human/src/handpose/handpose.ts

93 lines
4.3 KiB
TypeScript

/**
* HandPose module entry point
*/
import { log, join } from '../helpers';
import * as tf from '../../dist/tfjs.esm.js';
import * as handdetector from './handdetector';
import * as handpipeline from './handpipeline';
import { Hand } from '../result';
import { Tensor, GraphModel } from '../tfjs/types';
import { Config } from '../config';
const meshAnnotations = {
thumb: [1, 2, 3, 4],
indexFinger: [5, 6, 7, 8],
middleFinger: [9, 10, 11, 12],
ringFinger: [13, 14, 15, 16],
pinky: [17, 18, 19, 20],
palmBase: [0],
};
let handDetectorModel: GraphModel | null;
let handPoseModel: GraphModel | null;
let handPipeline: handpipeline.HandPipeline;
export async function predict(input: Tensor, config: Config): Promise<Hand[]> {
const predictions = await handPipeline.estimateHands(input, config);
if (!predictions) return [];
const hands: Array<Hand> = [];
for (let i = 0; i < predictions.length; i++) {
const annotations = {};
if (predictions[i].landmarks) {
for (const key of Object.keys(meshAnnotations)) {
// @ts-ignore landmarks are not undefined
annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);
}
}
const keypoints = predictions[i].landmarks as unknown as Array<[number, number, number]>;
let box: [number, number, number, number] = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work
let boxRaw: [number, number, number, number] = [0, 0, 0, 0];
if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks
for (const pt of keypoints) {
if (pt[0] < box[0]) box[0] = pt[0];
if (pt[1] < box[1]) box[1] = pt[1];
if (pt[0] > box[2]) box[2] = pt[0];
if (pt[1] > box[3]) box[3] = pt[1];
}
box[2] -= box[0];
box[3] -= box[1];
boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];
} else { // otherwise use box from prediction
box = predictions[i].box ? [
Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),
Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),
Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),
Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),
] : [0, 0, 0, 0];
boxRaw = [
(predictions[i].box.topLeft[0]) / (input.shape[2] || 0),
(predictions[i].box.topLeft[1]) / (input.shape[1] || 0),
(predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),
(predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),
];
}
hands.push({ id: i, score: Math.round(100 * predictions[i].confidence) / 100, box, boxRaw, keypoints, annotations });
}
return hands;
}
export async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {
if (!handDetectorModel || !handPoseModel) {
// @ts-ignore type mismatch on GraphModel
[handDetectorModel, handPoseModel] = await Promise.all([
config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,
config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,
]);
if (config.hand.enabled) {
if (!handDetectorModel || !handDetectorModel['modelUrl']) log('load model failed:', config.hand.detector.modelPath);
else if (config.debug) log('load model:', handDetectorModel['modelUrl']);
if (!handPoseModel || !handPoseModel['modelUrl']) log('load model failed:', config.hand.skeleton.modelPath);
else if (config.debug) log('load model:', handPoseModel['modelUrl']);
}
} else {
if (config.debug) log('cached model:', handDetectorModel['modelUrl']);
if (config.debug) log('cached model:', handPoseModel['modelUrl']);
}
const handDetector = new handdetector.HandDetector(handDetectorModel);
handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);
return [handDetectorModel, handPoseModel];
}