human/demo/nodejs/process-folder.js

77 lines
3.7 KiB
JavaScript

const fs = require('fs');
const path = require('path');
const process = require('process');
const log = require('@vladmandic/pilogger');
const canvas = require('canvas');
const tf = require('@tensorflow/tfjs-node'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const Human = require('../../dist/human.node.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
const config = { // just enable all and leave default settings
debug: true,
async: false,
cacheSensitivity: 0,
face: { enabled: true, detector: { maxDetected: 20 } },
object: { enabled: true },
gesture: { enabled: true },
hand: { enabled: true },
body: { enabled: true, modelPath: 'https://vladmandic.github.io/human-models/models/movenet-multipose.json' },
};
async function main() {
log.header();
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
const human = new Human.Human(config); // create instance of human
log.info('Human:', human.version);
const configErrors = await human.validate();
if (configErrors.length > 0) log.error('Configuration errors:', configErrors);
await human.load(); // pre-load models
log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
const inDir = process.argv[2];
const outDir = process.argv[3];
if (process.argv.length !== 4) {
log.error('Parameters: <input-directory> <output-directory> missing');
return;
}
if (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory() || !fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory()) {
log.error('Invalid directory specified:', 'input:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory(), 'output:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
return;
}
const dir = fs.readdirSync(inDir);
const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg')));
log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length);
for (const image of images) {
const inFile = path.join(inDir, image);
const buffer = fs.readFileSync(inFile);
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
const expand = human.tf.expandDims(decode, 0);
const cast = human.tf.cast(expand, 'float32');
return cast;
});
log.state('Loaded image:', inFile, tensor.shape);
const result = await human.detect(tensor);
tf.dispose(tensor);
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1]); // create canvas
const outputCtx = outputCanvas.getContext('2d');
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outFile = path.join(outDir, image);
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
outStream.on('finish', () => log.state('Output image:', outFile, outputCanvas.width, outputCanvas.height));
outStream.on('error', (err) => log.error('Output error:', outFile, err));
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
stream.pipe(outStream);
}
}
main();