e,t){let n=D(e,"x","squeeze");return U(n,o5(n.shape,t).newShape)}var mt=V({squeeze_:eR});function tR(e,t=0){let n=Ju(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Xi,s,r)}var Nn=V({stack_:tR});function nR(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return L.runKernel(Mr,s,r)}var cc=V({step_:nR});function sR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:D(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(il,c,d)}var lb=V({stridedSlice_:sR});function rR(e){let n={x:D(e,"x","tan")};return L.runKernel(uo,n)}var ub=V({tan_:rR});function Ot(e,t){ma(e);let n=qs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Br(e,null,n,t)}function _s(e,t,n){if(ma(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=qs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Br(e,t,s,n)}function aR(e,t,n){if(ma(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=qs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}function oR(e,t,n){if(ma(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=qs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}function iR(e,t,n){if(ma(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=qs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Br(e,t,s,n)}function lR(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(ll,a,o);return{values:i,indices:l}}var cb=V({topk_:lR});function uR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new EA(t,n,s,!0,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Qh=V({truncatedNormal_:uR});function cR(e,t=0){let n=D(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(xh,s,r);return{values:a,indices:o}}var LA=V({unique_:cR});function dR(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");M(qt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(Wu,a,o)}var db=V({unsortedSegmentSum_:dR});function hR(e,t=0){let n=D(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(cl,s,r)}var ds=V({unstack_:hR});function hb(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function pb(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Be(e,"int32"),r=Be([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function pR(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=pb(t.shape,n);return e!==t&&t.dispose(),s}var BA=pR;async function fR(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),fn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=a;f<a+o;f++)l*=i[f];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),d=U(r,[-1]),h=await BA(d),p=mt(h,[1]),m=Cl(c,p,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),p.dispose(),c.dispose(),d.dispose(),h.dispose(),m}var mR=fR;function AR(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=fb(e,t,n),a=r.shape;if(s){let o=xs(n,e.shape);a=Co(r.shape,o)}return U(r,a)}function fb(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return fb(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Wt(e),n);if(t===1/0)return ls(Wt(e),n);if(t===-1/0)return Hh(Wt(e),n);if(t==="euclidean"||t===2)return ln(ve(jr(Wt(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ls(ve(Wt(e),n[0]),n[1]-1);if(t===1/0)return ls(ve(Wt(e),n[1]),n[0]);if(t===-1/0)return Hh(ve(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(ve(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var WA=V({norm_:AR});function gR(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");T5(a,o),M(fr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ie(1),u=Ae(l,i),c=z(Ae(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=D(s,"step","movingAverage");c=ce(c,Ae(l,jr(i,d)))}return ae(a,c)}var yR=V({movingAverage_:gR});function xR(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");nA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Ji,a,o)}var mb=V({scatterND_:xR});function bR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function vR(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense"),o=D(s,"defaultValue","sparseToDense",a.dtype);bR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(mh,i,l)}var VA=V({sparseToDense_:vR});function wR(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel($i,r)}var Ab=V({gatherND_:wR});function kR(e,t){if(t==null)return e.shape.slice();if(fr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function IR(e,t,n,s){let r=D(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ue?r.clone():r;let a=kR(r,n),o=1-t,i=ce(ac(ae(El(a,0,1,"float32",s),o)),o);return z(r,i)}var gb=V({dropout_:IR});function yb(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function UA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Ot(r,"float32")}async function SR(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),fn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=i5("bool",l);for(let d=0;d<l;d++){let h=d*u,p=o.subarray(h,h+u),m=[];for(let f=0;f<p.length;f++)m.push({value:p[f],index:f});m.sort((f,A)=>A.value-f.value),c[d]=0;for(let f=0;f<n;f++)if(m[f].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),on(c,r.shape,"bool")}var CR=SR,qr={};Pe(qr,{conv2d:()=>ER,depthwiseConv2d:()=>FR,matMul:()=>OR});function TR(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(qt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(Vd,d,h)}var HA=V({conv2DBackpropFilter_:TR});function ep(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,cc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function tp(e,t){let n=t,s=Vt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function np(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Ys(e);if(t==="elu")return rc(e);if(t==="relu6")return RA(e);if(t==="prelu")return qh(e,n);if(t==="leakyrelu")return Lh(e,s);if(t==="sigmoid")return Bn(e);throw new Error(`Unknown fused activation ${t}.`)}var sp=(e,t)=>!(e>0)||t==="linear";function NR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",sp(L.state.gradientDepth,l)===!1){let v=Hr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),np(v,l,u,c)}let d=D(e,"x","conv2d"),h=D(t,"filter","conv2d"),p=d,m=!1;d.rank===3&&(m=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&M(qt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),M(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=tc(p.shape,h.shape,n,a,s,o),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),ft(f.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[w,C,E,P]=k,R=ep(v,E,l);M(Ur(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=mA(C.shape,R,w,n,s),T=HA(C,R,w.shape,n,s),O=[_,T];if(P!=null){let W=tp(P,R);O.push(W)}return O},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(fo,x,b);return C([w,k,E]),m&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let P=L.runKernel(fo,x,b);return E([w,k,P,C]),m&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(p,h,A)}var ER=V({fusedConv2d_:NR});function RR(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(jd,u,c)}var xb=V({depthwiseConv2dNativeBackpropFilter_:RR});function _R(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(qd,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var bb=V({depthwiseConv2dNativeBackpropInput_:_R});function $R({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(sp(L.state.gradientDepth,l)===!1){let v=sc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),np(v,l,u,c)}let d=D(e,"x","depthwiseConv2d"),h=D(t,"filter","depthwiseConv2d"),p=d,m=!1;d.rank===3&&(m=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),M(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),M(Ks(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(qt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let f=tc(p.shape,h.shape,n,a,s,o,!0),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),ft(f.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(Ur(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,C,E,P]=k,R=ep(v,E,l),_=bb(C.shape,R,w,n,s,a,o),T=xb(C,R,w.shape,n,s,a,o);if(P!=null){let O=tp(A,R);return[_,T,O]}return[_,T]},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(mo,x,b);return C([w,k,E]),m&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let P=L.runKernel(mo,x,b);return E([w,k,P,C]),m&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(p,h,A)}var FR=V({fusedDepthwiseConv2d_:$R});function DR({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(sp(L.state.gradientDepth,a)===!1){let P=We(e,t,n,s);return r!=null&&(P=ae(P,r)),np(P,a,o,i)}let l=D(e,"a","fused matMul"),u=D(t,"b","fused matMul");[l,u]=It(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=s?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=_t(m),g=_t(f);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(fr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([h,p]),x=n?U(l,[A,c,h]):U(l,[A,h,c]),b=s?U(u,[g,p,d]):U(u,[g,d,p]),v;r!=null&&(v=D(r,"bias","fused matMul"),[v]=It(v,l),ft(y,v.shape));let k;o!=null&&(k=D(o,"prelu weights","fused matMul"));let w=(P,R)=>{let[_,T,O,W]=R,j=ep(U(P,O.shape),O,a),q,X;if(!n&&!s?(q=We(j,T,!1,!0),X=We(_,j,!0,!1)):!n&&s?(q=We(j,T,!1,!1),X=We(j,_,!0,!1)):n&&!s?(q=We(T,j,!1,!0),X=We(_,j,!1,!1)):(q=We(T,j,!0,!0),X=We(j,_,!0,!0)),r!=null){let Q=tp(W,j);return[q,X,Q]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},E={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Zs((R,_,T)=>{let O=L.runKernel(po,C,E);return T([R,_,O]),{value:U(O,y),gradFunc:w}})(x,b):Zs((R,_,T,O)=>{let W=L.runKernel(po,C,E);return O([R,_,W,T]),{value:U(W,y),gradFunc:w}})(x,b,v)}var OR=V({fusedMatMul_:DR});function PR(e){return UA(e,.54,.46)}var MR=V({hammingWindow_:PR});function zR(e){return UA(e,.5,.5)}var vb=V({hannWindow_:zR});function LR(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=dt([_e(e,a,t-i),Sl([i],r)]);o.push(l),a+=n}return o.length===0?_s([],[0,t]):U(dt(o),[o.length,t])}var wb=V({frame_:LR});function BR(e,t,n,s,r=vb){s==null&&(s=yb(t));let a=wb(e,t,n),o=z(a,r(t));return Jh(o,s)}var WR=V({stft_:BR});function VR(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(ki,c,d)}var UR=V({cropAndResize_:VR});function HR(e){let t=D(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Ri,n,{})}var GR=V({flipLeftRight_:HR});function jR(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(hl,a,o)}var qR=V({rotateWithOffset_:jR});function _l(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function XR(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression"),o=D(t,"scores","nonMaxSuppression"),i=_l(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(Hi,{boxes:a,scores:o},l)}var KR=V({nonMaxSuppression_:XR});function ZR(e,t,n){let s=YR(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function YR(e,t,n){return QR(e,t,n||JR)}function JR(e,t){return e>t?1:e<t?-1:0}function QR(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function kb(e,t,n,s,r){return GA(e,t,n,s,r,0)}function Ib(e,t,n,s,r,a){return GA(e,t,n,s,r,0,!1,a,!0)}function Sb(e,t,n,s,r,a){return GA(e,t,n,s,r,a,!0)}function GA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>r&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(Cb);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length<n&&u.length>0;){let A=u.pop(),{score:g,boxIndex:y,suppressBeginIndex:x}=A;if(g<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=e_(e,y,d[v]);if(k>=s){b=!0;break}if(A.score=A.score*t_(s,c,k),A.score<=r)break}A.suppressBeginIndex=d.length,b||(A.score===g?(d.push(y),h.push(A.score)):A.score>r&&ZR(u,A,Cb))}let p=d.length,m=n-p;i&&m>0&&(d.push(...new Array(m).fill(0)),h.push(...new Array(m).fill(0)));let f={selectedIndices:d};return o&&(f.selectedScores=h),l&&(f.validOutputs=p),f}function e_(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),h=Math.max(r[1],r[3]),p=(i-a)*(l-o),m=(d-u)*(h-c);if(p<=0||m<=0)return 0;let f=Math.max(a,u),A=Math.max(o,c),g=Math.min(i,d),y=Math.min(l,h),x=Math.max(g-f,0)*Math.max(y-A,0);return x/(p+m-x)}function t_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Cb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function n_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=_l(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=kb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ot(d,"int32")}var s_=n_;function r_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=_l(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(ji,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var a_=V({nonMaxSuppressionWithScore_:r_});async function o_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=_l(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=Sb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(h,"int32"),selectedScores:Ot(p)}}var i_=o_;function l_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=_l(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},m=L.runKernel(Gi,h,p);return{selectedIndices:m[0],validOutputs:m[1]}}var u_=V({nonMaxSuppressionPadded_:l_});async function c_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=_l(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:m,validOutputs:f}=Ib(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(m,"int32"),validOutputs:Ie(f,"int32")}}var d_=c_;function h_(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Ya,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var p_=V({resizeBilinear_:h_});function f_(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Lu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var m_=V({resizeNearestNeighbor_:f_});function A_(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ot([s]),255),c,d,h,p;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,h]=nn(r,[1,1,1],-1);let A=z(c,a),g=z(d,o),y=z(h,i);p=ae(ae(A,g),y)}else p=e;if(t==="otsu"){let A=pA(ue(_A(p),"int32"),on([]),256);u=g_(A,l)}let m=n?So(p,u):Vn(p,u);return ue(z(m,255),"int32")}function g_(e,t){let n=Ot([-1]),s=Ot([0]),r=Ot([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),u=ce(ve(a),t),c=ce(ve(o),t);let h=ve(z(a,Rl(0,a.size)));i=ce(h,ve(a));let p=Sl(o.shape,a.size),m=ae(Rl(0,o.size),p),f=z(o,m);l=ce(ve(f),ve(o));let A=Ae(i,l),g=Ae(i,l),y=z(u,c);r=z(z(y,A),g);let x=Vn(r,s);s=gn(x,r,s),n=gn(x,Ot([d]),n)}return n}var y_=V({threshold_:A_});function x_(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(ul,l,u)}var b_=V({transform_:x_});function v_(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Rl(0,a,1,"int32"),[-1,1]),l=Rl(0,o,1,"int32"),u=Ae(i,l),c=Rs(So(u,Ie(+t,"int32")),Io(u,Ie(-n,"int32"))),d=Dt([a,o],s.dtype);return U(Nn(ds(U(s,[-1,a,o])).map(h=>gn(c,h,d))),r)}var w_=V({bandPart_:v_});function k_(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=nn(e,e.shape[0],0).map(r=>mt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(ve(z(n[o],a)),n[o]);a=Ae(a,i)}return ce(a,WA(a,"euclidean"))}));return t?Nn(n,0):n}var I_=V({gramSchmidt_:k_});function S_(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Tb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ds(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Tb(l,t);r.push(u),a.push(c)});let o=U(Nn(r,0),e.shape),i=U(Nn(a,0),e.shape);return[o,i]}}function Tb(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=bA(n),a=Ns(e),o=_s([[1]],[1,1]),i=Ns(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,h=r;[i,a,r]=L.tidy(()=>{let p=_e(a,[u,u],[n-u,1]),m=WA(p),f=_e(a,[u,u],[1,1]),A=gn(Vn(f,0),_s([[-1]]),_s([[1]])),g=Ae(f,z(A,m)),y=ce(p,g);y.shape[0]===1?i=Ns(o):i=dt([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=St(ce(We(A,g),m)),b=_e(a,[u,0],[n-u,s]),v=z(x,i),k=je(i);if(u===0)a=Ae(b,We(v,We(k,b)));else{let E=Ae(b,We(v,We(k,b)));a=dt([_e(a,[0,0],[u,s]),E],0)}let w=je(v),C=_e(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=Ae(C,We(We(C,i),w));else{let E=Ae(C,We(We(C,i),w));r=dt([_e(r,[0,0],[n,u]),E],1)}return[i,a,r]}),Z([c,d,h])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var C_=V({qr_:S_}),yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(yn||(yn={}));function T_(e,t,n=yn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===yn.NONE)return a;if(n===yn.SUM)return ve(a);if(n===yn.MEAN){if(r==null)return Et(a);{let o=s.size/r.size,i=ce(ve(a),ve(r));return o>1?ce(i,Ie(o)):i}}if(n===yn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ce(ve(a),Ie(s.size));{let o=z(r,Un(s.shape)),i=ue(ve(Nl(o,Ie(0))),"float32");return ce(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var yr=V({computeWeightedLoss_:T_});function N_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),fn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Wt(Ae(r,a));return yr(i,o,s)}var E_=V({absoluteDifference_:N_});function R_(e,t,n,s,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),fn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=Ae(l,ve(z(a,o),n,!0));return yr(u,i,r)}var __=V({cosineDistance_:R_});function $_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),fn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=Ae(z(Ie(2),r),i);let l=Ys(Ae(i,z(r,a)));return yr(l,o,s)}var F_=V({hingeLoss_:$_});function D_(e,t,n,s=1,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),fn(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=Wt(Ae(o,a)),c=oc(u,l),d=Ae(u,c),h=ae(z(Ie(.5),it(c)),z(l,d));return yr(h,i,r)}var O_=V({huberLoss_:D_});function P_(e,t,n,s=1e-7,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),fn(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=St(z(a,is(ae(o,u)))),d=z(Ae(l,a),is(ae(Ae(l,o),u))),h=Ae(c,d);return yr(h,i,r)}var M_=V({logLoss_:P_});function z_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),fn(r.shape,a.shape,"Error in meanSquaredError: ");let i=zA(r,a);return yr(i,o,s)}var L_=V({meanSquaredError_:z_});function B_(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");fn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ys(s),a=z(s,n),o=Bh(os(St(Wt(s))));return ae(Ae(r,a),o)}function W_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),fn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(.5);a=ae(z(a,Ae(c,u)),z(d,u))}let l=B_(a,o);return yr(l,i,r)}var V_=V({sigmoidCrossEntropy_:W_});function U_(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Zs((r,a,o)=>{let l=Jx(a,[n],!0),u=Ae(ue(a,"float32"),l);o([r,u]);let c=St(z(u,r));return{value:ve(c,[n]),gradFunc:(p,m)=>{let[f,A]=m,g=Co(p.shape,[n]);return[z(U(p,g),Ae(ue(f,"float32"),os(A))),z(U(p,g),Ae(os(A),ue(f,"float32")))]}}})(e,t)}function H_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),fn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(a.shape[1]);a=ae(z(a,Ae(c,u)),ce(u,d))}let l=U_(a,o);return yr(l,i,r)}var G_=V({softmaxCrossEntropy_:H_});function j_(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(dh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var q_=V({sparseFillEmptyRows_:j_});function X_(e,t,n){let s=D(e,"inputIndices","sparseReshape"),r=D(t,"inputShape","sparseReshape"),a=D(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(hh,o);return{outputIndices:i[0],outputShape:i[1]}}var K_=V({sparseReshape_:X_});function Z_(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean"),a=D(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(ph,o)}var Y_=V({sparseSegmentMean_:Z_});function J_(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum"),a=D(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(fh,o)}var Q_=V({sparseSegmentSum_:J_});function e$(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=D(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=L.runKernel(Ah,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var t$=V({stringNGrams_:e$});function n$(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(gh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var s$=V({stringSplit_:n$});function r$(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(yh,r,s)}var a$=V({stringToHashBucketFast_:r$}),o$={fft:Yh,ifft:uc,rfft:Jh,irfft:MA},i$={hammingWindow:MR,hannWindow:vb,frame:wb,stft:WR},Re={flipLeftRight:GR,resizeNearestNeighbor:m_,resizeBilinear:p_,rotateWithOffset:qR,cropAndResize:UR,nonMaxSuppression:KR,nonMaxSuppressionAsync:s_,nonMaxSuppressionWithScore:a_,nonMaxSuppressionWithScoreAsync:i_,nonMaxSuppressionPadded:u_,nonMaxSuppressionPaddedAsync:d_,threshold:y_,transform:b_},Nb={bandPart:w_,gramSchmidt:I_,qr:C_},l$={absoluteDifference:E_,computeWeightedLoss:yr,cosineDistance:__,hingeLoss:F_,huberLoss:O_,logLoss:M_,meanSquaredError:L_,sigmoidCrossEntropy:V_,softmaxCrossEntropy:G_},dc={sparseFillEmptyRows:q_,sparseReshape:K_,sparseSegmentMean:Y_,sparseSegmentSum:Q_},rp={stringNGrams:t$,stringSplit:s$,stringToHashBucketFast:a$},xr=class extends px{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Z(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Xx(e,t)}dispose(){this.iterations_!=null&&Z(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(xr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ap=class extends xr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>qe(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(z(i,this.rho),z(it(o),1-this.rho)),c=z(ce(ln(ae(l,this.epsilon)),ln(ae(i,this.epsilon))),o),d=ae(z(l,this.rho),z(it(c),1-this.rho));i.assign(u),l.assign(d);let h=ae(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Z(this.accumulatedGrads.map(e=>e.variable)),Z(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ap.className="Adadelta";Vr(ap);var op=class extends xr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Sl(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,it(a));o.assign(i);let l=ae(z(ce(a,ln(ae(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Z(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};op.className="Adagrad";Vr(op);var ip=class extends xr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=Ae(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>qe(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>qe(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=ae(z(c,this.beta2),z(it(l),1-this.beta2)),p=ce(d,n),m=ce(h,s);u.assign(d),c.assign(h);let f=ae(z(ce(p,ae(ln(m),this.epsilon)),-this.learningRate),o);o.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Z(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(jr(this.beta1,this.iterations_+1)),this.accBeta2.assign(jr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};ip.className="Adam";Vr(ip);var lp=class extends xr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=ce(-this.learningRate,ae(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:qe(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:qe(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=z(c,this.beta2),p=Wt(l),m=gr(h,p);u.assign(d),c.assign(m);let f=ae(z(ce(s,n),ce(d,ae(m,this.epsilon))),o);o.assign(f)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Z(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};lp.className="Adamax";Vr(lp);var hc=class extends xr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=ae(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Kt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};hc.className="SGD";Vr(hc);var up=class extends hc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(z(this.m,a),o);this.useNesterov?i=ae(z(this.c,ae(o,z(l,this.m))),r):i=ae(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Z(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};up.className="Momentum";Vr(up);var cp=class extends xr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(z(i,this.decay),z(it(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(z(c,this.decay),z(o,1-this.decay)),h=ce(z(o,this.learningRate),ln(Ae(u,ae(it(d),this.epsilon)))),p=ae(z(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let m=Ae(r,p);r.assign(m)}else{let c=ae(z(i,this.decay),z(it(o),1-this.decay)),d=ae(z(l,this.momentum),ce(z(o,this.learningRate),ln(ae(c,this.epsilon))));i.assign(c),l.assign(d);let h=Ae(r,d);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Z(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Z(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Z(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};cp.className="RMSProp";Vr(cp);var To=class{static sgd(e){return new hc(e)}static momentum(e,t,n=!1){return new up(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new cp(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new ip(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ap(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new lp(e,t,n,s,r)}static adagrad(e,t=.1){return new op(e,t)}},No={sgd:To.sgd,momentum:To.momentum,adadelta:To.adadelta,adagrad:To.adagrad,rmsprop:To.rmsprop,adamax:To.adamax,adam:To.adam},u$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function dp(){return new Promise(e=>u$(()=>e()))}var $={};Pe($,{ERF_A1:()=>b$,ERF_A2:()=>v$,ERF_A3:()=>w$,ERF_A4:()=>k$,ERF_A5:()=>I$,ERF_P:()=>x$,PARALLELIZE_THRESHOLD:()=>jA,SELU_SCALE:()=>Rb,SELU_SCALEALPHA:()=>Eb,applyActivation:()=>np,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>kN,assertParamsConsistent:()=>c$,assignToTypedArray:()=>$$,axesAreInnerMostDims:()=>kA,calculateShapes:()=>tx,checkEinsumDimSizes:()=>z$,combineLocations:()=>Kx,complexWithEvenIndex:()=>E$,complexWithOddIndex:()=>R$,computeConv2DInfo:()=>tc,computeConv3DInfo:()=>Tx,computeDefaultPad:()=>cA,computeDilation2DInfo:()=>UC,computeOptimalWindowSize:()=>h$,computeOutAndReduceShapes:()=>Zx,computeOutShape:()=>d$,computePool2DInfo:()=>Cx,computePool3DInfo:()=>HC,convertConv2DDataFormat:()=>Nx,decodeEinsumEquation:()=>P$,eitherStridesOrDilationsAreOne:()=>Ks,expandShapeToKeepDim:()=>Co,exponent:()=>D$,exponents:()=>F$,fromStringArrayToUint8:()=>q$,fromUint8ToStringArray:()=>j$,getAxesPermutation:()=>Yx,getBroadcastDims:()=>DT,getComplexWithIndex:()=>_$,getEinsumComputePath:()=>L$,getEinsumPermutation:()=>M$,getFusedBiasGradient:()=>tp,getFusedDyActivation:()=>ep,getImageCenter:()=>p$,getInnerMostAxes:()=>IN,getPermuted:()=>m$,getReductionAxes:()=>Vt,getReshaped:()=>f$,getReshapedPermuted:()=>A$,getSliceBeginCoords:()=>g$,getSliceSize:()=>y$,getUndoAxesPermutation:()=>IA,isIdentityPermutation:()=>B$,log:()=>C$,mergeRealAndImagArrays:()=>T$,prepareAndValidate:()=>ex,prepareSplitSize:()=>V$,segment_util:()=>Fb,shouldFuse:()=>sp,slice_util:()=>An,splitRealAndImagArrays:()=>N$,tupleValuesAreOne:()=>Ur,upcastType:()=>bs,validateInput:()=>nA,validateUpdateShape:()=>tA,warn:()=>S$});function c$(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function d$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var jA=30;function h$(e){return e<=jA?e:Pd(e,Math.floor(Math.sqrt(e)))}function p$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function f$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function m$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function A$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function g$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function y$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Eb=1.7580993408473768,Rb=1.0507009873554805,x$=.3275911,b$=.254829592,v$=-.284496736,w$=1.421413741,k$=-1.453152027,I$=1.061405429;function S$(...e){ee().getBool("IS_TEST")||console.warn(...e)}function C$(...e){ee().getBool("IS_TEST")||console.log(...e)}function T$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function N$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function E$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function R$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function _$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function $$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function F$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function D$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var qA="->",O$=/->/g,_b=",",$b="...";function P$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(O$,"").length)/qA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${qA}").`);let[s,r]=e.split(qA);M(s.indexOf($b)===-1,()=>`The ellipsis notation ("${$b}") is not supported yet.`);let a=s.split(_b),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;h<r.length;++h){let p=r[h];if(!a.some(m=>m.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;h<s.length;++h){let p=s[h];i.indexOf(p)===-1&&p!==_b&&i.push(p)}let l=new Array(a.length);for(let h=0;h<o;++h){if(new Set(a[h].split("")).size!==a[h].length)throw new Error(`Found duplicate axes in input component ${a[h]}. Support for duplicate axes in input is not implemented yet.`);l[h]=[];for(let p=0;p<a[h].length;++p)l[h].push(i.indexOf(a[h][p]))}let u=i.length,c=r.length,d=[];for(let h=c;h<u;++h)d.push(h);return{allDims:i,summedDims:d,idDims:l}}function M$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function z$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function L$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=W$(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function B$(e){return e.every((t,n)=>t===n)}function W$(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function V$(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Fb={};Pe(Fb,{collectGatherOpShapeInfo:()=>G$,computeOutShape:()=>H$,segOpComputeOptimalWindowSize:()=>U$});function U$(e,t){let n=!1,s;for(e<=jA?(s=e,n=!0):s=Pd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Pd(e,s+1);return s}function H$(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function G$(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function j$(e){try{return e.map(t=>Ih(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function q$(e){return e.map(t=>Gu(t))}var Js={};Pe(Js,{nonMaxSuppressionV3Impl:()=>kb,nonMaxSuppressionV4Impl:()=>Ib,nonMaxSuppressionV5Impl:()=>Sb,whereImpl:()=>pb});var Db={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,cc(ue(n,"float32"),-1))}}},X$={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=it(ue(n,"float32")),r=ln(Ae(Ie(1),s));return St(ce(e,r))}}}},K$={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(Ae(it(ue(n,"float32")),1));return ce(e,s)}}}},Z$={kernelName:Dr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},Y$={kernelName:ga,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},J$={kernelName:ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},Q$={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},eF={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,ln(Ae(Ie(1),it(ue(n,"float32")))))}}},tF={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(ae(Ie(1),it(ue(n,"float32"))));return ce(e,s)}}}},nF={kernelName:bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=ae(it(n),it(s)),l=z(e,ce(s,i)),u=Vt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(it(n),it(s)),l=St(z(e,ce(n,i))),u=Vt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},sF={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,ae(it(ue(n,"float32")),1))}}},rF={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,Ae(Ie(1),it(ue(n,"float32"))))}}};function aF(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(qt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},h={filterSize:n,strides:s,pad:r,dimRoundingMode:a},p=L.runKernel(Ld,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var oF=V({avgPool3dGrad_:aF}),iF={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>oF(e,s,r,a,o,i)}}};function lF(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},h=L.runKernel(zd,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var uF=V({avgPoolGrad_:lF}),cF={kernelName:xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>uF(e,s,r,a,o)}}},dF={kernelName:ba,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>We(e,r,!1,!0),b:()=>We(s,e,!0,!1)}:!a&&o?{a:()=>We(e,r,!1,!1),b:()=>We(e,s,!0,!1)}:a&&!o?{a:()=>We(r,e,!1,!0),b:()=>We(s,e,!1,!1)}:{a:()=>We(r,e,!0,!0),b:()=>We(e,s,!0,!0)}}},hF={kernelName:vi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>jh(e,s,r)}}},pF={kernelName:y5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ve(e,i,!0)}}},fF={kernelName:va,gradFunc:e=>({x:()=>e.clone()})},mF={kernelName:wa,gradFunc:e=>({x:()=>qe(e)})},AF={kernelName:Or,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>gn(Rs(Io(s,r),So(s,a)),e,qe(e))}}},gF={kernelName:Ru,inputsToSave:["x"],gradFunc:Db.gradFunc},yF={kernelName:wi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=xs(r,t[0].shape)[0],o=s.map(l=>l[a]);return nn(e,o,a).map(l=>()=>l)}},xF={kernelName:ka,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Ur(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>mA(s.shape,e,r,o,i,l),filter:()=>HA(s,e,r.shape,o,i,l)}}},bF={kernelName:Ia,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Hr(e,r,a,o,i,1,l),filter:()=>HA(e,s,r.shape,a,o,i,l)}}};function vF(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Ud,i,l)}var wF=V({conv3DBackpropFilter_:vF}),kF={kernelName:_u,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Ur(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Px(o.shape,e,i,r,a),filter:()=>wF(o,e,i.shape,r,a)}}},IF={kernelName:Sa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St(DA(ue(n,"float32"))),e)}}},SF={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(OA(ue(n,"float32")),e)}}},CF={kernelName:Ta,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Yx([r],s.rank),l=xA(e,r,a,!o);return i!=null&&(l=je(l,i)),l}}}},TF={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Ur(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(Ks(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(qt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>bb(l.shape,e,u,r,a,s,o),filter:()=>xb(l,e,u.shape,r,a,s,o)}}},NF={kernelName:$u,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(Kd,a,n),filter:()=>L.runKernel(Zd,o,n)}}},EF={kernelName:Si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(Jd,s)}}},RF={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(os(St(it(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},_F={kernelName:Ra,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},$F={kernelName:Ni,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},FF={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,os(n))}}},DF={kernelName:_a,gradFunc:e=>({x:()=>qe(e)})},OF={kernelName:$a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=ce(e,ue(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ue(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=it(s);return St(ce(i,ue(u,"float32")))}}}},PF={kernelName:Fa,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Vt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=Ae(r,a),h=z(e,l),p=$A(ae(o,Ie(s))),m=z(z(z(p,p),p),Ie(-.5));return{x:()=>a.rank===1?U(z(z(e,Es(U(p,[1,1,1,a.shape[0]]),c)),l),r.shape):U(z(z(e,p),l),r.shape),mean:()=>{let b=z(z(p,Ie(-1)),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=z(z(m,d),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=z(d,p),v=z(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},MF={kernelName:_i,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=xs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,m=Ob(0,d),f=Ob(d+1,d+1+p),A=Pb([c,[u],h]),g=U(e,A),y=U(r,[u]),x=Pb([[d],m,f]),b=je(g,x),v=db(b,y,s.shape[o]),k=IA(x);return v=je(v,k),v},indices:()=>r}}};function Ob(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Pb(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var zF={kernelName:Da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>qe(n),b:()=>qe(s)}}},LF={kernelName:Oa,gradFunc:e=>({x:()=>ue(e,"float32")})},BF={kernelName:Di,gradFunc:e=>({x:()=>qe(e)})},WF={kernelName:Oi,gradFunc:e=>({x:()=>qe(e)})},VF={kernelName:Pi,gradFunc:e=>({x:()=>qe(e)})},UF={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Vn(s,0);return{x:()=>gn(a,e,z(e,r))}}},HF={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,ae(n,1))}}},GF={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,ue(n,"float32"))}}},jF={kernelName:x5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=os(s);return Ae(e,z(ve(e,r,a),o))}}}};function qF(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(sh,i,l)}var XF=V({localResponseNormalizationBackprop_:qF}),KF={kernelName:Pu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>XF(s,r,e,a,o,i,l)}}};function Mb(e,t,n,s){return t.rank<n.rank&&(t=U(t,Co(t.shape,s))),e.rank<n.rank&&(e=U(e,Co(e.shape,s))),{x:()=>z(e,ue(as(n,t),e.dtype))}}var zb={kernelName:za,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=xs(r,a.shape),l=Mb(e,o,a,i);return{x:()=>l.x()}}},ZF={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ue(Io(n,s),"float32")),b:()=>z(e,ue(vA(n,s),"float32"))}}};function YF(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),u=D(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&M(qt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let m={dy:c,input:d,output:h},f={filterSize:s,strides:r,pad:a,dimRoundingMode:o},A=L.runKernel(ah,m,f);return p?U(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var JF=V({maxPool3dGrad_:YF}),QF={kernelName:Mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>JF(e,s,r,a,o,i,l)}}};function eD(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),u=D(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(qt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(rh,c,d)}var tD=V({maxPoolGrad_:eD}),nD={kernelName:Ba,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>tD(e,s,r,a,o,i)}}},sD={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=xs(r,s.shape),i=Zx(s.shape,a)[1],l=_t(i);return{x:()=>{let c=s.shape.slice();a.forEach(p=>{c[p]=1});let d=U(e,c);return ce(z(d,Un(s.shape,"float32")),l)}}}},rD={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=xs(r,a.shape),l=Mb(e,o,a,i);return{x:()=>l.x()}}},aD={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ue(So(n,s),"float32")),b:()=>z(e,ue(Vn(n,s),"float32"))}}},oD={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},iD={kernelName:Wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=Vt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=z(e,St(ac(ce(n,s)))),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},lD={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=z(e,ue(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ue(n,"float32")),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},uD={kernelName:Vi,gradFunc:e=>({x:()=>St(e)})},cD={kernelName:ja,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Dt(n.shape,"float32")}}},dD={kernelName:qi,gradFunc:e=>({x:()=>qe(e)})},hD={kernelName:Xi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ds(e,s).map(a=>()=>a)}},Lb={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},pD={kernelName:Xa,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=ft(a.shape,o.shape);return{a:()=>{let c=ue(o,"float32"),d=z(e,z(c,jr(a,Ae(c,Ie(1))))),h=Vt(a.shape,i);return h.length>0&&(d=ve(d,h)),U(d,a.shape)},b:()=>{let c=Vn(a,0),d=gn(c,is(a),qe(a)),h=z(e,z(r,d)),p=Vt(o.shape,i);return p.length>0&&(h=ve(h,p)),U(h,o.shape)}}}},fD={kernelName:Ka,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Vn(n,0);return{x:()=>gn(r,e,z(e,s)),alpha:()=>{let a=gn(r,qe(e),z(e,n)),o=Vt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},mD={kernelName:Ea,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=ce(e,ue(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ue(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=it(s);return St(ce(i,ue(u,"float32")))}}}},AD={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,St(it(n)))}}},gD={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(So(n,6),cc(n));return{x:()=>z(e,ue(s,"float32"))}}},yD={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ue(cc(n),"float32"))}}},xD={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},bD={kernelName:Ya,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(ch,r,n)}}},vD={kernelName:Lu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(uh,r,n)}}},wD={kernelName:Qa,gradFunc:(e,t,n)=>{let{dims:s}=n,r=xs(s,e.shape);return{x:()=>cs(e,r)}}},kD={kernelName:eo,gradFunc:e=>({x:()=>qe(e)})},ID={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(ce(e,z(jr(n,1.5),2)))}}},SD={kernelName:Qi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(qe(n),"float32"),t:()=>z(e,ue(n,e.dtype)),e:()=>z(e,ue(Vh(n),e.dtype))}}},CD={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Vn(n,Ie(0)),r=Ie(Eb),a=Ie(Rb),o=z(e,a),i=z(z(e,r),os(ue(n,"float32")));return gn(s,o,i)}}}},TD={kernelName:so,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,Ae(Ie(1),n)))}}},ND={kernelName:sl,gradFunc:e=>({x:()=>qe(e)})},ED={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Mh(ue(n,"float32")),e)}}},RD={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(yA(ue(n,"float32")),e)}}},_D={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=hx(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Gr(e,u)}}},$D={kernelName:oo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>Ae(o,z(ve(o,[r],a),s))}}},FD={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Bn(n))}}},Bb={kernelName:al,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Ph(e,s,r)}}},Wb={kernelName:ol,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>dt(e,s)}}},DD={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,z(ln(ue(n,"float32")),2))}}},OD={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ue(n,"float32"),2))}}},PD={kernelName:io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>z(e,z(r,Ae(n,s))),b:()=>z(e,z(r,Ae(s,n)))}}},MD={kernelName:Mr,gradFunc:e=>({x:()=>qe(e)})},zD={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ft(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(St(i),s.shape)}}}},LD={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;xs(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=z(i,Un(s.shape,"float32"));return{x:()=>l}}},BD={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,it(Mh(n)))}}},WD={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ae(Ie(1),it(n)),e)}}},VD={kernelName:Pr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=qe(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ae(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},UD={kernelName:ho,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=IA(r);return{x:()=>je(e,a)}}},HD={kernelName:cl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Nn(e,r)}}},GD={kernelName:Wu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>jD(e,n)}}};function jD(e,t){let n=gr(t,qe(t)),s=Cl(e,n),r=Io(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Ft(r,i+1);r=Rs(r,Un(s.shape,"bool"));let o=qe(s);return gn(r,s,o)}var qD={kernelName:dl,gradFunc:e=>({x:()=>qe(e)})},XD=[Db,X$,K$,Z$,Y$,J$,Q$,eF,tF,nF,sF,rF,iF,cF,dF,hF,pF,fF,mF,AF,gF,yF,bF,xF,kF,IF,SF,CF,TF,NF,mD,EF,RF,_F,$F,FF,OF,DF,PF,MF,zF,LF,BF,WF,VF,UF,HF,GF,jF,KF,zb,zb,ZF,QF,nD,sD,rD,aD,oD,iD,lD,uD,cD,dD,hD,Lb,Lb,pD,fD,AD,gD,yD,xD,bD,vD,wD,kD,ID,SD,CD,TD,ND,ED,RD,_D,$D,FD,Bb,Bb,Wb,Wb,DD,PD,OD,MD,zD,LD,BD,WD,VD,UD,HD,GD,qD];for(let e of XD)b5(e);var Vb={};Pe(Vb,{maxNorm:()=>JD,minMaxNorm:()=>tO,nonNeg:()=>eO,unitNorm:()=>QD});var XA;function Ut(){return XA==null&&(XA=gx().epsilon()),XA}function $s(){return"channelsLast"}var br=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,br.prototype)}},Fs=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fs.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},Ub=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ub.prototype)}};function Eo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Qs(e,t){if(!e)throw new Ub(t)}function Hb(e,t){let n=0;for(let s of e)s===t&&n++;return n}function En(e){return e.length===1?e[0]:e}function At(e){return Array.isArray(e)?e:[e]}function vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Ro(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var vs={};function KA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function ZA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>ZA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:ZA(s))}}}function pc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in vs)o=vs[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in vs?[i,l]=vs.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(vs))u[p]=vs[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d=Object.assign({},vs);for(let p of Object.keys(n))vs[p]=n[p];ZA(a.config);let h=l(i,a.config,n,r);return vs=Object.assign({},d),h}else{let u=Object.assign({},vs);for(let d of Object.keys(n))vs[d]=n[d];let c=new i(a.config);return vs=Object.assign({},u),c}}}function KD(e,t){return e<t?-1:e>t?1:0}function hp(e,t){return-1*KD(e,t)}function Xr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ZD(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function _o(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function YA(e,t,n=0,s=1/0){return Qs(n>=0),Qs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Zt(e,t){Array.isArray(e)?(I.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Zt(n,`element ${s+1} of ${t}`))):I.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Gb(e)}.`)}function Gb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Gb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function YD(e,t){let n=I.now(),s;return(...a)=>{let o=I.now();return o-n<t||(n=o,s=e(...a)),s}}function jb(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function JA(e,t){return H(()=>ln(ve(z(e,e),t,!0)))}var fc=class extends oe.Serializable{getConfig(){return{}}},QA=class extends fc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=JA(e,this.axis),n=Wn(t,0,this.maxValue);return z(e,ce(n,ae(Ut(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};QA.className="MaxNorm";oe.registerClass(QA);var eg=class extends fc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>ce(e,ae(Ut(),JA(e,this.axis))))}getConfig(){return{axis:this.axis}}};eg.className="UnitNorm";oe.registerClass(eg);var tg=class extends fc{apply(e){return Ys(e)}};tg.className="NonNeg";oe.registerClass(tg);var ng=class extends fc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=JA(e,this.axis),n=ae(z(this.rate,Wn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,ce(n,ae(Ut(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};ng.className="MinMaxNorm";oe.registerClass(ng);var qb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ht(e){return KA(e)}function Xb(e,t={}){return pc(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Gt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in qb?qb[e]:e,config:{}};return Xb(n)}else return e instanceof fc?e:Xb(e)}function JD(e){return new QA(e)}function QD(e){return new eg(e)}function eO(){return new tg}function tO(e){return new ng(e)}var Kb={};Pe(Kb,{constant:()=>IO,glorotNormal:()=>_O,glorotUniform:()=>RO,heNormal:()=>$O,heUniform:()=>FO,identity:()=>NO,leCunNormal:()=>DO,leCunUniform:()=>OO,ones:()=>kO,orthogonal:()=>PO,randomNormal:()=>CO,randomUniform:()=>SO,truncatedNormal:()=>TO,varianceScaling:()=>EO,zeros:()=>wO});var nO=["channelsFirst","channelsLast"],sO=["nearest","bilinear"],rO=["valid","same","causal"],aO=["max","avg"],oO=["sum","mul","concat","ave"],$l=new Map;function $t(e){_o(nO,"DataFormat",e)}function iO(e){_o(sO,"InterpolationFormat",e)}function hs(e){_o(rO,"PaddingMode",e)}function Zb(e){_o(aO,"PoolMode",e)}var mc=[],Yb="/";function $o(e,t){mc.push(e);try{let n=t();return mc.pop(),n}catch(n){throw mc.pop(),n}}function lO(){return mc.length===0?"":mc.join(Yb)+Yb}function Jb(e){if(!e3(e))throw new Error("Not a valid tensor name: '"+e+"'");return lO()+e}function Qb(e){if(!e3(e))throw new Error("Not a valid tensor name: '"+e+"'");$l.has(e)||$l.set(e,0);let t=$l.get(e);if($l.set(e,$l.get(e)+1),t>0){let n=`${e}_${t}`;return $l.set(n,1),n}else return e}var uO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function e3(e){return!!e.match(uO)}function cO(e){return e===parseInt(e.toString(),10)}function Kr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Fl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Zr(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Ds(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function pp(e,t){return ue(e,t)}function Ac(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function dO(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ac(e,1);return ag(n,[1,t,1])})}function hO(e){let t=[Kr(e.shape)];return U(e,t)}function pO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Kr(e.shape,1)];return U(e,t)}function Fo(e,t,n){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return PA(e,[t,0],[n,e.shape[1]]);case 3:return Kh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return lc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function sg(e,t,n){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return PA(e,[0,t],[e.shape[0],n]);case 3:return Kh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return lc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fp(e,t,n,s){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:switch(s){case 1:return Fo(e,t,n);case 2:return sg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Fo(e,t,n);case 2:return Kh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return sg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Fo(e,t,n);case 2:return lc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return lc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return sg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function rg(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),dt(e,t)}function t3(e,t){switch(e.rank){case 1:return Fx([e,t]);case 2:return Il([e,t],0);case 3:return Dx([e,t],0);case 4:return Ox([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function ag(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Es(e,t)}function mp(e,t=0,n=1,s,r){return sb(e,t,n,s,r)}function er(e,t,n,s){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return qr.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?og(e.rank,s,$s()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=U(je(t,c),[l,-1]);let d=[...r,...u],h=!1,p=!1;return U(qr.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:s?og(e.rank,s,$s()):null,activation:n}),d)}}function n3(e,t,n){return H(()=>(Array.isArray(t)?t=Ot(t,"int32"):t=ue(t,"int32"),Cl(e,t,n)))}function gc(e){return z(e,e)}function og(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Os(e,t,n){return H(()=>(n==null&&(n=$s()),$t(n),ae(e,og(e.rank,t,n))))}function fO(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return rc(e)}function mO(e){return H(()=>ce(e,ae(Wt(e),1)))}function s3(e,t,n,s){return H(()=>gb(e,t,n,s))}function AO(e){return H(()=>{let t=ae(.5,z(.2,e));return Wn(t,0,1)})}function yc(e,t,n=!1){return n?e():t()}var gO=["fanIn","fanOut","fanAvg"],yO=["normal","uniform","truncatedNormal"];function xO(e){_o(gO,"FanMode",e)}function bO(e){_o(yO,"Distribution",e)}var ws=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ig=class extends ws{apply(e,t){return Dt(e,t)}};ig.className="Zeros";oe.registerClass(ig);var Ap=class extends ws{apply(e,t){return Un(e,t)}};Ap.className="Ones";oe.registerClass(Ap);var lg=class extends ws{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ie(this.value),Un(e,t)))}getConfig(){return{value:this.value}}};lg.className="Constant";oe.registerClass(lg);var ug=class extends ws{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return El(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ug.className="RandomUniform";oe.registerClass(ug);var cg=class extends ws{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};cg.className="RandomNormal";oe.registerClass(cg);var dg=class extends ws{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Qh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};dg.className="TruncatedNormal";oe.registerClass(dg);var hg=class extends ws{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,bA(e[0]))})}getConfig(){return{gain:this.gain}}};hg.className="Identity";oe.registerClass(hg);function vO(e,t="channelsLast"){let n,s;if($t(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Kr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Kr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Kr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Rn=class extends ws{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,xO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,bO(this.distribution),this.seed=e.seed}apply(e,t){let n=vO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Qh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return El(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Rn.className="VarianceScaling";oe.registerClass(Rn);var gp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};gp.className="GlorotUniform";oe.registerClass(gp);var yp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};yp.className="GlorotNormal";oe.registerClass(yp);var xp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};xp.className="HeNormal";oe.registerClass(xp);var bp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};bp.className="HeUniform";oe.registerClass(bp);var vp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};vp.className="LeCunNormal";oe.registerClass(vp);var wp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};wp.className="LeCunNormal";oe.registerClass(wp);var pg=class extends ws{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=mp(n,0,1,"float32"),r=Nb.gramSchmidt(s);return e[0]>e[1]&&(r=je(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};pg.className="Orthogonal";oe.registerClass(pg);var r3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function a3(e,t={}){return pc(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return KA(e)}function bt(e){if(typeof e=="string"){let t=e in r3?r3[e]:e;if(t==="GlorotNormal")return new yp;if(t==="GlorotUniform")return new gp;if(t==="HeNormal")return new xp;if(t==="HeUniform")return new bp;if(t==="LeCunNormal")return new vp;if(t==="LeCunUniform")return new wp;{let n={};return n.className=t,n.config={},a3(n)}}else return e instanceof ws?e:a3(e)}function wO(){return new ig}function kO(){return new Ap}function IO(e){return new lg(e)}function SO(e){return new ug(e)}function CO(e){return new cg(e)}function TO(e){return new dg(e)}function NO(e){return new hg(e)}function EO(e){return new Rn(e)}function RO(e){return new gp(e)}function _O(e){return new yp(e)}function $O(e){return new xp(e)}function FO(e){return new bp(e)}function DO(e){return new vp(e)}function OO(e){return new wp(e)}function PO(e){return new pg(e)}var o3={};Pe(o3,{Layer:()=>Xe,RNN:()=>sr,RNNCell:()=>Tc,activation:()=>yM,add:()=>TM,alphaDropout:()=>cz,average:()=>NM,averagePooling1d:()=>_2,averagePooling2d:()=>$2,averagePooling3d:()=>F2,avgPool1d:()=>MM,avgPool2d:()=>LM,avgPool3d:()=>WM,avgPooling1d:()=>zM,avgPooling2d:()=>BM,avgPooling3d:()=>VM,batchNormalization:()=>DM,bidirectional:()=>nz,concatenate:()=>EM,conv1d:()=>uM,conv2d:()=>cM,conv2dTranspose:()=>dM,conv3d:()=>hM,conv3dTranspose:()=>pM,convLstm2d:()=>JM,convLstm2dCell:()=>QM,cropping2D:()=>mM,dense:()=>xM,depthwiseConv2d:()=>gM,dot:()=>FM,dropout:()=>bM,elu:()=>sM,embedding:()=>CM,flatten:()=>wM,gaussianDropout:()=>uz,gaussianNoise:()=>lz,globalAveragePooling1d:()=>UM,globalAveragePooling2d:()=>HM,globalMaxPool1d:()=>rz,globalMaxPool2d:()=>az,globalMaxPooling1d:()=>mv,globalMaxPooling2d:()=>Av,gru:()=>jM,gruCell:()=>qM,input:()=>L3,inputLayer:()=>nM,layerNormalization:()=>OM,leakyReLU:()=>aM,lstm:()=>XM,lstmCell:()=>KM,masking:()=>dz,maxPool1d:()=>oz,maxPool2d:()=>iz,maxPooling1d:()=>gv,maxPooling2d:()=>yv,maxPooling3d:()=>GM,maximum:()=>RM,minimum:()=>_M,multiply:()=>$M,permute:()=>SM,prelu:()=>oM,reLU:()=>rM,repeatVector:()=>kM,reshape:()=>IM,rnn:()=>ez,separableConv2d:()=>fM,simpleRNN:()=>ZM,simpleRNNCell:()=>YM,softmax:()=>iM,spatialDropout1d:()=>vM,stackedRNNCells:()=>tz,thresholdedReLU:()=>lM,timeDistributed:()=>sz,upSampling2d:()=>AM,zeroPadding2d:()=>PM});var MO=0;function i3(){return MO++}var kp={};function Ip(e=""){return e in kp||(kp[e]=0),kp[e]+=1,e+kp[e].toString()}function fg(e){return Array.isArray(e)&&Array.isArray(e[0])}function Sp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Cp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var l3="Variable",u3=class{constructor(e,t="float32",n=l3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=i3(),n=n==null?l3:n,this.originalName=Jb(n),this.name=Qb(this.originalName),this.trainable_=s,this.constraint=r,this.val=hb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),zO(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function zO(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function mg(e){return e.map(t=>t.read())}function Ag(e){e.forEach(t=>{t[0].write(t[1])})}var Pt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ps=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=i3(),a!=null&&(this.originalName=Jb(a),this.name=Qb(this.originalName)),this.rank=t.length}},LO=0,Tp=class{constructor(e,t){this.callArgs=t,this.id=LO++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},BO=0,Xe=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=BO++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+Ip(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Fs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return En(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return En(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} is not connected, no input to return.`);return En(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return En(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=At(e),s=!0;for(let a of n)if(!(a instanceof Ps)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Ps){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return $o(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of At(e))a.push(o.shape);this.build(En(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=At(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=En(i),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=WO(e),o=this.computeOutputShape(a),i,l=VO(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Ps(l,u,this,At(e),t,this.name,c)):i=new Ps(l,o,this,At(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new br(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new br(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Fs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Cp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return mg(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=mg(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!I.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}Ag(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=bt("zeros"));let i=s.apply(t,n),l=new u3(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=At(e);t=At(t),n=At(n),s=At(s),r=Sp(r),a=Sp(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Tp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function WO(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return En(t)}function VO(e){return"float32"}function c3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=c3(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var Dl=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Ip("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Ps(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Dl.className="InputLayer";oe.registerClass(Dl);function d3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Dl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Yr(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Z(s)}}function h3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var p3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(p3||(p3={}));var UO=125,Ol=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},f3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},HO=class extends Ol{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>ae(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(ce(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Kt(t[n])}))}},m3=class extends Ol{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},A3=class extends Ol{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=UO),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");I.isNumber(this.yieldEvery)&&(this.maybeWait=YD(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Yr(n),s.push(this.yield(e,t,n))),s.push(dp()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Yr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Yr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(dp()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Yr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Yr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(dp()):I.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Yr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Yr(e),await this.trainEnd(e))}};function g3(e,t){return e==null&&(e={}),e instanceof Ol?[e]:Array.isArray(e)&&e[0]instanceof Ol?e:At(e).map(s=>new A3(s,t))}var ks=class{constructor(){}static registerCallbackConstructor(e,t){I.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ks.checkForDuplicate(t),ks.constructors[e]==null&&(ks.constructors[e]=[]),ks.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ks.constructors)ks.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){ks.constructors={}}static createCallbacks(e){let t=[];for(let n in ks.constructors){let s=+n;e>=s&&t.push(...ks.constructors[s])}return t.map(n=>new n)}};ks.constructors={};function y3(e,t,n,s,r,a,o,i,l){let u=new m3,c=[new HO,...ks.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new f3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Ms(e,t={},n=!1){return pc(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Np(e,t){return H(()=>{e.dtype!=="float32"&&(e=ue(e,"float32"));let n=ve(gc(e),t,!0),s=Sl(n.shape,Ut()),r=ln(gr(n,s));return ce(e,r)})}function Do(e,t){return H(()=>Et(gc(Ae(t,e)),-1))}function Ep(e,t){return H(()=>Et(Wt(Ae(t,e)),-1))}function Pl(e,t){return H(()=>{let n=Ae(e,t),s=Wn(Wt(e),Ut(),Number.MAX_VALUE),r=Wt(ce(n,s));return z(100,Et(r,-1))})}function GO(e,t){return H(()=>{let n=Wn(t,Ut(),Number.MAX_VALUE),s=is(ae(1,n)),r=Wn(e,Ut(),Number.MAX_VALUE),a=is(ae(1,r));return Et(gc(Ae(s,a)),-1)})}function jO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(gc(n),-1)})}function qO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(n,-1)})}function XO(e,t){return H(()=>{let n=ve(z(e,t),-1),s=ls(z(Ae(1,e),t),-1);return gr(0,ae(1,Ae(s,n)))})}function KO(e,t){return H(()=>{let n=Math.log(2),s=Ae(t,e),r=Ae(ae(s,Tl(z(-2,s))),n);return Et(r,-1)})}function xc(e,t,n=!1){return H(()=>{if(n)t=Zh(t);else{let s=ve(t,t.shape.length-1,!0);t=ce(t,s)}return t=Wn(t,Ut(),1-Ut()),St(ve(z(ue(e,"float32"),is(t)),t.shape.length-1))})}function Rp(e,t,n=!1){return H(()=>{let s=ue(ac(hO(e)),"int32");t=Wn(t,Ut(),1-Ut());let r=t.shape,a=U(ec(s,r[r.length-1]),r);return xc(a,t,n)})}function ZO(e,t){if(!I.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=Ys(t),s=St(Wt(t));return ae(Ae(n,z(t,e)),Bh(os(s)))})}function _p(e,t){return H(()=>{let n;return n=Wn(t,Ut(),1-Ut()),n=is(ce(n,Ae(1,n))),Et(ZO(e,n),-1)})}function YO(e,t){return H(()=>{let n=Wn(e,Ut(),1),s=Wn(t,Ut(),1);return ve(z(e,is(ce(n,s))),-1)})}function JO(e,t){return H(()=>{let n=is(ae(Ut(),t));return Et(Ae(t,z(e,n)),-1)})}function gg(e,t){return H(()=>{let n=Np(e,-1),s=Np(t,-1),r=z(n,s);return St(ve(r,-1))})}var $p={meanSquaredError:Do,meanAbsoluteError:Ep,meanAbsolutePercentageError:Pl,meanSquaredLogarithmicError:GO,squaredHinge:jO,hinge:qO,categoricalHinge:XO,logcosh:KO,categoricalCrossentropy:xc,sparseCategoricalCrossentropy:Rp,binaryCrossentropy:_p,kullbackLeiblerDivergence:YO,poisson:JO,cosineProximity:gg};function yg(e){if(typeof e=="string"){if(e in $p)return $p[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function xg(e,t){return H(()=>{let n=z(.5,us(t)),s=pp(Vn(t,n),e.dtype);return Et(as(e,s),-1)})}function bg(e,t){return H(()=>pp(as(Xs(e,-1),Xs(t,-1)),"float32"))}function x3(e,t){return H(()=>ue(ve(Rs(as(e,1),as(t,1))),"float32"))}function QO(e,t){return H(()=>ue(ve(Rs(as(e,1),as(t,0))),"float32"))}function eP(e,t){return H(()=>ue(ve(Rs(as(e,0),as(t,1))),"float32"))}function b3(e,t){return H(()=>{let n=x3(e,t),s=eP(e,t),r=ae(n,s);return ue(gn(Vn(r,0),ce(n,r),0),"float32")})}function tP(e,t){return H(()=>{let n=x3(e,t),s=QO(e,t),r=ae(n,s);return ue(gn(Vn(r,0),ce(n,r),0),"float32")})}function v3(e,t){return _p(e,t)}function w3(e,t){return e.rank===t.rank&&(e=mt(e,[e.rank-1])),t=Xs(t,-1),t.dtype!==e.dtype&&(t=ue(t,e.dtype)),ue(as(e,t),"float32")}var nP=Do,sP=Do,rP=Ep,aP=Ep,oP=Pl,iP=Pl,vg=xc,lP=gg,k3=Rp,Fp={binaryAccuracy:xg,categoricalAccuracy:bg,precision:b3,categoricalCrossentropy:vg,sparseCategoricalCrossentropy:k3,mse:nP,MSE:sP,mae:rP,MAE:aP,mape:oP,MAPE:iP,cosine:lP};function uP(e){if(typeof e=="string"&&e in Fp)return Fp[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Dp(e){if(Qs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys($p))if($p[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}return t!==void 0?t:e.name}}function cP(e){let t={Adagrad:()=>No.adagrad(.01),Adadelta:()=>No.adadelta(1,.95,Ut()),Adam:()=>No.adam(.001,.9,.999,Ut()),Adamax:()=>No.adamax(.002,.9,.999,Ut(),0),RMSProp:()=>No.rmsprop(.001,.9,0,Ut()),SGD:()=>No.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var I3=1*1024*1024;function S3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!wg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>I3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${I3}.`)}}function wg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!wg(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!wg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function dP(e,t,n,s=console.log){let r=pP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Op(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?fP(i[c],n,s):mP(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=hP(e),u=Cp(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function hP(e){let t;return e.collectedTrainableWeights!=null?t=Cp(e.collectedTrainableWeights):t=Cp(e.trainableWeights),t}function pP(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Op(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function fP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Op(o,t,n)}function mP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let h=c.inboundLayers[d].name,p=c.nodeIndices[d],m=c.tensorIndices[d];a.push(`${h}[${p}][${m}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];Op(u,t,s);for(let c=1;c<a.length;++c)Op(["","","",a[c]],t,s)}function C3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function bc(e,t){if(e===null)return null;if(typeof e=="string")return Ro(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];C3(t,r,a)?n.push(a):n.push(bc(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Ro(s);n[a]=bc(r,a)}}return n}}function kg(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];C3(t,r,a)?n.push(a):n.push(kg(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=kg(r,s)}return n}}var Ig="3.8.0";function AP(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Oo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Oo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=AP(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ps){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ps){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Z(this.id2Mask)}},Sg={},T3={};function vc(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(m=>m.name),l=[],u=t.names();for(let m of i)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(Sg[c]==null){let m=gP(o,t);d=m.sorted,h=m.recipientCounts,Sg[c]=d,T3[c]=h}d=Sg[c],h={},r||Object.assign(h,T3[c]);let p=new Oo(t);for(let m=0;m<d.length;++m){if(s!=null){let E=_h().numTensors;E>s.maxNumTensors&&(s.maxNumTensors=E),E<s.minNumTensors&&(s.minNumTensors=E)}let f=d[m],A=f.sourceLayer;if(A instanceof Dl)continue;let g=[],y=[],x=[],b=!1;for(let E of f.inputs){let P=p.getValue(E),R=p.getMask(E);g.push(P),y.push(R),R!=null&&(b=!0),r||(h[E.name]--,h[E.name]===0&&!t.hasKey(E)&&i.indexOf(E.name)===-1&&!P.isDisposed&&E.sourceLayer.stateful!==!0&&x.push(P))}b&&(n=n||{},n.mask=y[0]);let v=At(A.apply(g,n)),k=null;A.supportsMasking&&(k=A.computeMask(g,y));let w=xP(f),C=Array.isArray(w)?w:[w];for(let E=0;E<C.length;++E){p.hasKey(C[E])||p.add(C[E],v[E],Array.isArray(k)?k[0]:k);let P=i.indexOf(C[E].name);P!==-1&&(l[P]=v[E])}r||Z(x)}return p.disposeMasks(),a?l:l[0]}function gP(e,t){I.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=N3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=N3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:yP(s)}}function yP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function N3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function xP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let g=this.getClassName().toLowerCase();this.name=Ip(g)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Xr(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(g=>g.name)}`);Xr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(g=>g.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let g of this.outputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let g of this.inputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;Qs(x===0,"input layer has >1 nodes"),Qs(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let g=0;g<this.inputLayers.length;g++){let y=this.inputLayers[g];if(!(y instanceof Dl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${g} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let g of this.outputLayers)this.outputNames.push(g.name);this.internalInputShapes=this.inputs.map(g=>g.shape),this.internalOutputShapes=this.outputs.map(g=>g.shape);let t={},n={},s={},r={},a={},o=[],i=(g,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=g.sourceLayer,v=g.nodeIndex,k=g.tensorIndex);let w=b.inboundNodes[v];if(x.indexOf(w)!==-1)throw new Fs(`The tensor ${g.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(w)!==-1)return;this.containerNodes.add(tr.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(w)===-1&&x.push(w);let C=w.inboundLayers.length;for(let E=0;E<C;E++){let P=w.inputTensors[E],R=w.inboundLayers[E],_=w.nodeIndices[E],T=w.tensorIndices[E];i(P,y,x,R,_,T)}for(y.push(w);x.indexOf(w)>=0;)x.splice(x.indexOf(w),1);o.push(w)},l=[],u=[];for(let g of this.outputs)i(g,l,u);let c=o.slice().reverse();for(let g of c){n[g.id]=g,g.id in t||(t[g.id]=0);let y=t[g.id],x=s[g.outboundLayer.id]==null?0:s[g.outboundLayer.id];y=Math.max(y,x),s[g.outboundLayer.id]=y,r[g.outboundLayer.id]=g.outboundLayer,t[g.id]=y;for(let b=0;b<g.inboundLayers.length;b++){let v=g.inboundLayers[b],k=g.nodeIndices[b],w=v.inboundNodes[k],C=t[w.id]==null?0:t[w.id];t[w.id]=Math.max(y+1,C),n[w.id]=w}}let d={};for(let g in t){let y=t[g];y in d||(d[y]=[]),d[y].push(n[g])}let h={};for(let g in s){let y=s[g];y in h||(h[y]=[]),h[y].push(r[g])}let p=Object.keys(h).map(g=>parseInt(g,10)).sort(hp);this.layers=[];for(let g of p){let y=h[g];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(g=>parseInt(g,10)).sort(hp);let m=this.inputs.slice(),f=[];for(let g of p)for(let y of d[g]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(m.indexOf(b)===-1)throw new Fs(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let b of y.outputTensors)m.push(b);f.push(x.name)}}this.nodesByDepth=d;let A=this.layers.map(g=>g.name);for(let g of A){let y=A.filter(x=>x===g).length;if(y!==1)throw new Fs(`The name "${g}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(g=>null),outputMasks:this.outputs.map(g=>null),inputShapes:this.inputs.map(g=>g.shape),outputShapes:this.outputs.map(g=>g.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}Ag(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Ig}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=kg(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=At(e);let n=new Oo;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return vc(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=At(e);let n;return t==null?n=Eo(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Sp(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(hp);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],g=l.tensorIndices[m],y=`${f.name}_${A}_${g}`,x=n[y];c.push(x)}let d=u.computeOutputShape(En(c)),h=Sp(d),p=u.inboundNodes.indexOf(l);for(let m=0;m<h.length;m++){let f=`${u.name}_${p}_${m}`;n[f]=h[m]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Qs(i in n),r.push(n[i])}return En(r)}runInternalGraph(e,t){t==null&&(t=Eo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(hp);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let m of d)m.id in n&&p.push(n[m.id]);if(p.length===d.length){let m={},f,A,g,y;if(u.callArgs!=null&&(m=u.callArgs),p.length===1){let[x,b]=p[0];m.mask==null&&(m.mask=b),g=At(c.call(x,m)),y=At(c.computeMask(x,b)),f=[x],A=[b]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),g=At(c.call(f,m)),y=At(c.computeMask(f,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<h.length;++x){let b=h[x],v=g[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Qs(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof tr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=tr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=tr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],h=tr.nodeKey(a,c),p={};if(this.containerNodes.has(h)){if(d.callArgs)try{JSON.stringify(d.callArgs),p=d.callArgs}catch(m){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let A=d.inboundLayers[f],g=d.nodeIndices[f],y=d.tensorIndices[f],x=tr.nodeKey(A,g),b=t[x];b==null&&(b=0),m.push([A.name,b,y,p])}l.push(m)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=tr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=tr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(f,A){f.name in a?a[f.name].push(A):a[f.name]=[A]}function i(f,A){let g=[],y;for(let x of A){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(f,A);return}let w=r[b];if(w.inboundNodes.length<=v){o(f,A);return}let C=w.inboundNodes[v];g.push(C.outputTensors[k])}g.length>0&&f.apply(En(g),y)}function l(f){let A=f.name,g=Ms(f,t.customObjects!=null?t.customObjects:{});g.setFastWeightInitDuringBuild(s),r[A]=g,f.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(g,x)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!ZD(a);)for(let f of c){let A=r[f.name];if(A.name in a){let g=a[A.name];delete a[A.name];for(let y of g)i(A,y)}}let d=[],h=[],p=t.inputLayers;for(let f of p){let A=f[0],g=f[1],y=f[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;d.push(b[y])}let m=t.outputLayers;for(let f of m){let A=f[0],g=f[1],y=f[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;h.push(b[y])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function bP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function E3(e,t){return bP(e,t,"classWeight")}async function R3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Ns(e);if(e.shape.length===2){if(e.shape[1]>1)return Xs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Z(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ot(o,"float32")}else return null}function vP(e,t){return z(e,t)}var wP=32;function _3(e,t){let n,s,r=t;n=r.xs,s=r.ys,I.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=$3("input",e.inputNames,n),o=$3("output",e.outputNames,s),i=a[0].shape[0];I.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),I.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)I.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)I.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function $3(e,t,n){if(n instanceof Ue)return[n];if(Array.isArray(n))return I.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function kP(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function IP(e,t,n){let s=n.batchesPerEpoch!=null;if(I.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),I.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),I.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),I.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),I.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(F3(n.validationData))I.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=kP(n.validationData);a=A.xs,o=A.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=g3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=y3(c,d,n.epochs,null,null,SP(t,n),null,r,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await h.onEpochBegin(m);let g=0,y=0;for(s||(f=await t.iterator());s?g<n.batchesPerEpoch:!0;){let x=await f.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${g} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=_3(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await h.onBatchBegin(y,k);let w=[];if(n.classWeight!=null){let P=E3(n.classWeight,e.outputNames);for(let R=0;R<P.length;++R)w.push(await R3(v[R],null,P[R]))}let C=b.concat(v).concat(w),E=i(C);Z(C);for(let P=0;P<l.length;++P){let R=l[P],_=E[P];k[R]=_,Kt(_)}await h.onBatchEnd(y,k),h3(k),y++,g++}if(s?g>=n.batchesPerEpoch:x.done){if(r){let b;F3(n.validationData)?b=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=At(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?wP:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)A[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await h.onEpochEnd(m,A),m++,e.stopTraining_)break}return await h.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function SP(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function F3(e){return typeof e.iterator=="function"}function CP(e){return typeof e.next=="function"}async function TP(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");I.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=CP(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=_3(e,u.value),h=c.concat(d),p=H(()=>r(h));if(Z(h),l===0)for(let f=0;f<p.length;++f)a.push(Ie(0));let m=h[0].shape[0];for(let f=0;f<p.length;++f){let A=p[f],g=a[f];a[f]=H(()=>ae(a[f],z(m,A))),l>0&&Z(g)}Z(p),i+=m,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=ce(a[u],i),Z(c)}return En(a)}function Cg(e){I.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Fo(s,t,n-t)):Fo(e,t,n-t)}function Tg(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>Tg(n,t)):n3(e,t.dtype==="int32"?t:ue(t,"int32")))}function Ng(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function NP(e,t,n,s,r,a,o,i,l,u,c,d,h,p,m){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,p,"steps_per_epoch"),g;A!=null&&(g=Ds(0,A)),o==null&&(o=1);let{callbackList:y,history:x}=y3(i,o,a,h,A,p,r,f,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b<a;++b){await y.onEpochBegin(b);let v={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&I.shuffle(g);let k=Ot(g),w=Ng(A,r);for(let C=0;C<w.length;++C){let E={};if(await y.onBatchBegin(C,E),H(()=>{let P=w[C][0],R=w[C][1],_=Fo(k,P,R-P);E.batch=C,E.size=R-P;let T=Tg(n,_),O=t(T);for(let W=0;W<s.length;++W){let j=s[W],q=O[W];E[j]=q,Kt(q)}if(C===w.length-1&&f){let W=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=W[j];Kt(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,E),h3(E),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function EP(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;Cg(d);let h=!1,p=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,h,d);r=p[0],a=p[1],c=p[2];let m=!1,f;if(s.validationData!=null&&s.validationData.length>0){if(m=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let w=!0,C=await e.standardizeUserData(o,i,null,null,w,d);l=C[0],u=C[1],f=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){m=!0;let w=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=wc(r,w,C),r=wc(r,0,w),u=wc(a,w,C),a=wc(a,0,w),f=l.concat(u)}else s.validationSteps!=null&&(m=!0);let A=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let g=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;m?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(w=>"val_"+w))):(x=null,f=[],b=y.slice());let v=g3(s.callbacks,s.yieldEvery);return await NP(e,g,A,y,d,s.epochs,s.verbose,v,x,f,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,Po(r,t),Po(a,n),Po(l,o),Po(u,i),c!=null&&Z(c)}}function D3(e){let t=[];e instanceof Ue&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Ac(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Po(e,t){if(e==null)return;let n=[];if(t instanceof Ue)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ue)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function RP(e){return e instanceof Ue}function Eg(e){return Array.isArray(e)}function O3(e){return!RP(e)&&!Eg(e)}function P3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(Eg(e)&&e.length>0)o=!0;else if(O3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(O3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(Eg(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=D3(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function _P(e,t,n){let s=Xr(e.map(a=>a.shape[0]));s.sort();let r=Xr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!I.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function $P(e,t,n){let s=[Do,_p,xc];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===xc&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],h=u[c];if(h!=null&&d!==h)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function M3(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function FP(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var DP="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");dP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=cP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof xr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(yg(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>yg(o))}else{let a=yg(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],$o("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=FP(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};$o("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let f=this.internalOutputShapes[a];f[f.length-1]===1||this.lossFunctions[a]===_p?["accuracy","acc"].indexOf(p)!==-1?d=xg:["crossentropy","ce"].indexOf(p)!==-1&&(d=v3):this.lossFunctions[a]===Rp?["accuracy","acc"].indexOf(p)!==-1?d=w3:["crossentropy","ce"].indexOf(p)!==-1&&(d=k3):["accuracy","acc"].indexOf(p)!==-1?d=bg:["crossentropy","ce"].indexOf(p)!==-1&&(d=vg);let A;["accuracy","acc"].indexOf(p)!==-1?A="acc":["crossentropy","ce"].indexOf(p)!==-1&&(A="ce"),h=d,c=u+A}else h=uP(p),c=u+Dp(p);let m;$o(c,()=>{m=h}),r(a,c,m)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Cg(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return En(l)}finally{Po(a[0],e),Po(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),TP(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Oo;if(e instanceof Ue&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=vc(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Eo(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=Ng(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=wc(e,l,u),d=[];if(Array.isArray(c))for(let p=0;p<c.length;++p)d.push({key:this.inputs[p],value:c[p]});else d.push({key:this.inputs[0],value:c});let h=new Oo(d);return vc(this.outputs,h)}).forEach((l,u)=>a[u].push(l));return En(a.map(o=>dt(o,0)))})}predict(e,t={}){let n=D3(e);M3(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Cg(s),this.predictLoop(n,s)}finally{Po(n,e)}}predictOnBatch(e){M3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Fs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Rp?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=P3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=P3(t,this.feedOutputNames,r,!1,"target"),_P(e,t,null),$P(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=E3(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await R3(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let i=Ng(a,n),l=Ot(Ds(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],h=Fo(l,c,d-c),p=Tg(t,h),m=e(p);if(u===0)for(let f=0;f<m.length;++f)o.push(Ie(0));for(let f=0;f<m.length;++f){let A=m[f];o[f]=ae(o[f],z(d-c,A))}}for(let u=0;u<o.length;++u)o[u]=ce(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Hb(e,s)>1&&(r+=`_${Hb(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let m=0;m<this.inputs.length;++m)c.push({key:this.inputs[m],value:n[m]});let d=new Oo(c),h=vc(this.outputs,d,{training:!0}),p;for(let m=0;m<this.lossFunctions.length;++m){let A=this.lossFunctions[m](s[m],h[m]);r[m]!=null&&(A=vP(A,r[m]));let g=Et(A);t.push(g),m===0?p=A:p=ae(p,A)}for(let m=0;m<this.metricsTensors.length;++m){let f;if(this.outputs.length>1&&m<this.outputs.length)f=t[m];else{let A=this.metricsTensors[m][0],g=this.metricsTensors[m][1];f=Et(A(s[g],h[g]))}Kt(f),a.push(f)}return p=Et(p),this.calculateLosses().forEach(m=>{p=ae(p,m)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new Oo(a),i=vc(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Et(u(r[l],i[l]));l===0?n=c:n=ae(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=Et(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return EP(this,e,t,n)}async fitDataset(e,t){return IP(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return Z(o),En(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=_h().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-_h().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(Dp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(Dp(e)));{let e={};for(let t in this.metrics)e[t]=vr(Dp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=bc(e.optimizer_config),n=Ms(t),s;if(typeof e.loss=="string")s=Ro(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ro(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ro(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ro(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ro(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Tn.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Tn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:DP,generatedBy:`TensorFlow.js tfjs-layers v${Ig}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Tn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Tn.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;S3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){S3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";oe.registerClass(wr);var z3=class extends wr{};z3.className="Functional";oe.registerClass(z3);async function OP(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=bc(n),r=Ms(s,t);if(e.weightsManifest!=null){let a=await Tn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Z(a)}return r}async function PP(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Tn.getLoadHandlers(e,t);if(n.length===0)n.push(Tn.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return MP(e,void 0,t)}async function MP(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Ms(bc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=zP(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Z(u),Z(c.map(d=>d.tensor))}return i}function zP(e,t){let n=Tn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Ml=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Ip("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ml||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=d3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=c3(this.outputs[0])}this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Eo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else I.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Ml))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Ms(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ml.className="Sequential";oe.registerClass(Ml);function LP(e){return new wr(e)}function BP(e){return new Ml(e)}function WP(e,t){return t==null&&(t={}),PP(e,t)}function L3(e){return d3(e)}function VP(e,t){ks.registerCallbackConstructor(e,t)}var _n=class extends oe.Serializable{getConfig(){return{}}},B3=class extends _n{apply(e,t=1){return fO(e,t)}};B3.className="elu";oe.registerClass(B3);var W3=class extends _n{apply(e){return FA(e)}};W3.className="selu";oe.registerClass(W3);var V3=class extends _n{apply(e){return Ys(e)}};V3.className="relu";oe.registerClass(V3);var U3=class extends _n{apply(e){return H(()=>oc(6,Ys(e)))}};U3.className="relu6";oe.registerClass(U3);var H3=class extends _n{apply(e){return e}};H3.className="linear";oe.registerClass(H3);var G3=class extends _n{apply(e){return Bn(e)}};G3.className="sigmoid";oe.registerClass(G3);var j3=class extends _n{apply(e){return AO(e)}};j3.className="hardSigmoid";oe.registerClass(j3);var q3=class extends _n{apply(e){return Tl(e)}};q3.className="softplus";oe.registerClass(q3);var X3=class extends _n{apply(e){return mO(e)}};X3.className="softsign";oe.registerClass(X3);var K3=class extends _n{apply(e){return wl(e)}};K3.className="tanh";oe.registerClass(K3);var Rg=class extends _n{apply(e,t=-1){return Zh(e,t)}};Rg.className="softmax";oe.registerClass(Rg);var Z3=class extends _n{apply(e,t=-1){return wA(e,t)}};Z3.className="logSoftmax";oe.registerClass(Z3);var Y3=class extends _n{apply(e,t=1){return H(()=>z(Bn(z(e,t)),e))}};Y3.className="swish";oe.registerClass(Y3);var J3=class extends _n{apply(e){return H(()=>z(e,wl(Tl(e))))}};J3.className="mish";oe.registerClass(J3);function Jr(e){return e.getClassName()}function _g(e,t={}){return pc(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function Qr(e){if(e==null){let t={};return t.className="linear",t.config={},_g(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},_g(t)}else return e instanceof _n?e:_g(e)}function $g(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Q3=class extends oe.Serializable{},kc=class extends Q3{constructor(e){super();$g(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Dt([1]);return this.hasL1&&(t=ae(t,ve(z(this.l1,Wt(e))))),this.hasL2&&(t=ae(t,ve(z(this.l2,gc(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kc.className="L1L2";oe.registerClass(kc);function UP(e){return $g(e),new kc({l1:e!=null?e.l1:null,l2:0})}function HP(e){return $g(e),new kc({l2:e!=null?e.l2:null,l1:0})}var ev={l1l2:"L1L2"};function lt(e){return KA(e)}function tv(e,t={}){return pc(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function vt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ev?ev[e]:e,config:{}};return tv(n)}else return e instanceof Q3?e:tv(e)}var Fg=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ys(e);return this.maxValue!=null&&(n=Wn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Fg.className="ReLU";oe.registerClass(Fg);var Dg=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Lh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Dg.className="LeakyReLU";oe.registerClass(Dg);var Og=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=vt(e.alphaRegularizer),this.alphaConstraint=Gt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Pt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),qh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:lt(this.alphaRegularizer),alphaConstraint:Ht(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Og.className="PReLU";oe.registerClass(Og);var Pg=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return rc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Pg.className="ELU";oe.registerClass(Pg);var Mg=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return z(n,ue(Vn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Mg.className="ThresholdedReLU";oe.registerClass(Mg);var zg=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Rg().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};zg.className="Softmax";oe.registerClass(zg);function zl(e,t,n){if(typeof e=="number")return Eo(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!cO(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function zs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function nr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Zr([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function Lg(e,t){return H(()=>($t(t),t==="channelsFirst"?je(e,[0,2,3,1]):e))}function nv(e,t){return H(()=>($t(t),t==="channelsFirst"?je(e,[0,2,3,4,1]):e))}function GP(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=$s()),$t(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=je(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=fA(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Os(i,n)),i})}function sv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=$s()),$t(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Lg(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=qr.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=je(l,[0,3,1,2])),l})}function jP(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=$s()),$t(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=nv(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=gA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Os(i,n)),a==="channelsFirst"&&(i=je(i,[0,4,1,2,3])),i})}var Bg=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Bg.verifyArgs(t),this.rank=e,Zt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zl(t.kernelSize,e,"kernelSize"),this.strides=zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,hs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=Qr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Gt(t.biasConstraint),this.biasRegularizer=vt(t.biasRegularizer),this.activityRegularizer=vt(t.activityRegularizer),this.dilationRate=zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Qs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!YA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Jr(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ic=class extends Bg{constructor(e,t){super(e,t);this.kernel=null,Ic.verifyArgs(t),this.filters=t.filters,Zt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Gt(t.kernelConstraint),this.kernelRegularizer=vt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n,s=this.bias==null?null:this.bias.read(),r=jb(this.activation.getClassName());if(r!=null&&this.rank===2)n=sv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=GP(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=sv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=jP(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=zs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:lt(this.kernelRegularizer),kernelConstraint:Ht(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sc=class extends Ic{constructor(e){super(2,e);Sc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!YA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Sc.className="Conv2D";oe.registerClass(Sc);var Cc=class extends Ic{constructor(e){super(3,e);Cc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Cc.className="Conv3D";oe.registerClass(Cc);var Wg=class extends Sc{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=nr(i,d,u,this.padding),m=nr(l,h,c,this.padding),f=[r,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,1]));let A=AA(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=je(A,[0,3,1,2])),this.bias!=null&&(A=Os(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=nr(t[s],i,a,this.padding),t[r]=nr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Wg.className="Conv2DTranspose";oe.registerClass(Wg);var Vg=class extends Cc{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],g=nr(l,m,d,this.padding),y=nr(u,f,h,this.padding),x=nr(c,A,p,this.padding),b=[r,g,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,4,1]));let v=Mx(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=je(v,[0,4,1,2,3])),this.bias!==null&&(v=Os(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=nr(t[s],u,o,this.padding),t[r]=nr(t[r],c,i,this.padding),t[a]=nr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Vg.className="Conv3DTranspose";oe.registerClass(Vg);var rv=class extends Ic{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=vt(t.depthwiseRegularizer),this.depthwiseConstraint=Gt(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=vt(t.pointwiseRegularizer),this.pointwiseConstraint=Gt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Pt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=je(e,[0,2,3,1])),n=ab(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Os(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.pointwiseRegularizer=lt(this.pointwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseConstraint),e.pointwiseConstraint=Ht(this.pointwiseConstraint),e}};rv.className="SeparableConv";var Ug=class extends rv{constructor(e){super(2,e)}};Ug.className="SeparableConv2D";oe.registerClass(Ug);var Pp=class extends Ic{constructor(e){super(1,e);Pp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!YA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Pp.className="Conv1D";oe.registerClass(Pp);var Hg=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Hg.className="Cropping2D";oe.registerClass(Hg);var Gg=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,iO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=ze(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=je(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Re.resizeNearestNeighbor(n,[r,a]):Re.resizeBilinear(n,[r,a]);return je(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Re.resizeNearestNeighbor(n,[r,a]):Re.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Gg.className="UpSampling2D";oe.registerClass(Gg);function qP(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=$s()),$t(r);let o=Lg(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=sc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}var jg=class extends Bg{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Gt(e.depthwiseConstraint),this.depthwiseRegularizer=vt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=ze(e);let n=qP(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Os(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=zs(t,this.kernelSize[0],this.padding,this.strides[0]),a=zs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseRegularizer),e}};jg.className="DepthwiseConv2D";oe.registerClass(jg);function av(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ov(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ds(2,l));if(t=je(t,u),a!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ue(ue(r,"bool"),"float32"),r.rank===l-1&&(r=Ft(r,-1)),r=je(r,u)),s&&(t=cs(t,0),r!=null&&(r=cs(r,0)));let c=[],d,h=n,p=t.shape[0],m=ds(t),f;r!=null&&(f=ds(r));for(let g=0;g<p;++g){let y=m[g],x=H(()=>e(y,h));if(r==null)d=x[0],h=x[1];else{let b=H(()=>{let v=f[g],k=Ae(us(v),v),w=ae(z(x[0],v),z(h[0],k)),C=h.map((E,P)=>ae(z(x[1][P],v),z(E,k)));return{output:w,newStates:C}});d=b.output,h=b.newStates}i&&c.push(d)}let A;return i&&(A=Nn(c,1)),[d,A,h]})}var sr=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Pt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ds(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){fg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");fg(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Pt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!I.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Pt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_=[Dt([n,this.cell.stateSize])];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_[0]=Dt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!I.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Kt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=av(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Pt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Ps){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ov((p,m)=>{let f=this.cell.call([p].concat(m),o);return[f[0],f.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return H(()=>{let t=Dt(e.shape);return t=ve(t,[1,2]),t=Ac(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?ag(t,[1,n]):t):this.cell.stateSize>1?[ag(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===sr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Ms(s,n);return new e(Object.assign(t,{cell:r}))}};sr.className="RNN";oe.registerClass(sr);var Tc=class extends Xe{},Mp=class extends Tc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=er(z(e,a),this.kernel.read()):r=er(e,this.kernel.read()),this.bias!=null&&(r=Os(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ae(r,er(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Mp.className="SimpleRNNCell";oe.registerClass(Mp);var qg=class extends sr{constructor(e){e.cell=new Mp(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};qg.className="SimpleRNN";oe.registerClass(qg);var zp=class extends Tc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=er(e,this.kernel.read());this.useBias&&(u=Os(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[d,h]=nn(c,[2*this.units,this.units],c.rank-1),p=er(s,d),[m,f,A]=nn(u,3,u.rank-1),[g,y]=nn(p,2,p.rank-1);o=this.recurrentActivation.apply(ae(m,g)),i=this.recurrentActivation.apply(ae(f,y));let x=er(z(i,s),h);l=this.activation.apply(ae(A,x));let b=ae(z(o,s),z(ae(1,St(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),recurrentActivation:Jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};zp.className="GRUCell";oe.registerClass(zp);var Xg=class extends sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new zp(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Xg.className="GRU";oe.registerClass(Xg);var Nc=class extends Tc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ws{apply(i,l){let u=r.apply([a]),c=new Ap().apply([a]),d=r.apply([a*2]);return t3(t3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let d=er(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),d=ae(d,er(s,this.recurrentKernel.read())),this.useBias&&(d=Os(d,this.bias.read()));let[h,p,m,f]=nn(d,4,d.rank-1);i=this.recurrentActivation.apply(h),l=this.recurrentActivation.apply(p),u=ae(z(l,r),z(i,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let A=z(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),recurrentActivation:Jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Nc.className="LSTMCell";oe.registerClass(Nc);var Kg=class extends sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Nc(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Kg.className="LSTM";oe.registerClass(Kg);var Lp=class extends Tc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){fg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{$o(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Ms(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return mg(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}Ag(t)}};Lp.className="StackedRNNCells";oe.registerClass(Lp);function ea(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>s3(t(),n),o=()=>yc(a,t,s);return!r||r<=1?Kt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Kt(l.clone()))}var XP=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},iv=class extends sr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Pt({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Dt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_=[Dt(r)];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_[0]=Dt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!I.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Kt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=zs(l,s[0],r,a[0],o[0]),d=zs(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};iv.className="ConvRNN2D";var Bp=class extends Nc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Zt(this.filters,"filters"),this.kernelSize=zl(n,2,"kernelSize"),this.kernelSize.forEach(i=>Zt(i,"kernelSize")),this.strides=zl(s||1,2,"strides"),this.strides.forEach(i=>Zt(i,"strides")),this.padding=r||"valid",hs(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=zl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Zt(i,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends ws{apply(d,h){let p=l.apply([u]),m=Un([u]),f=l.apply([u*2]);return rg([p,m,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(Q,ne,te)=>!ne||!ne[te]?Q:z(ne[te],Q),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),h=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(r),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,m=l(r,p,0),f=l(r,p,1),A=l(r,p,2),g=l(r,p,3),y=3,[x,b,v,k]=nn(this.kernel.read(),o,y),[w,C,E,P]=this.useBias?nn(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,w,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,E,this.padding),h=this.inputConv(h,k,P,this.padding);let[R,_,T,O]=nn(this.recurrentKernel.read(),o,y);m=this.recurrentConv(m,R),f=this.recurrentConv(f,_),A=this.recurrentConv(A,T),g=this.recurrentConv(g,O);let W=this.recurrentActivation.apply(ae(u,m)),j=this.recurrentActivation.apply(ae(c,f)),q=ae(z(j,a),z(W,this.activation.apply(ae(d,A)))),X=z(this.recurrentActivation.apply(ae(h,g)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=XP(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Hr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Os(r,n,this.dataFormat):r}recurrentConv(e,t){return Hr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Bp.className="ConvLSTM2DCell";oe.registerClass(Bp);var Zg=class extends iv{constructor(e){let t=new Bp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Zg.className="ConvLSTM2D";oe.registerClass(Zg);var Wp=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return yc(()=>s3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Wp.className="Dropout";oe.registerClass(Wp);var Yg=class extends Wp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Yg.className="SpatialDropout1D";oe.registerClass(Yg);var Jg=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Gt(e.kernelConstraint),this.biasConstraint=Gt(e.biasConstraint),this.kernelRegularizer=vt(e.kernelRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=jb(this.activation.getClassName()),r;return s!=null?r=er(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=er(n,this.kernel.read()),this.bias!=null&&(r=Os(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Jr(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Jg.className="Dense";oe.registerClass(Jg);var Qg=class extends Xe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Kr(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=je(n,s)}return pO(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Qg.className="Flatten";oe.registerClass(Qg);var e2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Qr(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Jr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Activation";oe.registerClass(e2);var t2=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=ze(e),dO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};t2.className="RepeatVector";oe.registerClass(t2);var n2=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=Kr(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};n2.className="Reshape";oe.registerClass(n2);var s2=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ds(1,e.dims.length+1);if(!I.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Pt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};s2.className="Permute";oe.registerClass(s2);var r2=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),s=-1;return Fh(Nl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=-1,r=!0,a=Fh(Nl(n,this.maskValue),s,r);return z(n,ue(a,n.dtype))})}};r2.className="Masking";oe.registerClass(r2);var a2=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Zt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Zt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=vt(e.embeddingsRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.embeddingsConstraint=Gt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=ze(e),Nl(e,qe(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=pp(n,"int32"));let s=n3(this.embeddings.read(),U(n,[n.size]));return U(s,st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:lt(this.embeddingsRegularizer),activityRegularizer:lt(this.activityRegularizer),embeddingsConstraint:Ht(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};a2.className="Embedding";oe.registerClass(a2);var Mo=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Xr(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Xr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Zr(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Ac(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),h=U(i,[c].concat(Kr(u.slice(1))));h=je(h,[1,0]),h=U(h,d),n.push(h),r=!0}else if(l>1){let u=Ds(1,l).concat([0]);n.push(je(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(je(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Ds(0,o-1));a=je(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Xr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Ft(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Rs(n,t[s]);return n})}},o2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return t})}};o2.className="Add";oe.registerClass(o2);var i2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};i2.className="Multiply";oe.registerClass(i2);var l2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return z(1/e.length,t)})}};l2.className="Average";oe.registerClass(l2);var u2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=gr(t,e[n]);return t})}};u2.className="Maximum";oe.registerClass(u2);var c2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=oc(t,e[n]);return t})}};c2.className="Minimum";oe.registerClass(c2);var d2=class extends Mo{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(I.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>rg(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ue(us(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Ft(t[a],-1)):s.push(t[a]);let r=dt(s,this.axis);return uA(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};d2.className="Concatenate";oe.registerClass(d2);function Ec(e,t){for(;e<0;)e+=t;return e}function KP(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(I.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),I.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(z(e,t),a[0]):i=ve(z(je(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=We(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=mt(i,u)}return i.shape.length===1&&(i=Ft(i,1)),i})}var h2=class extends Mo{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Ec(r,e[a].shape.length)):s=[Ec(this.axes,t.shape.length),Ec(this.axes,n.shape.length)],this.normalize&&(t=Np(t,s[0]),n=Np(n,s[1])),KP(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Ec(this.axes,e.length),Ec(this.axes,t.length)],n}computeOutputShape(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};h2.className="Dot";oe.registerClass(h2);var p2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return yc(()=>ae(mp(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};p2.className="GaussianNoise";oe.registerClass(p2);var f2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?yc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,mp(n.shape,1,r))},()=>n,t.training||!1):n})}};f2.className="GaussianDropout";oe.registerClass(f2);var m2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return yc(()=>{let r=ze(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Io(El(n),this.rate);l=pp(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(z(r,l),z(ae(l,-1),i));return ae(z(d,u),c)},()=>ze(e),t.training||!1)}return e})}};m2.className="AlphaDropout";oe.registerClass(m2);function Rc(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Ex(e,t,n,s,r,a);else if(e.rank===3)o=Rx(e,t,n,s,r,a);else if(e.rank===4)o=_x(e,t,n,s,r,a);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function ZP(e,t,n,s,r=.001){return H(()=>{let a=Gh(e,s),o=a.mean,i=a.variance;return[Rc(e,o,i,n,t,r),o,i]})}function YP(e,t,n,s,r=.001){return H(()=>{let a=Gh(e,s),o=a.mean,i=a.variance,l=[];for(let m of Ds(0,e.rank))s.indexOf(m)!==-1?l.push(1):l.push(e.shape[m]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),h=n==null?null:U(n,l);return[Rc(e,u,c,h,d,r),o,i]})}function JP(e,t,n,s,r=.001){return I.arraysEqual(s.slice().sort(),Ds(0,e.rank-1))?ZP(e,t,n,s,r):YP(e,t,n,s,r)}var A2=class extends Xe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Gt(e.betaConstraint),this.gammaConstraint=Gt(e.gammaConstraint),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Pt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=ze(e),r=s.shape,a=r.length,o=Ds(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Eo(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!I.arraysEqual(u,Ds(0,a).slice(0,a-1)),d=()=>{if(c){let g=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Rc(s,g,y,x,b,this.epsilon)}else return Rc(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,m]=JP(s,this.gamma.read(),this.beta.read(),o,this.epsilon),f=(g,y,x)=>{H(()=>{let b=1-x,v=g.read(),k=z(Ae(v,y),b);g.write(Ae(v,k))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer),betaConstraint:Ht(this.betaConstraint),gammaConstraint:Ht(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};A2.className="BatchNormalization";oe.registerClass(A2);var g2=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Xr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=ze(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=Gh(n,this.axis,a),l=Eo(1,r);for(let m of this.axis)l[m]=s[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?U(m,l):m,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(h.push(s[m]),p.push(1)):(h.push(1),p.push(s[m]));return o=Es(o,h),i=Es(i,h),c=Es(c,p),d=Es(d,p),Rc(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};g2.className="LayerNormalization";oe.registerClass(g2);function QP(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=$s()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Gr(e,s)})}var y2=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?$s():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>QP(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};y2.className="ZeroPadding2D";oe.registerClass(y2);function Vp(e,t,n,s,r,a){return H(()=>{$t(r),Zb(a),hs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=$s()),a==null&&(a="max"),e=Lg(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Uh(e,t,n,i):o=Oh(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}function lv(e,t,n,s,r,a){return H(()=>{$t(r),Zb(a),hs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=$s()),a==null&&(a="max"),e=nv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=CA(e,t,n,i):o=hA(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,4,1,2,3])),o})}var uv=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Zt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,hs(this.padding),this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){e=st(e);let t=zs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Ac(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return mt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},x2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"max")}};x2.className="MaxPooling1D";oe.registerClass(x2);var b2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"avg")}};b2.className="AveragePooling1D";oe.registerClass(b2);var cv=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=zs(t,this.poolSize[0],this.padding,this.strides[0]),n=zs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},v2=class extends cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"max")}};v2.className="MaxPooling2D";oe.registerClass(v2);var w2=class extends cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"avg")}};w2.className="AveragePooling2D";oe.registerClass(w2);var dv=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=zs(t,this.poolSize[0],this.padding,this.strides[0]),n=zs(n,this.poolSize[1],this.padding,this.strides[1]),s=zs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},k2=class extends dv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),lv(e,t,n,s,r,"max")}};k2.className="MaxPooling3D";oe.registerClass(k2);var I2=class extends dv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),lv(e,t,n,s,r,"avg")}};I2.className="AveragePooling3D";oe.registerClass(I2);var hv=class extends Xe{constructor(e){super(e);this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},S2=class extends hv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return Et(n,1)})}};S2.className="GlobalAveragePooling1D";oe.registerClass(S2);var C2=class extends hv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return ls(n,1)})}};C2.className="GlobalMaxPooling1D";oe.registerClass(C2);var pv=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},T2=class extends pv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};T2.className="GlobalAveragePooling2D";oe.registerClass(T2);var N2=class extends pv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?ls(n,[1,2]):ls(n,[2,3])})}};N2.className="GlobalMaxPooling2D";oe.registerClass(N2);var fv=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Ms(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},E2=class extends fv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=ze(e),ov((a,o)=>[ze(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};E2.className="TimeDistributed";oe.registerClass(E2);function eM(e){_o(oO,"BidirectionalMergeMode",e)}var tM="concat",R2=class extends fv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ms(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Ms(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?tM:e.mergeMode,eM(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):En(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=av(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Pt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Ps;for(let l of a)if(l instanceof Ps!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=cs(r,1));let o;return this.mergeMode==="concat"?o=rg([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=z(.5,ae(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){$o(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),$o(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ms(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};R2.className="Bidirectional";oe.registerClass(R2);function nM(e){return new Dl(e)}function sM(e){return new Pg(e)}function rM(e){return new Fg(e)}function aM(e){return new Dg(e)}function oM(e){return new Og(e)}function iM(e){return new zg(e)}function lM(e){return new Mg(e)}function uM(e){return new Pp(e)}function cM(e){return new Sc(e)}function dM(e){return new Wg(e)}function hM(e){return new Cc(e)}function pM(e){return new Vg(e)}function fM(e){return new Ug(e)}function mM(e){return new Hg(e)}function AM(e){return new Gg(e)}function gM(e){return new jg(e)}function yM(e){return new e2(e)}function xM(e){return new Jg(e)}function bM(e){return new Wp(e)}function vM(e){return new Yg(e)}function wM(e){return new Qg(e)}function kM(e){return new t2(e)}function IM(e){return new n2(e)}function SM(e){return new s2(e)}function CM(e){return new a2(e)}function TM(e){return new o2(e)}function NM(e){return new l2(e)}function EM(e){return new d2(e)}function RM(e){return new u2(e)}function _M(e){return new c2(e)}function $M(e){return new i2(e)}function FM(e){return new h2(e)}function DM(e){return new A2(e)}function OM(e){return new g2(e)}function PM(e){return new y2(e)}function _2(e){return new b2(e)}function MM(e){return _2(e)}function zM(e){return _2(e)}function $2(e){return new w2(e)}function LM(e){return $2(e)}function BM(e){return $2(e)}function F2(e){return new I2(e)}function WM(e){return F2(e)}function VM(e){return F2(e)}function UM(e){return new S2(e)}function HM(e){return new T2(e)}function mv(e){return new C2(e)}function Av(e){return new N2(e)}function gv(e){return new x2(e)}function yv(e){return new v2(e)}function GM(e){return new k2(e)}function jM(e){return new Xg(e)}function qM(e){return new zp(e)}function XM(e){return new Kg(e)}function KM(e){return new Nc(e)}function ZM(e){return new qg(e)}function YM(e){return new Mp(e)}function JM(e){return new Zg(e)}function QM(e){return new Bp(e)}function ez(e){return new sr(e)}function tz(e){return new Lp(e)}function nz(e){return new R2(e)}function sz(e){return new E2(e)}var rz=mv,az=Av,oz=gv,iz=yv;function lz(e){return new p2(e)}function uz(e){return new f2(e)}function cz(e){return new m2(e)}function dz(e){return new r2(e)}var xv={};Pe(xv,{MAPE:()=>wz,MSE:()=>Sz,binaryAccuracy:()=>hz,binaryCrossentropy:()=>pz,categoricalAccuracy:()=>mz,categoricalCrossentropy:()=>Az,cosineProximity:()=>xz,mape:()=>kz,meanAbsoluteError:()=>bz,meanAbsolutePercentageError:()=>vz,meanSquaredError:()=>Iz,mse:()=>Cz,precision:()=>gz,recall:()=>yz,sparseCategoricalAccuracy:()=>fz});function hz(e,t){return xg(e,t)}function pz(e,t){return v3(e,t)}function fz(e,t){return w3(e,t)}function mz(e,t){return bg(e,t)}function Az(e,t){return vg(e,t)}function gz(e,t){return b3(e,t)}function yz(e,t){return tP(e,t)}function xz(e,t){return gg(e,t)}function bz(e,t){return Ep(e,t)}function vz(e,t){return Pl(e,t)}function wz(e,t){return Pl(e,t)}function kz(e,t){return Pl(e,t)}function Iz(e,t){return Do(e,t)}function Sz(e,t){return Do(e,t)}function Cz(e,t){return Do(e,t)}var bv={};Pe(bv,{modelFromJSON:()=>OP});var vv={};Pe(vv,{l1:()=>Nz,l1l2:()=>Tz,l2:()=>Ez});function Tz(e){return new kc(e)}function Nz(e){return UP(e)}function Ez(e){return HP(e)}var wv=class extends Ol{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Up(e,t){return e<t}function kv(e,t){return e>t}var Iv=class extends wv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Up:this.mode==="max"?this.monitorFunc=kv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=kv:this.monitorFunc=Up,this.monitorFunc===Up&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Up?1/0:-1/0}async onEpochEnd(e,t){await Yr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Rz(e){return new Iv(e)}var _z={earlyStopping:Rz},Ls;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ls||(Ls={}));var Sv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Sv||(Sv={}));var D2={};function $z(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};D2[e]=n}function Cv(e){return D2[e]}function Fz(e){delete D2[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return xn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>xn(h,n,s,r));let u=xn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:I.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function xn(e,t,n,s){let[r,a]=Hn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Hp(r,i)]);return o!==void 0?t[Hp(r,o)][a]:void 0}function Dz(e,t,n){return t[Hp(e,n.currentContextId)]}function kr(e,t){let[n,s,r]=Hn(e);return[Hp(n,t&&t.currentContextId),s,r]}function Hp(e,t){return t?`${e}-${t}`:e}function Hn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Gp(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ir(e){return e.kept?e:Ns(e)}var Tv={};Pe(Tv,{json:()=>Oz});var Oz=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Nv={};Pe(Nv,{json:()=>Pz});var Pz=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Ev={};Pe(Ev,{json:()=>Mz});var Mz=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Rv={};Pe(Rv,{json:()=>zz});var zz=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],_v={};Pe(_v,{json:()=>Lz});var Lz=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],$v={};Pe($v,{json:()=>Bz});var Bz=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Fv={};Pe(Fv,{json:()=>Wz});var Wz=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Dv={};Pe(Dv,{json:()=>Vz});var Vz=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Ov={};Pe(Ov,{json:()=>Uz});var Uz=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Pv={};Pe(Pv,{json:()=>Hz});var Hz=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Mv={};Pe(Mv,{json:()=>Gz});var Gz=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],zv={};Pe(zv,{json:()=>jz});var jz=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Lv={};Pe(Lv,{json:()=>qz});var qz=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Bv={};Pe(Bv,{json:()=>Xz});var Xz=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Wv={};Pe(Wv,{json:()=>Kz});var Kz=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Vv={};Pe(Vv,{json:()=>Zz});var Zz=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Uv={};Pe(Uv,{json:()=>Yz});var Yz=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Hv={};Pe(Hv,{json:()=>Jz});var Jz=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Gv={};Pe(Gv,{json:()=>Qz});var Qz=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],jv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Tv,Nv,Ev,Rv,_v,$v,Fv,Dv,Ov,Pv,Mv,zv,Lv,Bv,Wv,Vv,Uv,Hv,Gv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?s.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&a.push(m[f.name]),m),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(m=>{let f=o[m];f.inputNames.forEach((A,g)=>{let[y,,x]=kr(A),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;f.inputNames[g]=k}}f.inputs.push(b),b.children.push(f)})}),Object.keys(c).length===0?d.forEach(m=>{let f=o[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=kr(m),A=o[f];A!=null&&(A.signatureKey=c[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=kr(m),A=o[f];A&&(A.signatureKey=u[m],i.push(A))}):i=s;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Cv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=O2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=O2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=U2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=U2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=M2(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=M2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=V2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=V2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=P2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=P2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=G2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=G2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=W2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=W2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=H2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=H2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=L2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=L2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=B2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=B2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=Xv(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Xv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=kr(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:z2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),r[d]=h}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((h,p)=>{let[m,,f]=kr(h),A=r[m];if(A.outputs!=null){let g=A.outputs.indexOf(f);if(g!==-1){let y=`${m}:${g}`;d.inputNames[p]=y}}d.inputs.push(A),A.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=kr(l[c.name]),p=r[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function eL(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function qv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):eL(e);return t?n:n.toLowerCase()}function O2(e,t,n,s=!1){let r=e[t];return r!=null?qv(r.s,s):n}function P2(e,t,n){let s=e[t];return s?s.b:n}function M2(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function z2(e){switch(typeof e=="string"&&(e=Ls[e]),e){case Ls.DT_FLOAT:return"float32";case Ls.DT_INT32:case Ls.DT_INT64:case Ls.DT_INT8:case Ls.DT_UINT8:return"int32";case Ls.DT_BOOL:return"bool";case Ls.DT_DOUBLE:return"float32";case Ls.DT_STRING:return"string";default:return null}}function Xv(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function L2(e,t,n){let s=e[t];return s&&s.type?z2(s.type):n}function B2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>z2(r)):n}function Kv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function W2(e,t,n){let s=e[t];return s&&s.shape?Kv(s.shape):n}function V2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function U2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>qv(a,s)):n}function H2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>Kv(r)):n}function G2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var tL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return xn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return xn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return M2(this.node.rawAttrs,e,t);if(n.s!=null)return O2(this.node.rawAttrs,e,t);if(n.b!=null)return P2(this.node.rawAttrs,e,t);if(n.shape!=null)return W2(this.node.rawAttrs,e,t);if(n.type!=null)return L2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return V2(this.node.rawAttrs,e,t);if(n.list.s!=null)return U2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return H2(this.node.rawAttrs,e,t);if(n.list.b!=null)return G2(this.node.rawAttrs,e,t);if(n.list.type!=null)return B2(this.node.rawAttrs,e,t)}return t}},nL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[$h(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[tb(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[z(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[ce(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[Wx(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[lA(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[Ae(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[oc(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[gr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[jr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[zA(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},sL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Wt(S("x",e,t,n))];case"Acos":return[yx(S("x",e,t,n))];case"Acosh":return[xx(S("x",e,t,n))];case"Asin":return[vx(S("x",e,t,n))];case"Asinh":return[wx(S("x",e,t,n))];case"Atan":return[kx(S("x",e,t,n))];case"Atan2":return[Ix(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[Sx(S("x",e,t,n))];case"Ceil":return[$x(S("x",e,t,n))];case"Complex":return[Lr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[Mh(S("x",e,t,n))];case"Cosh":return[yA(S("x",e,t,n))];case"Elu":return[rc(S("x",e,t,n))];case"Erf":return[Ux(S("x",e,t,n))];case"Exp":return[os(S("x",e,t,n))];case"Expm1":return[Hx(S("x",e,t,n))];case"Floor":return[ac(S("x",e,t,n))];case"Log":return[is(S("x",e,t,n))];case"Log1p":return[Bh(S("x",e,t,n))];case"Imag":return[zh(S("x",e,t,n))];case"Neg":return[St(S("x",e,t,n))];case"Reciprocal":return[rb(S("x",e,t,n))];case"Real":return[ic(S("x",e,t,n))];case"Relu":return[Ys(S("x",e,t,n))];case"Round":return[_A(S("x",e,t,n))];case"Selu":return[FA(S("x",e,t,n))];case"Sigmoid":return[Bn(S("x",e,t,n))];case"Sin":return[DA(S("x",e,t,n))];case"Sign":return[ib(S("x",e,t,n))];case"Sinh":return[OA(S("x",e,t,n))];case"Softplus":return[Tl(S("x",e,t,n))];case"Sqrt":return[ln(S("x",e,t,n))];case"Square":return[it(S("x",e,t,n))];case"Tanh":return[wl(S("x",e,t,n))];case"Tan":return[ub(S("x",e,t,n))];case"ClipByValue":return[Wn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[RA(S("x",e,t,n))];case"Rsqrt":return[$A(xn(e.inputNames[0],t,n))];case"Prod":return[TA(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[Lh(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[qh(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[Gx(xn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Is(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){I.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];I.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function Zv(e){return!(typeof e=="number"||e.some(t=>t<0))}function _c(e,t,n){let s=j2(e,n),r=!Zv(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=j2(a.shape,s)}),!Zv(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function j2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var rL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Kt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Is(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Kt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return on([],[0].concat(this.elementShape));let n=this.readMany(e);return Is(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Nn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return on([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Is(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),dt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ds(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(_e(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},$c=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Is(t,r.shape,"TensorList shape mismatch: "),Kt(r)}),this.idTensor=Ie(0),this.maxNumElements=s,Kt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new $c([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Is(e,this.elementShape,"TensorList shape mismatch: ");let s=_c(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return Nn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=_c(this.elementShape,this.tensors,e),s=this.tensors.pop();return Is(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Is(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Kt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Is(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=_c(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Is(this.elementShape,t.shape,"TensorList shape mismatch: "),Kt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Is(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=_c(this.elementShape,this.tensors,n);return e.length===0?on([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return Nn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Is(this.elementShape,t,"TensorList shape mismatch: ");let n=_c(this.elementShape,this.tensors,t);return this.size()===0?on([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return dt(s,0)})}};function aL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Is(r,t,"TensorList shape mismatch: ");let a=ds(e);return new $c(a,t,s)}function oL(e,t,n){return new $c([],e,t,n)}function iL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new $c([],n,e.dtype,s),o=ds(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function lL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=j2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let h=d===0?0:r[d-1],p=[0,h,0],m=[1,t[d],i];c[d]=U(_e(e,p,m),o)}return e.dispose(),c}),u=new $c([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var uL=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[Ir(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Ir(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>xn(r,t,n)!==void 0);if(s){let r=xn(s,t,n);return[Ir(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Ir(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Ir(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Ir(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new rL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=iL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=oL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=aL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=lL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Yv(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),d=Gp(e,t,n),h=S("dataFormat",e,t,n).toUpperCase(),p=S("dilations",e,t,n),[m,f]=S("args",e,t,n);o&&(f=m,m=void 0);let A=S("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:A}}var cL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[fA(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=Gp(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Hr(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Yv(e,t,n);return[qr.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Yv(e,t,n);return[qr.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=Gp(e,t,n);return[AA(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=Gp(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[sc(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[gA(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Oh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Uh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Qx(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[hA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[CA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[Bx(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dL=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Sl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[jx(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[nb(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[ec(s,r,a,o)]}case"Ones":return[Un(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[us(S("x",e,t,n))];case"RandomUniform":return[El(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[Rl(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[Qh(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Dt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[qe(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function q2(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var hL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=q2(e,t,n),u=await Re.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=q2(e,t,n),l=S("padToMaxOutputSize",e,t,n),u=await Re.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=q2(e,t,n);return[await Re.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ue(S("condition",e,t,n),"bool"),r=[await BA(s)];return s.dispose(),r}case"ListDiff":return ob(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},pL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=cb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=LA(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=LA(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[xn(e.name,t,n)||s];case"Placeholder":return[xn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=S("x",e,t,n);return[Ir(u)]}case"IdentityN":return S("x",e,t,n).map(u=>Ir(u));case"Snapshot":let r=S("x",e,t,n);return[Ir(r)];case"Shape":return[Ot(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(u=>Ot(u.shape));case"Size":return[Ie(S("x",e,t,n).size,"int32")];case"Rank":return[Ie(S("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},mL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,Kt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ds(t),r=n.length,a=s.length;I.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];Kt(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return Nn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},AL=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new mL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[Re.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[Re.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[Re.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yL=(e,t,n)=>{switch(e.op){case"Equal":return[as(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Nl(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[Vn(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Io(S("a",e,t,n),S("b",e,t,n))];case"Less":return[vA(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[So(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[Rs(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Vh(S("a",e,t,n))];case"LogicalOr":return[SA(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[gn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[Vx(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[je(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=S("args",e,t,n);return[qr.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[kl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[kl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[qx(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[Zh(S("x",e,t,n))];case"LogSoftmax":return[wA(S("x",e,t,n))];case"SparseToDense":return[VA(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vL=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ls(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Et(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Hh(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ve(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[uA(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Fh(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[Xs(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[bx(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[TA(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[xA(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[pA(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),u=S("binaryOutput",e,t,n);return[zx(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[dt(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Cl(s,ue(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Cl(a,ue(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=S("x",e,t,n);return[cs(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[cs(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[_e(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),o=S("beginMask",e,t,n),i=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),u=S("newAxisMask",e,t,n),c=S("shrinkAxisMask",e,t,n),d=S("x",e,t,n);return[lb(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=mt(r[0]).shape,i=r.map(l=>{let u=I.arraysEqual(l.shape,a);if(!u&&!I.arraysEqual(mt(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[Nn(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return ds(r,s)}case"Tile":{let s=S("reps",e,t,n);return[Es(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return nn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[mb(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Ab(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[VA(s,a,r,a.dtype===o.dtype?o:ue(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=dc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=dc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[dc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[dc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IL=(e,t,n)=>{switch(e.op){case"FFT":return[Yh(S("x",e,t,n))];case"IFFT":return[uc(S("x",e,t,n))];case"RFFT":return[Jh(S("x",e,t,n))];case"IRFFT":return[MA(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},SL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=rp.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=rp.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[rp.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CL=(e,t,n)=>{switch(e.op){case"Cast":return[ue(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Ft(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[mt(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[eb(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Gr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[jh(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Ph(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[Lx(S("x",e,t,n),s,r)]}case"BroadcastTo":return[nc(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Jv(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>nL(a,o,i));case"basic_math":return H(()=>sL(a,o,i));case"control":return uL(a,o,i);case"convolution":return H(()=>cL(a,o,i));case"creation":return H(()=>dL(a,o,i));case"dynamic":return hL(a,o,i);case"evaluation":return H(()=>pL(a,o,i));case"image":return H(()=>gL(a,o,i));case"graph":return H(()=>fL(a,o,i));case"logical":return H(()=>yL(a,o,i));case"matrices":return H(()=>xL(a,o,i));case"normalization":return H(()=>bL(a,o,i));case"reduction":return H(()=>vL(a,o,i));case"slice_join":return H(()=>wL(a,o,i));case"sparse":return H(()=>kL(a,o,i));case"spectral":return H(()=>IL(a,o,i));case"string":return H(()=>SL(a,o,i));case"transformation":return H(()=>CL(a,o,i));case"hash_table":return AL(a,o,i,s);case"custom":let l=Cv(a.op);if(l&&l.customExecutor)return l.customExecutor(new tL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return I.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var Qv=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function e7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>Hn(h)[0]),c=[];s!=null&&(c=s.map(h=>Hn(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((t7(h)||_L(h)||$L(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>r.has(p))),r.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function TL(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Hn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var NL=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],EL=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],RL=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function t7(e){return NL.indexOf(e.op)>=0}function _L(e){return EL.indexOf(e.op)>=0}function $L(e){return RL.indexOf(e.op)>=0}var X2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new X2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=e7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return TL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Hn(c)[0]]),r=t.map(c=>Hn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new Qv(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Hn(m),g=[];g[A]=e[m],d[f]=g});let h=this.getFrozenTensorIds(d),p={};for(let m=0;m<i.length;m++){let f=i[m];if(!d[f.name]){let A=Jv(f,d,c,this._resourceManager);if(I.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=A,this.checkTensorForDisposal(f.name,f,d,c,h,r,p)}}return this.parent==null&&c.dispose(h),t.map(m=>xn(m,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Dz(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new Qv(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>xn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Hn(y)[0]]),o=n.map(y=>Hn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=e7(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Hn(y),v=[];v[b]=e[y],p[x]=v});let m={},f=this.getFrozenTensorIds(p),A={};for(;h.length>0;){let y=this.processStack(a,h,t,p,A,f,o,m,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let g=i.filter(y=>!t7(y)&&!xn(y.name,p,t)).map(y=>y.name);if(g.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${g}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([d]=kr(c.node.name,n)),s[c.node.name]==null){let h=Jv(c.node,s,n,this._resourceManager);d||([d]=kr(c.node.name,n));let p=n.currentContext;I.isPromise(h)?u.push(h.then(m=>(s[d]=m,n.currentContext=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),m))):(s[d]=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=kr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Hn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);I.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&I.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Hn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Hn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},FL=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},DL="?tfjs-format=file",OL="model.json",n7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new FL}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tn.browserHTTPRequest(e,this.loadOptions);else{let t=Tn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Tn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new X2(jv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=jv.Instance.transformGraph(e.modelInitializer);this.initializer=new X2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Tn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ue)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ht(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${OL}${DL}`);let n=new n7(e,t);return await n.load(),n}var PL="3.8.0",s7={};Pe(s7,{CSVDataset:()=>m7,Dataset:()=>Bl,FileDataSource:()=>w7,TextLineDataset:()=>h7,URLDataSource:()=>k7,array:()=>aB,csv:()=>AB,func:()=>gB,generator:()=>yB,microphone:()=>bB,version_data:()=>vB,webcam:()=>xB,zip:()=>oB});var ML=fa(r5()),zL=fa(r5());function LL(e,t){return jp(e,t)}function jp(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ll(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=jp(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function BL(e,t=a7){return r7(e,t)}function r7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ll(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=r7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function a7(e){return e===null?null:Ll(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function o7(e,t){let n=new Map;jp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(I.isPromise(a)){let o=await a;n.set(r,o)}}return jp(e,t,n)}function Ll(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ue))}function WL(e){return e==null||VL(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ue||I.isTypedArray(e)}function VL(e){return e===null||typeof e!="object"&&typeof e!="function"}function UL(e){return LL(e,HL)}function HL(e){return e instanceof Ue?{value:e.clone(),recurse:!1}:Ll(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var i7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},K2=class extends i7{constructor(){super(K2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};K2.INITIAL_CAPACITY=32;function l7(e){return new qL(e)}function Z2(e){return new XL(e)}function GL(e,t){return new c7(e,t)}function jL(e,t=ta.FAIL){return new sB(e,t)}var Yt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new tB(this,e)}filter(e){return new QL(this,e)}map(e){return new eB(this,e)}mapAsync(e){return new u7(this,e)}serialMapAsync(e){return new u7(this,e).serial()}flatmap(e){return new nB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new JL(this,e,t)}columnMajorBatch(e,t=!0,n=a7){return this.rowMajorBatch(e,t).map(r=>BL(r,n))}concatenate(e,t){return new c7(l7([this,e]),t)}take(e){return e<0||e==null?this:new YL(this,e)}skip(e){return e<0||e==null?this:new ZL(this,e)}prefetch(e){return new d7(this,e)}shuffle(e,t){return new rB(this,e,t)}serial(){return new KL(this)}},qL=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:UL(e),done:!1}}},XL=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},KL=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},ZL=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Z(e.value)}return this.upstream.next()}},YL=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},JL=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},QL=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Z(e.value)}}},eB=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Cs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Cs.getTensorsInContainer(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},tB=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},u7=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Cs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Cs.getTensorsInContainer(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Y2=class extends Yt{constructor(){super();this.outputQueue=new K2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},nB=class extends Y2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Cs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Cs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return!0}},c7=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ta;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ta||(ta={}));var sB=class extends Yt{constructor(e,t=ta.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Yt?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await o7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ta.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ta.SHORTEST:return{value:null,done:!0};case ta.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},d7=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new i7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},rB=class extends d7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=zL.alea(n||I.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Bl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;I.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Gn(async()=>(await n.iterator()).columnMajorBatch(e,t,iB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Gn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Gn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Gn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Gn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Gn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Gn(async()=>{let s=Z2(async()=>({value:await t.iterator(),done:!1}));return GL(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Gn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=ML.alea(t||I.now().toString());return Gn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Gn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Bl.MAX_BUFFER_SIZE=1e4;function Gn(e,t=null){return new class extends Bl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function aB(e){return Gn(async()=>l7(e),e.length)}function oB(e){if(!Ll(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Gn(async()=>{let n=await o7(e,s=>{if(s instanceof Bl)return{value:s.iterator(),recurse:!1};if(Ll(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return jL(n,ta.SHORTEST)},t)}function iB(e){if(e===null)return null;let t=e[0];return WL(t)?{value:lB(e),recurse:!1}:{value:null,recurse:!0}}function lB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ue?Nn(e):on(e)}var h7=class extends Bl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},qp='"',Fc=Symbol("out"),p7=Symbol("field"),Xp=Symbol("quote"),J2=Symbol("quoteafterquote"),f7=Symbol("quoteinquote"),m7=class extends Bl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new h7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(I.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&I.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(I.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Fc;for(let o=0;o<r;o++)switch(a){case Fc:switch(e.charAt(o)){case qp:s=o+1,a=Xp;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Fc;break;default:a=p7,s=o;break}break;case p7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Fc,s=o+1;break;default:}break;case Xp:switch(e.charAt(o)){case qp:a=J2;break;default:}break;case J2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Fc,s=o+1;break;case qp:a=Xp;break;default:a=f7;break}break;case f7:switch(e.charAt(o)){case qp:a=Xp;break;default:}break;default:}if(a===J2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},A7=class extends Yt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new A7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(I.sizeFromShape(t));return n.set(e,n.length-e.length),on(n,t)}},g7=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ot([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=_s([a,r,i,o],[1,4])}else this.cropBox=_s([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new g7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&I.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=rs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Ft(ue(e,"float32"),0),n;n=Re.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},y7=class{},x7=class extends Yt{split(e){return new uB(this,e)}},uB=class extends x7{constructor(e,t){super();this.upstream=e,this.impl=new cB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},cB=class extends Y2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},dB=class extends Yt{decodeUTF8(){return new hB(this)}},hB=class extends x7{constructor(e){super();this.upstream=e,this.impl=new pB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},pB=class extends Y2{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=MI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},b7=class extends dB{constructor(e,t={}){super();this.file=e,this.options=t,I.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function fB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=mB(e));let r=await I.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new b7(a,t)}else throw new Error(r.statusText)}var mB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function v7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var w7=class extends y7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(v7(this.input)&&ee().get("IS_NODE")){let e=li("fs");this.input=e.readFileSync(this.input.substr(7))}return new b7(this.input,this.options)}},k7=class extends y7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return v7(this.url)?new w7(this.url,this.fileOptions).iterator():fB(this.url,this.fileOptions)}};function AB(e,t={}){return new m7(new k7(e),t)}function gB(e){let t=Z2(e);return Gn(async()=>t)}function yB(e){return Gn(async()=>{let t=await e();return Z2(()=>t.next())})}async function xB(e,t){return g7.create(e,t)}async function bB(e){return A7.create(e)}var vB="3.8.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var wB=Js.whereImpl,Kp=class extends Su{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Fd(this,Ar())}nextDataId(){return Kp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&$.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return $.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ar().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return wB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Kp.nextDataId=0;var Q2={};Pe(Q2,{addImpl:()=>S7,bincountImpl:()=>t1,bincountReduceImpl:()=>C7,ceilImpl:()=>T7,concatImpl:()=>n1,equalImpl:()=>N7,expImpl:()=>R7,expm1Impl:()=>$7,floorImpl:()=>F7,gatherNdImpl:()=>D7,gatherV2Impl:()=>O7,greaterEqualImpl:()=>M7,greaterImpl:()=>P7,lessEqualImpl:()=>L7,lessImpl:()=>z7,linSpaceImpl:()=>B7,logImpl:()=>W7,maxImpl:()=>V7,maximumImpl:()=>U7,minimumImpl:()=>H7,multiplyImpl:()=>s1,negImpl:()=>G7,notEqualImpl:()=>j7,prodImpl:()=>q7,rangeImpl:()=>a1,rsqrtImpl:()=>X7,simpleAbsImpl:()=>I7,sliceImpl:()=>Jp,sparseFillEmptyRowsImpl:()=>K7,sparseReshapeImpl:()=>Z7,sparseSegmentReductionImpl:()=>o1,squaredDifferenceImpl:()=>Y7,stridedSliceImpl:()=>J7,stringNGramsImpl:()=>Q7,stringSplitImpl:()=>ew,stringToHashBucketFastImpl:()=>tw,subImpl:()=>nw,tileImpl:()=>sw,topKImpl:()=>aw,transposeImpl:()=>r1,uniqueImpl:()=>ow});function I7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var kB=e=>{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=I7(r),n.makeOutput(s,t.shape,"float32")},IB={kernelName:di,backendName:"cpu",kernelFunc:kB};function Mt(e){return(t,n,s,r,a)=>{let o=$.assertAndGetBroadcastShape(t,n),i=o.length,l=I.computeStrides(o),u=I.sizeFromShape(o),c=I.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=I.computeStrides(t),m=I.computeStrides(n),f=$.getBroadcastDims(t,o),A=$.getBroadcastDims(n,o);if(f.length+A.length===0)for(let g=0;g<c.length;++g)c[g]=e(s[g%s.length],r[g%r.length]);else for(let g=0;g<c.length;++g){let y=I.indexToLoc(g,i,l),x=y.slice(-d);f.forEach(w=>x[w]=0);let b=I.locToIndex(x,d,p),v=y.slice(-h);A.forEach(w=>v[w]=0);let k=I.locToIndex(v,h,m);c[g]=e(s[b],r[k])}return[c,o]}}function jn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var SB={kernelName:Wd,backendName:"cpu",kernelFunc:jn};function Zp(e,t,n="float32"){if(n==="complex64"){let r=Zp(e,t,"float32"),a=Zp(e,t,"float32");return jn({inputs:{real:r,imag:a},backend:e})}let s=I.makeZerosTypedArray(I.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function rr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var CB={kernelName:Oa,backendName:"cpu",kernelFunc:rr};function zo(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var TB={kernelName:lh,backendName:"cpu",kernelFunc:zo};function na(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return rr({inputs:{x:r},backend:n});let o=Zp(n,r.shape,r.dtype),i=na({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=jn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=zo({inputs:{input:r},backend:n}),i=na({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=rr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=I.toTypedArray([0],r.dtype),[l,u]=Mt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var NB={kernelName:va,backendName:"cpu",kernelFunc:na};function Jt(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;ke([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?$.fromUint8ToStringArray(u):u,h=o.dtype==="string"?$.fromUint8ToStringArray(c):c,p=s||o.dtype,[m,f]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(f,p,m)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=na({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,m=l.data.get(h.dataId).values,f=na({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),g=A.complexTensorInfos.real,y=A.complexTensorInfos.imag,x=l.data.get(g.dataId).values,b=l.data.get(y.dataId).values,[v,k,w]=n(o.shape,i.shape,p,m,x,b),C=l.makeTensorInfo(w,"float32",v),E=l.makeTensorInfo(w,"float32",k),P=jn({inputs:{real:C,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(E),P}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function e1(e){return(t,n,s,r,a,o)=>{let i=$.assertAndGetBroadcastShape(t,n),l=I.sizeFromShape(i),u=i.length,c=I.computeStrides(i),d=I.getTypedArrayFromDType("float32",l),h=I.getTypedArrayFromDType("float32",l),p=$.getBroadcastDims(t,i),m=$.getBroadcastDims(n,i),f=$.mergeRealAndImagArrays(s,r),A=$.mergeRealAndImagArrays(a,o),g=t.length,y=I.computeStrides(t),x=n.length,b=I.computeStrides(n);if(p.length+m.length===0)for(let v=0;v<d.length;v++){let k=v%f.length,w=v%A.length,C=e(f[k*2],f[k*2+1],A[w*2],A[w*2+1]);d[v]=C.real,h[v]=C.imag}else for(let v=0;v<d.length;v++){let k=I.indexToLoc(v,u,c),w=k.slice(-g);p.forEach(_=>w[_]=0);let C=I.locToIndex(w,g,y),E=k.slice(-x);m.forEach(_=>E[_]=0);let P=I.locToIndex(E,x,b),R=e(f[C*2],f[C*2+1],A[P*2],A[P*2+1]);d[v]=R.real,h[v]=R.imag}return[d,h,i]}}var S7=Mt((e,t)=>e+t),EB=e1((e,t,n,s)=>({real:e+n,imag:t+s})),Dc=Jt(Dr,S7,EB),RB={kernelName:Dr,backendName:"cpu",kernelFunc:Dc};function t1(e,t,n,s,r){let a=I.sizeFromShape(s),o=I.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function C7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Be([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Wl(e){return(t,n,s)=>{let r=I.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function rt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=I.sizeFromShape(o.shape),c=n||o.dtype,d=I.getArrayFromDType(c,u);for(let h=0;h<u;++h)d[h]=t(l[h],r);return i.makeTensorInfo(o.shape,c,d)}}function Vl(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var T7=Wl(e=>Math.ceil(e)),_B=Vl(wa,T7),$B={kernelName:wa,backendName:"cpu",kernelFunc:_B};function n1(e,t,n,s){let r=I.getArrayFromDType(n,I.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=I.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?$.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var N7=Mt((e,t)=>e===t?1:0),E7=Jt(Ti,N7,null,"bool"),FB={kernelName:Ti,backendName:"cpu",kernelFunc:E7},R7=Wl(e=>Math.exp(e)),_7=Vl(Ra,R7),DB={kernelName:Ra,backendName:"cpu",kernelFunc:_7},$7=Wl(e=>Math.expm1(e)),OB=Vl(Ei,$7),PB={kernelName:Ei,backendName:"cpu",kernelFunc:OB},F7=Wl(e=>Math.floor(e)),MB=Vl(_a,F7),zB={kernelName:_a,backendName:"cpu",kernelFunc:MB};function D7(e,t,n,s,r,a,o,i,l){let u=Be([s,a],n);for(let c=0;c<s;c++){let d=[],h=0;for(let p=0;p<r;p++){let m=e[c*r+p];h+=m*o[p],d.push(m)}if(h<0||h>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;p<a;p++)u.values[c*a+p]=t.get(...t.indexToLoc(h*a+p))}return u}function O7(e,t,n){let s=Be(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var P7=Mt((e,t)=>e>t?1:0),LB=Jt(Fi,P7,null,"bool"),BB={kernelName:Fi,backendName:"cpu",kernelFunc:LB},M7=Mt((e,t)=>e>=t?1:0),WB=Jt(Da,M7,null,"bool"),VB={kernelName:Da,backendName:"cpu",kernelFunc:WB},z7=Mt((e,t)=>e<t?1:0),UB=Jt(Mi,z7,null,"bool"),HB={kernelName:Mi,backendName:"cpu",kernelFunc:UB},L7=Mt((e,t)=>e<=t?1:0),GB=Jt(zi,L7,null,"bool"),jB={kernelName:zi,backendName:"cpu",kernelFunc:GB};function B7(e,t,n){let s=(t-e)/(n-1),r=I.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var W7=Wl(e=>Math.log(e)),qB=Vl(Ma,W7),XB={kernelName:Ma,backendName:"cpu",kernelFunc:qB};function V7(e,t,n,s){let r=I.getTypedArrayFromDType(s,I.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var U7=Mt((e,t)=>Math.max(e,t)),KB=Jt(La,U7),ZB={kernelName:La,backendName:"cpu",kernelFunc:KB},H7=Mt((e,t)=>Math.min(e,t)),YB=Jt(Ua,H7),JB={kernelName:Ua,backendName:"cpu",kernelFunc:YB},s1=Mt((e,t)=>e*t),QB=e1((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Yp=Jt(Ga,s1,QB),eW={kernelName:Ga,backendName:"cpu",kernelFunc:Yp};function G7(e,t,n){let s=I.createScalarValue(-1,n);return s1([],t,s,e,n)}function tW(e){let{inputs:t,backend:n}=e,{x:s}=t;ke(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=G7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var nW={kernelName:Vi,backendName:"cpu",kernelFunc:tW},j7=Mt((e,t)=>e!==t?1:0),sW=Jt(Ui,j7,null,"bool"),rW={kernelName:Ui,backendName:"cpu",kernelFunc:sW};function r1(e,t,n,s,r){let a=t.length,o=I.sizeFromShape(t),i=I.computeStrides(t),l=I.computeStrides(r),u=I.getTypedArrayFromDType(n,I.sizeFromShape(r));for(let c=0;c<o;++c){let d=I.indexToLoc(c,a,i),h=new Array(d.length);for(let m=0;m<h.length;m++)h[m]=d[s[m]];let p=I.locToIndex(h,a,l);u[p]=e[c]}return u}function ps(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;ke(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=r1(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var aW={kernelName:ho,backendName:"cpu",kernelFunc:ps};function q7(e,t,n,s){let[r,a]=$.computeOutAndReduceShapes(e,s),o=bs(t,"int32"),i=I.makeZerosTypedArray(I.sizeFromShape(r),o),l=I.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let h=0;h<l;++h)d*=n[c+h];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function oW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"prod");let i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=$.getAxesPermutation(l,i),c=l,d=r,h=[];u!=null&&(d=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),h.push(d),c=$.getInnerMostAxes(c.length,i));let p=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:A}=q7(d.shape,d.dtype,p,c),g=f;return o&&(g=$.expandShapeToKeepDim(f,l)),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(g,A,m)}var iW={kernelName:Ki,backendName:"cpu",kernelFunc:oW};function a1(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return I.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=I.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var X7=Wl(e=>1/Math.sqrt(e)),lW=Vl(to,X7),uW={kernelName:to,backendName:"cpu",kernelFunc:lW};function Jp(e,t,n,s,r){let a=An.isSliceContinous(s,t,n),o=I.sizeFromShape(n),i=I.computeStrides(s);if(a){let d=An.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?$.fromUint8ToStringArray(e):e,u=Be(s,r,l),c=Be(n,r);for(let d=0;d<c.size;++d){let h=c.indexToLoc(d),p=h.map((m,f)=>m+t[f]);c.set(u.get(...p),...h)}return r==="string"?$.fromStringArrayToUint8(c.values):c.values}function Lo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;ke(r,"slice");let[i,l]=An.parseSliceParams(r,a,o);An.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Jp(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var cW={kernelName:tl,backendName:"cpu",kernelFunc:Lo};function K7(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let A=I.getArrayFromDType(n,0),g=I.getArrayFromDType(r,0);return[A,[0,d],g,u,c]}let h=!0,p=0,m=new Array(l).fill(0);for(let A=0;A<i;++A){let g=e[A*d];if(g<0)throw new Error(`indices(${A}, 0) is invalid: ${g} < 0`);if(g>=l)throw new Error(`indices(${A}, 0) is invalid: ${g} >= ${l}`);++m[g],h=h&&g>=p,p=g}let f=!0;for(let A=0;A<l;++A){let g=m[A]===0;u[A]=g,f=f&&!g,m[A]=Math.max(m[A],1),A>0&&(m[A]+=m[A-1])}if(f&&h){let A=e,g=s;for(let y=0;y<i;++y)c[y]=y;return[A,[i,d],g,u,c]}else{let A=m[l-1],g=I.getArrayFromDType(n,A*d),y=I.getArrayFromDType(r,A),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],w=(v===0?0:m[v-1])+k;x[v]++;for(let C=0;C<d;++C)g[w*d+C]=e[b*d+C];y[w]=s[b],c[b]=w}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:m[b-1];g[k*d+0]=b;for(let w=1;w<d;++w)g[k*d+w]=0;y[k]=o}return[g,[A,d],y,u,c]}}function Z7(e,t,n,s,r){let a=I.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let A=0;A<i;++A){let g=r[A];if(g===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${A}`);c=A,l.push(1)}else{if(g<0)throw new Error(`size ${A} must be non-negative, not ${g}`);u*=g,l.push(g)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(a/u);if(u*A!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=A}let d=I.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let h=s.length,p=[];if(h>0){p[h-1]=1;for(let A=h-2;A>=0;--A)p[A]=p[A+1]*s[A+1]}let m=[];if(i>0){m[i-1]=1;for(let A=i-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=I.getArrayFromDType(n,o*i);for(let A=0;A<o;++A){let g=0;for(let y=0;y<h;++y)g+=e[A*h+y]*p[y];for(let y=0;y<i;++y)f[A*i+y]=Math.trunc(g/m[y]),g%=m[y]}return[f,[o,i],l]}function o1(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),m=I.getArrayFromDType(n,p);if(i===0)return d>0&&m.fill(o),[m,h];if(d<=0)throw new Error("segment ids must be >= 0");let f=0,A=1,g=0,y=r[f];for(;;){let x=0;if(A<i){if(x=r[A],y===x){++A;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&m.fill(o,g*u,y*u);for(let b=f;b<A;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)m[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)m[y*u+b]/=A-f;if(f=A,++A,g=y+1,y=x,A>i)break}return g<d&&m.fill(o,g*u,d*u),[m,h]}var Y7=Mt((e,t)=>{let n=e-t;return n*n}),dW=Jt(io,Y7),hW={kernelName:io,backendName:"cpu",kernelFunc:dW};function J7(e,t,n,s){let r=Be(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var pW=class{constructor(e,t,n,s,r,a){this.separator=I.encodeString(e),this.nGramWidths=t,this.leftPad=I.encodeString(n),this.rightPad=I.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),h=0;h+=l*this.leftPad.length;for(let g=0;g<c;++g)h+=e[d+g].length;h+=u*this.rightPad.length,h+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(h);let m=n[s+o],f=0,A=g=>g.forEach(y=>m[f++]=y);for(let g=0;g<l;++g)A(this.leftPad),A(this.separator);for(let g=0;g<c-1;++g)A(e[d+g]),A(this.separator);if(c>0){A(e[d+c-1]);for(let g=0;g<u;++g)A(this.separator),A(this.rightPad)}else{for(let g=0;g<u-1;++g)A(this.rightPad),A(this.separator);A(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=I.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function Q7(e,t,n,s,r,a,o,i){return new pW(n,s,r,a,o,i).compute(e,t)}function fW(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;o<e.length;++o)a[o]=e.subarray(o,o+1);return a}if(t.length===1){let a=t[0],o=[],i=e.indexOf(a);for(;i!==-1;){let l=e.subarray(0,i);(!n||l.length!==0)&&o.push(l),e=e.subarray(i+1),i=e.indexOf(a)}return(!n||e.length!==0)&&o.push(e),o}let s=[],r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}return s}function ew(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let h=0;h<s;++h){let p=fW(e[h],t,n),m=p.length;i[h]=m,a+=m,o=Math.max(o,m),r.push(...p)}let l=I.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let h=0;h<s;++h)for(let p=0;p<i[h];++p)l[d*2]=h,l[d*2+1]=p,u[d]=r[d],++d;return[l,u,c]}function tw(e,t){let n=I.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=I.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var nw=Mt((e,t)=>e-t),mW=e1((e,t,n,s)=>({real:e-n,imag:t-s})),i1=Jt(lo,nw,mW),AW={kernelName:lo,backendName:"cpu",kernelFunc:i1};function sw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Be(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Oc=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function rw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(s,Math.floor(t+(i-l)*c/i+d));rw(e,t,h,p)}let r=e[t],a=n,o=s;for(I.swap(e,n,t),Oc(e[s],r)>0&&I.swap(e,n,s);a<o;){for(I.swap(e,a,o),a++,o--;Oc(e[a],r)<0;)a=a+1;for(;Oc(e[o],r)>0;)o=o-1}Oc(e[n],r)===0?I.swap(e,n,o):(o=o+1,I.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function aw(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=I.getTypedArrayFromDType(n,o*s),u=I.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let h=d*i,p=e.subarray(h,h+i),m=new Array(p.length);p.forEach((y,x)=>m[x]={value:y,index:x}),s<m.length&&(rw(m,s),m=m.slice(0,s)),r&&m.sort(Oc);let f=d*s,A=l.subarray(f,f+s),g=u.subarray(f,f+s);for(let y=0;y<s;y++)A[y]=m[y].value,g[y]=m[y].index}let c=t.slice();return c[c.length-1]=s,[Be(c,n,l),Be(c,"int32",u)]}function ow(e,t,n,s){let r=I.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let m=0;m<r;m++)a[0]*=n[m];a[1]=n[r];for(let m=r+1;m<n.length;m++)a[2]*=n[m];let o={},i=new Int32Array(n[r]),l=new Bt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let m=0;m<n[r];m++){let f;if(c)f=e[m].toString();else{let A=[];for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)A.push(l.get(g,m,y));f=A.join(",")}if(o[f]!==void 0)i[m]=o[f];else{let A=Object.keys(o).length;o[f]=A,i[m]=A,u.push(m)}}let d=a.slice();d[1]=Object.keys(o).length;let h=new Bt(d,s);u.forEach((m,f)=>{for(let A=0;A<a[0];A++)for(let g=0;g<a[2];g++)h.set(l.get(A,m,g),A,f,g)});let p=n.slice();return p[r]=d[1],{outputValues:h.values,outputShape:p,indices:i}}var gW="3.8.0";bl("cpu",()=>new Kp,1);var iw=rt(Si,e=>e>=0?e:Math.exp(e)-1),yW={kernelName:Si,backendName:"cpu",kernelFunc:iw};function lw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;ke([r],"leakyRelu");let o=I.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=I.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var xW={kernelName:Pa,backendName:"cpu",kernelFunc:lw},bW=Mt((e,t)=>e<0?t*e:e);function uw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;ke([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=bW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var vW={kernelName:Ka,backendName:"cpu",kernelFunc:uw},cw=rt(Za,e=>Math.max(0,e)),wW={kernelName:Za,backendName:"cpu",kernelFunc:cw},dw=rt(Ja,e=>Math.min(Math.max(0,e),6)),kW={kernelName:Ja,backendName:"cpu",kernelFunc:dw},hw=rt(so,e=>1/(1+Math.exp(-e))),IW={kernelName:so,backendName:"cpu",kernelFunc:hw};function l1(e,t,n,s,r){if(n==="linear")return rr({inputs:{x:t},backend:e});if(n==="relu")return cw({inputs:{x:t},backend:e});if(n==="elu")return iw({inputs:{x:t},backend:e});if(n==="relu6")return dw({inputs:{x:t},backend:e});if(n==="prelu")return uw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return lw({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return hw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function gt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=I.sizeFromShape(r.shape),i=I.inferFromImplicitShape(a,o),l=I.sizeFromShape(i);I.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var SW={kernelName:Yi,backendName:"cpu",kernelFunc:gt};function pw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;ke([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],m=r.shape.slice(0,-2),f=a.shape.slice(0,-2),A=I.sizeFromShape(m),g=I.sizeFromShape(f),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=gt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=gt({inputs:{x:a},backend:n,attrs:{shape:k}}),E=o?w.shape[1]:w.shape[2],P=o?w.shape[2]:w.shape[1],R=i?C.shape[1]:C.shape[2],_=Math.max(A,g),T=n.data.get(w.dataId).values,O=n.data.get(C.dataId).values,W=I.computeStrides(w.shape),j=I.computeStrides(C.shape),[q,X,Q]=o?[W[0],1,W[1]]:[W[0],W[1],1],[ne,te,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=P*R,ie=Be([_,P,R],w.dtype),le=ie.values,he=n.blockSize;for(let ge=0;ge<_;ge++)for(let Ce=0;Ce<P;Ce+=he)for(let Te=0;Te<R;Te+=he)for(let $e=0;$e<E;$e+=he){let Me=Math.min(Ce+he,P),De=Math.min(Te+he,R),ot=Math.min($e+he,E);for(let et=Ce;et<Me;et++)for(let tt=Te;tt<De;tt++){let Je=0;for(let at=$e;at<ot;at++){let Ve=Math.min(ge,A-1)*q,In=Math.min(ge,g-1)*se,kt=T[Ve+et*X+at*Q],Mn=O[at*ne+tt*te+In];Je+=kt*Mn}le[ge*J+(et*R+tt)]+=Je}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,ie.dtype,ie.values)}var CW={kernelName:ba,backendName:"cpu",kernelFunc:pw};function TW(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h,p,m,f=[];h=pw({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(p=Dc({inputs:{a:h,b:o},backend:n}),f.push(h),h=p),c&&(m=l1(n,h,c,i,d),f.push(h),h=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return h}var NW={kernelName:po,backendName:"cpu",kernelFunc:TW},EW=rt(hi,e=>Math.acos(e)),RW={kernelName:hi,backendName:"cpu",kernelFunc:EW},_W=rt(pi,e=>Math.acosh(e)),$W={kernelName:pi,backendName:"cpu",kernelFunc:_W};function FW(e){let{inputs:t,backend:n}=e,s=t;ke(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Be(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var DW={kernelName:ga,backendName:"cpu",kernelFunc:FW};function OW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"all");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),m=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let g=0;g<m.length;++g){let y=g*p,x=f[y];for(let b=0;b<p;++b){let v=f[y+b];x=x&&v}m[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,m);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var PW={kernelName:fi,backendName:"cpu",kernelFunc:OW};function MW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"any");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),m=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let g=0;g<m.length;++g){let y=g*p,x=f[y];for(let b=0;b<p;++b){let v=f[y+b];x=x||v}m[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,m);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var zW={kernelName:mi,backendName:"cpu",kernelFunc:MW};function LW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMax");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ps({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),m=I.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*m,y=f[g],x=0;for(let b=0;b<m;++b){let v=f[g+b];v>y&&(y=v,x=b)}p[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var BW={kernelName:ya,backendName:"cpu",kernelFunc:LW};function WW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMin");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ps({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),m=I.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*m,y=f[g],x=0;for(let b=0;b<m;++b){let v=f[g+b];v<y&&(y=v,x=b)}p[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var VW={kernelName:Nu,backendName:"cpu",kernelFunc:WW},UW=rt(Ai,e=>Math.asin(e)),HW={kernelName:Ai,backendName:"cpu",kernelFunc:UW},GW=rt(gi,e=>Math.asinh(e)),jW={kernelName:gi,backendName:"cpu",kernelFunc:GW},qW=rt(yi,e=>Math.atan(e)),XW={kernelName:yi,backendName:"cpu",kernelFunc:qW},KW=Mt((e,t)=>Math.atan2(e,t)),ZW=Jt(bi,KW),YW={kernelName:bi,backendName:"cpu",kernelFunc:ZW},JW=rt(xi,e=>Math.atanh(e)),QW={kernelName:xi,backendName:"cpu",kernelFunc:JW};function u1(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,h=r.padInfo.top,p=r.padInfo.left,m=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(r.outShape,n),A=f.values,g=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*g,k=b*s[0];for(let w=0;w<r.inChannels;++w)for(let C=0;C<r.outHeight;++C){let E=C*o-h,P=Math.max(0,E),R=Math.min(r.inHeight,c+E),_=v+C*y;for(let T=0;T<r.outWidth;++T){let O=T*i-p,W=Math.max(0,O),j=Math.min(r.inWidth,d+O),q=m,X=0,Q=0;for(let te=P;te<R;te+=l){let se=k+te*s[1];for(let J=W;J<j;J+=u){let ie=se+J*s[2],le=e[ie+w];a==="max"&&le>q?q=le:a==="avg"&&(X+=le,Q++)}if(isNaN(q))break}let ne=_+T*x+w;A[ne]=a==="avg"?X/Q:q}}}return f}function fw(e,t,n,s,r=!1,a=!1){let o=Be(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,h=s.effectiveFilterWidth,p=s.padInfo.top,m=s.padInfo.left,f=Be(t,n,e);for(let A=0;A<s.batchSize;++A)for(let g=0;g<s.inChannels;++g)for(let y=0;y<s.outHeight;++y){let x=y*i-p,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let w=k*l-m,C=w;for(;C<0;)C+=c;let E=Math.min(s.inWidth,h+w),P=Number.NEGATIVE_INFINITY,R=-1;for(let _=b;_<v;_+=u){let T=_-x;for(let O=C;O<E;O+=c){let W=O-w,j=f.get(A,_,O,g);j>P&&(P=j,r?R=a?((A*s.inHeight+_)*s.inWidth+O)*s.inChannels+g:(_*s.inWidth+O)*s.inChannels+g:R=T*h+W)}}o.set(R,A,y,k,g)}}return o}function mw(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,h=r.effectiveFilterDepth,p=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,A=r.padInfo.top,g=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let E=0;E<r.batchSize;++E){let P=E*v,R=E*s[0];for(let _=0;_<r.inChannels;++_)for(let T=0;T<r.outDepth;++T){let O=T*o-f,W=O;for(;W<0;)W+=u;let j=Math.min(r.inDepth,h+O),q=P+T*k;for(let X=0;X<r.outHeight;++X){let Q=X*i-A,ne=Q;for(;ne<0;)ne+=c;let te=Math.min(r.inHeight,p+Q),se=q+X*w;for(let J=0;J<r.outWidth;++J){let ie=J*l-g,le=ie;for(;le<0;)le+=d;let he=Math.min(r.inWidth,m+ie),ge=se+J*C,Ce=y,Te=0,$e=0;for(let De=W;De<j;De+=u){let ot=R+De*s[1];for(let et=ne;et<te;et+=c){let tt=ot+et*s[2];for(let Je=le;Je<he;Je+=d){let at=tt+Je*s[3],Ve=e[at+_];if(a==="max"&&Ve>Ce?Ce=Ve:a==="avg"&&(Te+=Ve,$e++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Me=ge+_;b[Me]=a==="avg"?Te/$e:Ce}}}}return x}function eV(e,t){let n=Be(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let g=0;g<t.outDepth;++g){let y=g*s-h,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-p,w=k;for(;w<0;)w+=i;let C=Math.min(t.inHeight,c+k);for(let E=0;E<t.outWidth;++E){let P=E*a-m,R=P;for(;R<0;)R+=l;let _=Math.min(t.inWidth,d+P),T=Number.NEGATIVE_INFINITY,O=-1;for(let W=x;W<b;W+=o){let j=W-y;for(let q=w;q<C;q+=i){let X=q-k;for(let Q=R;Q<_;Q+=l){let ne=Q-P,te=e.get(f,W,q,Q,A);te>=T&&(T=te,O=j*c*d+X*c+ne)}}}n.set(O,f,g,v,E,A)}}}return n}function tV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),m=u1(h,r.shape,r.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return d}var nV={kernelName:xa,backendName:"cpu",kernelFunc:tV};function sV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"avgPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=mw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var rV={kernelName:Eu,backendName:"cpu",kernelFunc:sV};function aV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"avgPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,w=b-1-c.padInfo.front,C=k-1-c.padInfo.left,E=v-1-c.padInfo.top,P=Be(a.shape,"float32"),R=1/(m*f*A),_=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let O=0;O<c.inChannels;++O)for(let W=0;W<c.inDepth;++W)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=W-w,Q=j-E,ne=q-C,te=0;for(let se=0;se<b;se+=g){let J=(X+se)/d;if(!(J<0||J>=c.outDepth||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(Q+ie)/h;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let he=0;he<k;he+=x){let ge=(ne+he)/p;if(ge<0||ge>=c.outWidth||Math.floor(ge)!==ge)continue;te+=_.get(T,J,le,ge,O)}}}P.set(te*R,T,W,j,q,O)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var oV={kernelName:Ld,backendName:"cpu",kernelFunc:aV};function iV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ke([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,g=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=g-1-c.padInfo.top,v=Be(o.shape,"float32"),k=1/(p*m),w=n.data.get(r.dataId).values,C=Be(r.shape,"float32",w);for(let E=0;E<c.batchSize;++E)for(let P=0;P<c.inChannels;++P)for(let R=0;R<c.inHeight;++R)for(let _=0;_<c.inWidth;++_){let T=R-b,O=_-x,W=0;for(let j=0;j<g;j+=f){let q=(T+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=A){let Q=(O+X)/h;if(Q<0||Q>=c.outWidth||Math.floor(Q)!==Q)continue;W+=C.get(E,q,Q,P)}}v.set(W*k,E,R,_,P)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var lV={kernelName:zd,backendName:"cpu",kernelFunc:iV};function uV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;I.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),m=o?n.data.get(o.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,g=p.length,y=h.length,x=d.length,b=0,v=0,k=0,w=0;for(let C=0;C<c.length;++C)f[C]=m[b++]+(c[C]-d[v++])*p[k++]/Math.sqrt(h[w++]+u),b>=A&&(b=0),v>=x&&(v=0),k>=g&&(k=0),w>=y&&(w=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var cV={kernelName:Fa,backendName:"cpu",kernelFunc:uV};function dV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;ke([r],"batchToSpaceND");let i=a.reduce((g,y)=>g*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=gt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ps({inputs:{x:p},backend:n,attrs:{perm:u}}),f=gt({inputs:{x:m},backend:n,attrs:{shape:c}}),A=Lo({inputs:{x:f},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var hV={kernelName:vi,backendName:"cpu",kernelFunc:dV};function pV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=t1(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var fV={kernelName:Bd,backendName:"cpu",kernelFunc:pV},mV=rt(Or,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),AV={kernelName:Or,backendName:"cpu",kernelFunc:mV},gV=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},yV={kernelName:Ru,backendName:"cpu",kernelFunc:gV};function Ul(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var xV={kernelName:th,backendName:"cpu",kernelFunc:Ul};function Hl(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(f=>f.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(f=>I.sizeFromShape(f.shape)>0);if(i.length===1)return rr({inputs:{x:i[0]},backend:n});let l=i.map(f=>f.shape);if($.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let f=i.map(b=>zo({inputs:{input:b},backend:n})),A=i.map(b=>Ul({inputs:{input:b},backend:n})),g=Hl({inputs:f,backend:n,attrs:{axis:a}}),y=Hl({inputs:A,backend:n,attrs:{axis:a}}),x=jn({inputs:{real:g,imag:y},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),x}let u=i.map(f=>{let A=I.sizeFromShape(f.shape.slice(a));return gt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=$.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,h=n1(c,o,t[0].dtype,d),p=$.computeOutShape(i.map(f=>f.shape),a),m=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var bV={kernelName:wi,backendName:"cpu",kernelFunc:Hl};function Aw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;ke([r,a],"conv2d");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,m=h.filterWidth,f=h.dilationHeight,A=h.dilationWidth,g=h.padInfo.left,y=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Bt(h.outShape,r.dtype),v=I.computeStrides(r.shape),k=I.computeStrides(a.shape),w=v[0],C=x?v[1]:v[2],E=x?v[2]:1,P=x?1:v[1],R=b.strides[0],_=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,O=x?1:b.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<h.batchSize;++X){let Q=X*w,ne=X*R;for(let te=0;te<h.outHeight;++te){let se=ne+te*_,J=te*h.strideHeight-y;for(let ie=0;ie<p;++ie){let le=J+ie*f;if(le<0||le>=h.inHeight)continue;let he=ie*k[0],ge=Q+le*C;for(let Ce=0;Ce<h.outWidth;++Ce){let Te=se+Ce*T,$e=Ce*h.strideWidth-g;for(let Me=0;Me<m;++Me){let De=$e+Me*A;if(De<0||De>=h.inWidth)continue;let ot=he+Me*k[1],et=ge+De*E,tt=ot;for(let Je=0;Je<h.inChannels;++Je){let at=W[et+Je*P];for(let Ve=0;Ve<h.outChannels;++Ve)q[Te+Ve*O]+=at*j[tt+Ve];tt+=h.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var vV={kernelName:ka,backendName:"cpu",kernelFunc:Aw};function wV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"conv2dBackpropFilter");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:p,strideWidth:m,filterHeight:f,filterWidth:A}=h,g=h.dataFormat==="channelsLast",y=new Bt(h.filterShape,"float32"),x=h.padInfo.left,b=h.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,w=new Bt(r.shape,r.dtype,v),C=new Bt(a.shape,a.dtype,k);for(let E=0;E<f;++E){let P=Math.max(0,Math.ceil((b-E)/p)),R=Math.min(h.outHeight,(h.inHeight+b-E)/p);for(let _=0;_<A;++_){let T=Math.max(0,Math.ceil((x-_)/m)),O=Math.min(h.outWidth,(h.inWidth+x-_)/m);for(let W=0;W<h.inChannels;++W)for(let j=0;j<h.outChannels;++j){let q=0;for(let X=0;X<h.batchSize;++X)for(let Q=P;Q<R;++Q){let ne=E+Q*p-b;for(let te=T;te<O;++te){let se=_+te*m-x;g?q+=w.get(X,ne,se,W)*C.get(X,Q,te,j):q+=w.get(X,W,ne,se)*C.get(X,j,Q,te)}}y.set(q,E,_,W,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var kV={kernelName:Vd,backendName:"cpu",kernelFunc:wV};function IV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;ke([r,a],"conv2dBackpropInput");let d=I.computeStrides(a.shape),h=I.computeStrides(r.shape),p=$.convertConv2DDataFormat(u),m=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),f=new Bt(m.inShape,"float32"),A=f.values,g=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:w,filterWidth:C,inChannels:E,inHeight:P,inWidth:R,outChannels:_,outHeight:T,outWidth:O,strideHeight:W,strideWidth:j}=m;p=m.dataFormat;let q=w-1-m.padInfo.top,X=C-1-m.padInfo.left,Q=p==="channelsLast",ne=f.strides[0],te=Q?f.strides[1]:f.strides[2],se=Q?f.strides[2]:1,J=Q?1:f.strides[1],ie=h[0],le=Q?h[1]:h[2],he=Q?h[2]:1,ge=Q?1:h[1];for(let Ce=0;Ce<k;++Ce)for(let Te=0;Te<E;++Te)for(let $e=0;$e<P;++$e){let Me=$e-q,De=Math.max(0,Math.ceil(Me/W)),ot=Math.min(T,(w+Me)/W);for(let et=0;et<R;++et){let tt=et-X,Je=Math.max(0,Math.ceil(tt/j)),at=Math.min(O,(C+tt)/j),Ve=0;for(let kt=De;kt<ot;++kt){let Mn=kt*W-Me;for(let Qt=Je;Qt<at;++Qt){let gs=Qt*j-tt,cn=ie*Ce+le*kt+he*Qt,Yn=x*(w-1-Mn)+b*(C-1-gs)+v*Te;for(let Jn=0;Jn<_;++Jn){let en=g[cn+ge*Jn],Qn=y[Yn+Jn];Ve+=en*Qn}}}let In=ne*Ce+te*$e+se*et+J*Te;A[In]=Ve}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var SV={kernelName:Ia,backendName:"cpu",kernelFunc:IV};function CV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;ke([r,a],"conv3d");let u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:h,dilationDepth:p,dilationHeight:m,dilationWidth:f,padInfo:A}=u,g=A.front,y=A.left,x=A.top,b=new Bt(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,w=b.values,C=I.computeStrides(r.shape),E=I.computeStrides(a.shape);for(let P=0;P<u.batchSize;++P){let R=P*C[0],_=P*b.strides[0];for(let T=0;T<u.outDepth;++T){let O=_+T*b.strides[1],W=T*u.strideDepth-g;for(let j=0;j<c;++j){let q=W+j*p;if(q<0||q>=u.inDepth)continue;let X=j*E[0],Q=R+q*C[1];for(let ne=0;ne<u.outHeight;++ne){let te=O+ne*b.strides[2],se=ne*u.strideHeight-x;for(let J=0;J<d;++J){let ie=se+J*m;if(ie<0||ie>=u.inHeight)continue;let le=X+J*E[1],he=Q+ie*C[2];for(let ge=0;ge<u.outWidth;++ge){let Ce=te+ge*u.outChannels,Te=ge*u.strideWidth-y;for(let $e=0;$e<h;++$e){let Me=Te+$e*f;if(Me<0||Me>=u.inWidth)continue;let De=le+$e*E[2],ot=he+Me*u.inChannels,et=De;for(let tt=0;tt<u.inChannels;++tt){let Je=v[ot+tt];for(let at=0;at<u.outChannels;++at)w[Ce+at]+=Je*k[et+at];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var TV={kernelName:_u,backendName:"cpu",kernelFunc:CV};function NV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;ke([r,a],"conv3dBackpropFilterV2");let u=I.computeStrides(r.shape),c=I.computeStrides(a.shape),d=$.computeConv3DInfo(r.shape,l,o,1,i),h=d.strideDepth,p=d.strideHeight,m=d.strideWidth,f=d.filterDepth,A=d.filterHeight,g=d.filterWidth,y=new Bt(d.filterShape,"float32"),x=y.values,[b,v,k,w]=y.strides,C=n.data.get(a.dataId).values,[E,P,R,_]=c,T=n.data.get(r.dataId).values,[O,W,j,q]=u,X=d.padInfo.front,Q=d.padInfo.left,ne=d.padInfo.top;for(let te=0;te<f;++te){let se=Math.max(0,Math.ceil((X-te)/h)),J=Math.min(d.outDepth,(d.inDepth+X-te)/h),ie=te*b;for(let le=0;le<A;++le){let he=Math.max(0,Math.ceil((ne-le)/p)),ge=Math.min(d.outHeight,(d.inHeight+ne-le)/p),Ce=le*v+ie;for(let Te=0;Te<g;++Te){let $e=Math.max(0,Math.ceil((Q-Te)/m)),Me=Math.min(d.outWidth,(d.inWidth+Q-Te)/m),De=Te*k+Ce;for(let ot=0;ot<d.inChannels;++ot){let et=ot*w+De;for(let tt=0;tt<d.outChannels;++tt){let Je=0;for(let at=0;at<d.batchSize;++at){let Ve=at*O,In=at*E;for(let kt=se;kt<J;++kt){let Qt=(te+kt*h-X)*W+Ve,gs=kt*P+In;for(let cn=he;cn<ge;++cn){let Jn=(le+cn*p-ne)*j+Qt,en=cn*R+gs;for(let Qn=$e;Qn<Me;++Qn){let zn=(Te+Qn*m-Q)*q+Jn,Hs=Qn*_+en;Je+=T[zn+ot]*C[Hs+tt]}}}}x[et+tt]=Je}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var EV={kernelName:Ud,backendName:"cpu",kernelFunc:NV};function RV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;ke([r],"conv3dBackpropInputV2");let u=I.computeStrides(r.shape),c=I.computeStrides(a.shape),d=$.computeConv3DInfo(l,a.shape,i,1,o),h=new Bt(d.inShape,"float32"),p=h.values,[m,f,A,g]=h.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,w=n.data.get(a.dataId).values,[C,E,P,R]=c,{batchSize:_,filterDepth:T,filterHeight:O,filterWidth:W,inChannels:j,inDepth:q,inHeight:X,inWidth:Q,outChannels:ne,outDepth:te,outHeight:se,outWidth:J,strideDepth:ie,strideHeight:le,strideWidth:he}=d,ge=T-1-d.padInfo.front,Ce=O-1-d.padInfo.top,Te=W-1-d.padInfo.left;for(let $e=0;$e<_;++$e)for(let Me=0;Me<j;++Me)for(let De=0;De<q;++De){let ot=De-ge,et=Math.max(0,Math.ceil(ot/ie)),tt=Math.min(te,(T+ot)/ie);for(let Je=0;Je<X;++Je){let at=Je-Ce,Ve=Math.max(0,Math.ceil(at/le)),In=Math.min(se,(O+at)/le);for(let kt=0;kt<Q;++kt){let Mn=kt-Te,Qt=Math.max(0,Math.ceil(Mn/he)),gs=Math.min(J,(W+Mn)/he),cn=0;for(let Yn=et;Yn<tt;++Yn){let Jn=Yn*ie-ot;for(let en=Ve;en<In;++en){let Qn=en*le-at;for(let es=Qt;es<gs;++es){let zn=es*he-Mn,Hs=x*$e+b*Yn+v*en+k*es,ur=C*(T-1-Jn)+E*(O-1-Qn)+P*(W-1-zn)+R*Me;for(let Cr=0;Cr<ne;++Cr){let Yo=y[Hs+Cr],Gs=w[ur+Cr];cn+=Yo*Gs}}}}p[m*$e+f*De+A*Je+g*kt+Me]=cn}}}return n.makeTensorInfo(h.shape,h.dtype,h.values)}var _V={kernelName:Hd,backendName:"cpu",kernelFunc:RV},$V=rt(Sa,e=>Math.cos(e)),FV={kernelName:Sa,backendName:"cpu",kernelFunc:$V},DV=rt(Ca,e=>Math.cosh(e)),OV={kernelName:Ca,backendName:"cpu",kernelFunc:DV};function PV(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,h,p]=r.shape,m=a.shape[0],[f,A]=i,g=Be([m,f,A,p],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=I.computeStrides(r.shape),k=I.computeStrides(g.shape);for(let w=0;w<m;w++){let C=w*4,E=y[C],P=y[C+1],R=y[C+2],_=y[C+3],T=x[w];if(T>=c)continue;let O=f>1?(R-E)*(d-1)/(f-1):0,W=A>1?(_-P)*(h-1)/(A-1):0;for(let j=0;j<f;j++){let q=f>1?E*(d-1)+j*O:.5*(E+R)*(d-1);if(q<0||q>d-1){for(let X=0;X<A;X++)for(let Q=0;Q<p;Q++){let ne=Q+X*k[2]+j*k[1]+w*k[0];g.values[ne]=u}continue}if(l==="bilinear"){let X=Math.floor(q),Q=Math.ceil(q),ne=q-X;for(let te=0;te<A;te++){let se=A>1?P*(h-1)+te*W:.5*(P+_)*(h-1);if(se<0||se>h-1){for(let he=0;he<p;he++){let ge=he+te*k[2]+j*k[1]+w*k[0];g.values[ge]=u}continue}let J=Math.floor(se),ie=Math.ceil(se),le=se-J;for(let he=0;he<p;he++){let ge=he+J*v[2]+X*v[1]+T*v[0],Ce=b[ge];ge=he+ie*v[2]+X*v[1]+T*v[0];let Te=b[ge];ge=he+J*v[2]+Q*v[1]+T*v[0];let $e=b[ge];ge=he+ie*v[2]+Q*v[1]+T*v[0];let Me=b[ge],De=Ce+(Te-Ce)*le,ot=$e+(Me-$e)*le;ge=he+te*k[2]+j*k[1]+w*k[0],g.values[ge]=De+(ot-De)*ne}}}else for(let X=0;X<A;++X){let Q=A>1?P*(h-1)+X*W:.5*(P+_)*(h-1);if(Q<0||Q>h-1){for(let se=0;se<p;se++){let J=se+X*k[2]+j*k[1]+w*k[0];g.values[J]=u}continue}let ne=Math.round(Q),te=Math.round(q);for(let se=0;se<p;se++){let J=se+ne*v[2]+te*v[1]+T*v[0],ie=se+X*k[2]+j*k[1]+w*k[0];g.values[ie]=b[J]}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var MV={kernelName:ki,backendName:"cpu",kernelFunc:PV};function zV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;ke(r,"cumsum");let l=$.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=ps({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=$.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=bs(u.dtype,"int32"),h=I.makeZerosTypedArray(I.sizeFromShape(u.shape),d),p=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=i?(g,y)=>g+m-y-1:(g,y)=>g+y;for(let g=0;g<p.length;g+=m)for(let y=0;y<m;y++){let x=f(g,y);if(y===0)h[x]=o?0:p[x];else{let b=f(g,y-1);h[x]=o?p[b]+h[b]:p[x]+h[b]}}let A=n.makeTensorInfo(u.shape,d,h);if(l!=null){let g=$.getUndoAxesPermutation(l),y=ps({inputs:{x:A},backend:n,attrs:{perm:g}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),y}return A}var LV={kernelName:Ta,backendName:"cpu",kernelFunc:zV};function BV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=t1(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=C7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var WV={kernelName:Gd,backendName:"cpu",kernelFunc:BV};function VV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,h=u*a,p=c/(a*a),m=n.data.get(r.dataId).values,f=new Float32Array(i*d*h*p),A=0;for(let g=0;g<i;++g)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<h;++v){let k=Math.floor(v/a),w=v%a,C=(b*a+w)*p;for(let E=0;E<p;++E){let R=E+C+c*(k+u*(x+l*g));f[A++]=m[R]}}}return n.makeTensorInfo([i,d,h,p],r.dtype,f)}var UV={kernelName:Ii,backendName:"cpu",kernelFunc:VV};function gw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;ke([r,a],"depthwiseConv2DNative");let c=I.computeStrides(r.shape),d=I.computeStrides(a.shape),h=l;h==null&&(h=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(o,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=$.computeConv2DInfo(r.shape,a.shape,o,h,i,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:g,padInfo:y}=p,x=y.left,b=y.top,v=p.outChannels/p.inChannels,k=new Bt(p.outShape,r.dtype),w=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,E=k.values;for(let P=0;P<p.batchSize;++P){let R=P*c[0],_=P*k.strides[0];for(let T=0;T<p.outHeight;++T){let O=_+T*k.strides[1],W=T*p.strideHeight-b;for(let j=0;j<m;++j){let q=W+j*A;if(q<0||q>=p.inHeight)continue;let X=j*d[0],Q=R+q*c[1];for(let ne=0;ne<p.outWidth;++ne){let te=O+ne*k.strides[2],se=ne*p.strideWidth-x;for(let J=0;J<f;++J){let ie=se+J*g;if(ie<0||ie>=p.inWidth)continue;let le=X+J*d[1],he=Q+ie*p.inChannels,ge=te,Ce=le;for(let Te=0;Te<p.inChannels;++Te){let $e=w[he+Te];for(let Me=0;Me<v;++Me)E[ge+Me]+=$e*C[Ce+Me];ge+=v,Ce+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var HV={kernelName:Na,backendName:"cpu",kernelFunc:gw};function GV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"depthwiseConv2dNativeBackpropFilter");let d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:h,strideWidth:p,filterHeight:m,filterWidth:f}=d,A=new Bt(d.filterShape,"float32"),g=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Bt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,w=new Bt(a.shape,a.dtype,k);for(let C=0;C<m;++C){let E=Math.max(0,Math.ceil((y-C)/h)),P=Math.min(d.outHeight,(d.inHeight+y-C)/h);for(let R=0;R<f;++R){let _=Math.max(0,Math.ceil((g-R)/p)),T=Math.min(d.outWidth,(d.inWidth+g-R)/p);for(let O=0;O<d.outChannels;++O){let W=Math.trunc(O/x),j=O%x,q=0;for(let X=0;X<d.batchSize;++X)for(let Q=E;Q<P;++Q){let ne=C+Q*h-y;for(let te=_;te<T;++te){let se=R+te*p-g;q+=v.get(X,ne,se,W)*w.get(X,Q,te,O)}}A.set(q,C,R,W,j)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var jV={kernelName:jd,backendName:"cpu",kernelFunc:GV};function qV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;ke([r,a],"depthwiseConv2DNativeBackpropInput");let d=I.computeStrides(r.shape),h=I.computeStrides(a.shape),p=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),m=new Bt(p.inShape,"float32"),f=m.values,[A,g,y]=m.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,w=n.data.get(a.dataId).values,[C,E,P]=h,{batchSize:R,filterHeight:_,filterWidth:T,inChannels:O,inHeight:W,inWidth:j,outChannels:q,outHeight:X,outWidth:Q,strideHeight:ne,strideWidth:te}=p,se=_-1-p.padInfo.top,J=T-1-p.padInfo.left,ie=q/O;for(let le=0;le<R;++le)for(let he=0;he<O;++he)for(let ge=0;ge<W;++ge){let Ce=ge-se,Te=Math.max(0,Math.ceil(Ce/ne)),$e=Math.min(X,(_+Ce)/ne);for(let Me=0;Me<j;++Me){let De=Me-J,ot=Math.max(0,Math.ceil(De/te)),et=Math.min(Q,(T+De)/te),tt=0;for(let Je=Te;Je<$e;++Je){let at=Je*ne-Ce;for(let Ve=ot;Ve<et;++Ve){let In=Ve*te-De,kt=b*le+v*Je+k*Ve,Mn=C*(_-1-at)+E*(T-1-In)+P*he;for(let Qt=0;Qt<ie;++Qt){let gs=he*ie+Qt,cn=x[kt+gs],Yn=w[Mn+Qt];tt+=cn*Yn}}}f[A*le+g*ge+y*Me+he]=tt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var XV={kernelName:qd,backendName:"cpu",kernelFunc:qV};function KV(e){let{inputs:t,backend:n}=e,{x:s}=t,r=I.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Be([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var ZV={kernelName:Xd,backendName:"cpu",kernelFunc:KV},YV={kernelName:$u,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,h=r.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:g,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:C,dilationWidth:E,outShape:P}=$.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=I.sizeFromShape(P),_=P.length,T=I.getArrayFromDType(s.dtype,R);for(let W=0;W<p;++W)for(let j=0;j<g;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let Q=X*v-x.left;for(let ne=0;ne<A;++ne){let te=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ie=q+J*C;if(ie>=0&&ie<m)for(let le=0;le<w;++le){let he=Q+le*E;if(he>=0&&he<f){let ge=I.locToIndex([W,ie,he,ne],c,I.computeStrides(s.shape)),Ce=I.locToIndex([J,le,ne],h,I.computeStrides(r.shape)),Te=u[ge]+d[Ce];Te>te&&(te=Te)}}}let se=I.locToIndex([W,j,X,ne],_,I.computeStrides(P));T[se]=te}}}return{dataId:l.write(I.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},JV={kernelName:Zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Zd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<h;++T)for(let O=0;O<A;++O){let W=O*x-y.top;for(let j=0;j<g;++j){let q=j*b-y.left;for(let X=0;X<f;++X){let Q=Number.MIN_SAFE_INTEGER,ne=0,te=0;for(let se=0;se<v;++se){let J=W+se*w;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<m){let he=c[T][J][le][X]+d[se][ie][X];he>Q&&(Q=he,ne=se,te=ie)}}}R[ne][te][X]+=P[T][O][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},QV={kernelName:Kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Kd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<h;++T)for(let O=0;O<A;++O){let W=O*x-y.top;for(let j=0;j<g;++j){let q=j*b-y.left;for(let X=0;X<f;++X){let Q=Number.MIN_SAFE_INTEGER,ne=W<0?0:W,te=q<0?0:q;for(let se=0;se<v;++se){let J=W+se*w;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<m){let he=c[T][J][le][X]+d[se][ie][X];he>Q&&(Q=he,ne=J,te=le)}}}R[T][ne][te][X]+=P[T][O][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Pc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"sum");let i;r.dtype==="bool"?i=na({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=rr({inputs:{x:r},backend:n});let l=i.shape.length,u=I.parseAxisParam(a,i.shape),c=$.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=ps({inputs:{x:i},backend:n,attrs:{perm:c}}),d=$.getInnerMostAxes(d.length,l)),$.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,m]=$.computeOutAndReduceShapes(h.shape,d),f=$.upcastType(h.dtype,"int32"),A=Zp(n,p,f),g=I.sizeFromShape(m),y=n.data.get(A.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b<y.length;++b){let v=b*g,k=0;for(let w=0;w<g;++w)k+=x[v+w];y[b]=k}if(o){let b=$.expandShapeToKeepDim(A.shape,u),v=A;A=gt({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(h),A}var eU={kernelName:ao,backendName:"cpu",kernelFunc:Pc};function tU(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,m=[];for(let f=0;f<d;++f){for(let A of c[f]){let{permutationIndices:g,expandDims:y}=$.getEinsumPermutation(p,l[A]),x;$.isIdentityPermutation(g)?x=a[A]:(x=ps({inputs:{x:a[A]},backend:n,attrs:{perm:g}}),m.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);I.arraysEqual(x.shape,b)||(x=gt({inputs:{x},backend:n,attrs:{shape:b}}),m.push(x)),h===null?h=x:(h=Yp({inputs:{a:x,b:h},backend:n}),m.push(h))}f<d-1&&(u[f]>=0&&(h=Pc({inputs:{x:h},backend:n,attrs:{axis:u[f]-(o.length-p),keepDims:!1}}),m.push(h)),p--)}for(let f of m)f!==h&&n.disposeIntermediateTensorInfo(f);return h}var nU={kernelName:Yd,backendName:"cpu",kernelFunc:tU};function sU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;ke([s,r],"eluGrad");let a=new Float32Array(I.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var rU={kernelName:Jd,backendName:"cpu",kernelFunc:sU},aU=$.ERF_P,oU=$.ERF_A1,iU=$.ERF_A2,lU=$.ERF_A3,uU=$.ERF_A4,cU=$.ERF_A5,dU=rt(Ci,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+aU*n);return t*(1-((((cU*s+uU)*s+lU)*s+iU)*s+oU)*s*Math.exp(-n*n))}),hU={kernelName:Ci,backendName:"cpu",kernelFunc:dU};function Qp(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),gt({inputs:{x:r},backend:n,attrs:{shape:i}})}var pU={kernelName:Ni,backendName:"cpu",kernelFunc:Qp},fU=Mt((e,t)=>e/t),c1=Jt(Ea,fU),d1={kernelName:Ea,backendName:"cpu",kernelFunc:c1};function yw(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=I.sizeFromShape(u),d=I.getTypedArrayFromDType("float32",c),h=I.getTypedArrayFromDType("float32",c);for(let A=0;A<r;A++){let g=Lo({inputs:{x:i},backend:n,attrs:{begin:[A,0],size:[1,a]}}),y=Lo({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,a]}}),x=jn({inputs:{real:g,imag:y},backend:n}),{real:b,imag:v}=mU(x,t,n),k=$.mergeRealAndImagArrays(b,v);for(let w=0;w<a;w++){let C=$.getComplexWithIndex(k,w);d[A*a+w]=C.real,h[A*a+w]=C.imag}n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let p=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",h),f=jn({inputs:{real:p,imag:m},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}function mU(e,t,n){let s=I.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(AU(s)){let i=h1(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",I.createScalarValue(s,"float32")),h=rr({inputs:{x:d},backend:n}),p=d1.kernelFunc({inputs:{a:u,b:d},backend:n}),m=d1.kernelFunc({inputs:{a:c,b:h},backend:n}),f=n.data.get(p.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return i}else{let i=$.mergeRealAndImagArrays(a,o),l=gU(i,s,t);return $.splitRealAndImagArrays(l)}}function AU(e){return(e&e-1)==0}function h1(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=$.mergeRealAndImagArrays(e,t),o=n/2,i=$.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),h=r.makeTensorInfo(c,"float32",u),p=jn({inputs:{real:d,imag:h},backend:r}),m=$.complexWithOddIndex(a),f=m.real,A=m.imag,g=[f.length],y=r.makeTensorInfo(g,"float32",f),x=r.makeTensorInfo(g,"float32",A),b=jn({inputs:{real:y,imag:x},backend:r}),v=h1(l,u,o,s,r),k=v.real,w=v.imag,C=[k.length],E=r.makeTensorInfo(C,"float32",k),P=r.makeTensorInfo(C,"float32",w),R=jn({inputs:{real:E,imag:P},backend:r}),_=h1(f,A,o,s,r),T=_.real,O=_.imag,W=[T.length],j=r.makeTensorInfo(W,"float32",T),q=r.makeTensorInfo(W,"float32",O),X=jn({inputs:{real:j,imag:q},backend:r}),Q=$.exponents(n,s),ne=[Q.real.length],te=r.makeTensorInfo(ne,"float32",Q.real),se=r.makeTensorInfo(ne,"float32",Q.imag),J=jn({inputs:{real:te,imag:se},backend:r}),ie=Yp({inputs:{a:J,b:X},backend:r}),le=Dc({inputs:{a:R,b:ie},backend:r}),he=i1({inputs:{a:R,b:ie},backend:r}),ge=zo({inputs:{input:le},backend:r}),Ce=zo({inputs:{input:he},backend:r}),Te=Ul({inputs:{input:le},backend:r}),$e=Ul({inputs:{input:he},backend:r}),Me=Hl({inputs:[ge,Ce],backend:r,attrs:{axis:0}}),De=Hl({inputs:[Te,$e],backend:r,attrs:{axis:0}}),ot=r.data.get(Me.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(De),{real:ot,imag:et}}function gU(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=$.exponent(r*i,t,n),u=$.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),$.assignToTypedArray(s,a,o,r)}return s}function yU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=gt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=yw(i,!1,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var xU={kernelName:Qd,backendName:"cpu",kernelFunc:yU};function p1(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||I.inferDtype(r),i=I.getArrayFromDType(o,I.sizeFromShape(s));return vU(i,r,o),t.makeTensorInfo(s,o,i)}var bU={kernelName:Fu,backendName:"cpu",kernelFunc:p1};function vU(e,t,n){e.fill(t)}var wU={kernelName:Ri,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let h=0;h<o;h++){let p=h*l*i*u;for(let m=0;m<i;m++){let f=m*(l*u);for(let A=0;A<l;A++){let g=A*u;for(let y=0;y<u;y++){let x=Math.round(l-A-1),b=p+f+g+y,v=c[b];if(x>=0&&x<l){let k=x*u,w=p+f+k+y;v=c[w]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},kU=Mt((e,t)=>Math.floor(e/t)),IU=Jt($a,kU,null,"int32"),SU={kernelName:$a,backendName:"cpu",kernelFunc:IU};function CU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:m}=s,f=Aw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=f;f=Dc({inputs:{a:f,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=l1(n,f,p,i,m),n.disposeIntermediateTensorInfo(A)}return f}var TU={kernelName:fo,backendName:"cpu",kernelFunc:CU};function NU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:m}=s,f=gw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=f;f=Dc({inputs:{a:f,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=l1(n,f,p,i,m),n.disposeIntermediateTensorInfo(A)}return f}var EU={kernelName:mo,backendName:"cpu",kernelFunc:NU};function RU(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=I.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=$.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let h=n.data.get(r.dataId).values,p=n.bufferSync(s),m=D7(h,p,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,m.values)}var _U={kernelName:$i,backendName:"cpu",kernelFunc:RU};function $U(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;ke([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=I.sizeFromShape(a.shape),c=I.parseAxisParam(o,r.shape)[0],d=$.segment_util.collectGatherOpShapeInfo(r,a,c,l),h=gt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=gt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),m=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],f=n.bufferSync(p),A=n.bufferSync(h),g=O7(A,f,m);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,g.dtype,g.values)}var FU={kernelName:_i,backendName:"cpu",kernelFunc:$U};function DU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=gt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=yw(i,!0,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var OU={kernelName:eh,backendName:"cpu",kernelFunc:DU},PU=rt(Di,e=>Number.isFinite(e)?1:0,"bool"),MU={kernelName:Di,backendName:"cpu",kernelFunc:PU},zU=rt(Oi,e=>Math.abs(e)===1/0?1:0,"bool"),LU={kernelName:Oi,backendName:"cpu",kernelFunc:zU},BU=rt(Pi,e=>Number.isNaN(e)?1:0,"bool"),WU={kernelName:Pi,backendName:"cpu",kernelFunc:BU};function VU(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=B7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var UU={kernelName:nh,backendName:"cpu",kernelFunc:VU},HU=rt(Li,e=>Math.log1p(e)),GU={kernelName:Li,backendName:"cpu",kernelFunc:HU},jU=Mt((e,t)=>e&&t),qU=Jt(Bi,jU,null,"bool"),XU={kernelName:Bi,backendName:"cpu",kernelFunc:qU},KU=rt(Du,e=>e?0:1,"bool"),ZU={kernelName:Du,backendName:"cpu",kernelFunc:KU},YU=Mt((e,t)=>e||t),JU=Jt(Ou,YU,null,"bool"),QU={kernelName:Ou,backendName:"cpu",kernelFunc:JU};function eH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;ke(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,h=I.sizeFromShape(r.shape),p=new Float32Array(h);function m(f){let A=f%u,g=f-A+Math.max(0,A-a),y=f-A+Math.min(A+a,c),x=0;for(;g<=y;g++){let b=d[g];x+=b*b}return x}for(let f=0;f<h;f++){let A=m(f),g=d[f]*Math.pow(o+i*A,-l);p[f]=g}return n.makeTensorInfo(r.shape,r.dtype,p)}var tH={kernelName:Pu,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;ke(o,"LRNGrad");let d=I.sizeFromShape(o.shape),h=o.shape[3],p=n.data.get(o.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(a.dataId).values,A=new Float32Array(d),g=d;for(let y=0;y<g;y++){let x=y%h,b=y-x+Math.max(0,x-i),v=y-x+Math.min(h,x+i+1),k=0;for(let w=b;w<v;w++)k+=Math.pow(m[w],2);k=u*k+l;for(let w=b;w<v;w++){let C=-2*u*c*m[w]*f[y]/k;y===w&&(C+=Math.pow(k,-c)),C*=p[y],A[w]+=C}}return n.makeTensorInfo(o.shape,r.dtype,A)}var sH={kernelName:sh,backendName:"cpu",kernelFunc:nH};function xw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=I.parseAxisParam(a,l),d=c,h=$.getAxesPermutation(d,u),p=i.data.get(r.dataId).values;if(h!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[h[v]];p=r1(p,l,r.dtype,h,b),d=$.getInnerMostAxes(d.length,u),l=b}ke(r,"max"),$.assertAxesAreInnerMostDims("max",d,u);let[m,f]=$.computeOutAndReduceShapes(l,d),A=I.sizeFromShape(f),g=V7(p,A,m,r.dtype),y=i.write(g,m,r.dtype),x=m;return o&&(x=$.expandShapeToKeepDim(m,c)),{dataId:y,shape:x,dtype:r.dtype}}var rH={kernelName:za,backendName:"cpu",kernelFunc:xw};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),m=u1(h,r.shape,r.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return d}var oH={kernelName:Ba,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"maxPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=mw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var lH={kernelName:Mu,backendName:"cpu",kernelFunc:iH};function uH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"maxPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=eV(d,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,g=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,w=v-1-c.padInfo.left,C=b-1-c.padInfo.top,E=Be(a.shape,"float32"),P=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let _=0;_<c.inChannels;++_)for(let T=0;T<c.inDepth;++T)for(let O=0;O<c.inHeight;++O)for(let W=0;W<c.inWidth;++W){let j=T-k,q=O-C,X=W-w,Q=0;for(let ne=0;ne<x;ne+=A){let te=(j+ne)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let se=0;se<b;se+=g){let J=(q+se)/m;if(!(J<0||J>=c.outHeight||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(X+ie)/f;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let he=x*b*v-1-h.get(R,te,J,le,_),ge=ne*b*v+se*v+ie,Ce=he===ge?1:0;if(Ce===0)continue;Q+=P.get(R,te,J,le,_)*Ce}}}E.set(Q,R,T,O,W,_)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var cH={kernelName:ah,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,m=Be(h.outShape,i.dtype,fw(p,i.shape,i.dtype,h).values),f=h.strideHeight,A=h.strideWidth,g=h.dilationHeight,y=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,k=x-1-h.padInfo.top,w=Be(i.shape,"float32"),C=n.data.get(r.dataId).values,E=Be(r.shape,"float32",C);for(let P=0;P<h.batchSize;++P)for(let R=0;R<h.inChannels;++R)for(let _=0;_<h.inHeight;++_)for(let T=0;T<h.inWidth;++T){let O=_-k,W=T-v,j=0;for(let q=0;q<x;q+=g){let X=(O+q)/f;if(!(X<0||X>=h.outHeight||Math.floor(X)!==X))for(let Q=0;Q<b;Q+=y){let ne=(W+Q)/A;if(ne<0||ne>=h.outWidth||Math.floor(ne)!==ne)continue;let te=x*b-1-m.get(P,X,ne,R),se=q*b+Q,J=te===se?1:0;if(J===0)continue;j+=E.get(P,X,ne,R)*J}}w.set(j,P,_,T,R)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var hH={kernelName:rh,backendName:"cpu",kernelFunc:dH};function pH(e,t,n,s,r){let a=I.computeStrides(t),o=u1(e,t,n,a,r,"max"),i=fw(e,t,n,r,!0,s);return[o.values,i.values]}var fH={kernelName:oh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;ke(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=$.computePool2DInfo(s.shape,r,a,[1,1],o),[d,h]=pH(u,s.shape,s.dtype,i,c),p=l.write(d,c.outShape,s.dtype),m=l.write(h,c.outShape,s.dtype);return[{dataId:p,shape:c.outShape,dtype:s.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function mH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=I.parseAxisParam(a,r.shape),u=$.computeOutAndReduceShapes(r.shape,i)[1],c=I.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=na({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let m=c1({inputs:{a:p,b:h},backend:n});d.push(m);let f=Pc({inputs:{x:m},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),f}var AH={kernelName:Wa,backendName:"cpu",kernelFunc:mH};function gH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"min");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),m=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let g=0;g<m.length;++g){let y=g*p,x=f[y];for(let b=0;b<p;++b){let v=f[y+b];(Number.isNaN(v)||v<x)&&(x=v)}m[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,m);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var yH={kernelName:Va,backendName:"cpu",kernelFunc:gH};function xH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;ke(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,h=r.shape.length,p=I.computeStrides(r.shape),m=I.sizeFromShape(i),f=i.length,A=I.computeStrides(i),g=I.getTypedArrayFromDType(r.dtype,m);for(let x=0;x<m;x++){let b=I.indexToLoc(x,f,A);for(let k=0;k<f;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,w)=>k-l[w]);let v=I.locToIndex(b,h,p);g[x]=d[v]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var bH={kernelName:Ha,backendName:"cpu",kernelFunc:xH},vH=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),wH=Jt(Wi,vH),kH={kernelName:Wi,backendName:"cpu",kernelFunc:wH},IH=fa(s5());function bw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=I.parseAxisParam([i],r.shape),u=xw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=$.expandShapeToKeepDim(u.shape,l),d=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),h=i1({inputs:{a:r,b:d},backend:n}),p=_7({inputs:{x:h},backend:n}),m=Pc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=gt({inputs:{x:m},backend:n,attrs:{shape:c}}),A=c1({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var SH={kernelName:oo,backendName:"cpu",kernelFunc:bw};function CH(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;ke(r,"multinomial");let l=i?r:bw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=I.makeZerosTypedArray(I.sizeFromShape(h),"int32");for(let m=0;m<u;++m){let f=m*c,A=new Float32Array(c-1);A[0]=d[f];for(let x=1;x<A.length;++x)A[x]=A[x-1]+d[f+x];let g=IH.alea(o.toString()),y=m*a;for(let x=0;x<a;++x){let b=g();p[y+x]=A.length;for(let v=0;v<A.length;v++)if(b<A[v]){p[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(h,"int32",p)}var TH={kernelName:ih,backendName:"cpu",kernelFunc:CH},NH=Js.nonMaxSuppressionV3Impl;function EH(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;ke(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=NH(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var RH={kernelName:Hi,backendName:"cpu",kernelFunc:EH},_H=Js.nonMaxSuppressionV4Impl;function $H(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;ke(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:h,validOutputs:p}=_H(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var FH={kernelName:Gi,backendName:"cpu",kernelFunc:$H},DH=Js.nonMaxSuppressionV5Impl;function OH(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;ke(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,h=o,p=i,m=l,f=u,{selectedIndices:A,selectedScores:g}=DH(c,d,h,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var PH={kernelName:ji,backendName:"cpu",kernelFunc:OH};function MH(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;ke(r,"oneHot");let l=I.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var zH={kernelName:ja,backendName:"cpu",kernelFunc:MH};function ef(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=zo({inputs:{input:s},backend:n}),a=ef({inputs:{x:r},backend:n}),o=Ul({inputs:{input:s},backend:n}),i=ef({inputs:{x:o},backend:n}),l=jn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return p1({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var LH={kernelName:dl,backendName:"cpu",kernelFunc:ef};function vw(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=zo({inputs:{input:s},backend:n}),a=vw({inputs:{x:r},backend:n}),o=Ul({inputs:{input:s},backend:n}),i=ef({inputs:{x:o},backend:n}),l=jn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return p1({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var BH={kernelName:qi,backendName:"cpu",kernelFunc:vw};function ww(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Qp({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=Qp({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Hl({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var WH={kernelName:Xi,backendName:"cpu",kernelFunc:ww};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;ke(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=I.sizeFromShape(r.shape),d=r.shape.length,h=I.computeStrides(r.shape),p=I.sizeFromShape(i),m=i.length,f=I.computeStrides(i),A=I.getTypedArrayFromDType(r.dtype,p);o!==0&&A.fill(o);for(let y=0;y<c;y++){let b=I.indexToLoc(y,d,h).map((k,w)=>k+l[w]),v=I.locToIndex(b,m,f);A[v]=u[y]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var kw={kernelName:qa,backendName:"cpu",kernelFunc:VH},UH=Mt((e,t)=>Math.pow(e,t)),HH=Jt(Xa,UH),GH={kernelName:Xa,backendName:"cpu",kernelFunc:HH};function jH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=a1(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var qH={kernelName:zu,backendName:"cpu",kernelFunc:jH},XH=rt(Zi,e=>1/e),KH={kernelName:Zi,backendName:"cpu",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeBilinear");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(I.sizeFromShape([d,u,c,m])),g=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=g[0]/y[0],v=g[1]/y[1];for(let k=0;k<d;k++)for(let w=0;w<u;w++){let C;o?C=b*(w+.5)-.5:C=b*w;let E=Math.max(0,Math.floor(C)),P=C-E,R=Math.min(h-1,Math.ceil(C)),_=k*l[0]+E*l[1],T=k*l[0]+R*l[1];for(let O=0;O<c;O++){let W;o?W=v*(O+.5)-.5:W=v*O;let j=Math.max(0,Math.floor(W)),q=W-j,X=Math.min(p-1,Math.ceil(W)),Q=_+j*l[2],ne=T+j*l[2],te=_+X*l[2],se=T+X*l[2];for(let J=0;J<m;J++){let ie=f[Q+J],le=f[ne+J],he=f[te+J],ge=f[se+J],Ce=ie+(he-ie)*q,Te=le+(ge-le)*q,$e=Ce+(Te-Ce)*P;A[x++]=$e}}}return n.makeTensorInfo([d,u,c,m],"float32",A)}var YH={kernelName:Ya,backendName:"cpu",kernelFunc:ZH};function JH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeBilinearGrad");let i=I.computeStrides(r.shape),[l,u,c,d]=r.shape,[,h,p]=a.shape,m=new Float32Array(l*u*c*d),f=[o&&h>1?u-1:u,o&&p>1?c-1:c],A=[o&&h>1?h-1:h,o&&p>1?p-1:p],g=f[0]/A[0],y=f[1]/A[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let w=0;w<h;w++){let C=w*g,E=Math.floor(C),P=Math.min(Math.ceil(C),u-1),R=k+E*i[1],_=k+P*i[1],T=C-E,O=1-T;for(let W=0;W<p;W++){let j=W*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),Q=j-q,ne=1-Q,te=R+q*i[2],se=R+X*i[2],J=_+q*i[2],ie=_+X*i[2],le=O*ne,he=O*Q,ge=T*ne,Ce=T*Q;for(let Te=0;Te<d;Te++){let $e=x[b++];m[te+Te]+=$e*le,m[se+Te]+=$e*he,m[J+Te]+=$e*ge,m[ie+Te]+=$e*Ce}}}}return n.makeTensorInfo([l,c,u,d],"float32",m)}var QH={kernelName:ch,backendName:"cpu",kernelFunc:JH};function eG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeNearestNeighbor");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(d*u*c*m),g=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=g[0]/y[0],b=g[1]/y[1],v=0;for(let k=0;k<d;k++){let w=k*l[0];for(let C=0;C<u;C++){let E=o?x*(C+.5):x*C,P=Math.min(h-1,a?Math.round(E):Math.floor(E));o&&(P=Math.max(0,P));let R=w+P*l[1];for(let _=0;_<c;_++){let T=o?b*(_+.5):b*_,O=Math.min(p-1,a?Math.round(T):Math.floor(T));o&&(O=Math.max(0,O));let W=R+O*l[2];for(let j=0;j<m;j++){let q=f[W+j];A[v++]=q}}}}return n.makeTensorInfo([d,u,c,m],r.dtype,A)}var tG={kernelName:Lu,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeNearestNeighborGrad");let i=I.computeStrides(r.shape),l=I.computeStrides(a.shape),[u,c,d,h]=r.shape,[,p,m]=a.shape,f=new Float32Array(u*c*d*h),A=n.data.get(a.dataId).values,g=[o&&p>1?c-1:c,o&&m>1?d-1:d],y=[o&&p>1?p-1:p,o&&m>1?m-1:m],x=g[0]/y[0],b=g[1]/y[1],v=1/x,k=1/b,w=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let E=0;E<u;E++){let P=E*i[0];for(let R=0;R<c;R++){let _=P+R*i[1],T=Math.floor(R*v),O=Math.floor(T-w/2);for(let W=0;W<d;W++){let j=_+W*i[2],q=Math.floor(W*k),X=Math.floor(q-C/2);for(let Q=0;Q<h;Q++){let ne=0;for(let te=0;te<w;te++){let se=te+O;if(se<0||se>=p)continue;let J=P+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(R===le)for(let he=0;he<C;he++){let ge=he+X;if(ge<0||ge>=m)continue;let Ce=J+ge*l[2],Te=ge*b,$e=Math.min(d-1,o?Math.round(Te):Math.floor(Te));W===$e&&(ne+=A[Ce+Q])}}f[j+Q]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var sG={kernelName:uh,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;ke(r,"reverse");let o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return rr({inputs:{x:r},backend:n});let l=new Bt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),h=d.slice();i.forEach(p=>h[p]=r.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var aG={kernelName:Qa,backendName:"cpu",kernelFunc:rG},oG={kernelName:hl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[u,c,d,h]=s.shape,[p,m]=$.getImageCenter(o,c,d),f=255,A=Math.sin(r),g=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*h;for(let k=0;k<c;k++){let w=k*(d*h);for(let C=0;C<d;C++){let E=C*h;for(let P=0;P<h;P++){let R=[u,k,C,P],_=R[2],T=R[1],O=(_-p)*g-(T-m)*A,W=(_-p)*A+(T-m)*g;O=Math.round(O+p),W=Math.round(W+m);let j=a;if(typeof a!="number"&&(P===3?j=f:j=a[P]),O>=0&&O<d&&W>=0&&W<c){let X=W*(d*h),Q=O*h,ne=v+X+Q+P;j=y[ne]}let q=v+w+E+P;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},iG=rt(eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),lG={kernelName:eo,backendName:"cpu",kernelFunc:iG};function Iw(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,h=t.values;if(s===0)return Be(n,t.dtype);let p=Be(c,t.dtype);p.values.fill(l);for(let m=0;m<a;m++){let f=[],A=0;for(let g=0;g<o;g++){let y=d[m*o+g];f.push(y),A+=y*i[g]}if(A<0||A>=s/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let g=0;g<r;g++)u?p.values[A*r+g]+=h[m*r+g]:p.values[A*r+g]=t.rank===0?h[0]:h[m*r+g]}return p}function uG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=$.calculateShapes(a,r,o),h=!0,p=n.bufferSync(r),m=n.bufferSync(a),f=Iw(p,m,o,d,u,l,i,c,0,h);return n.makeTensorInfo(o,f.dtype,f.values)}var cG={kernelName:Ji,backendName:"cpu",kernelFunc:uG};function dG(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;ke([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=bs(r.dtype,a.dtype),d=I.makeZerosTypedArray(I.sizeFromShape(r.shape),c),h=0,p=o===0||o>1||r.shape.length===1?1:I.sizeFromShape(r.shape.slice(1));for(let m=0;m<i.length;m++)for(let f=0;f<p;f++)i[m]===1?d[h++]=l[m]:d[h++]=u[m];return n.makeTensorInfo(r.shape,c,d)}var hG={kernelName:Qi,backendName:"cpu",kernelFunc:dG},pG=$.SELU_SCALEALPHA,fG=$.SELU_SCALE,mG=rt(el,e=>e>=0?fG*e:pG*(Math.exp(e)-1)),AG={kernelName:el,backendName:"cpu",kernelFunc:mG},gG=rt(sl,e=>e<0?-1:e>0?1:0),yG={kernelName:sl,backendName:"cpu",kernelFunc:gG},xG=rt(no,e=>Math.sin(e)),bG={kernelName:no,backendName:"cpu",kernelFunc:xG},vG=rt(nl,e=>Math.sinh(e)),wG={kernelName:nl,backendName:"cpu",kernelFunc:vG},kG=11920928955078125e-23,Sw=Math.log(kG)+2,IG=rt(rl,e=>{let t=e>-Sw,n=e<Sw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),SG={kernelName:rl,backendName:"cpu",kernelFunc:IG};function CG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;ke([r],"spaceToBatchND");let i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=kw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=$.getReshaped(u.shape,a,i,!1),d=$.getPermuted(c.length,a.length,!1),h=$.getReshapedPermuted(u.shape,a,i,!1),f=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=ps({inputs:{x:f},backend:n,attrs:{perm:d}}),v=gt({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),v}var TG={kernelName:al,backendName:"cpu",kernelFunc:CG};function NG(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,h,p,m,f]=K7(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],s.dtype,new Int32Array(f))]}var EG={kernelName:dh,backendName:"cpu",kernelFunc:NG};function RG(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=Z7(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var _G={kernelName:hh,backendName:"cpu",kernelFunc:RG};function $G(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=o1(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var FG={kernelName:ph,backendName:"cpu",kernelFunc:$G};function DG(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=o1(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var OG={kernelName:fh,backendName:"cpu",kernelFunc:DG};function PG(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=$.calculateShapes(a,r,i),p=!1,m=n.bufferSync(r),f=n.bufferSync(a),A=n.data.get(o.dataId).values[0],g=Iw(m,f,i,h,c,u,l,d,A,p);return n.makeTensorInfo(i,g.dtype,g.values)}var MG={kernelName:mh,backendName:"cpu",kernelFunc:PG};function zG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=Lo({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var LG={kernelName:ol,backendName:"cpu",kernelFunc:zG},BG=rt(ro,e=>Math.sqrt(e)),WG={kernelName:ro,backendName:"cpu",kernelFunc:BG},VG={kernelName:Bu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;ke(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},UG=rt(Mr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),HG={kernelName:Mr,backendName:"cpu",kernelFunc:UG};function GG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s;ke(r,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=gt({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=Lo({inputs:{x},backend:n,attrs:{begin:m,size:A}});b=gt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),w=J7(y,k,f,m);b=n.makeTensorInfo(w.shape,w.dtype,w.values)}let v=gt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var jG={kernelName:il,backendName:"cpu",kernelFunc:GG};function qG(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[m,f]=Q7(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var XG={kernelName:Ah,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=ew(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var ZG={kernelName:gh,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=tw(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var JG={kernelName:yh,backendName:"cpu",kernelFunc:YG},QG=rt(uo,e=>Math.tan(e)),ej={kernelName:uo,backendName:"cpu",kernelFunc:QG},tj=rt(co,e=>Math.tanh(e)),nj={kernelName:co,backendName:"cpu",kernelFunc:tj};function sj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;ke(r,"tile");let o=sw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var rj={kernelName:Pr,backendName:"cpu",kernelFunc:sj};function aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;ke(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=aw(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var oj={kernelName:ll,backendName:"cpu",kernelFunc:aj};function ij(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=r.shape,[m,f]=u!=null?u:[d,h],A=[c,m,f,p],g=I.computeStrides(r.shape),y=g[0],x=g[1],b=g[2],v=I.getTypedArrayFromDType(r.dtype,I.sizeFromShape(A));v.fill(l);let k=s.data.get(r.dataId).values,w=s.data.get(a.dataId).values;for(let E=0;E<c;++E){let P=a.shape[0]===1?w:w.subarray(E*8,E*8+8);for(let R=0;R<m;++R)for(let _=0;_<f;++_)for(let T=0;T<p;++T){let O,W=P[6]*_+P[7]*R+1;if(W===0)continue;let j=(P[0]*_+P[1]*R+P[2])/W,q=(P[3]*_+P[4]*R+P[5])/W,X=Cw(j,h,i),Q=Cw(q,d,i);switch(o){case"nearest":O=pj(k,d,h,y,x,b,E,Q,X,T,l);break;case"bilinear":O=fj(k,d,h,y,x,b,E,Q,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ne=E*y+R*x+_*b+T;v[ne]=O}return s.makeTensorInfo(A,r.dtype,v)}return{dataId:s.write(v,A,r.dtype),shape:r.shape,dtype:r.dtype}}var lj={kernelName:ul,backendName:"cpu",kernelFunc:ij};function Cw(e,t,n){switch(n){case"reflect":return uj(e,t);case"wrap":return cj(e,t);case"nearest":return hj(e,t);case"constant":default:return dj(e,t)}}function uj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return I.clamp(0,n,t-1)}function cj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return I.clamp(0,n,t-1)}function dj(e,t){return e}function hj(e,t){return I.clamp(0,e,t-1)}function Mc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function pj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),h=Math.round(l);return Mc(e,t,n,s,r,a,o,d,h,u,c)}function fj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),h=Math.floor(l),p=d+1,m=h+1,f=(m-l)*Mc(e,t,n,s,r,a,o,d,h,u,c)+(l-h)*Mc(e,t,n,s,r,a,o,d,m,u,c),A=(m-l)*Mc(e,t,n,s,r,a,o,p,h,u,c)+(l-h)*Mc(e,t,n,s,r,a,o,p,m,u,c);return(p-i)*f+(i-d)*A}function mj(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ke(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=ow(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Aj={kernelName:xh,backendName:"cpu",kernelFunc:mj};function gj(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let h=new Array(i);for(let p=0;p<h.length;p++){c[a]=p;let m=Lo({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});h[p]=gt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return h}var yj={kernelName:cl,backendName:"cpu",kernelFunc:gj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;ke(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,h=a;for(let m=0;m<d;++m){let f=Qp({inputs:{input:h},backend:n,attrs:{dim:m+1}});h=f,c.push(f)}for(let m=0;m<o;++m){let f=I.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),g=E7({inputs:{a:A,b:h},backend:n}),y=na({inputs:{x:g},backend:n,attrs:{dtype:"float32"}}),x=Yp({inputs:{a:y,b:r},backend:n}),b=Pc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(g),c.push(y),c.push(x),c.push(b)}let p=ww({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var bj={kernelName:Wu,backendName:"cpu",kernelFunc:xj},vj=[NW,IB,RW,$W,RB,DW,PW,zW,BW,VW,HW,jW,XW,YW,QW,nV,rV,oV,lV,CW,cV,hV,fV,NB,$B,AV,SB,yV,bV,kV,SV,vV,EV,_V,TV,FV,OV,MV,LV,WV,UV,HV,jV,XV,ZV,YV,QV,JV,d1,nU,yW,rU,FB,hU,DB,pU,PB,xU,bU,wU,zB,SU,TU,EU,_U,FU,BB,VB,CB,OU,xV,MU,LU,WU,xW,HB,jB,UU,XB,GU,XU,ZU,QU,tH,sH,ZB,oH,lH,cH,hH,fH,rH,AH,yH,JB,bH,kH,TH,eW,nW,RH,FH,PH,rW,zH,BH,WH,kw,GH,vW,iW,qH,TB,KH,wW,kW,SW,YH,QH,tG,sG,aG,oG,lG,uW,cG,hG,AG,IW,yG,bG,wG,cW,SH,SG,TG,EG,_G,FG,OG,MG,LG,WG,VG,hW,HG,jG,XG,ZG,JG,AW,eU,ej,nj,rj,oj,aW,lj,Aj,yj,bj,LH];for(let e of vj)Ao(e);var Tw={};Pe(Tw,{assertNotComplex:()=>jl,bindCanvasToFramebuffer:()=>Fj,bindColorTextureToFramebuffer:()=>sf,bindTextureToProgramUniformSampler:()=>Vw,bindTextureUnit:()=>Lw,bindVertexBufferToProgramAttribute:()=>A1,callAndCheck:()=>be,canBeRepresented:()=>Nw,createFragmentShader:()=>_w,createFramebuffer:()=>zw,createProgram:()=>$w,createStaticIndexBuffer:()=>Ow,createStaticVertexBuffer:()=>Dw,createTexture:()=>Pw,createVertexShader:()=>Rw,getBatchDim:()=>Wo,getExtensionOrThrow:()=>Wc,getFramebufferErrorMessage:()=>Uw,getMaxTexturesInShader:()=>qw,getNumChannels:()=>_j,getProgramUniformLocation:()=>Ww,getProgramUniformLocationOrThrow:()=>Bw,getRowsCols:()=>Vo,getShapeAs3D:()=>rf,getTextureShapeFromLogicalShape:()=>Gw,getWebGLDisjointQueryTimerVersion:()=>Xw,getWebGLErrorMessage:()=>Ew,getWebGLMaxTextureSize:()=>jw,hasExtension:()=>ms,isCapableOfRenderingToFloatTexture:()=>Kw,isDownloadFloatTextureEnabled:()=>Zw,isReshapeFree:()=>Uc,isWebGLFenceEnabled:()=>Yw,isWebGLVersionEnabled:()=>y1,linkProgram:()=>Fw,resetMaxTextureSize:()=>Dj,resetMaxTexturesInShader:()=>Oj,unbindColorTextureFromFramebuffer:()=>g1,unbindTextureUnit:()=>$j,validateFramebuffer:()=>Vc,validateProgram:()=>nf,validateTextureSize:()=>Mw});var Bo={},f1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function tf(e,t){Bo[e]=t}function ar(e){if(!(e in Bo)){let n=kj(e);if(n!==null)Bo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Bo[e];return t.isContextLost()?(delete Bo[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Bo[e])}function wj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function kj(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=wj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Bo[e]},!1),e===1?t.getContext("webgl",f1)||t.getContext("experimental-webgl",f1):t.getContext("webgl2",f1)}var zc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(zc||(zc={}));var fs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(fs||(fs={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function Lc(e,t){return[t,e]}function Ij(e,t){return e*t}function Bc(e){let t=I.sizeFromShape(e),n=Math.ceil(t/4);return I.sizeToSquarishShape(n)}function Gl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Sj(e,t){let[n,s]=Gl(e,t);return n*s*4}function m1(e,t){let n=e,s,r,a,o,i,l,u,c,d,h;return ee().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function be(e,t){let n=t();return ee().getBool("DEBUG")&&Cj(e),n}function Cj(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Ew(e,t))}var Tj=596e-10,Nj=65504;function Nw(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Tj<Math.abs(e)&&Math.abs(e)<Nj)}function Ew(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Wc(e,t){return Sr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Rw(e,t){let n=Sr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function _w(e,t){let n=Sr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Rj(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Ej=/ERROR: [0-9]+:([0-9]+):/g;function Rj(e,t){let n=Ej.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,h)=>I.rightPad((h+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${I.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function $w(e){return Sr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Fw(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function nf(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Dw(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Ow(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function _j(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function Pw(e){return Sr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Mw(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function zw(e){return Sr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function A1(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function Lw(e,t,n){Hw(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function $j(e,t){Hw(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Bw(e,t,n){return Sr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Ww(e,t,n){return e.getUniformLocation(t,n)}function Vw(e,t,n,s){be(e,()=>Lw(e,t,s)),be(e,()=>e.uniform1i(n,s))}function Fj(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function sf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function g1(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Vc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Uw(e,t))}function Uw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Sr(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function Hw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Wo(e,t=2){return I.sizeFromShape(e.slice(0,e.length-t))}function Vo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function rf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Wo(e),...Vo(e)]),t}function Gw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?I.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=I.squeezeShape(e).newShape);let s=I.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Wo(e),a=2,o=2;return e.length&&([a,o]=Vo(e)),s=r*(a/2)*(o/2),I.sizeToSquarishShape(s).map(i=>i*2)}return I.sizeToSquarishShape(s)}function af(e){return e%2==0}function Uc(e,t){if(e=e.slice(-2),t=t.slice(-2),I.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||af(n)&&af(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&af(e[0])&&af(t[0])}var of,lf;function jw(e){if(of==null){let t=ar(e);of=t.getParameter(t.MAX_TEXTURE_SIZE)}return of}function Dj(){of=null}function Oj(){lf=null}function qw(e){if(lf==null){let t=ar(e);lf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,lf)}function Xw(e){if(e===0)return 0;let t,n=ar(e);return ms(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ms(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ms(e,t){return e.getExtension(t)!=null}function y1(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Kw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float"))return!1}else if(!ms(t,"EXT_color_buffer_float"))return!1;return x1(t)}function Zw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float")||!ms(t,"WEBGL_color_buffer_float"))return!1}else{if(ms(t,"EXT_color_buffer_float"))return x1(t);let s="EXT_color_buffer_half_float";if(ms(t,s)){let r=t.getExtension(s);return Pj(t,r)}return!1}return x1(t)}function x1(e){let t=m1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Pj(e,t){let n=m1(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function Yw(e){return e!==2?!1:ar(e).fenceSync!=null}function jl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=ee();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>y1(2)?2:y1(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>jw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>qw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:Xw(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Yu.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Kw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Zw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Yw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Yu.isMobile()&&Ne.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function bn(){let e,t,n,s,r,a,o,i,l,u;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Uo(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Jw(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function b1(e){let t=I.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Qw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,Mj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=zc.DENSE;let t=Bc(e),n=bn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},zj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=zc.DENSE;let t=Bc(e),n=bn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},Lj=class{constructor(e){this.variableNames=["A"],this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=`
|
|
${Qw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Bj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=`
|
|
${Qw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Wj=class{constructor(e,t,n=!1){this.variableNames=["A"];let s=bn(),[r,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${a};
|
|
int c = imod(flatIndex, ${a});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${r}.0);
|
|
vec4 values = ${s.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${s.output} = vec4(${o}, 0., 0., 0.);
|
|
}
|
|
`}},Vj=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let s=bn(),[r,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${a};
|
|
c = imod(flatIndex, ${a});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${r}.0);
|
|
values = ${s.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${o}
|
|
|
|
${s.output} = ${i};
|
|
}
|
|
`}},e6={};Pe(e6,{bindVertexProgramAttributeStreams:()=>u6,createBufferFromOutputTexture:()=>h6,createFloat16MatrixTexture:()=>a6,createFloat16PackedMatrixTexture:()=>l6,createFloat32MatrixTexture:()=>r6,createIndexBuffer:()=>s6,createPackedMatrixTexture:()=>i6,createUnsignedBytesMatrixTexture:()=>o6,createVertexBuffer:()=>n6,createVertexShader:()=>t6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>f6,downloadFloat32MatrixFromBuffer:()=>p6,downloadMatrixFromPackedOutputTexture:()=>A6,downloadPackedMatrixFromBuffer:()=>m6,getInternalFormatForFloat16MatrixTexture:()=>w1,getInternalFormatForFloat16PackedMatrixTexture:()=>S1,getInternalFormatForFloat32MatrixTexture:()=>v1,getInternalFormatForPackedMatrixTexture:()=>I1,getInternalFormatForUnsignedBytesMatrixTexture:()=>k1,uploadDenseMatrixToTexture:()=>c6,uploadPixelDataToTexture:()=>d6});function t6(e){let t=bn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Rw(e,n)}function n6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Dw(e,t)}function s6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Ow(e,t)}function Hc(e,t,n,s,r,a){Mw(t,n);let o=Pw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function v1(e){return e.internalFormatFloat}function r6(e,t,n,s){let[r,a]=Lc(t,n);return Hc(e,r,a,v1(s),s.textureFormatFloat,e.FLOAT)}function w1(e){return e.internalFormatHalfFloat}function a6(e,t,n,s){let[r,a]=Lc(t,n);return Hc(e,r,a,w1(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function k1(e){return e.downloadTextureFormat}function o6(e,t,n,s){let[r,a]=Lc(t,n);return Hc(e,r,a,k1(s),e.RGBA,e.UNSIGNED_BYTE)}function I1(e){return e.internalFormatPackedFloat}function i6(e,t,n,s){let[r,a]=Gl(t,n);return Hc(e,r,a,I1(s),e.RGBA,e.FLOAT)}function S1(e){return e.internalFormatPackedHalfFloat}function l6(e,t,n,s){let[r,a]=Gl(t,n);return Hc(e,r,a,S1(s),e.RGBA,s.textureTypeHalfFloat)}function u6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),A1(e,t,"clipSpacePos",n,3,a,s)&&A1(e,t,"uv",n,2,a,r)}function c6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function d6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function h6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function p6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function f6(e,t,n,s){let[r,a]=Lc(t,n),o=4,i=new Uint8Array(Ij(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function m6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Sj(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function A6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var uf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,tf(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Wc(this.gl,r),ms(this.gl,a))this.textureHalfFloatExtension=Wc(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ms(this.gl,s))this.colorBufferHalfFloatExtension=Wc(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ms(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ms(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=n6(this.gl),this.indexBuffer=s6(this.gl),this.framebuffer=zw(this.gl),this.textureConfig=m1(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),r6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),a6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),o6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),d6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),c6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),l6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),i6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(g1(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return m6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return p6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=h6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>A6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=_w(t,e);this.vertexShader==null&&(this.vertexShader=t6(t));let s=$w(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),Fw(t,s),this.debug&&nf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=u6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&nf(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Bw(this.gl,e,t):Ww(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Vw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Gl(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&nf(this.gl,this.program),Vc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Wc(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await I.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Uj(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&I.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),sf(this.gl,e,this.framebuffer),this.debug&&Vc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(sf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Vc(this.gl)):g1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;sf(s,e,this.framebuffer),this.debug&&Vc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Uj(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:g6}=$;function Hj(e,t,n){let s=[];if(e.forEach(p=>{let m=I.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?s.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(s.push(`uniform sampler2D ${p.name};`),s.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:f}=C1(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(f.length){case 1:s.push(`uniform int ${p.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{s.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(p=>Gj(p,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=bn(),l=Xj(i),u,c,d=Yj(i);return t.isPacked?(u=jj(t.logicalShape,o,n.enableShapeUniforms),c=Zj(i)):(u=qj(t.logicalShape,o,n.enableShapeUniforms),c=Kj(i)),n.packedInputs&&(d+=tq),[d,l,c,r,u,a,n.userCode].join(`
|
|
`)}function ql(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return pq(e,t);case 1:return mq(e,t);case 2:return gq(e,t);case 3:return xq(e,t);case 4:return vq(e,t);case 5:return wq(e);case 6:return kq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function y6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return hq(e);case 1:return fq(e,t);case 2:return Aq(e,t);case 3:return yq(e,t);default:return bq(e,t)}}function Gj(e,t,n=!1,s){let r="";n?r+=y6(e,s):r+=ql(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Iq(e,t):r+=Sq(e,t)),r}function jj(e,t,n){switch(e.length){case 0:return x6();case 1:return nq(e,t,n);case 2:return cq(e,t,n);case 3:return rq(e,t,n);default:return oq(e,t,n)}}function qj(e,t,n){switch(e.length){case 0:return x6();case 1:return sq(e,t,n);case 2:return dq(e,t,n);case 3:return aq(e,t,n);case 4:return iq(e,t,n);case 5:return lq(e,t);case 6:return uq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Xj(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function Kj(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Zj(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Yj(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Jj}
|
|
${Qj}
|
|
${eq}
|
|
`}var Jj=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Qj=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,eq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,tq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function x6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function nq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function sq(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function rq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function aq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Jw(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Uo(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function oq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function iq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Jw(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Uo(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function lq(e,t){let n=Uo(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function uq(e,t){let n=Uo(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function cq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(I.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function dq(e,t,n){return I.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ho(e){return`offset${e}`}function hq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=bn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function pq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ho(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function fq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=bn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function mq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${Xl(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ho(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Aq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=bn();if(a!=null&&I.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function gq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&I.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let h=a[0],p=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=I.squeezeShape(n),l=o;if(l.length<n.length){let h=Kl(e,l),p=["row","col"];return`
|
|
${ql(h,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Zl(p,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],d=Ho(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function yq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let h=n.slice(1),p=[1,2],m=Kl(e,h),f=["b","row","col"];return`
|
|
${y6(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Zl(f,p)});
|
|
}
|
|
`}let i=bn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function xq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=I.squeezeShape(n),u=i;if(u.length<n.length){let f=Kl(e,u),A=["row","col","depth"];return`
|
|
${ql(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Zl(A,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,d=c[0],h=c[1],p=e.shapeInfo.flatOffset;if(h===a&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let m=Ho(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function bq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=bn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),h=d*Math.ceil(a[o-2]/2),p="int b, int row, int col",m=`b * ${h} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<o-1;f++)p=`int b${f}, `+p,h*=a[o-f-1],m=`b${f} * ${h} + `+m;return`
|
|
vec4 ${s}(${p}) {
|
|
int index = ${m};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function vq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=I.squeezeShape(n);if(l.length<n.length){let y=Kl(e,l),x=["row","col","depth","depth2"];return`
|
|
${ql(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Zl(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1],m=`int stride2 = ${s}Shape[3];`,f=`int stride1 = ${s}Shape[2] * stride2;`,A=`int stride0 = ${s}Shape[1] * stride1;`;if(p===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let g=Ho(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${A}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${g});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index + ${g});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function wq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=I.squeezeShape(t);if(l.length<t.length){let f=Kl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${ql(f)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Zl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1];if(p===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ho(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function kq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=I.squeezeShape(t);if(r.length<t.length){let A=Kl(e,r),g=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ql(A)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Zl(g,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],m=h[1];if(m===c&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ho(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Xl(e){let t=e.name,n=I.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Iq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=g6(e.shapeInfo.logicalShape,t.logicalShape),l=ut(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
|
|
`);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",f=I.sizeFromShape(e.shapeInfo.logicalShape)===1,g=I.sizeFromShape(t.logicalShape)===1;if(a===1&&!f&&!g)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!g)o===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?p="return vec4(outputValue.x);":i.indexOf(y)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${h});
|
|
${p}
|
|
}
|
|
`}function Sq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&I.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ut(l),c=g6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(f=>`coords.${p[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&i>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${h}
|
|
return get${s}(${m});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function C1(e,t,n){let{newShape:s}=I.squeezeShape(t),r=t.length,a=e&&r===3&&t[0]===1,o=a?t.slice(1):s,i=!e&&r>1&&!I.arraysEqual(t,n)&&s.length<r||a;return{useSqueezeShape:i,uniformShape:i?o:t}}function Kl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Zl(e,t){return t.map(n=>e[n]).join(", ")}function Cq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Hj(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},m={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];h[b]=e.getUniformLocation(l,b,d),h[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(p[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),m[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let f,A,g;t.enableShapeUniforms&&(f=e.getUniformLocation(l,"outShape",d),g=e.getUniformLocation(l,"outShapeStrides",d),A=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:m,outShapeLocation:f,outShapeStridesLocation:g,outTexShapeLocation:A}}function b6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!I.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!I.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Tq(e,t,n,s,r){t.program.enableShapeUniforms||(b6(t.inShapeInfos,n),b6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],m=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:f}=C1(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(p,new Int32Array(f));break;case 2:e.gl.uniform2iv(p,new Int32Array(f));break;case 3:e.gl.uniform3iv(p,new Int32Array(f));break;case 4:e.gl.uniform4iv(p,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(I.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=I.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Nq(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c}=C1(e.packedInputs,o.shape,l),d="",h="",p="";if(c.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${b[0]>1}_${b[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let b=I.computeStrides(c);p=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let m=o.shape.length,f=m===2&&I.arraysEqual(o.shape,l),A=I.sizeFromShape(o.shape)===1,g=$.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&I.arraysEqual(l,n.texData.texShape),x=e.packedInputs||m>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${u}_${c.length}_${A}_${g}_${f}_${d}_${h}_${p}_${x}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ee().getNumber("WEBGL_VERSION")}`,a}function cf(e){return ee().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var{addImpl:Eq,bincountImpl:v6,bincountReduceImpl:Rq,ceilImpl:_q,concatImpl:$q,equalImpl:Fq,expImpl:Dq,expm1Impl:Oq,floorImpl:Pq,gatherNdImpl:Mq,gatherV2Impl:zq,greaterImpl:Lq,greaterEqualImpl:Bq,lessImpl:Wq,lessEqualImpl:Vq,linSpaceImpl:Uq,logImpl:Hq,maxImpl:Gq,maximumImpl:jq,minimumImpl:qq,multiplyImpl:Xq,negImpl:Kq,notEqualImpl:Zq,prodImpl:Yq,rangeImpl:Jq,rsqrtImpl:Qq,simpleAbsImpl:w6,sliceImpl:eX,sparseFillEmptyRowsImpl:tX,sparseReshapeImpl:nX,sparseSegmentReductionImpl:k6,stridedSliceImpl:sX,stringNGramsImpl:rX,stringSplitImpl:aX,stringToHashBucketFastImpl:oX,subImpl:iX,tileImpl:lX,topKImpl:uX,transposeImpl:T1,uniqueImpl:cX}=Q2;function I6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function vn(e,t){return t===1?[e]:I6(e,t)}function dX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var hX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=vn("rc",t),s=ut(t),r=fX(t,e,n),a=mX(t,e[e.length-1],e[e.length-2],n),o=AX(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function pX(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function fX(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function mX(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function AX(e,t){let n=e.length,s=pX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var S6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${gX(t)}
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function gX(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var yX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=T6(t,n),r=N6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=C6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=T6(n,s),a=N6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=C6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function xX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function C6(e,t,n,s,r){let a=bX(t,s),o;if(r){let[l,u]=Gl(e[0],e[1]);o=l*u}else{let[l,u]=Lc(e[0],e[1]);o=l*u}let i=xX(n,a);return o*i}function bX(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return I1(t);case sn.PACKED_2X2_FLOAT16:return S1(t);case sn.UNPACKED_FLOAT32:return v1(t);case sn.UNPACKED_FLOAT16:return w1(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return k1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function vX(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function T6(e,t){if(e===fs.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===fs.RENDER||e==null)return vX(t);if(e===fs.DOWNLOAD||e===fs.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function N6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var sa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Bs="if (isnan(x)) return x;",wX="return x;",E6="return abs(x);",kX="return (x >= 0.0) ? x : (exp(x) - 1.0);",IX=Bs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,SX=Bs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,df="return x;",CX="return 1.0 / (1.0 + exp(-1.0 * x));",TX="return x;",NX=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,EX=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,RX=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_X="return 1.0 / (1.0 + exp(-1.0 * x));",Yl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},$X=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=vn("rc",t),s=ut(t),r=dX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},FX=Js.whereImpl,DX=1e-7,OX=1e-4,hf={};function PX(e){return e in hf||(hf[e]={}),hf[e]}var MX=ee().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),zX=600;function LX(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*zX/1024/1024}var Jl=class extends Su{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(ee().getNumber("WEBGL_VERSION"));this.binaryCache=PX(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new uf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new yX(this.gpgpu),this.numMBBeforeWarning=LX(),this.texData=new Fd(this,Ar())}nextDataId(){return Jl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:fs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:fs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Yl(o,df):d=new sa(o,df);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=I.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),h=this.readSync(r.imag.dataId);c=$.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=I.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let p;i?p=new Yl(s,df):p=new sa(s,df);let m=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:a}],a),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Bc(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),m=p[0],f=p[1];c=$.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=I.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;be(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ar().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Nw(n))throw ee().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=I.sizeFromShape(t);if(ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),h=this.texData.get(d.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(h.texture,...Bc(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),p}let a=ee().getBool("WEBGL_PACK")&&s===!0,o=a?rf(t):t,i=a?new Bj(o):new Lj(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=I.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=I.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=I.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:I.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=I.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=MX){return ee().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&I.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){$.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return FX(e.shape,t)}packedUnaryOp(e,t,n){let s=new Yl(e.shape,t),r=this.compileAndRun(s,[e],n);return Ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=w6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(ee().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,E6,e.dtype);let t=new sa(e.shape,E6),n=this.compileAndRun(t,[e]);return Ar().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ar().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new $X(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new hX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Wo(e.shape),...Vo(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Wo(t),...Vo(t)],a=new S6(r,n),o=!0,i=this.runWebGLProgram(a,[s],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=rf(s),o;n?o=new zj(a):o=new Mj(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,null,i);return{dtype:r,shape:s,dataId:l.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===zc.DENSE){let f=Bc(e.outputShape);o.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),I.sizeFromShape(a.shape)===0)return o.values=I.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&I.sizeFromShape(f.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),i.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Uc(A.shape,f.shape)){let g=f,y=f.shape;f.shape=A.shape,f=this.packedReshape(f,y),i.push(f),A=this.texData.get(f.dataId),g.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Nq(e,l,u),d=this.getAndSaveBinary(c,()=>Cq(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Tq(this.gpgpu,d,l,u,s),i.forEach(f=>this.disposeIntermediateTensorInfo(f)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=ee().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=I.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!ee().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let f=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),f}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?DX:OX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=I.now());let c=t.texShape;if(c==null&&(c=Gw(n,i),t.texShape=c),r!=null){let d=rf(n),h,p=c[1],m=c[0],f=r instanceof Uint8Array;i?([p,m]=Gl(c[0],c[1]),h=new Vj(d,[m,p],f)):h=new Wj(d,[m,p],f);let A=this.makeTensorInfo([m,p],s);f?this.texData.get(A.dataId).usage=fs.PIXELS:this.texData.get(A.dataId).usage=fs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,r);let g=!0,y=this.runWebGLProgram(h,[A],s,null,g),x=this.texData.get(y.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=I.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=BX(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*I.bytesPerElement(t)}};Jl.nextDataId=0;function BX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var WX="3.8.0";function R6(){ee().set("WEBGL_FORCE_F16_TEXTURES",!0)}Yu.isBrowser()&&bl("webgl",()=>new Jl,2);var VX={forceHalfFloat:R6},_6=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ql=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},pf=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Gc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=$.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=cf(r);let a="";if(s)if(r===0||I.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ut(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=vn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function qn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var UX={kernelName:Oa,backendName:"webgl",kernelFunc:qn};function ra(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=qn({inputs:{x:s},backend:n}),l=qn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var HX={kernelName:Wd,backendName:"webgl",kernelFunc:ra},$6="return (a < 0.) ? b * a : a;",F6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function GX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",I.createScalarValue(a,"float32")),i=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gc(F6,r.shape,o.shape):new Ql($6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var jX={kernelName:Pa,backendName:"webgl",kernelFunc:GX},D6="return (a < 0.) ? b * a : a;",O6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function qX(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gc(O6,s.shape,r.shape):new Ql(D6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var XX={kernelName:Ka,backendName:"webgl",kernelFunc:qX},P6="if (isnan(x)) return x;",KX=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,ZX=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Yl(o.shape,t):c=new sa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function rn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,g]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},w={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new Ql(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,w],bs(b.dtype,v.dtype))}),y=ra({inputs:{real:A,imag:g},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(g),y}let d=a||bs(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let m=c.texData.get(l.dataId).values,f=c.texData.get(u.dataId).values,A=l.dtype==="string"?$.fromUint8ToStringArray(m):m,g=l.dtype==="string"?$.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,A,g,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let h=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new Gc(t,l.shape,u.shape,n):p=new Ql(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function ff(e,t=!1){if(e==="linear")return t?TX:wX;if(e==="relu")return t?EX:IX;if(e==="elu")return t?NX:kX;if(e==="relu6")return t?RX:SX;if(e==="prelu")return t?O6:D6;if(e==="leakyrelu")return t?F6:$6;if(e==="sigmoid")return t?_X:CX;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var M6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",h=r?"rc.z, i * 2":"i * 2, rc.z",p=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";o&&(i?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,A="result = activation(result);");let g=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${h});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${m[0]});
|
|
result += (${p[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${g}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},z6={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},L6=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},B6="return a * b;";function N1(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=$.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new L6(z6.REAL,s.shape,r.shape),c=new L6(z6.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),m=ra({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=Xq(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Gc(B6,s.shape,r.shape):o=new Ql(B6,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var YX={kernelName:Ga,backendName:"webgl",kernelFunc:N1};function JX(e,t,n){let s=[Wo(e.shape),...Vo(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Wo(t),...Vo(t)],o=new S6(a,s),i=!0,l=n.runWebGLProgram(o,[r],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=I.sizeFromShape(r.shape),l=I.inferFromImplicitShape(a,i),u=I.sizeFromShape(l);I.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Uc(r.shape,l)&&!(c.texture!==null&&Uc(c.shape,l))?JX(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var QX={kernelName:Yi,backendName:"webgl",kernelFunc:ye},W6=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${I.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},eK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,h="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,h="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,h="bvec4");let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function tK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=$.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Go(e,t,n,s){let r=tK(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new W6({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new W6({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new eK({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var nK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ut(this.rank),r=sK(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function sK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var rK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ut(this.rank),r=I6("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function mf(e,t,n){let s=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rK(e.shape,t):new nK(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function aK(e,t,n,s){let r=t,a=e.shape.length,o=I.parseAxisParam(r,e.shape),i=o,l=$.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=mf(e,l,s),i=$.getInnerMostAxes(i.length,a)),$.assertAxesAreInnerMostDims("sum",i,a);let[d,h]=$.computeOutAndReduceShapes(c.shape,i),p=d;n&&(p=$.expandShapeToKeepDim(d,o));let m=I.sizeFromShape(h),A=I.sizeFromShape(e.shape)/m,g=ye({inputs:{x:c},attrs:{shape:[A,m]},backend:s}),y=Ch(e.dtype),x=Go(g,y,"sum",s),b=ye({inputs:{x},attrs:{shape:p},backend:s});return s.disposeIntermediateTensorInfo(g),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function Af(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return aK(r,a,o,n)}var oK={kernelName:ao,backendName:"webgl",kernelFunc:Af};function wn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,h=T1(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let p=o.texData.get(u.dataId);p.values=h}else u=mf(r,a,o);return u}var iK={kernelName:ho,backendName:"webgl",kernelFunc:wn},V6=1e3;function gf({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],h=s?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],m=s?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),g=I.sizeFromShape(f),y=I.sizeFromShape(A),x=g===y||g===1||y===1;I.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(g>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);I.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[g,d,p]:[g,p,d],w=s?[y,m,h]:[y,h,m],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),E=ye({inputs:{x:t},backend:r,attrs:{shape:w}}),P=[C,E],R=Math.max(g,y),_=n?C.shape[1]:C.shape[2],T=a!=null,O=o!=null,W=l==="leakyrelu",j=l!=null?ff(l,!0):null,q=T||O||W||j!=null,X;if((p===1||m===1)&&_>V6&&q===!1){let ne=C,te=E;n&&(ne=wn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),P.push(ne)),s&&(te=wn({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),P.push(te));let se=m!==1,J=m===1,ie=ne;se&&(ie=ye({inputs:{x:ne},backend:r,attrs:{shape:[R,_,1]}}),P.push(ie));let le=m===1?2:1,he=te;J&&(he=ye({inputs:{x:te},backend:r,attrs:{shape:[R,1,_]}}),P.push(he));let ge=N1({inputs:{a:ie,b:he},backend:r});X=Af({inputs:{x:ge},backend:r,attrs:{axis:le,keepDims:!0}}),P.push(ge)}else{let ne=bs(e.dtype,t.dtype),te=new M6(k,w,[R,p,m],n,s,T,j,O,W),se=[C,E];if(a!=null&&se.push(a),O&&se.push(o),W){let J=r.makeTensorInfo([],"float32",I.createScalarValue(i,"float32"));se.push(J),P.push(J)}X=r.runWebGLProgram(te,se,ne)}let Q=ye({inputs:{x:X},backend:r,attrs:{shape:v}});P.push(X);for(let ne of P)r.disposeIntermediateTensorInfo(ne);return Q}function lK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return gf({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var uK={kernelName:po,backendName:"webgl",kernelFunc:lK},U6="return abs(x);";function cK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=w6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Yl(s.shape,U6):r=new sa(s.shape,U6),n.runWebGLProgram(r,[s],s.dtype)}var dK={kernelName:di,backendName:"webgl",kernelFunc:cK},hK=Bs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,pK=Ze({opSnippet:hK}),fK={kernelName:hi,backendName:"webgl",kernelFunc:pK},mK=Bs+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,AK=Ze({opSnippet:mK}),gK={kernelName:pi,backendName:"webgl",kernelFunc:AK},H6="return a + b;",yK=rn({opSnippet:H6,packedOpSnippet:H6,supportsComplex:!0,cpuKernelImpl:Eq}),xK={kernelName:Dr,backendName:"webgl",kernelFunc:yK},bK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},vK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function yf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return qn({inputs:{x:s[0]},backend:n});if(s.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=yf({inputs:s.slice(0,l),backend:n}),c=yf({inputs:s.slice(l),backend:n});return yf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>bs(l,u)),a=s.map(l=>l.shape),i=ee().getBool("WEBGL_PACK")?new vK(s[0].shape,a):new bK(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var wK={kernelName:ga,backendName:"webgl",kernelFunc:yf};function kK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("all",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),m=I.sizeFromShape(p),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),A=Go(f,f.dtype,"all",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var IK={kernelName:fi,backendName:"webgl",kernelFunc:kK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("any",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),m=I.sizeFromShape(p),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),A=Go(f,f.dtype,"any",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var CK={kernelName:mi,backendName:"webgl",kernelFunc:SK},TK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},NK=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,I.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ut(i),u=vn("coords",i),c,d;if(a===1){d=i+1;let w=ut(d);c=`
|
|
${w} sourceLocR = ${w}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${w} sourceLocG = ${w}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${w} sourceLocA = ${w}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${w} sourceLocB = ${w}(${u.join()}, 0);
|
|
--${u[i-2]};`}else d=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],m=h.map(w=>"int "+w),f=vn("sourceLocR",d-1).concat("inIdx.r"),A=vn("sourceLocG",d-1).concat("inIdx.g"),g=vn("sourceLocB",d-1).concat("inIdx.b"),y=vn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function G6(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=$.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new TK(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=G6(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function j6(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=$.computeOptimalWindowSize(a),i=new NK(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=j6(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function q6(e,t,n,s){let r=[n];if($.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=$.computeOutAndReduceShapes(t.shape,r),l=I.sizeFromShape(i),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=G6(e,u,s);a.push(c);let d=ye({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return j6(e,t,s)}function EK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=q6(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var RK={kernelName:ya,backendName:"webgl",kernelFunc:EK};function _K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=q6(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var $K={kernelName:Nu,backendName:"webgl",kernelFunc:_K},FK=Bs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,DK=Ze({opSnippet:FK}),OK={kernelName:Ai,backendName:"webgl",kernelFunc:DK},PK=Bs+"return log(x + sqrt(x * x + 1.0));",MK=Ze({opSnippet:PK}),zK={kernelName:gi,backendName:"webgl",kernelFunc:MK},LK=Bs+`
|
|
return atan(x);
|
|
`,BK=Ze({opSnippet:LK}),WK={kernelName:yi,backendName:"webgl",kernelFunc:BK},VK=KX+`
|
|
return atan(a, b);
|
|
`,UK=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+ZX+`
|
|
return result;
|
|
`,HK=rn({opSnippet:VK,packedOpSnippet:UK}),GK={kernelName:bi,backendName:"webgl",kernelFunc:HK},jK=Bs+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,qK=Ze({opSnippet:jK}),XK={kernelName:xi,backendName:"webgl",kernelFunc:qK},jc=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,g="0.0";if(m||(g="-1.0 / 1e-20"),n){let w=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${w} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?f:A:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
const float initializationValue = ${g};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${g});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},E1=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,g=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,w=a%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${g});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function KK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;jl(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new jc(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var ZK={kernelName:xa,backendName:"webgl",kernelFunc:KK};function YK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,l,u),h=new E1(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var JK={kernelName:Eu,backendName:"webgl",kernelFunc:YK},QK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},eZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,m=d-1-e.padInfo.top,f=h-1-e.padInfo.left,A=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new eZ(h);return n.runWebGLProgram(p,[r],o.dtype)}var nZ={kernelName:Ld,backendName:"webgl",kernelFunc:tZ};function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;jl([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=new QK(c);return n.runWebGLProgram(d,[r],o.dtype)}var rZ={kernelName:zd,backendName:"webgl",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return gf({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var oZ={kernelName:ba,backendName:"webgl",kernelFunc:aZ},iZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},lZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},uZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;I.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=ee().getBool("WEBGL_PACK_NORMALIZATION")?new lZ(s.shape,r.shape,a.shape,c,d,l):new iZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},cZ={kernelName:Fa,backendName:"webgl",kernelFunc:uZ},dZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=hZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${R1[o]} = start[${o}] + coords.${R1[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},R1=["x","y","z","w","u","v"];function hZ(e){if(e===1)return"sourceLoc";if(e<=6)return R1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var pZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ut(this.rank),n=vn("coords",this.rank),s=vn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function fZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=An.computeFlatOffset(t,I.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function eu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=An.parseSliceParams(r,a,o);if(An.assertParamsValid(r,i,l),I.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),h=eX(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,h)}let{isPacked:u}=n.texData.get(r.dataId),c=An.isSliceContinous(r.shape,i,l);if(u||!c){let d=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pZ(l):new dZ(l),h=[i];return n.runWebGLProgram(d,[r],r.dtype,h)}return n.uploadToGPU(r.dataId),fZ(r,i,l,n)}var mZ={kernelName:tl,backendName:"webgl",kernelFunc:eu},AZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;I.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=[],m=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),f=wn({inputs:{x:m},backend:n,attrs:{perm:u}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:c}}),g=eu({inputs:{x:A},backend:n,attrs:{begin:d,size:h}});return p.push(m),p.push(f),p.push(A),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},gZ={kernelName:vi,backendName:"webgl",kernelFunc:AZ};function yZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=v6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var xZ={kernelName:Bd,backendName:"webgl",kernelFunc:yZ},bZ="return float(a != b);",X6=rn({opSnippet:bZ,cpuKernelImpl:Zq,dtype:"bool"}),vZ={kernelName:Ui,backendName:"webgl",kernelFunc:X6};function qc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.real},backend:n})}var wZ={kernelName:lh,backendName:"webgl",kernelFunc:qc},kZ="return float(int(x));";function IZ(e,t){let n=new sa(e.shape,kZ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function _1(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return qn({inputs:{x:r},backend:n});let o=Dt(r.shape),i=_1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ra({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=qc({inputs:{input:r},backend:n}),i=_1({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=qn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return IZ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",I.getTypedArrayFromDType("bool",1)),l=X6({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var SZ={kernelName:va,backendName:"webgl",kernelFunc:_1},K6="return ceil(x);",CZ=Ze({opSnippet:K6,packedOpSnippet:K6,cpuKernelImpl:_q}),TZ={kernelName:wa,backendName:"webgl",kernelFunc:CZ},NZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},EZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function RZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ee().getBool("WEBGL_PACK_CLIP")?i=new EZ(r.shape):i=new NZ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var _Z={kernelName:Or,backendName:"webgl",kernelFunc:RZ},$Z=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Z6(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function FZ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new $Z(s.shape),o=[Z6(s,r.complexTensorInfos.real),Z6(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var DZ={kernelName:Ru,backendName:"webgl",kernelFunc:FZ},OZ=class{constructor(e){this.outputShape=[],this.outputShape=$.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},PZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=$.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ut(s),a=vn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((m,f)=>`T${f}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let m=1;m<i.length;m++)i[m]=i[m-1]+e[m][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<i.length;m++){let f=i[m-1];d+=`
|
|
if (${l} < ${i[m]} && ${l} >= ${i[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${xf(o,l,f)}),
|
|
vec2(${xf(u,l,f)}));
|
|
}`}let h=i.length,p=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${h}(${xf(o,l,p)}),
|
|
vec2(${xf(u,l,p)}));`,this.userCode=`
|
|
float getValue(${o.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function xf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function bf(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var MZ={kernelName:th,backendName:"webgl",kernelFunc:bf};function tu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(f=>qc({inputs:{input:f},backend:n})),d=e.map(f=>bf({inputs:{input:f},backend:n})),h=tu(c,t,n),p=tu(d,t,n),m=ra({inputs:{real:h,imag:p},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(g=>{let y=I.sizeFromShape(g.shape.slice(t));return ye({inputs:{x:g},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),h=$.computeOutShape(c.map(g=>g.shape),1),p=c[0].shape[0]===1,m=$q(d,h,s,p),f=$.computeOutShape(e.map(g=>g.shape),t),A=n.makeTensorInfo(f,s,m);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),A}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=tu(e.slice(0,c),t,n),h=tu(e.slice(c),t,n),p=tu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new PZ(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=zZ(e,t,n),i=new OZ(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function zZ(e,t,n){let s=$.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,I.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function Y6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(u=>u.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>I.sizeFromShape(u.shape)>0);if(i.length===1)return qn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return $.assertParamsConsistent(l,a),tu(i,a,n)}var LZ={kernelName:wi,backendName:"webgl",kernelFunc:Y6},J6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,g=f?2:3,y=f?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${g}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},BZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},WZ=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:s,inChannels:r,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,m=r*s,f=bn(),A=d==="channelsLast",g=A?0:1,y=A?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=`
|
|
blockIndex = rc.y + ${v};
|
|
pos = rc.x + ${b};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${o} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${m});
|
|
|
|
if(d0 < ${t[g]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${a}. - ${h}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[y]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${b*2+v}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${b*2+v}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function Q6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,g=[],y=(d===1||h===1)&&c>V6,x=l[2]%2!=0&&!!u.isPacked;if(y||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=gf({a:v,b:k,transposeA:m,transposeB:f,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});A=ye({inputs:{x:w},backend:s,attrs:{shape:n.outShape}}),g.push(v),g.push(k),g.push(w)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,I.assert(Uc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let w=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});g.push(w);let C=gf({a:v,b:w,backend:s,transposeA:m,transposeB:f,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),E=s.texData.get(C.dataId);I.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,E.shape=n.outShape,A=qn({inputs:{x:C},backend:s}),A.shape=n.outShape,g.push(C)}for(let b of g)s.disposeIntermediateTensorInfo(b);return A}function e4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,m=p==="channelsLast",f=l*u*c,A=h*d,g=[f,A],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,f,I.sizeFromShape(t.shape)/f]}});b.push(v),b.push(k);let w=new WZ(g,v.shape,n),C=s.runWebGLProgram(w,[v],"float32"),E=ye({inputs:{x:C},backend:s,attrs:{shape:[1,g[0],g[1]]}});b.push(C),b.push(E);let P=r!=null,R=a!=null,_=i==="leakyrelu",T=i?ff(i,!0):null,O=new M6(E.shape,k.shape,[1,A,n.outChannels],y,x,P,T,R,_),W=[E,k];if(r&&W.push(r),R&&W.push(a),_){let Q=s.makeTensorInfo([],"float32",I.createScalarValue(o,"float32"));W.push(Q),b.push(Q)}let j=s.runWebGLProgram(O,W,"float32"),q=m?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],X=ye({inputs:{x:j},backend:s,attrs:{shape:q}});b.push(j);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return X}function VZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=Q6({x:r,filter:a,convInfo:h,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)p=e4({x:r,filter:a,convInfo:h,backend:n});else{let f=new J6(h);p=n.runWebGLProgram(f,[r,a],"float32")}let m=ye({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),m}var UZ={kernelName:ka,backendName:"webgl",kernelFunc:VZ},HZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},GZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},qZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function XZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),p=new HZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var KZ={kernelName:Vd,backendName:"webgl",kernelFunc:XZ};function ZZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(u),h=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new GZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var YZ={kernelName:Ia,backendName:"webgl",kernelFunc:ZZ};function JZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new BZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var QZ={kernelName:_u,backendName:"webgl",kernelFunc:JZ};function eY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=$.computeConv3DInfo(r.shape,l,o,1,i),c=new jZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var tY={kernelName:Ud,backendName:"webgl",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=$.computeConv3DInfo(l,a.shape,i,1,o),c=new qZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var sY={kernelName:Hd,backendName:"webgl",kernelFunc:nY},rY=P6+`
|
|
return cos(x);
|
|
`,aY=Ze({opSnippet:rY}),oY={kernelName:Sa,backendName:"webgl",kernelFunc:aY},iY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,lY=Ze({opSnippet:iY}),uY={kernelName:Ca,backendName:"webgl",kernelFunc:lY},cY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=s==="bilinear"?1:0,[p,m]=[`${o-1}.0`,`${i-1}.0`],[f,A,g]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${g};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${h} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},dY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new cY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},hY={kernelName:ki,backendName:"webgl",kernelFunc:dY},t4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${n4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ut(s)} coords = getOutputCoords();
|
|
int end = ${s4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${s4(s,"coords")} = idx;
|
|
val += getX(${n4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function n4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function s4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function pY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=$.getAxesPermutation([a],l),c=r;u!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=$.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=qn({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(h))-1;m++){let f=new t4(c.shape,!1,i),A=[[m]],g=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(g)}if(o){let m=new t4(c.shape,o,i),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=$.getUndoAxesPermutation(u),f=wn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),f}return p}var fY={kernelName:Ta,backendName:"webgl",kernelFunc:pY};function mY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=v6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Rq(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var AY={kernelName:Gd,backendName:"webgl",kernelFunc:mY},gY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function yY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),m=o==="NHWC"?[i,d,h,p]:[i,p,d,h],f=new gY(m,a,o);return n.runWebGLProgram(f,[r],r.dtype)}var xY={kernelName:Ii,backendName:"webgl",kernelFunc:yY},r4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",g="";n&&(s?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,g="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${d};
|
|
|
|
if (xR < 0 || xR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
if (xC < 0 || xC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${y}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}},a4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,g=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let v=0;v<f;v++)g+=`
|
|
vec4 xTexelC${v*2};
|
|
int xTexelC${v*2}Ready;
|
|
vec4 xTexelC${v*2+1};
|
|
int xTexelC${v*2+1}Ready;
|
|
vec4 xC${v};`;for(let v=0;v<m;v++){for(let k=0;k<f;k++)g+=`
|
|
xTexelC${k*2} = vec4(0.0);
|
|
xTexelC${k*2}Ready = 0;
|
|
xTexelC${k*2+1} = vec4(0.0);
|
|
xTexelC${k*2+1}Ready = 0;
|
|
xC${k} = vec4(0.0);`;g+=`
|
|
xR = xRCorner + ${v*h};
|
|
if (xR >=0 && xR < ${o}) {
|
|
`;for(let k=0;k<(A+1)/2;k++){let w=k*2,C=w*p;if(g+=`
|
|
xC = xCCorner + ${C};
|
|
`,d===1){if(w<f&&(u%2==1?(g+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
`,p===1&&C>0?g+=`
|
|
xC${w} = vec4(xTexelC${w-2}.zw, xTexelC${w}.xy);
|
|
`:g+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${w} = vec4(previous.zw, xTexelC${w}.xy);
|
|
} else {
|
|
xC${w} = vec4(0.0, 0.0, xTexelC${w}.xy);
|
|
}
|
|
`):g+=`
|
|
if (xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
xC${w} = xTexelC${w};
|
|
`,C+1<f)){let E=u%2==0?I.nearestLargerEven(p):p;p%2==0&&u%2==1||p%2!=0&&u%2!=1?(g+=`
|
|
xCOffset = xC + ${u%2} + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
`,p>1&&(g+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
`),g+=`
|
|
xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.xy);
|
|
`):E===1?g+=`
|
|
xC${w+1} = xTexelC${w};
|
|
`:g+=`
|
|
xCOffset = xC + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w+1} = xTexelC${w+1};
|
|
`}}else C<f&&(u%2==1?(g+=`
|
|
xCOffset = xC + 1 - ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w} = vec4(xTexelC${w}.zw, xTexelC${w+1}.zw);
|
|
`,C+1<f&&(g+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${w+1} = vec4(xTexelC${w+1}.xy, final.xy);
|
|
`)):(g+=`
|
|
if(xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w} = vec4(
|
|
xTexelC${w}.xy, xTexelC${w+1}.xy);
|
|
`,C+1<f&&(g+=`
|
|
xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.zw);
|
|
`)));w<f&&(g+=`
|
|
wTexel = getW(${v}, ${C}, d1, q);
|
|
dotProd += xC${w} * vec4(wTexel.xz, wTexel.xz);
|
|
`,C+1<f&&(g+=`
|
|
wTexel = getW(${v}, ${C+1}, d1, q);
|
|
dotProd += xC${w+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}g+=`
|
|
}
|
|
`}let y="",x="";n&&(s?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${d});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${g}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${b}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function bY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=$.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),h;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new a4(d):h=new r4(d),n.runWebGLProgram(h,[r,a],"float32")}var vY={kernelName:Na,backendName:"webgl",kernelFunc:bY},wY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function IY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),h=new wY(d);return n.runWebGLProgram(h,[r,a],"float32")}var SY={kernelName:jd,backendName:"webgl",kernelFunc:IY};function CY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new kY(d);return n.runWebGLProgram(h,[r,a],"float32")}var TY={kernelName:qd,backendName:"webgl",kernelFunc:CY},NY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function EY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=I.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new NY(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var RY={kernelName:Xd,backendName:"webgl",kernelFunc:EY},_Y=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function $Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new _Y(u);c=n.runWebGLProgram(d,[r,a],"float32");let h=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var FY={kernelName:$u,backendName:"webgl",kernelFunc:$Y};function DY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,m=[];for(let f=0;f<d;++f){for(let A of c[f]){let{permutationIndices:g,expandDims:y}=$.getEinsumPermutation(p,l[A]),x;$.isIdentityPermutation(g)?x=a[A]:(x=wn({inputs:{x:a[A]},backend:n,attrs:{perm:g}}),m.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);I.arraysEqual(x.shape,b)||(x=ye({inputs:{x},backend:n,attrs:{shape:b}}),m.push(x)),h===null?h=x:(h=N1({inputs:{a:x,b:h},backend:n}),m.push(h))}f<d-1&&(u[f]>=0&&(h=Af({inputs:{x:h},backend:n,attrs:{axis:u[f]-(o.length-p),keepDims:!1}}),m.push(h)),p--)}for(let f of m)f!==h&&n.disposeIntermediateTensorInfo(f);return h}var OY={kernelName:Yd,backendName:"webgl",kernelFunc:DY},PY="return (x >= 0.0) ? x : (exp(x) - 1.0);",MY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,zY=Ze({opSnippet:PY,packedOpSnippet:MY}),LY={kernelName:Si,backendName:"webgl",kernelFunc:zY},BY="return (b >= 1.0) ? a : a * (b + 1.0);",WY=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,VY=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gc(WY,s.shape,r.shape):new Ql(BY,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},UY={kernelName:Jd,backendName:"webgl",kernelFunc:VY},HY=`
|
|
return vec4(equal(a, b));
|
|
`,GY="return float(a == b);",jY=rn({opSnippet:GY,packedOpSnippet:HY,dtype:"bool",cpuKernelImpl:Fq}),qY={kernelName:Ti,backendName:"webgl",kernelFunc:jY},XY=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${$.ERF_P};
|
|
float a1 = ${$.ERF_A1};
|
|
float a2 = ${$.ERF_A2};
|
|
float a3 = ${$.ERF_A3};
|
|
float a4 = ${$.ERF_A4};
|
|
float a5 = ${$.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,KY=Ze({opSnippet:XY}),ZY={kernelName:Ci,backendName:"webgl",kernelFunc:KY},o4="return exp(x);",i4=Ze({opSnippet:o4,packedOpSnippet:o4,cpuKernelImpl:Dq}),YY={kernelName:Ra,backendName:"webgl",kernelFunc:i4};function $1(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(I.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var JY={kernelName:Ni,backendName:"webgl",kernelFunc:$1},l4="return exp(x) - 1.0;",QY=Ze({opSnippet:l4,packedOpSnippet:l4,cpuKernelImpl:Oq}),eJ={kernelName:Ei,backendName:"webgl",kernelFunc:QY},u4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function c4(e,t,n){let s=n.texData.get(e.dataId),r=I.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new u4("real",l,t),c=new u4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),m=ra({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let f=ye({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(m),f}function tJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return c4(s,!1,n)}var nJ={kernelName:Qd,backendName:"webgl",kernelFunc:tJ},sJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function vf(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||I.inferDtype(r),a==="string"){let o=I.getArrayFromDType(a,I.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new sJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var rJ={kernelName:Fu,backendName:"webgl",kernelFunc:vf},aJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},oJ={kernelName:Ri,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new aJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},d4="return floor(x);",iJ=Ze({opSnippet:d4,packedOpSnippet:d4,cpuKernelImpl:Pq}),lJ={kernelName:_a,backendName:"webgl",kernelFunc:iJ},uJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,cJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,dJ=rn({opSnippet:uJ,packedOpSnippet:cJ,dtype:"int32"}),hJ={kernelName:$a,backendName:"webgl",kernelFunc:dJ},pJ=class{constructor(e){this.variableNames=["A"];let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},fJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},mJ={kernelName:bh,backendName:"webgl",kernelFunc:AJ},nu;function AJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(nu==null&&(nu=document.createElement("canvas").getContext("2d")),nu.canvas.width=l,nu.canvas.height=u,nu.drawImage(r,0,0,l,u),r=nu.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=fs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let p=ee().getBool("WEBGL_PACK")?new fJ(d):new pJ(d),m=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),m}function gJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:m}=s,f=$.convertConv2DDataFormat(c),A=$.computeConv2DInfo(r.shape,a.shape,l,d,u,h,!1,f),g,y=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))g=Q6({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:m});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)g=e4({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:m});else{let b=o!=null,v=i!=null,k=p==="leakyrelu",w=p?ff(p,!1):null,C=new J6(A,b,w,v,k),E=[r,a];if(o&&E.push(o),i&&E.push(i),k){let P=n.makeTensorInfo([],"float32",I.createScalarValue(m,"float32"));E.push(P),y.push(P)}g=n.runWebGLProgram(C,E,"float32")}let x=ye({inputs:{x:g},backend:n,attrs:{shape:A.outShape}});return y.push(g),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var yJ={kernelName:fo,backendName:"webgl",kernelFunc:gJ};function xJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=s,m=[],f=c;f==null&&(f=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=$.computeConv2DInfo(r.shape,a.shape,l,f,u,d,!0),g=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,y=h?ff(h,g):null,x=[r,a],b=o!=null,v=i!=null,k=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let E=n.makeTensorInfo([],"float32",I.createScalarValue(p,"float32"));x.push(E),m.push(E)}let w;g?w=new a4(A,b,y,v,k):w=new r4(A,b,y,v,k);let C=n.runWebGLProgram(w,x,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var bJ={kernelName:mo,backendName:"webgl",kernelFunc:xJ},vJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ut(t.length),r=ut(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function wJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=I.sizeFromShape(s.shape),[l,u,c,d]=$.prepareAndValidate(s,r),h=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[I.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let g=n.readSync(r.dataId),y=n.bufferSync(s),x=Mq(g,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let m=new vJ(o,d,[u,c]),f=n.runWebGLProgram(m,[p,h],p.dtype),A=ye({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),A}var kJ={kernelName:$i,backendName:"webgl",kernelFunc:wJ},IJ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),s=SJ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function SJ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function h4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=I.sizeFromShape(a.shape),d=[],h=ye({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(h),d.push(p);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(p),x=n.bufferSync(h),b=zq(x,y,m);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new IJ(h.shape,m),A=n.runWebGLProgram(f,[h,p],h.dtype);d.push(A);let g=ye({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}var CJ={kernelName:_i,backendName:"webgl",kernelFunc:h4},TJ="return float(a > b);",NJ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,EJ=rn({opSnippet:TJ,packedOpSnippet:NJ,cpuKernelImpl:Lq,dtype:"bool"}),RJ={kernelName:Fi,backendName:"webgl",kernelFunc:EJ},_J="return float(a >= b);",$J=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,FJ=rn({opSnippet:_J,packedOpSnippet:$J,dtype:"bool",cpuKernelImpl:Bq}),DJ={kernelName:Da,backendName:"webgl",kernelFunc:FJ};function OJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return c4(s,!0,n)}var PJ={kernelName:eh,backendName:"webgl",kernelFunc:OJ},MJ="return float(!isnan(x) && !isinf(x));",zJ=Ze({opSnippet:MJ,dtype:"bool"}),LJ={kernelName:Di,backendName:"webgl",kernelFunc:zJ},BJ="return float(isinf(x));",WJ=Ze({opSnippet:BJ,dtype:"bool"}),VJ={kernelName:Oi,backendName:"webgl",kernelFunc:WJ},UJ="return float(isnan(x));",HJ=Ze({opSnippet:UJ,dtype:"bool"}),GJ={kernelName:Pi,backendName:"webgl",kernelFunc:HJ},jJ="return float(a < b);",qJ=`
|
|
return vec4(lessThan(a, b));
|
|
`,XJ=rn({opSnippet:jJ,packedOpSnippet:qJ,cpuKernelImpl:Wq,dtype:"bool"}),KJ={kernelName:Mi,backendName:"webgl",kernelFunc:XJ},ZJ="return float(a <= b);",YJ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,JJ=rn({opSnippet:ZJ,packedOpSnippet:YJ,cpuKernelImpl:Vq,dtype:"bool"}),QJ={kernelName:zi,backendName:"webgl",kernelFunc:JJ};function eQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Uq(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var tQ={kernelName:nh,backendName:"webgl",kernelFunc:eQ},nQ=`if (x < 0.0) return NAN;
|
|
return log(x);`,sQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,rQ=Ze({opSnippet:nQ,packedOpSnippet:sQ,cpuKernelImpl:Hq}),aQ={kernelName:Ma,backendName:"webgl",kernelFunc:rQ},oQ="return log(1.0 + x);",iQ=Ze({opSnippet:oQ}),lQ={kernelName:Li,backendName:"webgl",kernelFunc:iQ},uQ="return float(a >= 1.0 && b >= 1.0);",cQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,dQ=rn({opSnippet:uQ,packedOpSnippet:cQ,dtype:"bool"}),hQ={kernelName:Bi,backendName:"webgl",kernelFunc:dQ},pQ="return float(!(x >= 1.0));",fQ=Ze({opSnippet:pQ}),mQ={kernelName:Du,backendName:"webgl",kernelFunc:fQ},AQ="return float(a >= 1.0 || b >= 1.0);",gQ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,yQ=rn({opSnippet:AQ,packedOpSnippet:gQ,dtype:"bool"}),xQ={kernelName:Ou,backendName:"webgl",kernelFunc:yQ},bQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},vQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},wQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=ee().getBool("WEBGL_PACK_NORMALIZATION")?new vQ(r.shape,a,o,i,l):new bQ(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},kQ={kernelName:Pu,backendName:"webgl",kernelFunc:wQ},IQ=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},SQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new IQ(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},CQ={kernelName:sh,backendName:"webgl",kernelFunc:SQ};function TQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Go(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function p4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([r]),p=r;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let w=0;w<b.length;w++)b[w]=r.shape[c[w]];let v=T1(x,r.shape,r.dtype,c,b);p=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(p.dataId);k.values=v}else p=mf(r,c,n);u=$.getInnerMostAxes(u.length,i)}$.assertAxesAreInnerMostDims("max",u,i);let[m,f]=$.computeOutAndReduceShapes(p.shape,u),A=m;o&&(A=$.expandShapeToKeepDim(m,l));let g;if(h){let x=n.texData.get(p.dataId).values,b=Gq(x,I.sizeFromShape(f),A,r.dtype);g=n.makeTensorInfo(A,r.dtype);let v=n.texData.get(g.dataId);v.values=b}else g=TQ(p,f,A,n);return d&&n.disposeIntermediateTensorInfo(p),g}var NQ={kernelName:za,backendName:"webgl",kernelFunc:p4},EQ=_6+`
|
|
return max(a, b);
|
|
`,RQ=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+pf+`
|
|
return result;
|
|
`,_Q=rn({opSnippet:EQ,packedOpSnippet:RQ,cpuKernelImpl:jq}),$Q={kernelName:La,backendName:"webgl",kernelFunc:_Q};function FQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;jl(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new jc(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var DQ={kernelName:Ba,backendName:"webgl",kernelFunc:FQ};function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,u,l),h=new E1(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var PQ={kernelName:Mu,backendName:"webgl",kernelFunc:OQ},MQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},zQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${d}, ${h});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function LQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new E1(h,"max",!0),m=n.runWebGLProgram(p,[o],o.dtype),f=new zQ(h),A=n.runWebGLProgram(f,[r,m],o.dtype);return n.disposeIntermediateTensorInfo(m),A}var BQ={kernelName:ah,backendName:"webgl",kernelFunc:LQ};function WQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;jl([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=!0,m=new jc(h,"max",p),f=n.runWebGLProgram(m,[i],i.dtype),A=new MQ(h),g=n.runWebGLProgram(A,[r,f],i.dtype);return n.disposeIntermediateTensorInfo(f),g}var VQ={kernelName:rh,backendName:"webgl",kernelFunc:WQ};function UQ(e,t,n,s){let r=new jc(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new jc(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var HQ={kernelName:oh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;I.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];I.assert($.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=$.computePool2DInfo(s.shape,r,a,u,o),[d,h]=UQ(s,i,c,l);return[d,h]}};function GQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Go(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var jQ={kernelName:Wa,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=I.parseAxisParam(a,s.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([s]),p=[],m=s;if(d){if(h){let b=o.texData.get(m.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=T1(b,s.shape,s.dtype,c,v);m=o.makeTensorInfo(v,s.dtype);let w=o.texData.get(m.dataId);w.values=k}else m=mf(s,c,o);p.push(m),u=$.getInnerMostAxes(u.length,i)}$.assertAxesAreInnerMostDims("sum",u,i);let[f,A]=$.computeOutAndReduceShapes(m.shape,u),g=f;r&&(g=$.expandShapeToKeepDim(f,l));let y=GQ(m,A,g,o);for(let x of p)o.disposeIntermediateTensorInfo(x);return y}};function qQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),m=I.sizeFromShape(p),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),A=Go(f,f.dtype,"min",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var XQ={kernelName:Va,backendName:"webgl",kernelFunc:qQ},KQ=_6+`
|
|
return min(a, b);
|
|
`,ZQ=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+pf+`
|
|
return result;
|
|
`,YQ=rn({opSnippet:KQ,packedOpSnippet:ZQ,cpuKernelImpl:qq}),JQ={kernelName:Ua,backendName:"webgl",kernelFunc:YQ},QQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=ut(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},eee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let s=e.length,r=ut(s),a=t.map(p=>p[0]).join(","),o=t.map((p,m)=>p[0]+e[m]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(s===1){let p=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},tee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eee(s.shape,r,a):new QQ(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},nee={kernelName:Ha,backendName:"webgl",kernelFunc:tee},see=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,ree=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+pf+`
|
|
return result;
|
|
`,aee=rn({opSnippet:see,packedOpSnippet:ree}),oee={kernelName:Wi,backendName:"webgl",kernelFunc:aee},iee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},lee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,uee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,f4=rn({opSnippet:lee,packedOpSnippet:uee,checkOutOfBounds:!0}),cee={kernelName:Ea,backendName:"webgl",kernelFunc:f4},m4="return a - b;",A4=rn({opSnippet:m4,packedOpSnippet:m4,supportsComplex:!0,cpuKernelImpl:iX}),dee={kernelName:lo,backendName:"webgl",kernelFunc:A4};function g4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=I.parseAxisParam([a],r.shape),i=p4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=$.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=A4({inputs:{a:r,b:u},backend:n}),d=i4({inputs:{x:c},backend:n}),h=Af({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ye({inputs:{x:h},backend:n,attrs:{shape:l}}),m=f4({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),m}var hee={kernelName:oo,backendName:"webgl",kernelFunc:g4};function pee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:g4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new iee(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var fee={kernelName:ih,backendName:"webgl",kernelFunc:pee},y4="return -x;";function mee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Kq(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Yl(s.shape,y4):r=new sa(s.shape,y4),n.runWebGLProgram(r,[s],s.dtype)}var Aee={kernelName:Vi,backendName:"webgl",kernelFunc:mee},gee=Js.nonMaxSuppressionV3Impl;function yee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=gee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var xee={kernelName:Hi,backendName:"webgl",kernelFunc:yee},bee=Js.nonMaxSuppressionV4Impl;function vee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=bee(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var wee={kernelName:Gi,backendName:"webgl",kernelFunc:vee},kee=Js.nonMaxSuppressionV5Impl;function Iee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),h=o,p=i,m=l,f=u,{selectedIndices:A,selectedScores:g}=kee(c,d,h,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var See={kernelName:ji,backendName:"webgl",kernelFunc:Iee},Cee=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Tee=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=I.sizeFromShape(r.shape),u=new Cee(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let h=[...r.shape,a],p=ye({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},Nee={kernelName:ja,backendName:"webgl",kernelFunc:Tee};function wf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=qc({inputs:{input:s},backend:n}),a=wf({inputs:{x:r},backend:n}),o=bf({inputs:{input:s},backend:n}),i=wf({inputs:{x:o},backend:n}),l=ra({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return vf({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Eee={kernelName:dl,backendName:"webgl",kernelFunc:wf};function x4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=qc({inputs:{input:s},backend:n}),a=x4({inputs:{x:r},backend:n}),o=bf({inputs:{input:s},backend:n}),i=wf({inputs:{x:o},backend:n}),l=ra({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return vf({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Ree={kernelName:qi,backendName:"webgl",kernelFunc:x4};function _ee(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return $1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=$1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Y6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var $ee={kernelName:Xi,backendName:"webgl",kernelFunc:_ee},Fee=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ut(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Dee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let s=e.length,r=ut(s),a=t.map(m=>m[0]).join(","),o=t.map((m,f)=>m[0]+e[f]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],h=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=s===1?2:4;m<f;m++)p+=`
|
|
${d[m]}
|
|
if (${h}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},b4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Dee(r.shape,a,o):new Fee(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Oee={kernelName:qa,backendName:"webgl",kernelFunc:b4},Pee=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Mee=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+pf+`
|
|
return result;
|
|
`,zee=rn({opSnippet:Pee,packedOpSnippet:Mee}),Lee={kernelName:Xa,backendName:"webgl",kernelFunc:zee};function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=I.parseAxisParam(a,r.shape),c=u,d=$.getAxesPermutation(c,i),h=r;d!=null&&(h=wn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=$.getInnerMostAxes(c.length,i),l.push(h)),$.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let m=n.texData.get(h.dataId).values,{outVals:f,outShape:A,outDtype:g}=Yq(h.shape,h.dtype,m,c);p=n.makeTensorInfo(A,g,f)}else{let[m,f]=$.computeOutAndReduceShapes(h.shape,c),A=I.sizeFromShape(f),g=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,A]}}),y=Ch(r.dtype),x=Go(g,y,"prod",n);p=ye({inputs:{x},backend:n,attrs:{shape:m}}),l.push(g),l.push(x)}if(o){l.push(p);let m=$.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var Wee={kernelName:Ki,backendName:"webgl",kernelFunc:Bee},v4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Jq(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Vee={kernelName:zu,backendName:"webgl",kernelFunc:v4},Uee="return 1.0 / x;",Hee=Ze({opSnippet:Uee}),Gee={kernelName:Zi,backendName:"webgl",kernelFunc:Hee},jee=Bs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,qee=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Xee=Ze({opSnippet:jee,packedOpSnippet:qee}),Kee={kernelName:Za,backendName:"webgl",kernelFunc:Xee},Zee=Bs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Yee=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Jee=Ze({opSnippet:Zee,packedOpSnippet:Yee}),Qee={kernelName:Ja,backendName:"webgl",kernelFunc:Jee},ete=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},tte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function nte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new tte(r.shape,l,u,a,o):new ete(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var ste={kernelName:Ya,backendName:"webgl",kernelFunc:nte},rte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,m=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function ate(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new rte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var ote={kernelName:ch,backendName:"webgl",kernelFunc:ate},ite=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},lte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new lte(r.shape,l,u,a,o):new ite(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var cte={kernelName:Lu,backendName:"webgl",kernelFunc:ute},dte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,m=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function hte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new dte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var pte={kernelName:uh,backendName:"webgl",kernelFunc:hte},fte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ut(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},mte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=vn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let m=e.map((g,y)=>h(y,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function h(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Ate(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return qn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mte(r.shape,i):new fte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var gte={kernelName:Qa,backendName:"webgl",kernelFunc:Ate},yte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},xte={kernelName:hl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new yte(s.shape,a),[u,c]=$.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},bte=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,vte=Ze({opSnippet:bte}),wte={kernelName:eo,backendName:"webgl",kernelFunc:vte},kte="return inversesqrt(x);",Ite=Ze({opSnippet:kte,cpuKernelImpl:Qq}),Ste={kernelName:to,backendName:"webgl",kernelFunc:Ite},w4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ut(r.length),l=ut(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${h};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Cte(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=$.calculateShapes(a,r,o),h=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),m=ye({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new w4(l,i,p.shape.length,m.shape.length,c,h),g=n.runWebGLProgram(A,[m,p,f],m.dtype),y=ye({inputs:{x:g},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(f),y}var Tte={kernelName:Ji,backendName:"webgl",kernelFunc:Cte},Nte=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=ut(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Ete(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Nte(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],bs(r.dtype,a.dtype))}var Rte={kernelName:Qi,backendName:"webgl",kernelFunc:Ete},_te=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${$.SELU_SCALEALPHA};
|
|
float scale = ${$.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,$te=Ze({opSnippet:_te}),Fte={kernelName:el,backendName:"webgl",kernelFunc:$te},Dte="return 1.0 / (1.0 + exp(-1.0 * x));",Ote=Ze({opSnippet:Dte}),Pte={kernelName:so,backendName:"webgl",kernelFunc:Ote},Mte=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,zte=Ze({opSnippet:Mte}),Lte={kernelName:sl,backendName:"webgl",kernelFunc:zte},Bte=P6+`
|
|
return sin(x);
|
|
`,Wte=Ze({opSnippet:Bte}),Vte={kernelName:no,backendName:"webgl",kernelFunc:Wte},Ute=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Hte=Ze({opSnippet:Ute}),Gte={kernelName:nl,backendName:"webgl",kernelFunc:Hte},jte=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,qte=Ze({opSnippet:jte}),Xte={kernelName:rl,backendName:"webgl",kernelFunc:qte},Kte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;I.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((g,y)=>g*y),l=[[0,0]];l.push(...o);for(let g=1+a.length;g<r.shape.length;++g)l.push([0,0]);let u=[],c=b4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=$.getReshaped(c.shape,a,i,!1),h=$.getPermuted(d.length,a.length,!1),p=$.getReshapedPermuted(c.shape,a,i,!1),m=ye({inputs:{x:c},backend:n,attrs:{shape:d}}),f=wn({inputs:{x:m},backend:n,attrs:{perm:h}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:p}});return u.push(c),u.push(m),u.push(f),u.forEach(g=>n.disposeIntermediateTensorInfo(g)),A},Zte={kernelName:al,backendName:"webgl",kernelFunc:Kte};function Yte(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,m,f]=tX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],s.dtype,new Int32Array(f))]}var Jte={kernelName:dh,backendName:"webgl",kernelFunc:Yte};function Qte(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=nX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var ene={kernelName:hh,backendName:"webgl",kernelFunc:Qte};function tne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=k6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var nne={kernelName:ph,backendName:"webgl",kernelFunc:tne};function sne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=k6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var rne={kernelName:fh,backendName:"webgl",kernelFunc:sne};function ane(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=$.calculateShapes(a,r,i),h=!1,p=new w4(u,l,r.shape.length,a.shape.length,c,[d,1],h),m=n.runWebGLProgram(p,[a,r,o],a.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),f}var one={kernelName:mh,backendName:"webgl",kernelFunc:ane};function ine(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let m=eu({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,m})}var lne={kernelName:ol,backendName:"webgl",kernelFunc:ine},une="return sqrt(x);",cne=Ze({opSnippet:une}),dne={kernelName:ro,backendName:"webgl",kernelFunc:cne},hne="return x * x;",pne=Ze({opSnippet:hne}),fne={kernelName:Bu,backendName:"webgl",kernelFunc:pne},k4="return (a - b) * (a - b);",mne=rn({opSnippet:k4,packedOpSnippet:k4}),Ane={kernelName:io,backendName:"webgl",kernelFunc:mne};function gne({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Bs+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new sa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var yne={kernelName:Mr,backendName:"webgl",kernelFunc:gne},xne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ut(n.length),a=ut(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function bne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=ye({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=eu({inputs:{x},backend:n,attrs:{begin:m,size:A}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,E=Be(x.shape,x.dtype,C),P=sX(y,E,f,m);b=n.makeTensorInfo(y,x.dtype,P.values)}else{let w=new xne(m,f,y);b=n.runWebGLProgram(w,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var vne={kernelName:il,backendName:"webgl",kernelFunc:bne};function wne(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[m,f]=rX(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var kne={kernelName:Ah,backendName:"webgl",kernelFunc:wne};function Ine(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=aX(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Sne={kernelName:gh,backendName:"webgl",kernelFunc:Ine};function Cne(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=oX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Tne={kernelName:yh,backendName:"webgl",kernelFunc:Cne},Nne="return tan(x);",Ene=Ze({opSnippet:Nne}),Rne={kernelName:uo,backendName:"webgl",kernelFunc:Ene},_ne=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,$ne=Ze({opSnippet:_ne}),Fne={kernelName:co,backendName:"webgl",kernelFunc:$ne},Dne=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ut(this.rank),r=One(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function One(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function I4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(h=>I.decodeString(h)):l,c=Be(r.shape,r.dtype,u),d=lX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Dne(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Pne={kernelName:Pr,backendName:"webgl",kernelFunc:I4},Mne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},zne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function jo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function S4(e){let t=1;for(;t<e;)t*=2;return t}function Lne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=ee().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=ee().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let P=n.readSync(r.dataId),[R,_]=uX(P,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(_.shape,_.dtype,_.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,vf({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(r):r,f=I.sizeFromShape(u)/c,A=ye({inputs:{x:p},attrs:{shape:[f,c]},backend:n});h&&jo(n,p);let g=S4(a),y=S4(c),x=null,b=()=>x===null?[A,A]:[A,x],v=(P,R,_)=>{let T=b(),O=new Mne(_),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[P],[R]],q=x;x=n.runWebGLProgram(O,T,"int32",j),jo(n,q)};for(let P=1;P<g;P*=2){let R=P*2;for(let _=P;_>=1;_/=2)v(R,_,[f,y])}for(let P=y;P>g;P/=2){let R=b(),_=new zne([f,P/2]),O=[[c],[x===null?1:0],[g]],W=x;x=n.runWebGLProgram(_,R,"int32",O),jo(n,W);let j=g/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=eu({inputs:{x},backend:n,attrs:{begin:0,size:[f,a]}}),jo(n,k);let w=h4({inputs:{x:A,indices:x},backend:n,attrs:{axis:1,batchDims:1}});jo(n,A);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),jo(n,k);let E=w;return w=ye({inputs:{x:w},attrs:{shape:C},backend:n}),jo(n,E),[w,x]}var Bne={kernelName:ll,backendName:"webgl",kernelFunc:Lne},Wne=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Vne(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[m,f]=u!=null?u:[d,h],A=[c,m,f,p],g=new Wne(d,h,o,i,l,A);return n.runWebGLProgram(g,[r,a],"float32")}var Une={kernelName:ul,backendName:"webgl",kernelFunc:Vne};function Hne(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;jl(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=cX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Gne={kernelName:xh,backendName:"webgl",kernelFunc:Hne};function jne(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let f=0;f<i;f++)f!==a&&(u[c++]=o.shape[f]);let d=[],h=new Array(i).fill(0),p=o.shape.slice();p[a]=1;let m=new Array(l);for(let f=0;f<m.length;f++){h[a]=f;let A=eu({inputs:{x:o},backend:n,attrs:{begin:h,size:p}}),g=ye({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=g,d.push(A)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var qne={kernelName:cl,backendName:"webgl",kernelFunc:jne},Xne=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Kne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=$.getAxesPermutation([u],i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=$.getInnerMostAxes(1,i)[0]);let h=$.segment_util.computeOutShape(d.shape,u,o),p=I.sizeFromShape([d.shape[u]]),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ch(r.dtype),A=(b,v,k,w,C)=>{let E=b.shape[0],P=b.shape[1],R=$.segment_util.segOpComputeOptimalWindowSize(P,C),_={windowSize:R,inSize:P,batchSize:E,numSegments:C},T=new Xne(_,v),O=n.compileAndRun(T,[b,k],w);if(l.push(O),O.shape[1]===C)return O;let W=v4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=I4({inputs:{x:W},backend:n,attrs:{reps:[P/R]}});return l.push(W),l.push(j),A(O,v,j,w,C)},g=A(m,"unsortedSegmentSum",a,f,o),y=ye({inputs:{x:g},backend:n,attrs:{shape:h}}),x=y;if(c!=null){l.push(y);let b=$.getUndoAxesPermutation(c);x=wn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Zne={kernelName:Wu,backendName:"webgl",kernelFunc:Kne},Yne=[kQ,CQ,uK,dK,fK,gK,xK,wK,IK,CK,RK,$K,OK,zK,GK,WK,XK,JK,ZK,nZ,rZ,oZ,cZ,gZ,xZ,SZ,TZ,_Z,DZ,HX,LZ,KZ,YZ,UZ,tY,sY,QZ,oY,uY,hY,fY,AY,xY,SY,TY,vY,RY,FY,OY,LY,UY,qY,ZY,YY,JY,eJ,nJ,rJ,oJ,lJ,hJ,mJ,yJ,bJ,kJ,CJ,RJ,DJ,UX,PJ,MZ,LJ,VJ,GJ,jX,KJ,QJ,tQ,lQ,aQ,hQ,mQ,xQ,NQ,PQ,DQ,BQ,VQ,HQ,$Q,jQ,XQ,JQ,nee,oee,fee,YX,Aee,xee,wee,See,vZ,Nee,Ree,$ee,Oee,Lee,XX,Wee,Vee,wZ,cee,Gee,Qee,Kee,QX,ste,ote,cte,pte,gte,xte,wte,Ste,Tte,Rte,Fte,Pte,Lte,Vte,Gte,mZ,hee,Xte,Zte,Jte,ene,nne,rne,one,lne,dne,fne,Ane,yne,vne,kne,Sne,Tne,dee,oK,Rne,Fne,Pne,Bne,Une,iK,Gne,qne,Zne,Eee];for(let e of Yne)Ao(e);var $n;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($n||($n={}));var Xc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Xc||(Xc={}));var C4;function Jne(e){C4=e.wasm.cwrap(po,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Qne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(a.dataId).id,m=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);m=C.id}let f=i==null?0:n.dataIdMap.get(i.dataId).id,A=Xc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let g=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,g,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),w=new Uint8Array(new Int32Array(a.shape).buffer);return C4(h,k,r.shape.length,p,w,a.shape.length,l,u,A,m,f,d||0,v),b}var ese={kernelName:po,backendName:"wasm",setupFunc:Jne,kernelFunc:Qne};function un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return I.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var tse=un(di);function kn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,m=$.assertAndGetBroadcastShape(u.shape,c.shape),f=i.makeOutput(m,p);if(I.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),g=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(f.dataId).id,x=()=>s(d,A,u.shape.length,h,g,c.shape.length,$n[u.dtype],y);if(t&&u.dtype==="float32")return x(),f;let b=$.getBroadcastDims(u.shape,m),v=$.getBroadcastDims(c.shape,m),k=b.every((C,E)=>C===E),w=v.every((C,E)=>C===E);if(k&&w)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var nse=!0,sse=kn(Dr,nse),T4;function rse(e){T4=e.wasm.cwrap(ga,null,["array","number","number","number"])}function ase(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(I.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return T4(a,r.length,$n[s.dtype],o),s}var ose={kernelName:ga,backendName:"wasm",setupFunc:rse,kernelFunc:ase};function kf(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ise={kernelName:Oa,backendName:"wasm",kernelFunc:kf},N4;function lse(e){N4=e.wasm.cwrap(ho,null,["number","array","number","number","number","array","number"])}function su(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=cse(t.x.shape,s.perm),o=!0;for(let m=0;m<a.length;m++)a[m]!==m&&(o=!1);let i=use(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let m=kf({inputs:t,backend:n});return m.shape=i,m}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,h=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return N4(c,p,l.shape.length,$n[l.dtype],d,h,a.length),u}function use(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function cse(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var dse={kernelName:ho,backendName:"wasm",kernelFunc:su,setupFunc:lse};function aa(e,t,n){let s=e.shape,r=e.shape.length,a=I.parseAxisParam(t,s),o=a,i=$.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let p=0;p<c.length;p++)c[p]=s[i[p]];o=$.getInnerMostAxes(o.length,r),l=su({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var E4;function hse(e){E4=e.wasm.cwrap(fi,null,["number, number, number"])}function pse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;$.assertAxesAreInnerMostDims("all",d,m);let[f,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(f,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;E4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var fse={kernelName:fi,backendName:"wasm",setupFunc:hse,kernelFunc:pse},R4;function mse(e){R4=e.wasm.cwrap(mi,null,["number, number, number"])}function Ase(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;$.assertAxesAreInnerMostDims("any",d,m);let[f,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(f,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;R4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var gse={kernelName:mi,backendName:"wasm",setupFunc:mse,kernelFunc:Ase},_4;function yse(e){_4=e.wasm.cwrap(ya,null,["number","number","number","number","number"])}function xse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=aa(a,r,t);if(d){let g=t.dataIdMap.get(u.dataId).id;g!==o&&(l=u,i=g)}let h=l.shape.slice(0,-1),p=t.makeOutput(h,"int32"),m=t.dataIdMap.get(p.dataId).id,f=I.sizeFromShape(p.shape),A=l.shape[c[0]];return _4(i,$n[l.dtype],f,A,m),d&&t.disposeData(u.dataId),p}var bse={kernelName:ya,backendName:"wasm",kernelFunc:xse,setupFunc:yse},$4;function vse(e){$4=e.wasm.cwrap(xa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wse(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,g=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return $4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,m,f,A,g,y,x,v),b}var kse={kernelName:xa,backendName:"wasm",setupFunc:vse,kernelFunc:wse};function Fn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=I.sizeFromShape(s.shape),o=I.inferFromImplicitShape(r,a);return I.assert(a===I.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Ise={kernelName:Yi,backendName:"wasm",kernelFunc:Fn},F4;function Sse(e){F4=e.wasm.cwrap(ba,null,["number","array","number","number","array","number","number","number","number"])}function Cse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],m=r.shape.slice(0,-2),f=a.shape.slice(0,-2),A=I.sizeFromShape(m),g=I.sizeFromShape(f),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=Fn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Fn({inputs:{x:a},backend:n,attrs:{shape:k}}),E=n.dataIdMap.get(w.dataId).id,P=n.dataIdMap.get(C.dataId).id,R=o?w.shape[2]:w.shape[1],_=i?C.shape[1]:C.shape[2],T=Math.max(A,g),O=n.makeOutput([T,R,_],w.dtype),W=n.dataIdMap.get(O.dataId).id,j=new Uint8Array(new Int32Array(w.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return F4(E,j,w.shape.length,P,q,C.shape.length,o,i,W),n.disposeData(w.dataId),n.disposeData(C.dataId),O.shape=b,O}var Tse={kernelName:ba,backendName:"wasm",setupFunc:Sse,kernelFunc:Cse};function Kc(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=An.parseSliceParams(t,n,s),i=An.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=I.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let m=An.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(m,m+I.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(m,m+I.sizeFromShape(o))),u}if(t.dtype==="string"){let m=Jp(l,a,o,t.shape,t.dtype);return d.stringBytes=m,u}let h=r.typedArrayFromHeap(u),p=t.shape.length;if(p===2)Nse(l,c[0],h,a,o);else if(p===3)Ese(l,c[0],c[1],h,a,o);else if(p===4)Rse(l,c[0],c[1],c[2],h,a,o);else{let m=Jp(l,a,o,t.shape,t.dtype);h.set(m)}return u}function Nse(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Ese(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let h=i;h<c;h++)for(let p=l;p<d;p++){let m=h*t+p*n+u;s.set(e.subarray(m,m+a[2]),o),o+=a[2]}}function Rse(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],h=u+o[1],p=c+o[2],m=a[3];for(let f=l;f<d;f++)for(let A=u;A<h;A++)for(let g=c;g<p;g++){let y=f*t+A*n+g*s+m;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var _se={kernelName:tl,backendName:"wasm",kernelFunc:Kc};function $se(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((g,y)=>g*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=Fn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=su({inputs:{x:p},backend:n,attrs:{perm:u}}),f=Fn({inputs:{x:m},backend:n,attrs:{shape:c}}),A=Kc({inputs:{x:f},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(m.dataId),n.disposeData(p.dataId),A}var Fse={kernelName:vi,backendName:"wasm",kernelFunc:$se};function If(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Dse={kernelName:va,backendName:"wasm",kernelFunc:If},Ose=un(wa),D4;function Pse(e){D4=e.wasm.cwrap(Or,null,["number","number","number","number"])}function Mse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return D4(i,a,o,u),l}var zse={kernelName:Or,backendName:"wasm",setupFunc:Pse,kernelFunc:Mse};function O4(e){let{inputs:t,backend:n}=e,s=I.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=$.computeOutShape(t.map(p=>p.shape),s),a=t.filter(p=>I.sizeFromShape(p.shape)>0);if(a.length===1)return kf({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(I.sizeFromShape(r)===0)return o;let i=a.map(p=>p.shape);if($.assertParamsConsistent(i,s),a[0].dtype==="string"){let p=a.map(x=>{let b=I.sizeFromShape(x.shape.slice(s));return Fn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=$.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=n1(m,r,t[0].dtype,f),g=$.computeOutShape(a.map(x=>x.shape),s);o.shape=g;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=$.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),o}let l=I.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(p=>{let m=I.sizeFromShape(p.shape.slice(s));return u+=m,m}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p<l;p++){let m=p*u;for(let f=0;f<d.length;f++){let A=c[f],g=p*A,y=d[f].subarray(g,g+A);h.set(y,m),m+=A}}return o}var Lse={kernelName:wi,backendName:"wasm",kernelFunc:O4},P4;function Bse(e){P4=e.wasm.cwrap(ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wse(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:h}=n,p=$.convertConv2DDataFormat(h),m=$.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,p),f=m.filterHeight,A=m.filterWidth,g=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,b=m.padInfo.left,v=m.dilationHeight,k=m.dilationWidth,w=m.strideHeight,C=m.strideWidth,E=m.inChannels,P=m.outChannels,R=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(m.outShape,"float32"),T=s.dataIdMap.get(_.dataId).id;return P4(o,r.shape[0],r.shape[1],r.shape[2],i,f,A,g,y,x,b,R,v,k,w,C,E,P,T),_}var Vse={kernelName:ka,backendName:"wasm",setupFunc:Bse,kernelFunc:Wse},M4;function Use(e){M4=e.wasm.cwrap(Ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hse(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,h=$.convertConv2DDataFormat(l),p=$.computeConv2DInfo(c,a.shape,o,d,i,u,!1,h),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:g,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:w,strideWidth:C}=p,E=f-1-p.padInfo.top,P=A-1-p.padInfo.left,R=p.dataFormat==="channelsLast",_=I.computeStrides(p.inShape),T=I.computeStrides(r.shape),[O,W,j]=I.computeStrides(a.shape),q=_[0],X=R?_[1]:_[2],Q=R?_[2]:1,ne=R?1:_[1],te=T[0],se=R?T[1]:T[2],J=R?T[2]:1,ie=R?1:T[1],le=t.makeOutput(p.inShape,"float32"),he=t.dataIdMap.get(le.dataId).id,ge=t.dataIdMap.get(r.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return M4(ge,Ce,m,f,A,y,x,g,v,k,b,w,C,E,P,O,W,j,q,X,Q,ne,te,se,J,ie,he),le}var Gse={kernelName:Ia,backendName:"wasm",setupFunc:Use,kernelFunc:Hse},jse=un(Sa),qse=un(Ca),F1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(F1||(F1={}));var z4;function Xse(e){z4=e.wasm.cwrap(ki,null,["number","number","number","number","array","number","number","number","number","number"])}function Kse(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,h]=o,p=[c,d,h,i.shape[3]],m=t.dataIdMap.get(i.dataId),f;i.dtype!=="float32"&&(f=If({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,g=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(p,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return z4(A,g,y,c,v,d,h,F1[r],a,b),f!=null&&t.disposeData(f.dataId),x}var Zse={kernelName:ki,backendName:"wasm",setupFunc:Xse,kernelFunc:Kse},L4;function Yse(e){L4=e.wasm.cwrap(Ta,null,["number","number","number","number","number","number"])}function Jse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;I.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=$.getAxesPermutation([a],l),c=r;u!==null&&(c=su({inputs:{x:r},attrs:{perm:u},backend:n}));let d=$.getInnerMostAxes(1,l)[0];$.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(h.dataId).id;L4(m,o?1:0,i?1:0,p,f,$n[r.dtype]);let A=h;if(u!==null){let g=$.getUndoAxesPermutation(u);A=su({inputs:{x:h},attrs:{perm:g},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return A}var Qse={kernelName:Ta,backendName:"wasm",setupFunc:Yse,kernelFunc:Jse},B4;function ere(e){B4=e.wasm.cwrap(Ii,null,["number","number","number","array","number","array","array","number","number"])}function tre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),m=o==="NHWC"?[i,d,h,p]:[i,p,d,h],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(m).buffer),b=new Uint8Array(new Int32Array(I.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return B4(g,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,m.length,v),f}var nre={kernelName:Ii,backendName:"wasm",setupFunc:ere,kernelFunc:tre},W4;function sre(e){W4=e.wasm.cwrap(Na,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=$.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,g=p.padInfo.right,y=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,k=p.strideHeight,w=p.strideWidth,C=p.inChannels,E=p.outChannels,P=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(p.outShape,"float32"),_=s.dataIdMap.get(R.dataId).id;return W4(o,r.shape[0],r.shape[1],r.shape[2],i,m,f,A,g,y,x,P,b,v,k,w,C,E,_),R}var are={kernelName:Na,backendName:"wasm",setupFunc:sre,kernelFunc:rre},ore=!1,ire=kn(Ti,ore,"bool"),lre=un(Ra);function D1(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Fn({inputs:{x:r},backend:s,attrs:{shape:i}})}var ure={kernelName:Ni,backendName:"wasm",kernelFunc:D1};function cre(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var dre={kernelName:Fu,backendName:"wasm",kernelFunc:cre},V4;function hre(e){V4=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number"])}function pre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return V4(a,i,l,u,c,o),r}var fre={kernelName:Ri,backendName:"wasm",kernelFunc:pre,setupFunc:hre},mre=un(_a),Are=!1,gre=kn($a,Are),U4;function yre(e){U4=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number"])}function xre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(a.shape,a.dtype);if(I.sizeFromShape(a.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return U4(c,d,h,p,m,r,A),f}var bre={kernelName:Fa,backendName:"wasm",setupFunc:yre,kernelFunc:xre},H4;function vre(e){H4=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:m}=n,f=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h),A=Xc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=f.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=f.filterHeight,k=f.filterWidth,w=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,P=f.padInfo.left,R=f.dilationHeight,_=f.dilationWidth,T=f.strideHeight,O=f.strideWidth,W=f.inChannels,j=f.padInfo.type==="SAME"?1:0,q=f.batchSize,X=f.inHeight,Q=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(f.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return H4(g,q,X,Q,y,v,k,b,w,C,E,P,j,R,_,T,O,W,x,A,se,m||0,te),ne}var kre={kernelName:fo,backendName:"wasm",setupFunc:vre,kernelFunc:wre},G4;function Ire(e){G4=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:m}=n,f=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h,!0),A=Xc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=f.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=f.filterHeight,k=f.filterWidth,w=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,P=f.padInfo.left,R=f.dilationHeight,_=f.dilationWidth,T=f.strideHeight,O=f.strideWidth,W=f.inChannels,j=f.padInfo.type==="SAME"?1:0,q=f.batchSize,X=f.inHeight,Q=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(f.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return G4(g,q,X,Q,y,v,k,b,w,C,E,P,j,R,_,T,O,W,x,A,se,m||0,te),ne}var Cre={kernelName:mo,backendName:"wasm",setupFunc:Ire,kernelFunc:Sre},j4;function Tre(e){j4=e.wasm.cwrap($i,null,["number","number","number","number","number","number","array","number"])}function Nre(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Qm.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],p=t.dataIdMap.get(s.dataId).id,f=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(l).buffer),g=t.dataIdMap.get(u.dataId).id;return j4(p,$n[s.dtype],f,o,d,i,A,g),u}var Ere={kernelName:$i,backendName:"wasm",setupFunc:Tre,kernelFunc:Nre},q4;function Rre(e){q4=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _re(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Fn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=I.sizeFromShape(a.shape),h=Fn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],m=t.makeOutput(p,r.dtype);if(I.sizeFromShape(r.shape)===0)return m;let f=c.shape.length-1,g=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(I.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(I.computeStrides(p)).buffer);return q4(g,$n[r.dtype],v,f,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(h.dataId),m.shape=u.outputShape,m}var $re={kernelName:_i,backendName:"wasm",setupFunc:Rre,kernelFunc:_re},Fre=!1,Dre=kn(Fi,Fre,"bool"),Ore=!1,Pre=kn(Da,Ore,"bool"),X4;function Mre(e){X4=e.wasm.cwrap(Pa,null,["number","number","number"])}function zre(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(I.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;X4(r,n,o)}return a}var Lre={kernelName:Pa,backendName:"wasm",setupFunc:Mre,kernelFunc:zre},Bre=!1,Wre=kn(Mi,Bre,"bool"),Vre=!1,Ure=kn(zi,Vre,"bool"),Hre=un(Ma),Gre=!1,jre=kn(Bi,Gre,"bool"),K4;function qre(e){K4=e.wasm.cwrap(za,null,["number, number, number"])}function Xre(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;$.assertAxesAreInnerMostDims("max",d,m);let[f,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(f,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;K4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Kre={kernelName:za,backendName:"wasm",setupFunc:qre,kernelFunc:Xre},Zre=!1,Yre=kn(La,Zre),Z4;function Jre(e){Z4=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,g=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let w=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(w.dataId).id;return Z4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,m,f,A,g,y,x,b,v,k,C),w}var eae={kernelName:Ba,backendName:"wasm",setupFunc:Jre,kernelFunc:Qre},Y4;function tae(e){Y4=e.wasm.cwrap(Wa,null,["number, number, number"])}function nae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),m=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,m=$.getInnerMostAxes(m.length,u.shape.length))}$.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=$.computeOutAndReduceShapes(u.shape,m),g=I.sizeFromShape(A),y=u;u.dtype!=="float32"&&(y=If({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(I.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;Y4(l,g,b)}if(p&&t.disposeData(c.dataId),a){let b=$.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var sae={kernelName:Wa,backendName:"wasm",setupFunc:tae,kernelFunc:nae},J4;function rae(e){J4=e.wasm.cwrap(Va,null,["number, number, number"])}function aae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let m=u.shape.length;$.assertAxesAreInnerMostDims("min",d,m);let[f,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;J4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var oae={kernelName:Va,backendName:"wasm",setupFunc:rae,kernelFunc:aae},iae=!1,lae=kn(Ua,iae),O1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(O1||(O1={}));var Q4;function uae(e){Q4=e.wasm.cwrap(Ha,null,["number","array","number","number","array","array","number","number"])}function cae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((m,f)=>m[0]+t.shape[f]+m[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return Q4(o,u,t.shape.length,$n[t.dtype],h,p,O1[r],l),i}var dae={kernelName:Ha,backendName:"wasm",kernelFunc:cae,setupFunc:uae},hae=!0,pae=kn(Ga,hae),fae=un(Vi);function P1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var ek;function mae(e){ek=e.wasm.cwrap(Hi,"number",["number","number","number","number","number"])}function Aae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=ek(u,c,a,r,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=P1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",h)}var gae={kernelName:Hi,backendName:"wasm",setupFunc:mae,kernelFunc:Aae},tk;function yae(e){tk=e.wasm.cwrap(Gi,"number",["number","number","number","number","number","bool"])}function xae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=tk(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=P1(t,h);t.wasm._free(f);let g=t.makeOutput([m],"int32",p),y=t.makeOutput([],"int32",A);return[g,y]}var bae={kernelName:Gi,backendName:"wasm",setupFunc:yae,kernelFunc:xae},nk;function vae(e){nk=e.wasm.cwrap(ji,"number",["number","number","number","number","number","number"])}function wae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=nk(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=P1(t,h);t.wasm._free(A);let g=t.makeOutput([m],"int32",p),y=t.makeOutput([m],"float32",f);return[g,y]}var kae={kernelName:ji,backendName:"wasm",setupFunc:vae,kernelFunc:wae},Iae=!1,Sae=kn(Ui,Iae,"bool"),sk;function Cae(e){sk=e.wasm.cwrap(ja,null,["number","number","number","number","number"])}function Tae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return sk(d,a,o,i,u),l}var Nae={kernelName:ja,backendName:"wasm",setupFunc:Cae,kernelFunc:Tae};function Eae(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Rae={kernelName:qi,backendName:"wasm",kernelFunc:Eae};function _ae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return D1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=D1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=O4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var $ae={kernelName:Xi,backendName:"wasm",kernelFunc:_ae},rk;function Fae(e){rk=e.wasm.cwrap(qa,null,["number","array","number","number","array","array","number","number"])}function Dae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,f)=>m[0]+t.shape[f]+m[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return rk(o,u,t.shape.length,$n[t.dtype],h,p,r,l),i}var ak={kernelName:qa,backendName:"wasm",kernelFunc:Dae,setupFunc:Fae},Oae=!1,Pae=kn(Xa,Oae),ok;function Mae(e){ok=e.wasm.cwrap(Ka,null,["number","number","number"])}function zae(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return ok(a,o,l),i}var Lae={kernelName:Ka,backendName:"wasm",setupFunc:Mae,kernelFunc:zae},ik;function Bae(e){ik=e.wasm.cwrap(Ki,null,["number","number","number","number"])}function Wae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),m=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,m=$.getInnerMostAxes(m.length,u.shape.length))}$.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=$.computeOutAndReduceShapes(u.shape,m),g=I.sizeFromShape(A),y=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;ik(l,g,$n[y.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Vae={kernelName:Ki,backendName:"wasm",setupFunc:Bae,kernelFunc:Wae},Uae=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=a1(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Hae={kernelName:zu,backendName:"wasm",kernelFunc:Uae},Gae=!0,jae=kn(Ea,Gae),qae=un(Za),Xae=un(Ja),lk;function Kae(e){lk=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number"])}function Zae(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,h,p]=r.shape,m=[c,l,u,p],f=t.dataIdMap.get(r.dataId),A;f.dtype!=="float32"&&(A=If({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let g=f.id,y=t.makeOutput(m,"float32");if(I.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return lk(g,c,d,h,p,l,u,a?1:0,o?1:0,x),A!=null&&t.disposeData(A.dataId),y}var Yae={kernelName:Ya,backendName:"wasm",setupFunc:Kae,kernelFunc:Zae},uk;function Jae(e){uk=e.wasm.cwrap(Qa,null,["number","array","number","array","number","number"])}function Qae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=I.parseAxisParam(a,r.shape);if(r.shape.length===0)return kf({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);uk(l,c,o.length,d,r.shape.length,u);let h=Fn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),h}var eoe={kernelName:Qa,backendName:"wasm",kernelFunc:Qae,setupFunc:Jae},ck;function toe(e){ck=e.wasm.cwrap(hl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function noe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,m]=r.shape,[f,A]=$.getImageCenter(i,h,p),g=o===0,y=255,x=typeof o=="number"?[o,o,o,g?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return ck(u,d,h,p,m,a,f,A,b,x.length,c),l}var soe={kernelName:hl,backendName:"wasm",kernelFunc:noe,setupFunc:toe},roe=un(eo),aoe=un(to),dk;function ooe(e){dk=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","array","number","number"])}function ioe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(I.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=eA.calculateShapes(a,r,o),m=t.dataIdMap.get(r.dataId).id,A=t.dataIdMap.get(a.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return dk(m,A,$n[a.dtype],l,u,c,g,h,y),i}var loe={kernelName:Ji,backendName:"wasm",setupFunc:ooe,kernelFunc:ioe},hk;function uoe(e){hk=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function coe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,h=r.shape.length,p=d===0||d>1||h===1?1:I.sizeFromShape(r.shape.slice(1));return hk(o,i,l,p,c),u}var doe={kernelName:Qi,backendName:"wasm",kernelFunc:coe,setupFunc:uoe},pk;function hoe(e){pk=e.wasm.cwrap(so,null,["number","number"])}function poe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return I.sizeFromShape(r.shape)===0||pk(s,a),r}var foe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:hoe,kernelFunc:poe},moe=un(no),fk;function Aoe(e){fk=e.wasm.cwrap(oo,null,["number","number","number","number"])}function goe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=I.sizeFromShape(n.shape)/i;return I.sizeFromShape(a.shape)===0||fk(r,o,i,l),a}var yoe={kernelName:oo,backendName:"wasm",setupFunc:Aoe,kernelFunc:goe};function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=ak.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=$.getReshaped(u.shape,a,i,!1),d=$.getPermuted(c.length,a.length,!1),h=$.getReshapedPermuted(u.shape,a,i,!1),f=Fn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=su({inputs:{x:f},backend:n,attrs:{perm:d}}),v=Fn({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeData(u.dataId),n.disposeData(f.dataId),n.disposeData(y.dataId),v}var boe={kernelName:al,backendName:"wasm",kernelFunc:xoe};function voe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=Kc({inputs:{x:r},attrs:{begin:u,size:h},backend:s});return u[i]+=d,p})}var woe={kernelName:ol,backendName:"wasm",kernelFunc:voe},koe=un(ro),Ioe=un(Bu),Soe=!0,Coe=kn(io,Soe),mk;function Toe(e){mk=e.wasm.cwrap(Mr,null,["number","number","number"])}function Noe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return mk(o,r,l),i}var Eoe={kernelName:Mr,backendName:"wasm",setupFunc:Toe,kernelFunc:Noe},Ak;function Roe(e){Ak=e.wasm.cwrap(il,null,["number","array","number","array","array","array","array","array","number","number"])}function _oe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,p=$.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-a.length,f=$.slice_util.maskToAxes(d),A=r.shape.slice();f.forEach(R=>{a[R]=0,o[R]=1,A.splice(R,0,1)});let g=Fn({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:y,end:x,strides:b}=$.slice_util.getNormalizedAxes(g.shape,p,m,a,o,i,l,u,c);a=y,o=x,i=b;let v=$.slice_util.maskToAxes(h);v.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=$.slice_util.computeOutShape(a,o,i),w=k.filter((R,_)=>v.indexOf(_)===-1);if(i.every(R=>R===1)){let R=Kc({inputs:{x:g},attrs:{begin:a,size:k},backend:t});t.disposeData(g.dataId);let _=Fn({inputs:{x:R},attrs:{shape:w},backend:t});return t.disposeData(R.dataId),_}let E=t.makeOutput(w,"float32");if(!w.some(R=>R===0)){let R=t.dataIdMap.get(g.dataId).id,_=new Uint8Array(new Int32Array(I.computeStrides(g.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(w).buffer),q=new Uint8Array(new Int32Array(I.computeStrides(w)).buffer),X=t.dataIdMap.get(E.dataId).id;Ak(R,_,g.shape.length,T,O,W,j,q,w.length,X)}t.disposeData(g.dataId);let P=Fn({inputs:{x:E},attrs:{shape:w},backend:t});return t.disposeData(E.dataId),P}var $oe={kernelName:il,backendName:"wasm",setupFunc:Roe,kernelFunc:_oe},Foe=!0,Doe=kn(lo,Foe),gk;function Ooe(e){gk=e.wasm.cwrap(ao,null,["number, number, number"])}function Poe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),m=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,m=$.getInnerMostAxes(m.length,u.shape.length))}$.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=$.computeOutAndReduceShapes(u.shape,m),g=I.sizeFromShape(A),y=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;gk(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Moe={kernelName:ao,backendName:"wasm",setupFunc:Ooe,kernelFunc:Poe},zoe=un(uo),Loe=un(co),yk;function Boe(e){yk=e.wasm.cwrap(Pr,null,["number","array","number","array","number","number"])}function Woe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let h=0;h<i.length;h++)i[h]=r.shape[h]*o[h];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return yk(a,l,r.shape.length,u,i.length,$n[c.dtype],d),c}var Voe={kernelName:Pr,backendName:"wasm",setupFunc:Boe,kernelFunc:Woe},xk;function Uoe(e){xk=e.wasm.cwrap(ll,null,["number","array","number","number","number","bool","number","number"])}var Hoe=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return xk(o,i,s.shape.length,$n[s.dtype],r,a,c,h),[u,d]},Goe={kernelName:ll,backendName:"wasm",setupFunc:Uoe,kernelFunc:Hoe},bk;function joe(e){bk=e.wasm.cwrap(ul,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function qoe(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[m,f]=u!=null?u:[d,h],A=[c,m,f,p],g=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),y=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,E;switch(i){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return bk(v,w,a.shape[0]>1,c,m,f,p,h,d,g,r.shape.length-1,C,E,l,x),y}var Xoe={kernelName:ul,backendName:"wasm",setupFunc:joe,kernelFunc:qoe};function Koe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o),d=new Array(i).fill(0),h=r.shape.slice();h[a]=1;for(let p=0;p<c.length;p++)d[a]=p,c[p]=Kc({inputs:{x:r},attrs:{begin:d,size:h},backend:n});return c.map(({dataId:p,dtype:m})=>({dataId:p,dtype:m,shape:l}))}var Zoe={kernelName:cl,backendName:"wasm",kernelFunc:Koe};function Yoe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Joe={kernelName:dl,backendName:"wasm",kernelFunc:Yoe},Qoe=[tse,sse,ose,fse,gse,bse,kse,Tse,Fse,Dse,Ose,zse,Lse,Vse,Gse,jse,qse,Zse,Qse,nre,are,ire,lre,ure,dre,fre,mre,gre,ese,bre,kre,Cre,Ere,$re,Dre,Pre,ise,Lre,Wre,Ure,Hre,jre,Kre,Yre,eae,sae,oae,lae,dae,pae,fae,gae,bae,kae,Sae,Nae,Rae,$ae,ak,Pae,Lae,Vae,Hae,jae,qae,Xae,Ise,Yae,eoe,soe,aoe,roe,loe,doe,foe,moe,_se,yoe,boe,woe,koe,Ioe,Coe,Eoe,$oe,Doe,Moe,zoe,Loe,Voe,Goe,Xoe,dse,Zoe,Joe];for(let e of Qoe)Ao(e);var M1=ee();M1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));M1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(M1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var vk=fa(BI()),eie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',tie=fa(WI()),wk=class extends Su{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fd(this,Ar())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=I.sizeFromShape(n),i=o*I.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+I.sizeFromShape(s)*I.bytesPerElement(n));return rie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=I.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=I.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function nie(e){return(t,n)=>(I.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function kk(e,t,n){if(Sf!=null)return Sf;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Yc!=null&&Yc[s]!=null?Yc[s]:n+s}async function sie(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=eie,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?kk(e,t,Zc!=null?Zc:l):l+i},z1&&(r.instantiateWasm=nie(kk(e,t,Zc!=null?Zc:"")));let a=!1;r.onAbort=()=>{if(a||Jc)return;Jc=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Sf==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+vk.default.toString()],{type:"text/javascript"}),o=(0,vk.default)(r)):o=(0,tie.default)(r),o.then(i=>{a=!0,Jc=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function rie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var aie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Sf=null,Zc=null,Yc={},Jc=!1,z1=!1;function oie(e,t=!1){if(oA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Jc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Sf=e,z1=t}function iie(e,t=!1){if(Jc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Zc=e;else{Yc=e;let n=aie.filter(s=>Yc[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}z1=t}var lie="3.8.0",uie=2;bl("wasm",async()=>{let{wasm:e}=await sie();return new wk(e)},uie);var cie={tfjs:VI,"tfjs-core":UI,"tfjs-data":HI,"tfjs-layers":GI,"tfjs-converter":jI,"tfjs-backend-cpu":qI,"tfjs-backend-webgl":XI,"tfjs-backend-wasm":KI};var Dn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function die(){let e=Dn.gl;!e||(Dn.extensions=e.getSupportedExtensions())}function Ik(){if(!iA(Dn.name)){try{Dn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Dn.width,Dn.height):document.createElement("canvas")}catch(e){de("error: cannot create canvas:",e);return}try{Dn.gl=Dn.canvas.getContext("webgl2",Dn.webGLattr)}catch(e){de("error: cannot get WebGL2 context:",e);return}try{tf(2,Dn.gl)}catch(e){de("error: cannot set WebGL2 context:",e);return}try{let e=new uf(Dn.gl);bl(Dn.name,()=>new Jl(e),Dn.priority)}catch(e){de("error: cannot register WebGL backend:",e);return}try{fl("webgl").forEach(t=>{let n={...t,backendName:Dn.name};Ao(n)})}catch(e){de("error: cannot update WebGL backend registration:",e);return}try{ns.set("WEBGL_VERSION",2)}catch(e){de("error: cannot set WebGL backend flags:",e);return}die(),de("backend registered:",Dn.name)}}function Sk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function ed(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ru(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function au(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Re.cropAndResize(t,a,[0],n)}function Cf(e,t=1.5){let n=ru(e),s=ed(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Tf(e){let t=ru(e),n=ed(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function L1(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var Ck=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Nf=[[1,0,0],[0,1,0],[0,0,1]];function hie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function B1(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return hie(n)}function Tk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function oa(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function pie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function Nk(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(oa(e[r],pie(t,a)))}return n}function Ef(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=Tk(t[0],t[1]),o=Nk(a,r),i=Tk(-t[0],-t[1]);return Nk(o,i)}function Ek(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-oa(t[0],n),-oa(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Rk(e,t){return[oa(e,t[0]),oa(e,t[1])]}function _k(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let h=0;h<i;h++)n.push([d,u])}}}return n}var $k=6;function fie(e,t,n){let s=_e(e,[0,1],[-1,2]),r=ae(s,t),a=_e(e,[0,3],[-1,2]),o=ce(a,n),i=ce(r,n),l=ce(o,2),u=Ae(i,l),c=ae(i,l),d=z(u,n),h=z(c,n);return Il([d,h],1)}var Fk=class{constructor(t,n){this.model=t,this.anchorsData=_k(t.inputs[0].shape[1]),this.anchors=_s(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[s,r,a]=H(()=>{let u=Re.resizeBilinear(t,[this.inputSize,this.inputSize]),c=Ae(ce(u,127.5),.5),d=this.model.execute(c),h;if(Array.isArray(d)){let A=d.sort((b,v)=>b.size-v.size),g=dt([A[0],A[2]],2),y=dt([A[1],A[3]],2),x=dt([y,g],1);h=mt(x,0)}else h=mt(d);let p=fie(h,this.anchors,[this.inputSize,this.inputSize]),m=_e(h,[0,0],[-1,1]),f=mt(Bn(m)).dataSync();return[h,p,f]});this.config=pn(this.config,n);let o=await Re.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=o.arraySync();Z(o);let l=[];for(let u=0;u<i.length;u++){let c=a[i[u]];if(c>this.config.face.detector.minConfidence){let d=_e(r,[i[u],0],[1,-1]),h=Ck(d);Z(d);let p=this.anchorsData[i[u]],m=H(()=>U(mt(_e(s,[i[u],$k-1],[1,-1])),[$k,-1]));l.push({box:h,landmarks:m,anchor:p,confidence:c})}}return Z(s),Z(r),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Dk(e){let t=await ht(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Fk(t,e);return!t||!t.modelUrl?de("load model failed:",e.face.detector.modelPath):e.debug&&de("load model:",t.modelUrl),n}var or={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},W1=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],td=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],qo=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var mie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Aie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],gie=[33,133,362,263,1,78,308],lle=mie.map(e=>td[e]),ule=Aie.map(e=>td[e]),cle=gie.map(e=>td[e]);var V1=or.leftEyeLower0,U1=or.rightEyeLower0,ou={leftBounds:[V1[0],V1[V1.length-1]],rightBounds:[U1[0],U1[U1.length-1]]},Rf={count:468,mouth:13,symmetryLine:[13,or.midwayBetweenEyes[0]]},Ok={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},iu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function _f(e,t,n,s){for(let r=0;r<W1.length;r++){let{key:a,indices:o}=W1[r],i=or[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var H1=class{constructor(t,n,s){var r,a;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=s,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2]),this.irisSize=(s==null?void 0:s.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,s,r){let a=ed({startPoint:n.startPoint,endPoint:n.endPoint}),o=t.map(d=>[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?Ef(s,[0,0]):Nf,l=s!==0?o.map(d=>[...Rk(d,i),d[2]]):o,u=s!==0?Ek(r):Nf,c=[...ru({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+oa(c,u[0])),Math.round(d[1]+oa(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[ou.leftBounds[0]][2],s=t[ou.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=Tf(Cf(L1([t[s],t[r]]),this.irisEnlarge)),i=ed(o),l=Re.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return a&&ns.flags.IS_BROWSER&&(l=Re.flipLeftRight(l)),{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o<iu.numCoordinates;o++){let i=t[o*3],l=t[o*3+1],u=t[o*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*s[0]+n.startPoint[0],l/this.irisSize*s[1]+n.startPoint[1],u])}return{rawCoords:a,iris:a.slice(iu.index)}}getAdjustedIrisCoords(t,n,s){let r=t[or[`${s}EyeUpper0`][iu.upperCenter]][2],a=t[or[`${s}EyeLower0`][iu.lowerCenter]][2],o=(r+a)/2;return n.map((i,l)=>{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let o of r.boxes)this.storedBoxes.push({startPoint:o.box.startPoint.dataSync(),endPoint:o.box.endPoint.dataSync(),landmarks:o.landmarks.arraySync(),confidence:o.confidence});this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let o=0;o<this.storedBoxes.length;o++){let i=Sk({startPoint:this.storedBoxes[o].startPoint,endPoint:this.storedBoxes[o].endPoint},r.scaleFactor),l=Cf(i),u=Tf(l),c=this.storedBoxes[o].landmarks,d=this.storedBoxes[o].confidence;this.storedBoxes[o]={...u,confidence:d,landmarks:c}}}r&&r.boxes&&r.boxes.forEach(o=>{Z(o.box.startPoint),Z(o.box.endPoint),Z(o.landmarks)});let a=H(()=>this.storedBoxes.map((o,i)=>{let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&ns.flags.IS_BROWSER){let[x,b]=o.landmarks.length>=Rf.count?Rf.symmetryLine:Ok.symmetryLine;u=B1(o.landmarks[x],o.landmarks[b]);let v=ru({startPoint:o.startPoint,endPoint:o.endPoint}),k=[v[0]/t.shape[2],v[1]/t.shape[1]],w=Re.rotateWithOffset(t,u,0,k);c=Ef(-u,v),n.face.mesh.enabled?l=ce(au({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.meshSize,this.meshSize]),255):l=ce(au({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.boxSize,this.boxSize]),255)}else{c=Nf;let x=t.clone();n.face.mesh.enabled?l=ce(au({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.meshSize,this.meshSize]),255):l=ce(au({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.boxSize,this.boxSize]),255)}if(!n.face.mesh.enabled)return{mesh:[],box:o,faceConfidence:null,boxConfidence:o.confidence,confidence:o.confidence,image:l};let[,d,h]=this.meshDetector.execute(l),p=d.dataSync()[0];if(p<n.face.detector.minConfidence)return this.storedBoxes[i].confidence=p,null;let f=U(h,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:b,crop:v}=this.getEyeBox(f,l,ou.leftBounds[0],ou.leftBounds[1],!0),{box:k,boxSize:w,crop:C}=this.getEyeBox(f,l,ou.rightBounds[0],ou.rightBounds[1]),P=this.irisModel.predict(dt([v,C])).dataSync(),R=P.slice(0,iu.numCoordinates*3),{rawCoords:_,iris:T}=this.getEyeCoords(R,x,b,!0),O=P.slice(iu.numCoordinates*3),{rawCoords:W,iris:j}=this.getEyeCoords(O,k,w),q=this.getLeftToRightEyeDepthDifference(f);Math.abs(q)<30?(_f(f,_,"left",null),_f(f,W,"right",null)):q<1?_f(f,_,"left",["EyeUpper0","EyeLower0"]):_f(f,W,"right",["EyeUpper0","EyeLower0"]);let X=this.getAdjustedIrisCoords(f,T,"left"),Q=this.getAdjustedIrisCoords(f,j,"right");f=f.concat(X).concat(Q)}let A=this.transformRawCoords(f,o,u,c),g=o.confidence;if(o=Cf(L1(A),1.5),o.confidence=g,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ns.flags.IS_BROWSER){let[x,b]=o.landmarks.length>=Rf.count?Rf.symmetryLine:Ok.symmetryLine;u=B1(o.landmarks[x],o.landmarks[b]);let v=ru({startPoint:o.startPoint,endPoint:o.endPoint}),k=[v[0]/t.shape[2],v[1]/t.shape[1]],w=Re.rotateWithOffset(ue(t,"float32"),u,0,k);c=Ef(-u,v),l=ce(au({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.meshSize,this.meshSize]),255)}let y={mesh:A,box:o,faceConfidence:p,boxConfidence:o.confidence,image:l};return this.storedBoxes[i]={...Tf(o),confidence:o.confidence,faceConfidence:p},y}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(o=>o.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Rt=[null,null,null],G1;async function Pk(e,t){let n=await G1.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/G1.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(or))i[c]=or[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,image:a.image,tensor:a.image}),a.coords&&Z(a.coords)}return s}async function j1(e){return!Rt[0]&&e.face.enabled||!Rt[1]&&e.face.mesh.enabled||!Rt[2]&&e.face.iris.enabled?(Rt=await Promise.all([!Rt[0]&&e.face.enabled?Dk(e):null,!Rt[1]&&e.face.mesh.enabled?ht(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Rt[2]&&e.face.iris.enabled?ht(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Rt[1]||!Rt[1].modelUrl?de("load model failed:",e.face.mesh.modelPath):e.debug&&de("load model:",Rt[1].modelUrl)),e.face.iris.enabled&&(!Rt[2]||!Rt[2].modelUrl?de("load model failed:",e.face.iris.modelPath):e.debug&&de("load model:",Rt[2].modelUrl))):e.debug&&(Rt[0]&&de("cached model:",Rt[0].model.modelUrl),Rt[1]&&de("cached model:",Rt[1].modelUrl),Rt[2]&&de("cached model:",Rt[2].modelUrl)),G1=new H1(Rt[0],Rt[1],Rt[2]),Rt}var Mk=qo,zk=td;var Ws,$f=[],Lk=0,q1=Number.MAX_SAFE_INTEGER;async function X1(e){let t=pt(e.modelBasePath,e.face.description.modelPath);return Ws?e.debug&&de("cached model:",t):(Ws=await ht(t),Ws?e.debug&&de("load model:",t):de("load model failed:",e.face.description.modelPath)),Ws}function K1(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function Bk(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=K1(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function Z1(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ue))return null;let s=[[.05,.15,.85,.85]];if(!Ws.inputs[0].shape)return null;let r=n.shape.length===3?Re.cropAndResize(Ft(n,0),s,[0],[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]]):Re.cropAndResize(n,s,[0],[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]]);return z(r,255)})}async function Y1(e,t,n,s){var r,a;return Ws?q1<t.face.description.skipFrames&&t.skipFrame&&Lk===s&&((r=$f[n])==null?void 0:r.age)&&((a=$f[n])==null?void 0:a.age)>0?(q1++,$f[n]):(q1=0,new Promise(async o=>{let i=Z1(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(l=await Ws.predict(i)),Z(i),l&&(H(()=>{let c=l.find(f=>f.shape[1]===1).dataSync(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let h=Xs(l.find(f=>f.shape[1]===100),1).dataSync()[0],p=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(p[h-1]>p[h+1]?10*h-100*p[h-1]:10*h+100*p[h+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(c=>Z(c))),$f[n]=u,Lk=s,o(u)})):null}var yie=["angry","disgust","fear","happy","sad","surprise","neutral"],Vs,Ff=[],Wk=0,J1=Number.MAX_SAFE_INTEGER,Q1=[.2989,.587,.114];async function ey(e){return Vs?e.debug&&de("cached model:",Vs.modelUrl):(Vs=await ht(pt(e.modelBasePath,e.face.emotion.modelPath)),!Vs||!Vs.modelUrl?de("load model failed:",e.face.emotion.modelPath):e.debug&&de("load model:",Vs.modelUrl)),Vs}async function ty(e,t,n,s){return Vs?J1<t.face.emotion.skipFrames&&t.skipFrame&&Wk===s&&Ff[n]&&Ff[n].length>0?(J1++,Ff[n]):(J1=0,new Promise(async r=>{let a=Re.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),[o,i,l]=nn(a,3,3);Z(a);let u=z(o,Q1[0]),c=z(i,Q1[1]),d=z(l,Q1[2]);Z(o),Z(i),Z(l);let h=$h([u,c,d]);Z(u),Z(c),Z(d);let p=H(()=>z(Ae(h,.5),2));Z(h);let m=[];if(t.face.emotion.enabled){let f=await Vs.predict(p),A=f.dataSync();Z(f);for(let g=0;g<A.length;g++)A[g]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*A[g])/100),emotion:yie[g]});m.sort((g,y)=>y.score-g.score)}Z(p),Ff[n]=m,Wk=s,r(m)})):null}var nd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Vk=nd.length,sd=nd.reduce((e,t,n)=>(e[t]=n,e),{}),xie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],bie=xie.map(([e,t])=>[sd[e],sd[t]]),Uk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Hk(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Gk(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/s,p.y/s]}))});return e.map((u,c)=>i(u,c))}var ny=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function sy(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+Vk)}}function ry(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=sy(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function ay(e,t,n){return e<t?t:e>n?n:e}function jk(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function oy(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Df=1,lu=16,vie=50**2;function qk(e,t,n,s,r,a,o=2){let i=g=>({y:a.get(g.y,g.x,e),x:a.get(g.y,g.x,a.shape[2]/2+e)}),l=(g,y,x)=>({y:ay(Math.round(g.y/lu),0,y-1),x:ay(Math.round(g.x/lu),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),h=i(d),m=oy(t.position,h);for(let g=0;g<o;g++){let y=l(m,u,c),x=sy(y.y,y.x,n,r);m=oy({x:y.x*lu,y:y.y*lu},{x:x.x,y:x.y})}let f=l(m,u,c),A=s.get(f.y,f.x,n);return{position:m,part:nd[n],score:A}}function wie(e,t,n,s,r){let a=Uk.map(([h,p])=>[sd[h],sd[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=ry(e.part,lu,n);c[e.part.id]={score:e.score,part:nd[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],m=i[h];c[p]&&!c[m]&&(c[m]=qk(h,c[p],m,t,n,r))}for(let h=0;h<u;++h){let p=i[h],m=o[h];c[p]&&!c[m]&&(c[m]=qk(h,c[p],m,t,n,s))}return c}function kie(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-Df,0),u=Math.min(n+Df+1,a);for(let c=l;c<u;++c){let d=Math.max(s-Df,0),h=Math.min(s+Df+1,o);for(let p=d;p<h;++p)if(r.get(c,p,e)>t){i=!1;break}if(!i)break}return i}function Iie(e,t){let[n,s,r]=t.shape,a=new ny(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||kie(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function Xk(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?jk(n,t,a.y,a.x)<=vie:!1})}function Sie(e,t){return t.reduce((s,{position:r,score:a},o)=>(Xk(e,r,o)||(s+=a),s),0)/t.length}function Kk(e,t,n,s,r,a){let o=[],i=Iie(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=ry(l.part,lu,e);if(Xk(o,u,l.part.id))continue;let c=wie(l,t,e,n,s);c=c.filter(p=>p.score>a);let d=Sie(o,c),h=Hk(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var Xn,Cie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function iy(e,t){let n=H(()=>{if(!Xn.inputs[0].shape)return[];let o=Re.resizeBilinear(e,[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]),i=Ae(ce(ue(o,"float32"),127.5),1),u=Xn.execute(i,Cie).map(c=>mt(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Z(o);let r=await Kk(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Xn.inputs[0].shape?Gk(r,[e.shape[1],e.shape[2]],[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]):[]}async function ly(e){return Xn?e.debug&&de("cached model:",Xn.modelUrl):(Xn=await ht(pt(e.modelBasePath,e.body.modelPath)),!Xn||!Xn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Xn.modelUrl)),Xn}function Of(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function rd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Zk(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Re.cropAndResize(t,a,[0],n)}function Yk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Pf(e,t=1.5){let n=rd(e),s=Of(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Mf(e){let t=rd(e),n=Of(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var Jk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var uy=class{constructor(t){var n;this.model=t,this.anchors=Jk.map(s=>[s.x,s.y]),this.anchorsTensor=_s(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Ot([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ot([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ae(ce(n,this.inputSizeTensor),this.anchorsTensor),a=ce(s,this.doubleInputSizeTensor),o=z(Ae(r,a),this.inputSizeTensor),i=z(ae(r,a),this.inputSizeTensor);return Il([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(ce(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s=this.model.predict(t),r=mt(s);Z(s);let a=H(()=>mt(Bn(_e(r,[0,0],[-1,1])))),o=a.dataSync(),i=_e(r,[0,1],[-1,4]),l=this.normalizeBoxes(i);Z(i);let u=await Re.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=u.arraySync();Z(a),Z(u);let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=_e(l,[h,0],[1,-1]),m=_e(r,[h,5],[1,14]),f=H(()=>U(this.normalizeLandmarks(m,h),[-1,2]));Z(m),d.push({box:p,palmLandmarks:f,confidence:o[h]})}return Z(r),Z(l),d}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>Ae(ce(Re.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Z(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=l.box.dataSync(),c=u.slice(0,2),d=u.slice(2,4),h=l.palmLandmarks.arraySync();Z(l.box),Z(l.palmLandmarks),i.push(Yk({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function Tie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Qk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tie(n)}var e8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ia(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Nie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function t8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ia(e[r],Nie(t,a)))}return n}function cy(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=e8(t[0],t[1]),o=t8(a,r),i=e8(-t[0],-t[1]);return t8(o,i)}function n8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ia(t[0],n),-ia(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function dy(e,t){return[ia(e,t[0]),ia(e,t[1])]}var Eie=5,s8=1.65,r8=[0,5,9,13,17,1,2],Rie=0,_ie=2,hy=class{constructor(t,n){var s;this.handDetector=t,this.handPoseModel=n,this.inputSize=(s=this.handPoseModel)==null?void 0:s.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>dy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Pf(Mf(r),Eie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Pf(Mf(n),s8);s.palmLandmarks=[];for(let r=0;r<r8.length;r++)s.palmLandmarks.push(t[r8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Of(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(p=>[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=cy(s,[0,0]),u=i.map(p=>[...dy(p,l),p[2]]),c=n8(r),d=[...rd(n),1],h=[ia(d,c[0]),ia(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?Qk(i.palmLandmarks[Rie],i.palmLandmarks[_ie]):0,u=rd(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&ns.flags.IS_BROWSER?Re.rotateWithOffset(t,l,0,c):t.clone(),h=cy(-l,u),p=s?this.getBoxForPalmLandmarks(i.palmLandmarks,h):i,m=Zk(p,d,[this.inputSize,this.inputSize]),f=ce(m,255);Z(m),Z(d);let[A,g]=await this.handPoseModel.predict(f);Z(f);let y=A.dataSync()[0];if(Z(A),y>=n.hand.minConfidence){let x=U(g,[-1,3]),b=x.arraySync();Z(g),Z(x);let v=this.transformRawCoords(b,p,l,h),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let w={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(w)}else this.storedBoxes[o]=null;Z(g)}else{let l=Pf(Mf(i),s8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var a8={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},la,ua,o8;async function py(e,t){let n=await o8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(a8))a[u]=a8[u].map(c=>n[r].landmarks[c]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a})}return s}async function fy(e){!la||!ua?([la,ua]=await Promise.all([e.hand.enabled?ht(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ht(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!la||!la.modelUrl?de("load model failed:",e.hand.detector.modelPath):e.debug&&de("load model:",la.modelUrl),!ua||!ua.modelUrl?de("load model failed:",e.hand.skeleton.modelPath):e.debug&&de("load model:",ua.modelUrl))):(e.debug&&de("cached model:",la.modelUrl),e.debug&&de("cached model:",ua.modelUrl));let t=new uy(la);return o8=new hy(t,ua),[la,ua]}var i8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],l8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var On;async function zf(e){return On?e.debug&&de("cached model:",On.modelUrl):(On=await ht(pt(e.modelBasePath,e.body.modelPath)),On.width=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[2].size),On.height=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[1].size),!On||!On.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",On.modelUrl)),On}async function my(e,t){var f;if(!On)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=Re.resizeBilinear(e,[On.width,On.height],!1),r=ce(s,[255]);Z(s);let a=await On.predict(r),o=((f=a.find(A=>A.size===195||A.size===155))==null?void 0:f.dataSync())||[];a.forEach(A=>Z(A)),Z(r);let i=[],l=(o==null?void 0:o.length)===195?i8:l8,u=5;for(let A=0;A<o.length/u;A++)i.push({id:A,part:l[A],position:[Math.trunc(n.width*o[u*A+0]/255),Math.trunc(n.height*o[u*A+1]/255),Math.trunc(o[u*A+2])+0],positionRaw:[o[u*A+0]/255,o[u*A+1]/255,o[u*A+2]+0],score:(100-Math.trunc(100/(1+Math.exp(o[u*A+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(o[u*A+4]))))/100});let c=i.map(A=>A.position[0]),d=i.map(A=>A.position[1]),h=[Math.min(...c),Math.min(...d),Math.max(...c)-Math.min(...c),Math.max(...d)-Math.min(...c)],p=[0,0,0,0],m=i.reduce((A,g)=>g.score>A?g.score:A,0);return[{id:0,score:m,box:h,boxRaw:p,keypoints:i}]}var Pn,ir=[],Ay=[0,0,0,0],gy=[0,0,0,0],Lf=0,yy=Number.MAX_SAFE_INTEGER,$ie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function u8(e){return Pn?e.debug&&de("cached model:",Pn.modelUrl):(Pn=await ht(pt(e.modelBasePath,e.body.modelPath)),!Pn||!Pn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Pn.modelUrl)),Pn}function Fie(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>Ae(i,z(ce(i,Ie(l,"int32")),Ie(l,"int32"))),a=U(e,[s*n]),o=ls(a,0).dataSync()[0];if(o>t){let i=Xs(a,0),l=r(i,n).dataSync()[0],u=ce(i,Ie(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function xy(e,t){return yy<t.body.skipFrames&&t.skipFrame&&Object.keys(ir).length>0?(yy++,[{id:0,score:Lf,box:Ay,boxRaw:gy,keypoints:ir}]):(yy=0,new Promise(async n=>{let s=H(()=>{if(!Pn.inputs[0].shape)return null;let u=Re.resizeBilinear(e,[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]],!1);return z(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Pn.predict(s)),Z(s),r){ir.length=0;let u=r.squeeze();Z(r);let c=u.unstack(2);Z(u);for(let d=0;d<c.length;d++){let[h,p,m]=Fie(c[d],t.body.minConfidence);Lf>t.body.minConfidence&&ir.push({score:Math.round(100*m)/100,part:$ie[d],positionRaw:[h/Pn.inputs[0].shape[2],p/Pn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/Pn.inputs[0].shape[2]),Math.round(e.shape[1]*p/Pn.inputs[0].shape[1])]})}c.forEach(d=>Z(d))}Lf=ir.reduce((u,c)=>c.score>u?c.score:u,0);let a=ir.map(u=>u.position[0]),o=ir.map(u=>u.position[1]);Ay=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=ir.map(u=>u.positionRaw[0]),l=ir.map(u=>u.positionRaw[1]);gy=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:Lf,box:Ay,boxRaw:gy,keypoints:ir}])}))}var Us,lr=[],by=[0,0,0,0],vy=[0,0,0,0],uu=0,wy=Number.MAX_SAFE_INTEGER,Die=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function ky(e){return Us?e.debug&&de("cached model:",Us.modelUrl):(Us=await ht(pt(e.modelBasePath,e.body.modelPath)),!Us||!Us.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Us.modelUrl)),Us}async function Iy(e,t){return wy<t.body.skipFrames&&t.skipFrame&&Object.keys(lr).length>0?(wy++,[{id:0,score:uu,box:by,boxRaw:vy,keypoints:lr}]):(wy=0,new Promise(async n=>{let s=H(()=>{if(!Us.inputs[0].shape)return null;let u=Re.resizeBilinear(e,[Us.inputs[0].shape[2],Us.inputs[0].shape[1]],!1);return ue(u,"int32")}),r;if(t.body.enabled&&(r=await Us.predict(s)),Z(s),r){lr.length=0;let u=r.arraySync();Z(r);let c=u[0][0];for(let d=0;d<c.length;d++)uu=c[d][2],uu>t.body.minConfidence&&lr.push({score:Math.round(100*uu)/100,part:Die[d],positionRaw:[c[d][1],c[d][0]],position:[Math.round((e.shape[2]||0)*c[d][1]),Math.round((e.shape[1]||0)*c[d][0])]})}uu=lr.reduce((u,c)=>c.score>u?c.score:u,0);let a=lr.map(u=>u.position[0]),o=lr.map(u=>u.position[1]);by=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=lr.map(u=>u.positionRaw[0]),l=lr.map(u=>u.positionRaw[1]);vy=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:uu,box:by,boxRaw:vy,keypoints:lr}])}))}var cu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Kn,Sy=[],Cy=Number.MAX_SAFE_INTEGER,Bf=2.5;async function Ty(e){if(Kn)e.debug&&de("cached model:",Kn.modelUrl);else{Kn=await ht(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(Kn.modelSignature.inputs);if(Kn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Kn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Kn||!Kn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",Kn.modelUrl)}return Kn}async function Oie(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(()=>{var A,g;let c=u*13,d=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]===cu.length))==null?void 0:A.squeeze(),h=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]<cu.length))==null?void 0:g.squeeze(),m=h.reshape([-1,4,h.shape[1]/4]).argMax(2).arraySync(),f=d.arraySync();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=f[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,w=m[y].map(W=>W*(c/u/t)),[C,E]=[v-Bf/u*w[0],k-Bf/u*w[1]],[P,R]=[v+Bf/u*w[2]-C,k+Bf/u*w[3]-E],_=[C,E,P,R];_=_.map(W=>Math.max(0,Math.min(W,1)));let T=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],O={id:r++,score:Math.round(100*b)/100,class:x+1,label:cu[x].label,box:T.map(W=>Math.trunc(W)),boxRaw:_};a.push(O)}}});e.forEach(u=>Z(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Re.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=u.dataSync(),Z(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Ny(e,t){return Cy<t.object.skipFrames&&t.skipFrame&&Sy.length>0?(Cy++,Sy):(Cy=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Re.resizeBilinear(e,[Kn.inputSize,Kn.inputSize],!1),a=ce(r,255),o=a.transpose([0,3,1,2]);Z(a),Z(r);let i;t.object.enabled&&(i=await Kn.predict(o)),Z(o);let l=await Oie(i,Kn.inputSize,s,t);Sy=l,n(l)}))}var Zn,Ey=[],Ry=Number.MAX_SAFE_INTEGER;async function _y(e){if(Zn)e.debug&&de("cached model:",Zn.modelUrl);else{Zn=await ht(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(Zn.modelSignature.inputs);if(Zn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Zn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Zn||!Zn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",Zn.modelUrl)}return Zn}async function Pie(e,t,n,s){if(!e)return[];let r=[],a=e.arraySync(),o=mt(e);Z(e);let i=nn(o,6,1);Z(o);let u=Nn([i[1],i[0],i[3],i[2]],1).squeeze(),c=i[4].squeeze(),d=i[5].squeeze();i.forEach(f=>Z(f));let h=await Re.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);Z(u),Z(c),Z(d);let p=h.dataSync();Z(h);let m=0;for(let f of p){let A=Math.trunc(100*a[0][f][4])/100,g=a[0][f][5],y=cu[g].label,[x,b]=[a[0][f][0]/t,a[0][f][1]/t],v=[x,b,a[0][f][2]/t-x,a[0][f][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:m++,score:A,class:g,label:y,box:k,boxRaw:v})}return r}async function $y(e,t){return Ry<t.object.skipFrames&&t.skipFrame&&Ey.length>0?(Ry++,Ey):(Ry=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Re.resizeBilinear(e,[Zn.inputSize,Zn.inputSize]),a=t.object.enabled?Zn.execute(r,["tower_0/detections"]):null;Z(r);let o=await Pie(a,Zn.inputSize,s,t);Ey=o,n(o)}))}function Mie(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function c8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=h.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),w=d[v];o.push({func:w,args:k})},this.reset=function(){o=[]};let A=function(v,k){if(!(v===i&&k===l)){if(h.width=v,i=v,h.height=k,l=k,!u){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,w,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,i,l),a=[null,null]}},g=function(v,k){let w=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,w);let C=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,C);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,v,k,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:w,texture:E}},y=function(v){return a[v]=a[v]||g(i,l),a[v]},x=function(v=null){var E,P;let k=null,w=null,C=!1;t===0?k=n:k=(E=y(r))==null?void 0:E.texture,t++,s&&!(v&m.INTERMEDIATE)?(w=null,C=t%2==0):(r=(r+1)%2,w=(P=y(r))==null?void 0:P.fbo),f.bindTexture(f.TEXTURE_2D,k),f.bindFramebuffer(f.FRAMEBUFFER,w),f.uniform1f(c.uniform.flipY,C?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(v){if(A(v.width,v.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let k=0;k<o.length;k++){s=k===o.length-1;let w=o[k];w.func.apply(this,w.args||[])}return h};let b=function(v){if(p[v])return c=p[v],f.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Mie(f,k.VERTEX_IDENTITY,v);let w=Float32Array.BYTES_PER_ELEMENT,C=4*w;return f.enableVertexAttribArray(c.attribute.pos),f.vertexAttribPointer(c.attribute.pos,2,f.FLOAT,!1,C,0*w),f.enableVertexAttribArray(c.attribute.uv),f.vertexAttribPointer(c.attribute.uv,2,f.FLOAT,!1,C,2*w),p[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let w=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(w);f.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,w=(k-1)*-.5;d.colorMatrix([k,w,w,0,0,w,k,w,0,0,w,w,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,w=-128*(k-1);d.colorMatrix([k,0,0,0,w,0,k,0,0,w,0,0,k,0,w,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),w=Math.sin(v),C=.213,E=.715,P=.072;d.colorMatrix([C+k*(1-C)+w*-C,E+k*-E+w*-E,P+k*-P+w*(1-P),0,0,C+k*-C+w*.143,E+k*(1-E)+w*.14,P+k*-P+w*-.283,0,0,C+k*-C+w*-(1-C),E+k*-E+w*E,P+k*(1-P)+w*P,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),w=1/i,C=1/l,E=b(d.convolution.SHADER);f.uniform1fv(E.uniform.m,k),f.uniform2f(E.uniform.px,w,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,w=v/7/l,C=b(d.blur.SHADER);f.uniform2f(C.uniform.px,0,w),x(m.INTERMEDIATE),f.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),d.pixelate=function(v){let k=v/i,w=v/l,C=b(d.pixelate.SHADER);f.uniform2f(C.uniform.size,k,w),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Wf=2048,Ee,wt,zt;function Xo(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Ue)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Ue)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ns(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!a)return{tensor:null,canvas:Ee};let o=r,i=a;if(o>Wf&&(o=Wf,i=o*a/r),i>Wf&&(i=Wf,o=i*r/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==o||(Ee==null?void 0:Ee.height)!==i)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==o&&(Ee.width=o),(Ee==null?void 0:Ee.height)!==i&&(Ee.height=i));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!zt||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),zt=ns.flags.IS_BROWSER?new c8({canvas:wt}):null),!zt)return{tensor:null,canvas:Ee};zt.reset(),zt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&zt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&zt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&zt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&zt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&zt.addFilter("hue",t.filter.hue),t.filter.negative&&zt.addFilter("negative"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.vintage&&zt.addFilter("brownie"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.kodachrome&&zt.addFilter("kodachrome"),t.filter.technicolor&&zt.addFilter("technicolor"),t.filter.polaroid&&zt.addFilter("polaroid"),t.filter.pixelate!==0&&zt.addFilter("pixelate",t.filter.pixelate),zt.apply(Ee)}else wt=Ee,zt&&(zt=null);let u;if(wt.data){let c=[wt.height,wt.width,3];u=Eh(wt.data,c,"int32")}else if(wt instanceof ImageData)u=rs?rs.fromPixels(wt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0),u=rs?rs.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=rs?rs.fromPixels(h):null}if(u){let c=ue(u,"float32");n=Ft(c,0),Z(u),Z(c)}}let s=t.filter.return?wt:null;return{tensor:n,canvas:s}}var As,Fy=!1;async function Vf(e){return As?e.debug&&de("cached model:",As.modelUrl):(As=await ht(pt(e.modelBasePath,e.segmentation.modelPath)),!As||!As.modelUrl?de("load model failed:",e.segmentation.modelPath):e.debug&&de("load model:",As.modelUrl)),As}async function Dy(e){var m,f;let t=((m=e.tensor)==null?void 0:m.shape[1])||0,n=((f=e.tensor)==null?void 0:f.shape[2])||0;if(!e.tensor||!As||!As.inputs[0].shape)return null;let s=Re.resizeBilinear(e.tensor,[As.inputs[0].shape[1],As.inputs[0].shape[2]],!1),r=ce(s,255),a=As.predict(r);Z(s),Z(r);let o=mt(a,0),i;if(o.shape[2]===2){let A=o.softmax(),[g,y]=ds(A,2),x=Ft(y,2),b=Ft(x,0);Z(A),Z(g),Z(y);let v=Re.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=mt(v,0),Z(v),Z(x),Z(b)}else i=Re.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.dataSync();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,rs&&await rs.toPixels(i,l),Z(i),Z(o),Z(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function d8(e,t,n){var a;if(Fy)return null;Fy=!0,As||await Vf(n);let s=Xo(e,n),r=await Dy(s);if(Z(s.tensor),t&&r){let o=Xo(t,n),i=o.canvas;Z(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p<c.width*c.height;p++)h.data[4*p+0]=(255-r[4*p+0])/255*h.data[4*p+0]+r[4*p+0]/255*u[4*p+0],h.data[4*p+1]=(255-r[4*p+1])/255*h.data[4*p+1]+r[4*p+1]/255*u[4*p+1],h.data[4*p+2]=(255-r[4*p+2])/255*h.data[4*p+2]+r[4*p+2]/255*u[4*p+2],h.data[4*p+3]=(255-r[4*p+3])/255*h.data[4*p+3]+r[4*p+3]/255*u[4*p+3];d.putImageData(h,0,0),s.canvas=c}return Fy=!1,s.canvas}async function h8(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?j1(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?ey(e.config):null),e.models.handpose||(e.config.hand.enabled?fy(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?ly(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?zf(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?u8(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?ky(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?Ty(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?_y(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?X1(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?Vf(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await j1(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await ey(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await fy(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await ly(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await zf(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await zf(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await ky(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await Ty(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await _y(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await X1(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await Vf(e.config)))}var zie=e=>{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Lie=(e,t)=>{let n=A=>{let g=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=g,A[1]/=g,A[2]/=g,A},s=(A,g)=>{let y=A[0]-g[0],x=A[1]-g[1],b=A[2]-g[2];return[y,x,b]},r=(A,g)=>{let y=A[1]*g[2]-A[2]*g[1],x=A[2]*g[0]-A[0]*g[2],b=A[0]*g[1]-A[1]*g[0];return[y,x,b]},a=A=>{let[g,y,x,b,v,k,w,C,E]=A,P,R,_;return b<1?b>-1?(_=Math.asin(b),R=Math.atan2(-w,g),P=Math.atan2(-k,v)):(_=-Math.PI/2,R=-Math.atan2(C,E),P=0):(_=Math.PI/2,R=Math.atan2(C,E),P=0),{pitch:2*-P,yaw:2*-R,roll:2*-_}},o=A=>{let g=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:g(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:g(A[33][0],A[33][2],A[263][0],A[263][2]),roll:g(A[33][0],A[33][1],A[263][0],A[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(A=>[A[0]*t[0]/l,A[1]*t[1]/l,A[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),h=n(r(d,c));d=r(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],m=a(p),f=i.length===478?zie(e):{bearing:0,strength:0};return{angle:m,matrix:p,gaze:f}},Oy=async(e,t)=>{var c,d,h,p,m,f;let n,s,r,a,o,i,l=[];e.state="run:face",n=Ke();let u=await Pk(t,e.config);if(e.performance.face=Math.trunc(Ke()-n),!t.shape||t.shape.length!==4)return[];if(!u)return[];for(let A=0;A<u.length;A++){if(e.analyze("Get Face"),!u[A].image||u[A].image.isDisposedInternal){de("Face object is disposed:",u[A].image);continue}let g=Lie(u[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?a=e.config.face.emotion.enabled?ty(u[A].image||on([]),e.config,A,u.length):{}:(e.state="run:emotion",n=Ke(),a=e.config.face.emotion.enabled?await ty(u[A].image||on([]),e.config,A,u.length):{},e.performance.emotion=Math.trunc(Ke()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?i=e.config.face.description.enabled?Y1(u[A].image||on([]),e.config,A,u.length):[]:(e.state="run:description",n=Ke(),i=e.config.face.description.enabled?await Y1(u[A].image||on([]),e.config,A,u.length):[],e.performance.embedding=Math.trunc(Ke()-n)),e.analyze("End Description:"),e.config.async&&([s,r,a,o,i]=await Promise.all([s,r,a,o,i])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((d=(c=u[A])==null?void 0:c.annotations)==null?void 0:d.leftEyeIris)&&((p=(h=u[A])==null?void 0:h.annotations)==null?void 0:p.rightEyeIris)&&(delete u[A].annotations.leftEyeIris,delete u[A].annotations.rightEyeIris);let y=((m=u[A].annotations)==null?void 0:m.leftEyeIris)&&((f=u[A].annotations)==null?void 0:f.rightEyeIris)?Math.max(Math.abs(u[A].annotations.leftEyeIris[3][0]-u[A].annotations.leftEyeIris[1][0]),Math.abs(u[A].annotations.rightEyeIris[4][1]-u[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0;l.push({...u[A],id:A,age:i.age,gender:i.gender,genderScore:i.genderScore,embedding:i.descriptor,emotion:a,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:g,tensor:e.config.face.detector.return?mt(u[A].image):null}),Z(u[A].image),u[A].image&&delete u[A].image,e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),l};var p8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},f8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},m8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],h=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(h>.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||p<.01||m>.022||p>.022)&&(u=!1),(m<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},A8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}}return t};var zy={};km(zy,{all:()=>Vie,body:()=>x8,canvas:()=>Wie,face:()=>y8,gesture:()=>g8,hand:()=>b8,object:()=>v8,options:()=>ca,person:()=>Bie});var ca={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Uf=e=>Math.round(e*180/Math.PI);function Py(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ad(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function My(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function od(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){My(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function g8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function y8(e,t,n){var a,o,i,l;let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&ad(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${Uf(u.rotation.angle.roll)}\xB0 yaw:${Uf(u.rotation.angle.yaw)}\xB0 pitch:${Uf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${Uf(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],h+5,p+16)),r.fillStyle=s.labelColor,r.fillText(c[d],h+4,p+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Py(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;d<qo.length/3;d++){let h=[qo[d*3+0],qo[d*3+1],qo[d*3+2]].map(p=>u.mesh[p]);My(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(h[0],h[1]),r.stroke()}}}}}async function x8(e,t,n){var a;let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(ad(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Py(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&My(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s)}}}}async function b8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Py(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.indexFinger,"index"),o(a.annotations.middleFinger,"middle"),o(a.annotations.ringFinger,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palmBase,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.indexFinger),o(a.annotations.middleFinger),o(a.annotations.ringFinger),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function v8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function Bie(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function Wie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Vie(e,t,n){let s=Ke(),r=pn(ca,n);!t||!e||e instanceof HTMLCanvasElement&&(y8(e,t.face,r),x8(e,t.body,r),b8(e,t.hand,r),v8(e,t.object,r),g8(e,t.gesture,r),t.performance.draw=Math.trunc(Ke()-s))}function w8(e,t,n,s,r){var i,l,u,c,d,h,p,m,f,A,g,y,x,b,v,k;let a=0,o=[];for(let w of e){let C={id:a++,face:w,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)w.box[0]>O.box[0]&&w.box[0]<O.box[0]+O.box[2]&&w.box[1]+w.box[3]>O.box[1]&&w.box[1]+w.box[3]<O.box[1]+O.box[3]&&(C.body=O);if(C.body)for(let O of n)O.box[0]+O.box[2]>C.body.box[0]&&O.box[0]+O.box[2]<C.body.box[0]+C.body.box[2]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=O),O.box[0]<C.body.box[0]+C.body.box[2]&&O.box[0]>C.body.box[0]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=O);for(let O of s)O.face!==void 0&&O.face===w.id?(i=C.gestures)==null||i.push(O):O.iris!==void 0&&O.iris===w.id?(l=C.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(O):O.hand!==void 0&&O.hand===((h=(d=C.hands)==null?void 0:d.left)==null?void 0:h.id)?(p=C.gestures)==null||p.push(O):O.hand!==void 0&&O.hand===((f=(m=C.hands)==null?void 0:m.right)==null?void 0:f.id)&&((A=C.gestures)==null||A.push(O));let E=[],P=[],R=O=>{O&&O.length===4&&(E.push(O[0],O[0]+O[2]),P.push(O[1],O[1]+O[3]))};R((g=C.face)==null?void 0:g.box),R((y=C.body)==null?void 0:y.box),R((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let _=Math.min(...E),T=Math.min(...P);C.box=[_,T,Math.max(...E)-_,Math.max(...P)-T],r&&r.length===4&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function k8(e){var s,r,a,o,i,l,u,c,d,h,p,m,f,A,g,y,x,b,v,k,w;let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let E=e.body[C].box.map((_,T)=>((n-1)*Fe.body[C].box[T]+_)/n),P=e.body[C].boxRaw.map((_,T)=>((n-1)*Fe.body[C].boxRaw[T]+_)/n),R=e.body[C].keypoints.map((_,T)=>({score:_.score,part:_.part,position:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[0]+_.position[0])/n:_.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[1]+_.position[1])/n:_.position[1]],positionRaw:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[0]+_.positionRaw[0])/n:_.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[1]+_.positionRaw[1])/n:_.position[1]]}));Fe.body[C]={...e.body[C],box:E,boxRaw:P,keypoints:R}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let E=e.hand[C].box.map((O,W)=>((n-1)*Fe.hand[C].box[W]+O)/n),P=e.hand[C].boxRaw.map((O,W)=>((n-1)*Fe.hand[C].boxRaw[W]+O)/n),R=e.hand[C].keypoints.map((O,W)=>O.map((j,q)=>((n-1)*Fe.hand[C].keypoints[W][q]+j)/n)),_=Object.keys(e.hand[C].annotations),T={};for(let O of _)T[O]=e.hand[C].annotations[O].map((W,j)=>W.map((q,X)=>((n-1)*Fe.hand[C].annotations[O][j][X]+q)/n));Fe.hand[C]={...e.hand[C],box:E,boxRaw:P,keypoints:R,annotations:T}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let E=e.face[C].box.map((_,T)=>((n-1)*Fe.face[C].box[T]+_)/n),P=e.face[C].boxRaw.map((_,T)=>((n-1)*Fe.face[C].boxRaw[T]+_)/n),R={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};R.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,R.angle={roll:((n-1)*(((a=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=Fe.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((f=(m=e.face[C].rotation)==null?void 0:m.angle)==null?void 0:f.pitch)||0))/n},R.gaze={bearing:((n-1)*(((g=(A=Fe.face[C].rotation)==null?void 0:A.gaze)==null?void 0:g.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Fe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((w=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:w.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:R,box:E,boxRaw:P}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let E=e.object[C].box.map((R,_)=>((n-1)*Fe.object[C].box[_]+R)/n),P=e.object[C].boxRaw.map((R,_)=>((n-1)*Fe.object[C].boxRaw[_]+R)/n);Fe.object[C]={...e.object[C],box:E,boxRaw:P}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let E=0;E<C.length;E++)Fe.persons[E].box=C[E].box.map((P,R)=>((n-1)*Fe.persons[E].box[R]+P)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Hf=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Gf=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var I8="2.1.2";var du,id,ld,Ko,Zo,hu,jf,ud,qf,Xf,Kf,Zf,S8=class{constructor(t){ts(this,du,void 0);ts(this,id,void 0);ts(this,ld,void 0);ts(this,Ko,void 0);ts(this,Zo,void 0);ts(this,hu,void 0);this.analyze=(...t)=>{if(!hn(this,id))return;let n=this.tf.engine().state.numTensors,s=hn(this,du);Ss(this,du,n);let r=n-s;r!==0&&de(...t,r)};ts(this,jf,t=>{if(!hn(this,ld))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Ue))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ts(this,ud,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let s=Ke();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&de("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&de("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&de("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&de(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&de("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&Ik();try{await this.tf.setBackend(this.config.backend)}catch(r){de("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(de("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&de(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(Ke()-s)}});this.next=t=>k8(t||this.result);ts(this,qf,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,s=Re.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=s.dataSync(),a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];s.dispose();let o=100*(Math.max(a,hn(this,Zo))/Math.min(a,hn(this,Zo))-1);Ss(this,Zo,a);let i=o<Math.max(this.config.cacheSensitivity,hn(this,hu));return Ss(this,hu,o>10*this.config.cacheSensitivity?0:o),i});ts(this,Xf,async()=>{let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(this.config.warmup){case"face":n=await t(Hf);break;case"full":n=await t(Gf);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await this.detect(r,this.config),r.close()}return s});ts(this,Kf,async()=>new Promise(t=>{let n,s=0;switch(this.config.warmup){case"face":s=256,n="data:image/jpeg;base64,"+Hf;break;case"full":case"body":s=1200,n="data:image/jpeg;base64,"+Gf;break;default:n=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,s):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(r,0,0);let i=await this.detect(a,this.config);t(i)},n?r.src=n:t(null)}));ts(this,Zf,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Hf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(Gf)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r),s=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&de("Warmup tfjs-node not loaded");return s});this.config=pn(Qy,t||{}),this.tf=Qc,this.draw=zy,this.version=I8,this.state="idle",Ss(this,du,0),Ss(this,id,!1),Ss(this,ld,!1),Ss(this,Ko,!0),Ss(this,hu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=n=>Xo(n,this.config),this.faceTriangulation=Mk,this.faceUVMap=zk,this.sysinfo=e5(),Ss(this,Zo,1)}similarity(t,n){return K1(t,n)}segmentation(t,n){return d8(t,n,this.config)}enhance(t){return Z1(t)}match(t,n,s=0){return Bk(t,n,s)}async load(t){this.state="load";let n=Ke();t&&(this.config=pn(this.config,t)),hn(this,Ko)&&(this.config.debug&&de(`version: ${this.version}`),this.config.debug&&de(`tfjs version: ${this.tf.version_core}`),this.config.debug&&de("platform:",this.sysinfo.platform),this.config.debug&&de("agent:",this.sysinfo.agent),await hn(this,ud).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&de("configuration:",this.config),this.config.debug&&de("tf flags:",this.tf.ENV.flags))),await h8(this),hn(this,Ko)&&(this.config.debug&&de("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ss(this,Ko,!1));let s=Math.trunc(Ke()-n);s>(this.performance.load||0)&&(this.performance.load=s)}async detect(t,n){return new Promise(async s=>{this.state="config";let r,a;this.config=pn(this.config,n),this.state="check";let o=hn(this,jf).call(this,t);o&&(de(o,t),s({error:o}));let i=Ke();await hn(this,ud).call(this),await this.load(),r=Ke();let l=Xo(t,this.config);if(this.performance.image=Math.trunc(Ke()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ke(),await Dy(l),a=Math.trunc(Ke()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(Z(l.tensor),l=Xo(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){de("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}r=Ke(),this.config.skipFrame=await hn(this,qf).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ke()-r),this.analyze("Check Changed:");let u,c,d,h;this.config.async?(u=this.config.face.enabled?Oy(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ke(),u=this.config.face.enabled?await Oy(this,l.tensor):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?iy(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?my(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?xy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?Iy(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ke(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await iy(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await my(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await xy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await Iy(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?py(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ke(),d=this.config.hand.enabled?await py(l.tensor,this.config):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Ny(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?$y(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ke(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Ny(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await $y(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(r=Ke(),p=[...f8(u),...p8(c),...A8(d),...m8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ke()-r)),this.performance.total=Math.trunc(Ke()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var m;return w8(u,c,d,p,(m=l==null?void 0:l.tensor)==null?void 0:m.shape)}},Z(l.tensor),s(this.result)})}async warmup(t){let n=Ke();if(t&&(this.config=pn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await hn(this,Xf).call(this):typeof Image!="undefined"?s=await hn(this,Kf).call(this):s=await hn(this,Zf).call(this);let r=Ke();return this.config.debug&&de("Warmup",this.config.warmup,Math.round(r-n),"ms",s),s}};du=new WeakMap,id=new WeakMap,ld=new WeakMap,Ko=new WeakMap,Zo=new WeakMap,hu=new WeakMap,jf=new WeakMap,ud=new WeakMap,qf=new WeakMap,Xf=new WeakMap,Kf=new WeakMap,Zf=new WeakMap;return Hie;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|