human/demo/browser.js

407 lines
18 KiB
JavaScript

import Human from '../dist/human.esm.js';
import draw from './draw.js';
import Menu from './menu.js';
const userConfig = {}; // add any user configuration overrides
const human = new Human(userConfig);
// ui options
const ui = {
baseColor: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel
baseBackground: 'rgba(50, 50, 50, 1)', // 'grey'
baseLabel: 'rgba(173, 216, 230, 0.9)', // 'lightblue' with dark alpha channel
baseFontProto: 'small-caps {size} "Segoe UI"',
baseLineWidth: 12,
baseLineHeightProto: 2,
crop: true,
columns: 2,
busy: false,
facing: true,
useWorker: false,
worker: 'demo/worker.js',
samples: ['../assets/sample6.jpg', '../assets/sample1.jpg', '../assets/sample4.jpg', '../assets/sample5.jpg', '../assets/sample3.jpg', '../assets/sample2.jpg'],
drawBoxes: true,
drawPoints: false,
drawPolygons: true,
fillPolygons: false,
useDepth: true,
console: true,
maxFrames: 10,
modelsPreload: true,
modelsWarmup: true,
menuWidth: 0,
menuHeight: 0,
camera: {},
fps: [],
};
// global variables
let menu;
let menuFX;
let worker;
let timeStamp;
// helper function: translates json to human readable string
function str(...msg) {
if (!Array.isArray(msg)) return msg;
let line = '';
for (const entry of msg) {
if (typeof entry === 'object') line += JSON.stringify(entry).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ');
else line += entry;
}
return line;
}
// helper function: wrapper around console output
const log = (...msg) => {
// eslint-disable-next-line no-console
if (ui.console) console.log(...msg);
};
const status = (msg) => {
// eslint-disable-next-line no-console
document.getElementById('status').innerText = msg;
};
// draws processed results and starts processing of a next frame
function drawResults(input, result, canvas) {
// update fps data
const elapsed = performance.now() - timeStamp;
ui.fps.push(1000 / elapsed);
if (ui.fps.length > ui.maxFrames) ui.fps.shift();
// enable for continous performance monitoring
// console.log(result.performance);
// immediate loop before we even draw results, but limit frame rate to 30
if (input.srcObject) {
// eslint-disable-next-line no-use-before-define
if (elapsed > 33) requestAnimationFrame(() => runHumanDetect(input, canvas));
// eslint-disable-next-line no-use-before-define
else setTimeout(() => runHumanDetect(input, canvas), 33 - elapsed);
}
// draw fps chart
menu.updateChart('FPS', ui.fps);
// draw image from video
const ctx = canvas.getContext('2d');
ctx.fillStyle = ui.baseBackground;
ctx.fillRect(0, 0, canvas.width, canvas.height);
if (result.canvas) {
if (result.canvas.width !== canvas.width) canvas.width = result.canvas.width;
if (result.canvas.height !== canvas.height) canvas.height = result.canvas.height;
ctx.drawImage(result.canvas, 0, 0, result.canvas.width, result.canvas.height, 0, 0, result.canvas.width, result.canvas.height);
} else {
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
}
// draw all results
draw.face(result.face, canvas, ui, human.facemesh.triangulation);
draw.body(result.body, canvas, ui);
draw.hand(result.hand, canvas, ui);
draw.gesture(result.gesture, canvas, ui);
// update log
const engine = human.tf.engine();
const gpu = engine.backendInstance ? `gpu: ${(engine.backendInstance.numBytesInGPU ? engine.backendInstance.numBytesInGPU : 0).toLocaleString()} bytes` : '';
const memory = `system: ${engine.state.numBytes.toLocaleString()} bytes ${gpu} | tensors: ${engine.state.numTensors.toLocaleString()}`;
const processing = result.canvas ? `processing: ${result.canvas.width} x ${result.canvas.height}` : '';
const avg = Math.trunc(10 * ui.fps.reduce((a, b) => a + b) / ui.fps.length) / 10;
const warning = (ui.fps.length > 5) && (avg < 5) ? '<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>' : '';
document.getElementById('log').innerHTML = `
video: ${ui.camera.name} | facing: ${ui.camera.facing} | resolution: ${ui.camera.width} x ${ui.camera.height} ${processing}<br>
backend: ${human.tf.getBackend()} | ${memory}<br>
performance: ${str(result.performance)} FPS:${avg}<br>
${warning}
`;
}
// setup webcam
async function setupCamera() {
if (ui.busy) return null;
ui.busy = true;
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
const output = document.getElementById('log');
const live = video.srcObject ? ((video.srcObject.getVideoTracks()[0].readyState === 'live') && (video.readyState > 2) && (!video.paused)) : false;
let msg = '';
status('setting up camera');
// setup webcam. note that navigator.mediaDevices requires that page is accessed via https
if (!navigator.mediaDevices) {
msg = 'camera access not supported';
output.innerText += `\n${msg}`;
log(msg);
status(msg);
return null;
}
let stream;
const constraints = {
audio: false,
video: {
facingMode: ui.facing ? 'user' : 'environment',
resizeMode: ui.crop ? 'crop-and-scale' : 'none',
width: { ideal: window.innerWidth },
height: { ideal: window.innerHeight },
},
};
try {
// if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth };
// else constraints.video.height = { ideal: window.innerHeight };
stream = await navigator.mediaDevices.getUserMedia(constraints);
} catch (err) {
if (err.name === 'PermissionDeniedError') msg = 'camera permission denied';
else if (err.name === 'SourceUnavailableError') msg = 'camera not available';
else msg = 'camera error';
output.innerText += `\n${msg}`;
status(msg);
log(err);
}
if (stream) video.srcObject = stream;
else return null;
const track = stream.getVideoTracks()[0];
const settings = track.getSettings();
// log('camera constraints:', constraints, 'window:', { width: window.innerWidth, height: window.innerHeight }, 'settings:', settings, 'track:', track);
ui.camera = { name: track.label?.toLowerCase(), width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
return new Promise((resolve) => {
video.onloadeddata = async () => {
video.width = video.videoWidth;
video.height = video.videoHeight;
canvas.width = video.width;
canvas.height = video.height;
canvas.style.width = canvas.width > canvas.height ? '100vw' : '';
canvas.style.height = canvas.width > canvas.height ? '' : '100vh';
ui.menuWidth.input.setAttribute('value', video.width);
ui.menuHeight.input.setAttribute('value', video.height);
// silly font resizing for paint-on-canvas since viewport can be zoomed
const size = 14 + (6 * canvas.width / window.innerWidth);
ui.baseFont = ui.baseFontProto.replace(/{size}/, `${size}px`);
if (live) video.play();
ui.busy = false;
// do once more because onresize events can be delayed or skipped
// if (video.width > window.innerWidth) await setupCamera();
status('');
resolve(video);
};
});
}
// wrapper for worker.postmessage that creates worker if one does not exist
function webWorker(input, image, canvas) {
if (!worker) {
// create new webworker and add event handler only once
log('creating worker thread');
worker = new Worker(ui.worker, { type: 'module' });
worker.warned = false;
// after receiving message from webworker, parse&draw results and send new frame for processing
worker.addEventListener('message', (msg) => {
if (!worker.warned) {
log('warning: cannot transfer canvas from worked thread');
log('warning: image will not show filter effects');
worker.warned = true;
}
drawResults(input, msg.data.result, canvas);
});
}
// pass image data as arraybuffer to worker by reference to avoid copy
worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height }, [image.data.buffer]);
}
// main processing function when input is webcam, can use direct invocation or web worker
function runHumanDetect(input, canvas) {
timeStamp = performance.now();
// if live video
const live = input.srcObject && (input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused);
if (!live && input.srcObject) {
// if we want to continue and camera not ready, retry in 0.5sec, else just give up
if (input.paused) log('camera paused');
else if ((input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState <= 2)) setTimeout(() => runHumanDetect(input, canvas), 500);
else log(`camera not ready: track state: ${input.srcObject?.getVideoTracks()[0].readyState} stream state: ${input.readyState}`);
return;
}
status('');
if (ui.useWorker) {
// get image data from video as we cannot send html objects to webworker
const offscreen = new OffscreenCanvas(canvas.width, canvas.height);
const ctx = offscreen.getContext('2d');
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
const data = ctx.getImageData(0, 0, canvas.width, canvas.height);
// perform detection in worker
webWorker(input, data, canvas, userConfig);
} else {
human.detect(input, userConfig).then((result) => {
if (result.error) log(result.error);
else drawResults(input, result, canvas);
});
}
}
// main processing function when input is image, can use direct invocation or web worker
async function processImage(input) {
timeStamp = performance.now();
return new Promise((resolve) => {
const image = new Image();
image.onload = async () => {
log('Processing image:', image.src);
const canvas = document.getElementById('canvas');
image.width = image.naturalWidth;
image.height = image.naturalHeight;
canvas.width = human.config.filter.width && human.config.filter.width > 0 ? human.config.filter.width : image.naturalWidth;
canvas.height = human.config.filter.height && human.config.filter.height > 0 ? human.config.filter.height : image.naturalHeight;
const result = await human.detect(image, userConfig);
drawResults(image, result, canvas);
const thumb = document.createElement('canvas');
thumb.className = 'thumbnail';
thumb.width = window.innerWidth / (ui.columns + 0.1);
thumb.height = canvas.height / (window.innerWidth / thumb.width);
const ctx = thumb.getContext('2d');
ctx.drawImage(canvas, 0, 0, canvas.width, canvas.height, 0, 0, thumb.width, thumb.height);
document.getElementById('samples-container').appendChild(thumb);
image.src = '';
resolve(true);
};
image.src = input;
});
}
// just initialize everything and call main function
async function detectVideo() {
human.config.videoOptimized = true;
document.getElementById('samples-container').style.display = 'none';
document.getElementById('canvas').style.display = 'block';
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
ui.baseLineHeight = ui.baseLineHeightProto;
if ((video.srcObject !== null) && !video.paused) {
document.getElementById('play').style.display = 'block';
status('paused');
video.pause();
} else {
await setupCamera();
document.getElementById('play').style.display = 'none';
status('');
video.play();
}
runHumanDetect(video, canvas);
}
// just initialize everything and call main function
async function detectSampleImages() {
document.getElementById('play').style.display = 'none';
human.config.videoOptimized = false;
const size = 12 + Math.trunc(12 * ui.columns * window.innerWidth / document.body.clientWidth);
ui.baseFont = ui.baseFontProto.replace(/{size}/, `${size}px`);
ui.baseLineHeight = ui.baseLineHeightProto * ui.columns;
document.getElementById('canvas').style.display = 'none';
document.getElementById('samples-container').style.display = 'block';
log('Running detection of sample images');
status('processing images');
document.getElementById('samples-container').innerHTML = '';
for (const sample of ui.samples) await processImage(sample);
status('');
}
function setupMenu() {
menu = new Menu(document.body, '', { top: '1rem', right: '1rem' });
const btn = menu.addButton('start video', 'pause video', () => detectVideo());
menu.addButton('process images', 'process images', () => detectSampleImages());
document.getElementById('play').addEventListener('click', () => btn.click());
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addList('backend', ['cpu', 'webgl', 'wasm'], human.config.backend, (val) => human.config.backend = val);
menu.addBool('async operations', human.config, 'async', (val) => human.config.async = val);
menu.addBool('enable profiler', human.config, 'profile', (val) => human.config.profile = val);
menu.addBool('memory shield', human.config, 'deallocate', (val) => human.config.deallocate = val);
menu.addBool('use web worker', ui, 'useWorker');
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addLabel('enabled models');
menu.addBool('face detect', human.config.face, 'enabled');
menu.addBool('face mesh', human.config.face.mesh, 'enabled');
menu.addBool('face iris', human.config.face.iris, 'enabled');
menu.addBool('face age', human.config.face.age, 'enabled');
menu.addBool('face gender', human.config.face.gender, 'enabled');
menu.addBool('face emotion', human.config.face.emotion, 'enabled');
menu.addBool('body pose', human.config.body, 'enabled');
menu.addBool('hand pose', human.config.hand, 'enabled');
menu.addBool('gesture analysis', human.config.gesture, 'enabled');
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addLabel('model parameters');
menu.addRange('max objects', human.config.face.detector, 'maxFaces', 1, 50, 1, (val) => {
human.config.face.detector.maxFaces = parseInt(val);
human.config.body.maxDetections = parseInt(val);
human.config.hand.maxHands = parseInt(val);
});
menu.addRange('skip frames', human.config.face.detector, 'skipFrames', 0, 50, 1, (val) => {
human.config.face.detector.skipFrames = parseInt(val);
human.config.face.emotion.skipFrames = parseInt(val);
human.config.face.age.skipFrames = parseInt(val);
human.config.hand.skipFrames = parseInt(val);
});
menu.addRange('min confidence', human.config.face.detector, 'minConfidence', 0.0, 1.0, 0.05, (val) => {
human.config.face.detector.minConfidence = parseFloat(val);
human.config.face.gender.minConfidence = parseFloat(val);
human.config.face.emotion.minConfidence = parseFloat(val);
human.config.hand.minConfidence = parseFloat(val);
});
menu.addRange('score threshold', human.config.face.detector, 'scoreThreshold', 0.1, 1.0, 0.05, (val) => {
human.config.face.detector.scoreThreshold = parseFloat(val);
human.config.hand.scoreThreshold = parseFloat(val);
human.config.body.scoreThreshold = parseFloat(val);
});
menu.addRange('overlap', human.config.face.detector, 'iouThreshold', 0.1, 1.0, 0.05, (val) => {
human.config.face.detector.iouThreshold = parseFloat(val);
human.config.hand.iouThreshold = parseFloat(val);
});
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addChart('FPS', 'FPS');
menuFX = new Menu(document.body, '', { top: '1rem', right: '18rem' });
menuFX.addLabel('ui options');
menuFX.addBool('crop & scale', ui, 'crop', () => setupCamera());
menuFX.addBool('camera front/back', ui, 'facing', () => setupCamera());
menuFX.addBool('use 3D depth', ui, 'useDepth');
menuFX.addBool('draw boxes', ui, 'drawBoxes');
menuFX.addBool('draw polygons', ui, 'drawPolygons');
menuFX.addBool('Fill Polygons', ui, 'fillPolygons');
menuFX.addBool('draw points', ui, 'drawPoints');
menuFX.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menuFX.addLabel('image processing');
menuFX.addBool('enabled', human.config.filter, 'enabled');
ui.menuWidth = menuFX.addRange('image width', human.config.filter, 'width', 0, 3840, 10, (val) => human.config.filter.width = parseInt(val));
ui.menuHeight = menuFX.addRange('image height', human.config.filter, 'height', 0, 2160, 10, (val) => human.config.filter.height = parseInt(val));
menuFX.addRange('brightness', human.config.filter, 'brightness', -1.0, 1.0, 0.05, (val) => human.config.filter.brightness = parseFloat(val));
menuFX.addRange('contrast', human.config.filter, 'contrast', -1.0, 1.0, 0.05, (val) => human.config.filter.contrast = parseFloat(val));
menuFX.addRange('sharpness', human.config.filter, 'sharpness', 0, 1.0, 0.05, (val) => human.config.filter.sharpness = parseFloat(val));
menuFX.addRange('blur', human.config.filter, 'blur', 0, 20, 1, (val) => human.config.filter.blur = parseInt(val));
menuFX.addRange('saturation', human.config.filter, 'saturation', -1.0, 1.0, 0.05, (val) => human.config.filter.saturation = parseFloat(val));
menuFX.addRange('hue', human.config.filter, 'hue', 0, 360, 5, (val) => human.config.filter.hue = parseInt(val));
menuFX.addRange('pixelate', human.config.filter, 'pixelate', 0, 32, 1, (val) => human.config.filter.pixelate = parseInt(val));
menuFX.addBool('negative', human.config.filter, 'negative');
menuFX.addBool('sepia', human.config.filter, 'sepia');
menuFX.addBool('vintage', human.config.filter, 'vintage');
menuFX.addBool('kodachrome', human.config.filter, 'kodachrome');
menuFX.addBool('technicolor', human.config.filter, 'technicolor');
menuFX.addBool('polaroid', human.config.filter, 'polaroid');
}
async function main() {
log('Human: demo starting ...');
setupMenu();
document.getElementById('log').innerText = `Human: version ${human.version} TensorFlow/JS: version ${human.tf.version_core}`;
// this is not required, just pre-loads all models
if (ui.modelsPreload) {
status('loading');
await human.load(userConfig);
}
// this is not required, just pre-warms all models for faster initial inference
if (ui.modelsWarmup) {
status('initializing');
await human.warmup(userConfig);
}
status('human: ready');
document.getElementById('loader').style.display = 'none';
document.getElementById('play').style.display = 'block';
}
window.onload = main;
window.onresize = setupCamera;