mirror of https://github.com/vladmandic/human
5546 lines
1.3 MiB
5546 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var hx=Object.defineProperty;var qI=e=>hx(e,"__esModule",{value:!0});var $m=typeof require!="undefined"?require:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')};var Om=(e,t)=>{qI(e);for(var n in t)hx(e,n,{get:t[n],enumerable:!0})};var fx=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Du=(e,t,n)=>(fx(e,t,"read from private field"),n?n.call(e):t.get(e)),Fu=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},$u=(e,t,n,s)=>(fx(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Fle={};Om(Fle,{Human:()=>rI,default:()=>rI,defaults:()=>xi,env:()=>we});function At(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Xe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function pn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=pn(a,o):n[r]=o}),n),{})}var xi={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.8,iouThreshold:.2,maxDetected:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};var ri={};Om(ri,{Abs:()=>ki,Acos:()=>Ii,Acosh:()=>Si,AdadeltaOptimizer:()=>xh,AdagradOptimizer:()=>bh,AdamOptimizer:()=>vh,AdamaxOptimizer:()=>wh,Add:()=>Br,AddN:()=>Ta,All:()=>Ci,Any:()=>Ti,ArgMax:()=>Na,ArgMin:()=>Lu,Asin:()=>Ni,Asinh:()=>Ei,Atan:()=>Ri,Atan2:()=>Di,Atanh:()=>_i,AvgPool:()=>Ea,AvgPool3D:()=>Bu,AvgPool3DGrad:()=>Yd,AvgPoolGrad:()=>Zd,BackendWasm:()=>Bk,BatchMatMul:()=>Ra,BatchToSpaceND:()=>Fi,Bincount:()=>Jd,BroadcastArgs:()=>Vm,BroadcastTo:()=>Fx,Callback:()=>zv,CallbackList:()=>R3,Cast:()=>_a,Ceil:()=>Da,ClipByValue:()=>Wr,Complex:()=>Qd,ComplexAbs:()=>Wu,Concat:()=>$i,Conv2D:()=>Fa,Conv2DBackpropFilter:()=>ep,Conv2DBackpropInput:()=>$a,Conv3D:()=>Vu,Conv3DBackpropFilterV2:()=>tp,Conv3DBackpropInputV2:()=>np,Cos:()=>Oa,Cosh:()=>Pa,CropAndResize:()=>Oi,Cumsum:()=>Ma,CustomCallback:()=>D3,DataStorage:()=>Gd,DenseBincount:()=>sp,DepthToSpace:()=>Pi,DepthwiseConv2dNative:()=>za,DepthwiseConv2dNativeBackpropFilter:()=>rp,DepthwiseConv2dNativeBackpropInput:()=>ap,Diag:()=>op,Dilation2D:()=>Uu,Dilation2DBackpropFilter:()=>lp,Dilation2DBackpropInput:()=>ip,ENV:()=>Zs,EarlyStopping:()=>Bv,Einsum:()=>up,Elu:()=>Ba,EluGrad:()=>cp,Environment:()=>_x,Equal:()=>zi,Erf:()=>Mi,Exp:()=>Wa,ExpandDims:()=>Li,Expm1:()=>Bi,FFT:()=>dp,Fill:()=>Hu,FlipLeftRight:()=>Wi,Floor:()=>Va,FloorDiv:()=>Ua,FromPixels:()=>Dp,FusedBatchNorm:()=>Ha,FusedConv2D:()=>So,FusedDepthwiseConv2D:()=>Co,GPGPUContext:()=>Sf,GatherNd:()=>Ui,GatherV2:()=>Vi,GraphModel:()=>y7,Greater:()=>Hi,GreaterEqual:()=>Ga,History:()=>_3,IFFT:()=>pp,Identity:()=>ja,Imag:()=>hp,InputSpec:()=>Lt,IsFinite:()=>Gi,IsInf:()=>ji,IsNan:()=>qi,KernelBackend:()=>Pu,LRN:()=>qu,LRNGrad:()=>mp,LayerVariable:()=>S3,LayersModel:()=>Cr,LeakyRelu:()=>qa,Less:()=>Xi,LessEqual:()=>Ki,LinSpace:()=>fp,Log:()=>Xa,Log1p:()=>Zi,LogSoftmax:()=>$x,LogicalAnd:()=>Yi,LogicalNot:()=>Gu,LogicalOr:()=>ju,MathBackendCPU:()=>cf,MathBackendWebGL:()=>uu,Max:()=>Ka,MaxPool:()=>Ya,MaxPool3D:()=>Xu,MaxPool3DGrad:()=>Ap,MaxPoolGrad:()=>gp,MaxPoolWithArgmax:()=>yp,Maximum:()=>Za,Mean:()=>Ja,Min:()=>Qa,Minimum:()=>eo,MirrorPad:()=>to,Mod:()=>Ji,MomentumOptimizer:()=>kh,Multinomial:()=>xp,Multiply:()=>no,Neg:()=>Qi,NonMaxSuppressionV3:()=>tl,NonMaxSuppressionV4:()=>nl,NonMaxSuppressionV5:()=>sl,NotEqual:()=>el,OP_SCOPE_SUFFIX:()=>Kx,OneHot:()=>so,OnesLike:()=>rl,Optimizer:()=>kr,Pack:()=>al,PadV2:()=>ro,Pool:()=>YS,Pow:()=>ao,Prelu:()=>oo,Prod:()=>ol,RMSPropOptimizer:()=>Ih,RNN:()=>lr,Range:()=>Ku,Rank:()=>qm,Real:()=>bp,RealDiv:()=>La,Reciprocal:()=>il,Reduction:()=>wn,Relu:()=>io,Relu6:()=>uo,Reshape:()=>ll,ResizeBilinear:()=>lo,ResizeBilinearGrad:()=>wp,ResizeNearestNeighbor:()=>Zu,ResizeNearestNeighborGrad:()=>vp,Reverse:()=>co,RotateWithOffset:()=>kl,Round:()=>po,Rsqrt:()=>ho,SGDOptimizer:()=>kc,ScatterNd:()=>ul,Select:()=>cl,Selu:()=>dl,Sequential:()=>Kl,Sigmoid:()=>mo,Sign:()=>fl,Sin:()=>fo,Sinh:()=>hl,Slice:()=>pl,Softmax:()=>yo,Softplus:()=>ml,SpaceToBatchND:()=>gl,SparseFillEmptyRows:()=>kp,SparseReshape:()=>Ip,SparseSegmentMean:()=>Sp,SparseSegmentSum:()=>Cp,SparseToDense:()=>Tp,SplitV:()=>Al,Sqrt:()=>go,Square:()=>Yu,SquaredDifference:()=>xo,Step:()=>Ur,StridedSlice:()=>yl,StringNGrams:()=>Np,StringSplit:()=>Ep,StringToHashBucketFast:()=>Rp,Sub:()=>bo,Sum:()=>Ao,SymbolicTensor:()=>Bs,Tan:()=>vo,Tanh:()=>wo,Tensor:()=>je,TensorBuffer:()=>Ht,Tile:()=>Vr,TopK:()=>xl,Transform:()=>bl,Transpose:()=>ko,Unique:()=>_p,Unpack:()=>vl,UnsortedSegmentSum:()=>Ju,Variable:()=>oc,ZerosLike:()=>wl,_FusedMatMul:()=>Io,abs:()=>Gt,acos:()=>F5,acosh:()=>$5,add:()=>ae,addN:()=>jp,all:()=>kg,any:()=>qp,argMax:()=>Qs,argMin:()=>O5,asin:()=>P5,asinh:()=>M5,atan:()=>z5,atan2:()=>L5,atanh:()=>B5,avgPool:()=>Kp,avgPool3d:()=>Cg,backend:()=>Dl,backend_util:()=>D,basicLSTMCell:()=>_T,batchNorm:()=>Ol,batchNorm2d:()=>H5,batchNorm3d:()=>G5,batchNorm4d:()=>j5,batchToSpaceND:()=>Zp,bincount:()=>Tg,booleanMaskAsync:()=>HR,broadcastArgs:()=>q5,broadcastTo:()=>hc,browser:()=>os,buffer:()=>Ve,callbacks:()=>oL,cast:()=>ce,ceil:()=>X5,clipByValue:()=>Gn,clone:()=>Fs,complex:()=>jr,concat:()=>mt,concat1d:()=>K5,concat2d:()=>Pl,concat3d:()=>Z5,concat4d:()=>Y5,constraints:()=>r3,conv1d:()=>Ng,conv2d:()=>Yr,conv2dTranspose:()=>Rg,conv3d:()=>_g,conv3dTranspose:()=>Q5,copyRegisteredKernels:()=>eC,cos:()=>Yp,cosh:()=>Dg,cosineWindow:()=>sA,cumsum:()=>Fg,customGrad:()=>tr,data:()=>x7,denseBincount:()=>eb,deprecationWarn:()=>xg,depthToSpace:()=>tb,depthwiseConv2d:()=>fc,deregisterOp:()=>lL,device_util:()=>lc,diag:()=>iN,dilation2d:()=>nb,disableDeprecationWarnings:()=>q9,dispose:()=>Z,disposeVariables:()=>X9,div:()=>de,divNoNan:()=>sb,dot:()=>mN,dropout:()=>Fb,einsum:()=>rb,elu:()=>mc,enableDebugMode:()=>j9,enableProdMode:()=>D5,enclosingPowerOfTwo:()=>$b,engine:()=>Ss,env:()=>Y,equal:()=>is,erf:()=>ab,exp:()=>ls,expandDims:()=>Mt,expm1:()=>ob,eye:()=>$g,fft:()=>dh,fill:()=>Ml,findBackend:()=>vg,findBackendFactory:()=>J9,floor:()=>gc,floorDiv:()=>wg,forceHalfFloat:()=>G6,fused:()=>ea,gather:()=>zl,gatherND:()=>Db,gather_util:()=>pg,getBackend:()=>Rl,getGradient:()=>Um,getKernel:()=>Fp,getKernelsForBackend:()=>Hr,gpgpu_util:()=>x6,grad:()=>BN,grads:()=>WN,greater:()=>jn,greaterEqual:()=>Oo,ifft:()=>bc,imag:()=>Jp,image:()=>Re,inTopKAsync:()=>t_,initializers:()=>d3,input:()=>tv,io:()=>Dn,irfft:()=>Yg,isFinite:()=>RN,isInf:()=>DN,isNaN:()=>ib,keep:()=>tn,kernel_impls:()=>sr,layers:()=>w3,leakyRelu:()=>Qp,less:()=>Og,lessEqual:()=>Po,linalg:()=>Hb,linspace:()=>lb,loadGraphModel:()=>gt,loadLayersModel:()=>gM,localResponseNormalization:()=>ub,log:()=>us,log1p:()=>eh,logSigmoid:()=>qN,logSoftmax:()=>Pg,logSumExp:()=>fb,logicalAnd:()=>$s,logicalNot:()=>nh,logicalOr:()=>Lg,logicalXor:()=>aE,losses:()=>LD,matMul:()=>Ue,math:()=>h5,max:()=>cs,maxPool:()=>sh,maxPool3d:()=>Bg,maxPoolWithArgmax:()=>mb,maximum:()=>vr,mean:()=>Dt,memory:()=>Hp,meshgrid:()=>dE,metrics:()=>Ov,min:()=>rh,minimum:()=>Ac,mirrorPad:()=>gb,mod:()=>Ab,model:()=>fM,models:()=>Pv,moments:()=>ah,movingAverage:()=>qR,mul:()=>L,multiRNNCell:()=>xE,multinomial:()=>yb,neg:()=>Nt,nextFrame:()=>Sh,norm:()=>tA,notEqual:()=>Bl,oneHot:()=>dc,ones:()=>qn,onesLike:()=>ds,op:()=>W,outerProduct:()=>IE,pad:()=>Jr,pad1d:()=>TE,pad2d:()=>EE,pad3d:()=>_E,pad4d:()=>FE,pool:()=>zE,pow:()=>Qr,prelu:()=>ih,print:()=>i5,prod:()=>Wg,profile:()=>K9,rand:()=>UE,randomGamma:()=>qE,randomNormal:()=>xb,randomUniform:()=>Wl,range:()=>Vl,ready:()=>Gp,real:()=>yc,reciprocal:()=>bb,registerBackend:()=>_l,registerCallbackConstructor:()=>AM,registerGradient:()=>Ox,registerKernel:()=>To,registerOp:()=>iL,regularizers:()=>Mv,relu:()=>nr,relu6:()=>Hg,removeBackend:()=>Y9,reshape:()=>U,reverse:()=>ps,reverse1d:()=>nR,reverse2d:()=>rR,reverse3d:()=>oR,reverse4d:()=>lR,rfft:()=>ph,round:()=>Gg,rsqrt:()=>jg,scalar:()=>Se,scatterND:()=>_b,scatter_util:()=>hg,selu:()=>qg,separableConv2d:()=>vb,sequential:()=>mM,serialization:()=>oe,setBackend:()=>bg,setPlatform:()=>Q9,setWasmPath:()=>Wie,setWasmPaths:()=>Vk,setWebGLContext:()=>gf,setdiff1dAsync:()=>wb,shared:()=>h2,sigmoid:()=>Hn,sign:()=>kb,signal:()=>zD,sin:()=>Xg,sinh:()=>Kg,slice:()=>_e,slice1d:()=>lh,slice2d:()=>Zg,slice3d:()=>uh,slice4d:()=>xc,slice_util:()=>bn,softmax:()=>ch,softplus:()=>Ll,spaceToBatchND:()=>oh,sparse:()=>wc,sparseToDense:()=>nA,spectral:()=>MD,split:()=>qt,sqrt:()=>fn,square:()=>dt,squaredDifference:()=>Jg,squeeze:()=>ut,stack:()=>mn,step:()=>vc,stridedSlice:()=>Ib,string:()=>yh,sub:()=>ge,sum:()=>ve,sumOutType:()=>zp,tan:()=>Sb,tanh:()=>$l,tensor:()=>en,tensor1d:()=>zt,tensor2d:()=>Os,tensor3d:()=>Wp,tensor4d:()=>$R,tensor5d:()=>OR,tensor6d:()=>PR,tensor_util:()=>_s,test_util:()=>E5,tidy:()=>H,tile:()=>Cs,time:()=>Z9,topk:()=>Cb,train:()=>Lo,transpose:()=>Ze,truncatedNormal:()=>hh,unique:()=>Qg,unregisterGradient:()=>QS,unregisterKernel:()=>JS,unsortedSegmentSum:()=>Tb,unstack:()=>hs,upcastType:()=>Is,util:()=>w,valueAndGrad:()=>VN,valueAndGrads:()=>UN,variable:()=>Nb,variableGrads:()=>cb,version:()=>Hie,version_converter:()=>dB,version_core:()=>Up,version_cpu:()=>YW,version_layers:()=>zA,version_wasm:()=>Vie,version_webgl:()=>IK,webgl:()=>SK,webgl_util:()=>Uw,where:()=>vn,whereAsync:()=>eA,zeros:()=>Ft,zerosLike:()=>Ye});var XI=Object.create,Hd=Object.defineProperty,KI=Object.getOwnPropertyDescriptor,ZI=Object.getOwnPropertyNames,YI=Object.getPrototypeOf,JI=Object.prototype.hasOwnProperty,mx=e=>Hd(e,"__esModule",{value:!0}),bi=typeof $m!="undefined"?$m:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')},wt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Me=(e,t)=>{mx(e);for(var n in t)Hd(e,n,{get:t[n],enumerable:!0})},QI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of ZI(t))!JI.call(e,s)&&s!=="default"&&Hd(e,s,{get:()=>t[s],enumerable:!(n=KI(t,s))||n.enumerable});return e},Ia=e=>QI(mx(Hd(e!=null?XI(YI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),eS=wt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function s(R,T,P){this.low=R|0,this.high=T|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(R){return(R&&R.__isLong__)===!0}s.isLong=r;var a={},o={};function i(R,T){var P,V,j;return T?(R>>>=0,(j=0<=R&&R<256)&&(V=o[R],V)?V:(P=u(R,(R|0)<0?-1:0,!0),j&&(o[R]=P),P)):(R|=0,(j=-128<=R&&R<128)&&(V=a[R],V)?V:(P=u(R,R<0?-1:0,!1),j&&(a[R]=P),P))}s.fromInt=i;function l(R,T){if(isNaN(R))return T?b:x;if(T){if(R<0)return b;if(R>=g)return _}else{if(R<=-A)return O;if(R+1>=A)return C}return R<0?l(-R,T).neg():u(R%m|0,R/m|0,T)}s.fromNumber=l;function u(R,T,P){return new s(R,T,P)}s.fromBits=u;var c=Math.pow;function d(R,T,P){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return x;if(typeof T=="number"?(P=T,T=!1):T=!!T,P=P||10,P<2||36<P)throw RangeError("radix");var V;if((V=R.indexOf("-"))>0)throw Error("interior hyphen");if(V===0)return d(R.substring(1),T,P).neg();for(var j=l(c(P,8)),q=x,X=0;X<R.length;X+=8){var ee=Math.min(8,R.length-X),te=parseInt(R.substring(X,X+ee),P);if(ee<8){var ne=l(c(P,ee));q=q.mul(ne).add(l(te))}else q=q.mul(j),q=q.add(l(te))}return q.unsigned=T,q}s.fromString=d;function p(R,T){return typeof R=="number"?l(R,T):typeof R=="string"?d(R,T):u(R.low,R.high,typeof T=="boolean"?T:R.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var _=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=_;var O=u(0,2147483648|0,!1);s.MIN_VALUE=O;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var P=l(T),V=this.div(P),j=V.mul(P).sub(this);return V.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(c(T,6),this.unsigned),X=this,ee="";;){var te=X.div(q),ne=X.sub(te.mul(q)).toInt()>>>0,se=ne.toString(T);if(X=te,X.isZero())return se+ee;for(;se.length<6;)se="0"+se;ee=""+se+ee}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,P=31;P>0&&(T&1<<P)==0;P--);return this.high!=0?P+33:P+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var P=this.isNegative(),V=T.isNegative();return P&&!V?-1:!P&&V?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var P=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,ee=T.high&65535,te=T.low>>>16,ne=T.low&65535,se=0,Q=0,ie=0,le=0;return le+=q+ne,ie+=le>>>16,le&=65535,ie+=j+te,Q+=ie>>>16,ie&=65535,Q+=V+ee,se+=Q>>>16,Q&=65535,se+=P+X,se&=65535,u(ie<<16|le,se<<16|Q,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var P=n.mul(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(O))return T.isOdd()?O:x;if(T.eq(O))return this.isOdd()?O:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,ee=T.high>>>16,te=T.high&65535,ne=T.low>>>16,se=T.low&65535,Q=0,ie=0,le=0,pe=0;return pe+=X*se,le+=pe>>>16,pe&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*ne,ie+=le>>>16,le&=65535,ie+=j*se,Q+=ie>>>16,ie&=65535,ie+=q*ne,Q+=ie>>>16,ie&=65535,ie+=X*te,Q+=ie>>>16,ie&=65535,Q+=V*se+j*ne+q*te+X*ee,Q&=65535,u(le<<16|pe,Q<<16|ie,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var V,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(O)){if(T.eq(v)||T.eq(S))return O;if(T.eq(O))return v;var X=this.shr(1);return V=X.div(T).shl(1),V.eq(x)?T.isNegative()?v:S:(j=this.sub(T.mul(V)),q=V.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){V=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var ee=Math.ceil(Math.log(V)/Math.LN2),te=ee<=48?1:c(2,ee-48),ne=l(V),se=ne.mul(T);se.isNegative()||se.gt(j);)V-=te,ne=l(V,this.unsigned),se=ne.mul(T);ne.isZero()&&(ne=v),q=q.add(ne),j=j.sub(se)}return q},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return u(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var P=this.high;if(T<32){var V=this.low;return u(V>>>T|P<<32-T,P>>>T,this.unsigned)}else return T===32?u(P,0,this.unsigned):u(P>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,P=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(T,P,V){return V?s.fromBytesLE(T,P):s.fromBytesBE(T,P)},s.fromBytesLE=function(T,P){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,P)},s.fromBytesBE=function(T,P){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],P)}}}),tS=wt({"(disabled):node_modules/.pnpm/node-fetch@2.6.2/node_modules/node-fetch/browser.js"(){}}),nS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=d.toString();for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function c(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function c(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gx=wt({"(disabled):crypto"(){}}),lS=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,p=a-1,h;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var _=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),n),(k.pass||S||function(R,T,P,V){return V&&(V.S&&g(V,O),R.state=function(){return g(O,{})}),P?(s[l]=R,T):R})(E,_,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,S=v.length,C=this,_=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);_<a;)E[_]=_++;for(_=0;_<a;_++)E[_]=E[O=p&O+v[_%S]+(k=E[_])],E[O]=k;(C.g=function(R){for(var T,P=0,V=C.i,j=C.j,q=C.S;R--;)T=q[V=p&V+1],P=P*a+q[p&(q[V]=q[j=p&j+T])+(q[j]=T)];return C.i=V,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,_;if(k&&C=="object")for(_ in v)try{S.push(A(v[_],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,_=0;_<S.length;)k[p&_]=p&(C^=k[p&_]*19)+S.charCodeAt(_++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=gx()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),Ax=wt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=nS(),s=sS(),r=rS(),a=aS(),o=oS(),i=iS(),l=lS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),uS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=String(d);for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function c(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function c(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mS=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,p=a-1,h;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var _=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),s),(k.pass||S||function(R,T,P,V){return V&&(V.S&&g(V,O),R.state=function(){return g(O,{})}),P?(r[l]=R,T):R})(E,_,"global"in k?k.global:this==r,k.state)}function m(v){var k,S=v.length,C=this,_=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);_<a;)E[_]=_++;for(_=0;_<a;_++)E[_]=E[O=p&O+v[_%S]+(k=E[_])],E[O]=k;(C.g=function(R){for(var T,P=0,V=C.i,j=C.j,q=C.S;R--;)T=q[V=p&V+1],P=P*a+q[p&(q[V]=q[j=p&j+T])+(q[j]=T)];return C.i=V,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,_;if(k&&C=="object")for(_ in v)try{S.push(A(v[_],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,_=0;_<S.length;)k[p&_]=p&(C^=k[p&_]*19)+S.charCodeAt(_++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=gx()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),yx=wt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=uS(),s=cS(),r=dS(),a=pS(),o=hS(),i=fS(),l=mS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),xx=wt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),Ou=wt({"(disabled):path"(){}}),gS=wt({"(disabled):worker_threads"(){}}),AS=wt({"(disabled):perf_hooks"(){}}),yS=wt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Q.buffer!=Ge&&on(Q.buffer),En}function o(){return Q.buffer!=Ge&&on(Q.buffer),Ct}function i(){return Q.buffer!=Ge&&on(Q.buffer),vs}function l(){return Q.buffer!=Ge&&on(Q.buffer),gn}function u(){return Q.buffer!=Ge&&on(Q.buffer),ns}var c=typeof r!="undefined"?r:{},d,p;c.ready=new Promise(function(N,$){d=N,p=$});var h={},f;for(f in c)c.hasOwnProperty(f)&&(h[f]=c[f]);var m=[],g="./this.program",A=function(N,$){throw $},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ge=c.buffer);var S="";function C(N){return c.locateFile?c.locateFile(N,S):S+N}var _,O,E,R,T,P;if(b){x?S=Ou().dirname(S)+"/":S=__dirname+"/",_=function($,B){return T||(T=bi("fs")),P||(P=Ou()),$=P.normalize($),T.readFileSync($,B?null:"utf8")},E=function($){var B=_($,!0);return B.buffer||(B=new Uint8Array(B)),Ae(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof _u))throw N}),process.on("unhandledRejection",gr),A=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var V;try{V=gS()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=V.Worker}else v?(typeof read!="undefined"&&(_=function($){return read($)}),E=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),Ae(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(_=function($,B){return T||(T=bi("fs")),P||(P=Ou()),$=P.normalize($),T.readFileSync($,B?null:"utf8")},E=function($){var B=_($,!0);return B.buffer||(B=new Uint8Array(B)),Ae(B.buffer),B}):(_=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.send(null),$.responseText},x&&(E=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),O=function(N,$,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){$(K.response);return}B()},K.onerror=B,K.send(null)}),R=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=AS().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(c[f]=h[f]);h=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(A=c.quit);var X=Atomics.load,ee=Atomics.store,te=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&gr("no native wasm support detected");var Q,ie,le=!1,pe;function Ae(N,$){N||gr("Assertion failed: "+$)}function Te(N){var $=c["_"+N];return Ae($,"Cannot call unknown function "+N+", make sure it is exported"),$}function Ne(N,$,B,K,me){var he={string:function(An){var yi=0;if(An!=null&&An!==0){var px=(An.length<<2)+1;yi=mi(px),st(An,yi,px)}return yi},array:function(An){var yi=mi(An.length);return tt(An,yi),yi}};function fe(An){return $==="string"?Oe(An):$==="boolean"?Boolean(An):An}var ke=Te(N),at=[],Yt=0;if(K)for(var Ut=0;Ut<K.length;Ut++){var Mr=he[B[Ut]];Mr?(Yt===0&&(Yt=Ru()),at[Ut]=Mr(K[Ut])):at[Ut]=K[Ut]}var Ai=ke.apply(null,at);return Ai=fe(Ai),Yt!==0&&fi(Yt),Ai}function De(N,$,B,K){B=B||[];var me=B.every(function(fe){return fe==="number"}),he=$!=="string";return he&&me&&!K?Te(N):function(){return Ne(N,$,B,arguments,K)}}function ze(N,$,B){for(var K=$+B,me="";!($>=K);){var he=N[$++];if(!he)return me;if(!(he&128)){me+=String.fromCharCode(he);continue}var fe=N[$++]&63;if((he&224)==192){me+=String.fromCharCode((he&31)<<6|fe);continue}var ke=N[$++]&63;if((he&240)==224?he=(he&15)<<12|fe<<6|ke:he=(he&7)<<18|fe<<12|ke<<6|N[$++]&63,he<65536)me+=String.fromCharCode(he);else{var at=he-65536;me+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return me}function Oe(N,$){return N?ze(o(),N,$):""}function ct(N,$,B,K){if(!(K>0))return 0;for(var me=B,he=B+K-1,fe=0;fe<N.length;++fe){var ke=N.charCodeAt(fe);if(ke>=55296&&ke<=57343){var at=N.charCodeAt(++fe);ke=65536+((ke&1023)<<10)|at&1023}if(ke<=127){if(B>=he)break;$[B++]=ke}else if(ke<=2047){if(B+1>=he)break;$[B++]=192|ke>>6,$[B++]=128|ke&63}else if(ke<=65535){if(B+2>=he)break;$[B++]=224|ke>>12,$[B++]=128|ke>>6&63,$[B++]=128|ke&63}else{if(B+3>=he)break;$[B++]=240|ke>>18,$[B++]=128|ke>>12&63,$[B++]=128|ke>>6&63,$[B++]=128|ke&63}}return $[B]=0,B-me}function st(N,$,B){return ct(N,o(),$,B)}function rt(N){for(var $=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++$:K<=2047?$+=2:K<=65535?$+=3:$+=4}return $}function tt(N,$){a().set(N,$)}function lt(N,$){return N%$>0&&(N+=$-N%$),N}var Ge,En,Ct,Wn,an,vs,gn,ts,ns;function on(N){Ge=N,c.HEAP8=En=new Int8Array(N),c.HEAP16=Wn=new Int16Array(N),c.HEAP32=vs=new Int32Array(N),c.HEAPU8=Ct=new Uint8Array(N),c.HEAPU16=an=new Uint16Array(N),c.HEAPU32=gn=new Uint32Array(N),c.HEAPF32=ts=new Float32Array(N),c.HEAPF64=ns=new Float64Array(N)}var ss=c.INITIAL_MEMORY||16777216;if(k)Q=c.wasmMemory,Ge=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:ss/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ge=Q.buffer),ss=Ge.byteLength,on(Ge);var rs,Vn=[],qs=[],fr=[],Dr=[],li=[],Xs=!1,wd=!1;k||qs.push({func:function(){Md()}});function l0(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Id(c.preRun.shift());ci(Vn)}}function vu(){Xs=!0,!k&&ci(qs)}function u0(){k||ci(fr)}function kd(){k||(wd=!0)}function Rn(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)c0(c.postRun.shift());ci(li)}}function Id(N){Vn.unshift(N)}function c0(N){li.unshift(N)}var mr=0,Fr=null,va=null;function d0(N){Ae(!k,"addRunDependency cannot be used in a pthread worker"),mr++,c.monitorRunDependencies&&c.monitorRunDependencies(mr)}function p0(N){if(mr--,c.monitorRunDependencies&&c.monitorRunDependencies(mr),mr==0&&(Fr!==null&&(clearInterval(Fr),Fr=null),va)){var $=va;va=null,$()}}c.preloadedImages={},c.preloadedAudios={};function gr(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),le=!0,pe=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(N);throw p($),$}function Sd(N,$){return String.prototype.startsWith?N.startsWith($):N.indexOf($)===0}var ui="data:application/octet-stream;base64,";function Cd(N){return Sd(N,ui)}var h0="file://";function Td(N){return Sd(N,h0)}var _n="tfjs-backend-wasm-threaded-simd.wasm";Cd(_n)||(_n=C(_n));function Nd(N){try{if(N==_n&&ne)return new Uint8Array(ne);if(E)return E(N);throw"both async and sync fetching of the wasm failed"}catch($){gr($)}}function f0(){if(!ne&&(y||x)){if(typeof fetch=="function"&&!Td(_n))return fetch(_n,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+_n+"'";return N.arrayBuffer()}).catch(function(){return Nd(_n)});if(O)return new Promise(function(N,$){O(_n,function(B){N(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return Nd(_n)})}function m0(){var N={a:am};function $(fe,ke){var at=fe.exports;if(c.asm=at,rs=c.asm.F,ie=ke,!k){var Yt=Ce.unusedWorkers.length;Ce.unusedWorkers.forEach(function(Ut){Ce.loadWasmModuleToWorker(Ut,function(){--Yt||p0("wasm-instantiate")})})}}k||d0("wasm-instantiate");function B(fe){$(fe.instance,fe.module)}function K(fe){return f0().then(function(ke){return WebAssembly.instantiate(ke,N)}).then(fe,function(ke){q("failed to asynchronously prepare wasm: "+ke),gr(ke)})}function me(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Cd(_n)&&!Td(_n)&&typeof fetch=="function"?fetch(_n,{credentials:"same-origin"}).then(function(fe){var ke=WebAssembly.instantiateStreaming(fe,N);return ke.then(B,function(at){return q("wasm streaming compile failed: "+at),q("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(c.instantiateWasm)try{var he=c.instantiateWasm(N,$);return he}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(p),{}}var g0={10024:function(){throw"Canceled!"},10042:function(N,$){setTimeout(function(){ox(N,$)},0)}};function Ed(){Ce.initRuntime()}function ci(N){for(;N.length>0;){var $=N.shift();if(typeof $=="function"){$(c);continue}var B=$.func;typeof B=="number"?$.arg===void 0?rs.get(B)():rs.get(B)($.arg):B($.arg===void 0?null:$.arg)}}function wu(N,$){if(N<=0||N>a().length||N&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=1/0);var B=Atomics.load(i(),gi>>2),K=0;if(B==N){var me=Atomics.compareExchange(i(),gi>>2,B,0);if(me==B&&(--$,K=1,$<=0))return 1}var he=Atomics.notify(i(),N>>2,$);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}c._emscripten_futex_wake=wu;function A0(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var $=Ce.pthreads[N];$.worker.terminate(),Ce.freeThreadData($),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function y0(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ce.pthreads[N];$.worker.postMessage({cmd:"cancel"})}function x0(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var $=Ce.pthreads[N];if($){i()[N+12>>2]=0;var B=$.worker;Ce.returnWorkerToPool(B)}}var Ce={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),$=0;$<N;++$)Ce.allocateUnusedWorker()},initRuntime:function(){for(var N=ka(228),$=0;$<228/4;++$)l()[N/4+$]=0;i()[N+12>>2]=N;var B=N+152;i()[B>>2]=B;for(var K=ka(512),$=0;$<128;++$)l()[K/4+$]=0;Atomics.store(l(),N+100>>2,K),Atomics.store(l(),N+40>>2,N),Dm(N,!x,1),ax(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ce.threadExitHandlers.length>0;)Ce.threadExitHandlers.pop()();k&&hi()&&rx()},runExitHandlersAndDeinitThread:function(N,$){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Ce.runExitHandlers(),Atomics.store(l(),N+4>>2,$),Atomics.store(l(),N+0>>2,1),wu(N+0,2147483647),Dm(0,0,0)},threadExit:function(N){var $=hi();$&&(Ce.runExitHandlersAndDeinitThread($,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Ce.runExitHandlersAndDeinitThread(hi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Ce.pthreads){var $=Ce.pthreads[N];$&&$.worker&&Ce.returnWorkerToPool($.worker)}Ce.pthreads={};for(var B=0;B<Ce.unusedWorkers.length;++B){var K=Ce.unusedWorkers[B];K.terminate()}Ce.unusedWorkers=[];for(var B=0;B<Ce.runningWorkers.length;++B){var K=Ce.runningWorkers[B],$=K.pthread;Ce.freeThreadData($),K.terminate()}Ce.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var $=i()[N.threadInfoStruct+100>>2];i()[N.threadInfoStruct+100>>2]=0,Eu($),Eu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Eu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Ce.runWithoutMainThreadQueuedCalls(function(){delete Ce.pthreads[N.pthread.threadInfoStruct],Ce.unusedWorkers.push(N),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(N),1),Ce.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[dx>>2]=0;try{N()}finally{i()[dx>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,$){N.onmessage=function(B){var K=B.data,me=K.cmd;if(N.pthread&&(Ce.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=hi()){var he=Ce.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ce.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")Rm();else if(me==="spawnThread")Od(B.data);else if(me==="cleanupThread")x0(K.thread);else if(me==="killThread")A0(K.thread);else if(me==="cancelThread")y0(K.thread);else if(me==="loaded")N.loaded=!0,$&&$(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(me==="print")j("Thread "+K.threadId+": "+K.text);else if(me==="printErr")q("Thread "+K.threadId+": "+K.text);else if(me==="alert")alert("Thread "+K.threadId+": "+K.text);else if(me==="exit"){var fe=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);fe&&Ce.returnWorkerToPool(N)}else if(me==="exitProcess")try{jI(K.returnCode)}catch(ke){if(ke instanceof _u)return;throw ke}else me==="cancelDone"?Ce.returnWorkerToPool(N):me==="objectTransfer"?Ce.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+me);Ce.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:Q,wasmModule:ie})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Ce.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Ce.unusedWorkers.length==0&&(Ce.allocateUnusedWorker(),Ce.loadWasmModuleToWorker(Ce.unusedWorkers[0])),Ce.unusedWorkers.length>0?Ce.unusedWorkers.pop():null},busySpinWait:function(N){for(var $=performance.now()+N;performance.now()<$;);}};function b0(N,$){ux(N,$),fi(N)}c.establishStackSpace=b0;function v0(){return se}c.getNoExitRuntime=v0;function w0(N,$){return rs.get(N)($)}c.invokeEntryPoint=w0;function k0(N,$,B,K){gr("Assertion failed: "+Oe(N)+", at: "+[$?Oe($):"unknown filename",B,K?Oe(K):"unknown function"])}function I0(N,$){var B=_main(N,$)}var wa;b?wa=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?wa=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?wa=dateNow:wa=function(){return performance.now()};function S0(N){return i()[nx()>>2]=N,N}function C0(N,$){if(k)return $r(1,1,N,$)}function T0(N,$){if(N==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Ce.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function N0(){gr()}function E0(N,$,B){var K=$0($,B);return g0[N].apply(null,K)}function R0(N,$){}function _0(N,$,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=$)return-6;for(var me=performance.now(),he=me+B,fe=Atomics.exchange(i(),gi>>2,N);;){if(me=performance.now(),me>he)return fe=Atomics.exchange(i(),gi>>2,0),-73;if(fe=Atomics.exchange(i(),gi>>2,0),fe==0)break;if(Rm(),Atomics.load(i(),N>>2)!=$)return-6;fe=Atomics.exchange(i(),gi>>2,N)}return 0}else{var K=Atomics.wait(i(),N>>2,$,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function D0(N,$,B){o().copyWithin(N,$,$+B)}function F0(){return b?bi("os").cpus().length:navigator.hardwareConcurrency}function $r(N,$){for(var B=arguments.length-2,K=Ru(),me=B,he=mi(me*8),fe=he>>3,ke=0;ke<B;ke++){var at=arguments[2+ke];u()[fe+ke]=at}var Yt=lx(N,me,he,$);return fi(K),Yt}var ku=[],Iu=[];function $0(N,$){Iu.length=0;var B;for($>>=2;B=o()[N++];){var K=B<105;K&&$&1&&$++,Iu.push(K?u()[$++>>1]:i()[$]),++$}return Iu}function O0(N,$,B){ku.length=$;for(var K=B>>3,me=0;me<$;me++)ku[me]=u()[K+me];var he=N<0,fe=he?g0[-N-1]:rm[N];return fe.apply(null,ku)}function P0(){return o().length}function M0(N){try{return Q.grow(N-Ge.byteLength+65535>>>16),on(Q.buffer),1}catch($){}}function z0(N){var $=P0();if(N<=$)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var me=$*(1+.2/K);me=Math.min(me,N+100663296);var he=Math.min(B,lt(Math.max(N,me),65536)),fe=M0(he);if(fe)return!0}return!1}var Be={inEventHandler:0,removeAllEventListeners:function(){for(var N=Be.eventHandlers.length-1;N>=0;--N)Be._removeHandler(N);Be.eventHandlers=[],Be.deferredCalls=[]},registerRemoveEventListeners:function(){Be.removeEventListenersRegistered||(Dr.push(Be.removeAllEventListeners),Be.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,$,B){function K(fe,ke){if(fe.length!=ke.length)return!1;for(var at in fe)if(fe[at]!=ke[at])return!1;return!0}for(var me in Be.deferredCalls){var he=Be.deferredCalls[me];if(he.targetFunction==N&&K(he.argsList,B))return}Be.deferredCalls.push({targetFunction:N,precedence:$,argsList:B}),Be.deferredCalls.sort(function(fe,ke){return fe.precedence<ke.precedence})},removeDeferredCalls:function(N){for(var $=0;$<Be.deferredCalls.length;++$)Be.deferredCalls[$].targetFunction==N&&(Be.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Be.inEventHandler&&Be.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Be.canPerformEventHandlerRequests())for(var N=0;N<Be.deferredCalls.length;++N){var $=Be.deferredCalls[N];Be.deferredCalls.splice(N,1),--N,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,$){for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==N&&(!$||$==Be.eventHandlers[B].eventTypeString)&&Be._removeHandler(B--)},_removeHandler:function(N){var $=Be.eventHandlers[N];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Be.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var $=function(me){++Be.inEventHandler,Be.currentEventHandler=N,Be.runDeferredCalls(),N.handlerFunc(me),Be.runDeferredCalls(),--Be.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=$,N.target.addEventListener(N.eventTypeString,$,N.useCapture),Be.eventHandlers.push(N),Be.registerRemoveEventListeners();else for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==N.target&&Be.eventHandlers[B].eventTypeString==N.eventTypeString&&Be._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,$,B,K,me){var he=Ru(),fe=mi(12);i()[fe>>2]=B,i()[fe+4>>2]=K,i()[fe+8>>2]=me,_m(0,N,637534208,$,K,fe),fi(he)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Ce.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function L0(N){var $=rt(N)+1,B=ka($);return st(N,B,$),B}function B0(N,$,B,K){var me=Ru(),he=mi(12),fe=0;$&&(fe=L0($)),i()[he>>2]=fe,i()[he+4>>2]=B,i()[he+8>>2]=K,_m(0,N,657457152,0,fe,he),fi(me)}function W0(N,$,B,K){$=$?Oe($):"",B0(N,$,B,K)}function V0(N){return N>2?Oe(N):N}var U0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function H0(N){N=V0(N);var $=U0[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return $}function Su(N){return H0(N)}function Rd(N,$,B){var K=Su(N);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=$,i()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var me=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);me=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=$,K.height=B,me&&K.GLctxObject.GLctx.viewport(0,0,$,B)}else if(K.canvasSharedPtr){var fe=i()[K.canvasSharedPtr+8>>2];return W0(fe,N,$,B),1}else return-4;return 0}function _d(N,$,B){return k?$r(2,1,N,$,B):Rd(N,$,B)}function G0(N,$,B){var K=Su(N);return K?Rd(N,$,B):_d(N,$,B)}function j0(N){}function q0(N,$){}function X0(N){var $=N.getExtension("ANGLE_instanced_arrays");if($)return N.vertexAttribDivisor=function(B,K){$.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,me,he){$.drawArraysInstancedANGLE(B,K,me,he)},N.drawElementsInstanced=function(B,K,me,he,fe){$.drawElementsInstancedANGLE(B,K,me,he,fe)},1}function K0(N){var $=N.getExtension("OES_vertex_array_object");if($)return N.createVertexArray=function(){return $.createVertexArrayOES()},N.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){$.bindVertexArrayOES(B)},N.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function Z0(N){var $=N.getExtension("WEBGL_draw_buffers");if($)return N.drawBuffers=function(B,K){$.drawBuffersWEBGL(B,K)},1}function Y0(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var nt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){nt.lastError||(nt.lastError=$)},getNewId:function(N){for(var $=nt.counter++,B=N.length;B<$;B++)N[B]=null;return $},getSource:function(N,$,B,K){for(var me="",he=0;he<$;++he){var fe=K?i()[K+he*4>>2]:-1;me+=Oe(i()[B+he*4>>2],fe<0?void 0:fe)}return me},createContext:function(N,$){var B=N.getContext("webgl",$);if(!B)return 0;var K=nt.registerContext(B,$);return K},registerContext:function(N,$){var B=ka(8);i()[B+4>>2]=hi();var K={handle:B,attributes:$,version:$.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),nt.contexts[B]=K,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&nt.initExtensions(K),B},makeContextCurrent:function(N){return nt.currentContext=nt.contexts[N],c.ctx=Or=nt.currentContext&&nt.currentContext.GLctx,!(N&&!Or)},getContext:function(N){return nt.contexts[N]},deleteContext:function(N){nt.currentContext===nt.contexts[N]&&(nt.currentContext=null),typeof Be=="object"&&Be.removeAllHandlersOnTarget(nt.contexts[N].GLctx.canvas),nt.contexts[N]&&nt.contexts[N].GLctx.canvas&&(nt.contexts[N].GLctx.canvas.GLctxObject=void 0),Eu(nt.contexts[N].handle),nt.contexts[N]=null},initExtensions:function(N){if(N||(N=nt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var $=N.GLctx;X0($),K0($),Z0($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Y0($);var B=$.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&$.getExtension(K)})}},populateUniformTable:function(N){for(var $=nt.programs[N],B=nt.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,me=Or.getProgramParameter($,35718),he=0;he<me;++he){var fe=Or.getActiveUniform($,he),ke=fe.name;B.maxUniformLength=Math.max(B.maxUniformLength,ke.length+1),ke.slice(-1)=="]"&&(ke=ke.slice(0,ke.lastIndexOf("[")));var at=Or.getUniformLocation($,ke);if(at){var Yt=nt.getNewId(nt.uniforms);K[ke]=[fe.size,Yt],nt.uniforms[Yt]=at;for(var Ut=1;Ut<fe.size;++Ut){var Mr=ke+"["+Ut+"]";at=Or.getUniformLocation($,Mr),Yt=nt.getNewId(nt.uniforms),nt.uniforms[Yt]=at}}}}},J0=["default","low-power","high-performance"];function Q0(N,$){var B=$>>2,K=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:J0[K],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},he=Su(N);if(!he||me.explicitSwapControl)return 0;var fe=nt.createContext(he,me);return fe}function em(N,$){return Q0(N,$)}var di={mappings:{},buffers:[null,[],[]],printChar:function(N,$){var B=di.buffers[N];$===0||$===10?((N===1?j:q)(ze(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){di.varargs+=4;var N=i()[di.varargs-4>>2];return N},getStr:function(N){var $=Oe(N);return $},get64:function(N,$){return N}};function Dd(N){return k?$r(3,1,N):0}function Fd(N,$,B,K,me){if(k)return $r(4,1,N,$,B,K,me)}function $d(N,$,B,K){if(k)return $r(5,1,N,$,B,K);for(var me=0,he=0;he<B;he++){for(var fe=i()[$+he*8>>2],ke=i()[$+(he*8+4)>>2],at=0;at<ke;at++)di.printChar(N,o()[fe+at]);me+=ke}return i()[K>>2]=me,0}function tm(N){var $=Ce.threadExitHandlers.pop();N&&$()}function nm(N,$){Ce.threadExitHandlers.push(function(){rs.get(N)($)})}function Od(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ce.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Ce.runningWorkers.push($);for(var B=ka(128*4),K=0;K<128;++K)i()[B+K*4>>2]=0;var me=N.stackBase+N.stackSize,he=Ce.pthreads[N.pthread_ptr]={worker:$,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},fe=he.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),N.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),he.threadInfoStruct),Atomics.store(l(),fe+(80>>2),N.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),N.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),N.detached);var ke=sx(),at=ke+40;Atomics.store(l(),fe+(172>>2),at),$.pthread=he;var Yt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};$.runPthread=function(){Yt.time=performance.now(),$.postMessage(Yt,N.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function sm(N,$,B,K){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var me=[],he=0;if(k&&(me.length===0||he))return ix(687865856,N,$,B,K);if(he)return he;var fe=0,ke=0,at=0;$&&$!=-1?(fe=i()[$>>2],fe+=81920,ke=i()[$+8>>2],at=i()[$+12>>2]!==0):fe=2097152;var Yt=ke==0;Yt?ke=cx(16,fe):(ke-=fe,Ae(ke>0));for(var Ut=ka(228),Mr=0;Mr<228>>2;++Mr)l()[(Ut>>2)+Mr]=0;i()[N>>2]=Ut,i()[Ut+12>>2]=Ut;var Ai=Ut+152;i()[Ai>>2]=Ai;var An={stackBase:ke,stackSize:fe,allocatedOwnStack:Yt,detached:at,startRoutine:B,pthread_ptr:Ut,arg:K,transferList:me};return k?(An.cmd="spawnThread",postMessage(An,me)):Od(An),0}function Pd(N){if(k)return $r(6,1,N);switch(N){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return S0(28),-1}k||Ce.initMainThreadBlock();var Or,rm=[null,C0,_d,Dd,Fd,$d,Pd],am={e:k0,r:I0,x:T0,b:N0,y:E0,j:R0,c:_0,d:wu,f:wa,p:D0,z:F0,u:O0,q:z0,v:G0,i:j0,t:q0,w:em,m:Dd,n:Fd,g:$d,o:Ed,a:Q||c.wasmMemory,k:tm,l:nm,h:sm,s:Pd},tx=m0(),Md=c.___wasm_call_ctors=function(){return(Md=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},om=c._init=function(){return(om=c._init=c.asm.B).apply(null,arguments)},im=c._register_tensor=function(){return(im=c._register_tensor=c.asm.C).apply(null,arguments)},lm=c._dispose_data=function(){return(lm=c._dispose_data=c.asm.D).apply(null,arguments)},um=c._dispose=function(){return(um=c._dispose=c.asm.E).apply(null,arguments)},cm=c._Abs=function(){return(cm=c._Abs=c.asm.G).apply(null,arguments)},dm=c._Add=function(){return(dm=c._Add=c.asm.H).apply(null,arguments)},pm=c._AddN=function(){return(pm=c._AddN=c.asm.I).apply(null,arguments)},hm=c._All=function(){return(hm=c._All=c.asm.J).apply(null,arguments)},fm=c._Any=function(){return(fm=c._Any=c.asm.K).apply(null,arguments)},mm=c._ArgMax=function(){return(mm=c._ArgMax=c.asm.L).apply(null,arguments)},gm=c._AvgPool=function(){return(gm=c._AvgPool=c.asm.M).apply(null,arguments)},Am=c._BatchMatMul=function(){return(Am=c._BatchMatMul=c.asm.N).apply(null,arguments)},ym=c._Ceil=function(){return(ym=c._Ceil=c.asm.O).apply(null,arguments)},xm=c._ClipByValue=function(){return(xm=c._ClipByValue=c.asm.P).apply(null,arguments)},bm=c._Conv2D=function(){return(bm=c._Conv2D=c.asm.Q).apply(null,arguments)},vm=c._Conv2DBackpropInput=function(){return(vm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},wm=c._Cos=function(){return(wm=c._Cos=c.asm.S).apply(null,arguments)},km=c._Cosh=function(){return(km=c._Cosh=c.asm.T).apply(null,arguments)},Im=c._CropAndResize=function(){return(Im=c._CropAndResize=c.asm.U).apply(null,arguments)},Sm=c._Cumsum=function(){return(Sm=c._Cumsum=c.asm.V).apply(null,arguments)},Cm=c._DepthToSpace=function(){return(Cm=c._DepthToSpace=c.asm.W).apply(null,arguments)},Tm=c._DepthwiseConv2dNative=function(){return(Tm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Nm=c._Elu=function(){return(Nm=c._Elu=c.asm.Y).apply(null,arguments)},zd=c._Equal=function(){return(zd=c._Equal=c.asm.Z).apply(null,arguments)},Ld=c._Exp=function(){return(Ld=c._Exp=c.asm._).apply(null,arguments)},Bd=c._FlipLeftRight=function(){return(Bd=c._FlipLeftRight=c.asm.$).apply(null,arguments)},Cu=c._Floor=function(){return(Cu=c._Floor=c.asm.aa).apply(null,arguments)},pi=c._FloorDiv=function(){return(pi=c._FloorDiv=c.asm.ba).apply(null,arguments)},Em=c._FusedBatchNorm=function(){return(Em=c._FusedBatchNorm=c.asm.ca).apply(null,arguments)},Tu=c._FusedConv2D=function(){return(Tu=c._FusedConv2D=c.asm.da).apply(null,arguments)},J=c._FusedDepthwiseConv2D=function(){return(J=c._FusedDepthwiseConv2D=c.asm.ea).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.fa).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.ga).apply(null,arguments)},et=c._Greater=function(){return(et=c._Greater=c.asm.ha).apply(null,arguments)},Rt=c._GreaterEqual=function(){return(Rt=c._GreaterEqual=c.asm.ia).apply(null,arguments)},vt=c._LeakyRelu=function(){return(vt=c._LeakyRelu=c.asm.ja).apply(null,arguments)},qe=c._Less=function(){return(qe=c._Less=c.asm.ka).apply(null,arguments)},Ke=c._LessEqual=function(){return(Ke=c._LessEqual=c.asm.la).apply(null,arguments)},ln=c._Log=function(){return(ln=c._Log=c.asm.ma).apply(null,arguments)},Ar=c._LogicalAnd=function(){return(Ar=c._LogicalAnd=c.asm.na).apply(null,arguments)},yr=c._Max=function(){return(yr=c._Max=c.asm.oa).apply(null,arguments)},Wd=c._MaxPool=function(){return(Wd=c._MaxPool=c.asm.pa).apply(null,arguments)},Nu=c._Maximum=function(){return(Nu=c._Maximum=c.asm.qa).apply(null,arguments)},Un=c._Mean=function(){return(Un=c._Mean=c.asm.ra).apply(null,arguments)},Pr=c._Min=function(){return(Pr=c._Min=c.asm.sa).apply(null,arguments)},Vd=c._Minimum=function(){return(Vd=c._Minimum=c.asm.ta).apply(null,arguments)},aI=c._MirrorPad=function(){return(aI=c._MirrorPad=c.asm.ua).apply(null,arguments)},oI=c._Multiply=function(){return(oI=c._Multiply=c.asm.va).apply(null,arguments)},iI=c._Neg=function(){return(iI=c._Neg=c.asm.wa).apply(null,arguments)},lI=c._NonMaxSuppressionV3=function(){return(lI=c._NonMaxSuppressionV3=c.asm.xa).apply(null,arguments)},uI=c._NonMaxSuppressionV4=function(){return(uI=c._NonMaxSuppressionV4=c.asm.ya).apply(null,arguments)},cI=c._NonMaxSuppressionV5=function(){return(cI=c._NonMaxSuppressionV5=c.asm.za).apply(null,arguments)},dI=c._NotEqual=function(){return(dI=c._NotEqual=c.asm.Aa).apply(null,arguments)},pI=c._OneHot=function(){return(pI=c._OneHot=c.asm.Ba).apply(null,arguments)},hI=c._PadV2=function(){return(hI=c._PadV2=c.asm.Ca).apply(null,arguments)},fI=c._Pow=function(){return(fI=c._Pow=c.asm.Da).apply(null,arguments)},mI=c._Prelu=function(){return(mI=c._Prelu=c.asm.Ea).apply(null,arguments)},gI=c._Prod=function(){return(gI=c._Prod=c.asm.Fa).apply(null,arguments)},AI=c._RealDiv=function(){return(AI=c._RealDiv=c.asm.Ga).apply(null,arguments)},yI=c._Relu=function(){return(yI=c._Relu=c.asm.Ha).apply(null,arguments)},xI=c._Relu6=function(){return(xI=c._Relu6=c.asm.Ia).apply(null,arguments)},bI=c._ResizeBilinear=function(){return(bI=c._ResizeBilinear=c.asm.Ja).apply(null,arguments)},vI=c._Reverse=function(){return(vI=c._Reverse=c.asm.Ka).apply(null,arguments)},wI=c._RotateWithOffset=function(){return(wI=c._RotateWithOffset=c.asm.La).apply(null,arguments)},kI=c._Round=function(){return(kI=c._Round=c.asm.Ma).apply(null,arguments)},II=c._Rsqrt=function(){return(II=c._Rsqrt=c.asm.Na).apply(null,arguments)},SI=c._ScatterNd=function(){return(SI=c._ScatterNd=c.asm.Oa).apply(null,arguments)},CI=c._SelectV2=function(){return(CI=c._SelectV2=c.asm.Pa).apply(null,arguments)},TI=c._Sigmoid=function(){return(TI=c._Sigmoid=c.asm.Qa).apply(null,arguments)},NI=c._Sin=function(){return(NI=c._Sin=c.asm.Ra).apply(null,arguments)},EI=c._Softmax=function(){return(EI=c._Softmax=c.asm.Sa).apply(null,arguments)},RI=c._Sqrt=function(){return(RI=c._Sqrt=c.asm.Ta).apply(null,arguments)},_I=c._Square=function(){return(_I=c._Square=c.asm.Ua).apply(null,arguments)},DI=c._SquaredDifference=function(){return(DI=c._SquaredDifference=c.asm.Va).apply(null,arguments)},FI=c._Step=function(){return(FI=c._Step=c.asm.Wa).apply(null,arguments)},$I=c._StridedSlice=function(){return($I=c._StridedSlice=c.asm.Xa).apply(null,arguments)},OI=c._Sub=function(){return(OI=c._Sub=c.asm.Ya).apply(null,arguments)},PI=c._Sum=function(){return(PI=c._Sum=c.asm.Za).apply(null,arguments)},MI=c._Tan=function(){return(MI=c._Tan=c.asm._a).apply(null,arguments)},zI=c._Tanh=function(){return(zI=c._Tanh=c.asm.$a).apply(null,arguments)},LI=c._Tile=function(){return(LI=c._Tile=c.asm.ab).apply(null,arguments)},BI=c._TopK=function(){return(BI=c._TopK=c.asm.bb).apply(null,arguments)},WI=c._Transform=function(){return(WI=c._Transform=c.asm.cb).apply(null,arguments)},VI=c._Transpose=function(){return(VI=c._Transpose=c.asm.db).apply(null,arguments)},UI=c.__FusedMatMul=function(){return(UI=c.__FusedMatMul=c.asm.eb).apply(null,arguments)},ka=c._malloc=function(){return(ka=c._malloc=c.asm.fb).apply(null,arguments)},Eu=c._free=function(){return(Eu=c._free=c.asm.gb).apply(null,arguments)},nx=c.___errno_location=function(){return(nx=c.___errno_location=c.asm.hb).apply(null,arguments)},sx=c._emscripten_get_global_libc=function(){return(sx=c._emscripten_get_global_libc=c.asm.ib).apply(null,arguments)},hi=c._pthread_self=function(){return(hi=c._pthread_self=c.asm.jb).apply(null,arguments)},rx=c.___pthread_tsd_run_dtors=function(){return(rx=c.___pthread_tsd_run_dtors=c.asm.kb).apply(null,arguments)},Rm=c._emscripten_main_thread_process_queued_calls=function(){return(Rm=c._emscripten_main_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},HI=c._emscripten_current_thread_process_queued_calls=function(){return(HI=c._emscripten_current_thread_process_queued_calls=c.asm.mb).apply(null,arguments)},ax=c._emscripten_register_main_browser_thread_id=function(){return(ax=c._emscripten_register_main_browser_thread_id=c.asm.nb).apply(null,arguments)},ox=c.__emscripten_do_dispatch_to_thread=function(){return(ox=c.__emscripten_do_dispatch_to_thread=c.asm.ob).apply(null,arguments)},ix=c._emscripten_sync_run_in_main_thread_4=function(){return(ix=c._emscripten_sync_run_in_main_thread_4=c.asm.pb).apply(null,arguments)},lx=c._emscripten_run_in_main_runtime_thread_js=function(){return(lx=c._emscripten_run_in_main_runtime_thread_js=c.asm.qb).apply(null,arguments)},_m=c.__emscripten_call_on_thread=function(){return(_m=c.__emscripten_call_on_thread=c.asm.rb).apply(null,arguments)},GI=c._emscripten_tls_init=function(){return(GI=c._emscripten_tls_init=c.asm.sb).apply(null,arguments)},Dm=c.__emscripten_thread_init=function(){return(Dm=c.__emscripten_thread_init=c.asm.tb).apply(null,arguments)},Ru=c.stackSave=function(){return(Ru=c.stackSave=c.asm.ub).apply(null,arguments)},fi=c.stackRestore=function(){return(fi=c.stackRestore=c.asm.vb).apply(null,arguments)},mi=c.stackAlloc=function(){return(mi=c.stackAlloc=c.asm.wb).apply(null,arguments)},ux=c._emscripten_stack_set_limits=function(){return(ux=c._emscripten_stack_set_limits=c.asm.xb).apply(null,arguments)},cx=c._memalign=function(){return(cx=c._memalign=c.asm.yb).apply(null,arguments)},dx=c.__emscripten_allow_main_runtime_queued_calls=10016,gi=c.__emscripten_main_thread_futex=11652;c.cwrap=De,c.PThread=Ce,c.PThread=Ce,c.wasmMemory=Q,c.ExitStatus=_u;var Ud;function _u(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}va=function N(){Ud||Fm(),Ud||(va=N)};function Fm(N){if(N=N||m,mr>0)return;if(k){d(c),vu(),postMessage({cmd:"loaded"});return}if(l0(),mr>0)return;function $(){Ud||(Ud=!0,c.calledRun=!0,!le&&(vu(),u0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Rn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),$()},1)):$()}c.run=Fm;function jI(N,$){if(!($&&se&&N===0)){if(!$&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new _u(N);se||(Ce.terminateAllThreads(),pe=N,kd(),c.onExit&&c.onExit(N),le=!0),A(N,new _u(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Ce.initWorker()),Fm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),xS=wt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(J,re){o=J,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",p=function(J,re){throw re},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(J){return a.locateFile?a.locateFile(J,A):A+J}var x,b,v,k,S,C;m?(f?A=Ou().dirname(A)+"/":A=__dirname+"/",x=function(re,xe){return S||(S=bi("fs")),C||(C=Ou()),re=C.normalize(re),S.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(J){if(!(J instanceof Em))throw J}),process.on("unhandledRejection",Xs),p=function(J){process.exit(J)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(p=function(J){quit(J)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(J){var re=new XMLHttpRequest;return re.open("GET",J,!1),re.send(null),re.responseText},f&&(v=function(J){var re=new XMLHttpRequest;return re.open("GET",J,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(J,re,xe){var et=new XMLHttpRequest;et.open("GET",J,!0),et.responseType="arraybuffer",et.onload=function(){if(et.status==200||et.status==0&&et.response){re(et.response);return}xe()},et.onerror=xe,et.send(null)},k=function(J){document.title=J});var _=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Xs("no native wasm support detected");var T,P=!1,V;function j(J,re){J||Xs("Assertion failed: "+re)}function q(J){var re=a["_"+J];return j(re,"Cannot call unknown function "+J+", make sure it is exported"),re}function X(J,re,xe,et,Rt){var vt={string:function(Un){var Pr=0;if(Un!=null&&Un!==0){var Vd=(Un.length<<2)+1;Pr=Cu(Vd),ie(Un,Pr,Vd)}return Pr},array:function(Un){var Pr=Cu(Un.length);return le(Un,Pr),Pr}};function qe(Un){return re==="string"?se(Un):re==="boolean"?Boolean(Un):Un}var Ke=q(J),ln=[],Ar=0;if(et)for(var yr=0;yr<et.length;yr++){var Wd=vt[xe[yr]];Wd?(Ar===0&&(Ar=Ld()),ln[yr]=Wd(et[yr])):ln[yr]=et[yr]}var Nu=Ke.apply(null,ln);return Nu=qe(Nu),Ar!==0&&Bd(Ar),Nu}function ee(J,re,xe,et){xe=xe||[];var Rt=xe.every(function(qe){return qe==="number"}),vt=re!=="string";return vt&&Rt&&!et?q(J):function(){return X(J,re,xe,arguments,et)}}var te=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(J,re,xe){for(var et=re+xe,Rt=re;J[Rt]&&!(Rt>=et);)++Rt;if(Rt-re>16&&J.subarray&&te)return te.decode(J.subarray(re,Rt));for(var vt="";re<Rt;){var qe=J[re++];if(!(qe&128)){vt+=String.fromCharCode(qe);continue}var Ke=J[re++]&63;if((qe&224)==192){vt+=String.fromCharCode((qe&31)<<6|Ke);continue}var ln=J[re++]&63;if((qe&240)==224?qe=(qe&15)<<12|Ke<<6|ln:qe=(qe&7)<<18|Ke<<12|ln<<6|J[re++]&63,qe<65536)vt+=String.fromCharCode(qe);else{var Ar=qe-65536;vt+=String.fromCharCode(55296|Ar>>10,56320|Ar&1023)}}return vt}function se(J,re){return J?ne(Ne,J,re):""}function Q(J,re,xe,et){if(!(et>0))return 0;for(var Rt=xe,vt=xe+et-1,qe=0;qe<J.length;++qe){var Ke=J.charCodeAt(qe);if(Ke>=55296&&Ke<=57343){var ln=J.charCodeAt(++qe);Ke=65536+((Ke&1023)<<10)|ln&1023}if(Ke<=127){if(xe>=vt)break;re[xe++]=Ke}else if(Ke<=2047){if(xe+1>=vt)break;re[xe++]=192|Ke>>6,re[xe++]=128|Ke&63}else if(Ke<=65535){if(xe+2>=vt)break;re[xe++]=224|Ke>>12,re[xe++]=128|Ke>>6&63,re[xe++]=128|Ke&63}else{if(xe+3>=vt)break;re[xe++]=240|Ke>>18,re[xe++]=128|Ke>>12&63,re[xe++]=128|Ke>>6&63,re[xe++]=128|Ke&63}}return re[xe]=0,xe-Rt}function ie(J,re,xe){return Q(J,Ne,re,xe)}function le(J,re){Te.set(J,re)}function pe(J,re){return J%re>0&&(J+=re-J%re),J}var Ae,Te,Ne,De,ze,Oe,ct,st,rt;function tt(J){Ae=J,a.HEAP8=Te=new Int8Array(J),a.HEAP16=De=new Int16Array(J),a.HEAP32=Oe=new Int32Array(J),a.HEAPU8=Ne=new Uint8Array(J),a.HEAPU16=ze=new Uint16Array(J),a.HEAPU32=ct=new Uint32Array(J),a.HEAPF32=st=new Float32Array(J),a.HEAPF64=rt=new Float64Array(J)}var lt=a.INITIAL_MEMORY||16777216,Ge,En=[],Ct=[],Wn=[],an=[],vs=!1;Ct.push({func:function(){Ed()}});function gn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)ss(a.preRun.shift());Fr(En)}function ts(){vs=!0,Fr(Ct)}function ns(){Fr(Wn)}function on(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)rs(a.postRun.shift());Fr(an)}function ss(J){En.unshift(J)}function rs(J){an.unshift(J)}var Vn=0,qs=null,fr=null;function Dr(J){Vn++,a.monitorRunDependencies&&a.monitorRunDependencies(Vn)}function li(J){if(Vn--,a.monitorRunDependencies&&a.monitorRunDependencies(Vn),Vn==0&&(qs!==null&&(clearInterval(qs),qs=null),fr)){var re=fr;fr=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Xs(J){a.onAbort&&a.onAbort(J),J+="",O(J),P=!0,V=1,J="abort("+J+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(J);throw i(re),re}function wd(J,re){return String.prototype.startsWith?J.startsWith(re):J.indexOf(re)===0}var l0="data:application/octet-stream;base64,";function vu(J){return wd(J,l0)}var u0="file://";function kd(J){return wd(J,u0)}var Rn="tfjs-backend-wasm.wasm";vu(Rn)||(Rn=y(Rn));function Id(J){try{if(J==Rn&&E)return new Uint8Array(E);if(v)return v(J);throw"both async and sync fetching of the wasm failed"}catch(re){Xs(re)}}function c0(){if(!E&&(h||f)){if(typeof fetch=="function"&&!kd(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(J){if(!J.ok)throw"failed to load wasm binary file at '"+Rn+"'";return J.arrayBuffer()}).catch(function(){return Id(Rn)});if(b)return new Promise(function(J,re){b(Rn,function(xe){J(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return Id(Rn)})}function mr(){var J={a:m0};function re(qe,Ke){var ln=qe.exports;a.asm=ln,T=a.asm.i,tt(T.buffer),Ge=a.asm.o,li("wasm-instantiate")}Dr("wasm-instantiate");function xe(qe){re(qe.instance)}function et(qe){return c0().then(function(Ke){return WebAssembly.instantiate(Ke,J)}).then(qe,function(Ke){O("failed to asynchronously prepare wasm: "+Ke),Xs(Ke)})}function Rt(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!vu(Rn)&&!kd(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(qe){var Ke=WebAssembly.instantiateStreaming(qe,J);return Ke.then(xe,function(ln){return O("wasm streaming compile failed: "+ln),O("falling back to ArrayBuffer instantiation"),et(xe)})}):et(xe)}if(a.instantiateWasm)try{var vt=a.instantiateWasm(J,re);return vt}catch(qe){return O("Module.instantiateWasm callback failed with error: "+qe),!1}return Rt().catch(i),{}}function Fr(J){for(;J.length>0;){var re=J.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?Ge.get(xe)():Ge.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function va(){Xs()}function d0(J,re,xe){Ne.copyWithin(J,re,re+xe)}function p0(){return Ne.length}function gr(J){try{return T.grow(J-Ae.byteLength+65535>>>16),tt(T.buffer),1}catch(re){}}function Sd(J){var re=p0(),xe=2147483648;if(J>xe)return!1;for(var et=1;et<=4;et*=2){var Rt=re*(1+.2/et);Rt=Math.min(Rt,J+100663296);var vt=Math.min(xe,pe(Math.max(J,Rt),65536)),qe=gr(vt);if(qe)return!0}return!1}var ui={mappings:{},buffers:[null,[],[]],printChar:function(J,re){var xe=ui.buffers[J];re===0||re===10?((J===1?_:O)(ne(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){ui.varargs+=4;var J=Oe[ui.varargs-4>>2];return J},getStr:function(J){var re=se(J);return re},get64:function(J,re){return J}};function Cd(J){return 0}function h0(J,re,xe,et,Rt){}function Td(J,re,xe,et){for(var Rt=0,vt=0;vt<xe;vt++){for(var qe=Oe[re+vt*8>>2],Ke=Oe[re+(vt*8+4)>>2],ln=0;ln<Ke;ln++)ui.printChar(J,Ne[qe+ln]);Rt+=Ke}return Oe[et>>2]=Rt,0}function _n(){return 6}function Nd(J){return Oe[zd()>>2]=J,J}function f0(J){switch(J){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Nd(28),-1}var m0={a:va,d:d0,e:Sd,f:Cd,c:h0,b:Td,g:_n,h:f0},g0=mr(),Ed=a.___wasm_call_ctors=function(){return(Ed=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},ci=a._init=function(){return(ci=a._init=a.asm.k).apply(null,arguments)},wu=a._register_tensor=function(){return(wu=a._register_tensor=a.asm.l).apply(null,arguments)},A0=a._dispose_data=function(){return(A0=a._dispose_data=a.asm.m).apply(null,arguments)},y0=a._dispose=function(){return(y0=a._dispose=a.asm.n).apply(null,arguments)},x0=a._Abs=function(){return(x0=a._Abs=a.asm.p).apply(null,arguments)},Ce=a._Add=function(){return(Ce=a._Add=a.asm.q).apply(null,arguments)},b0=a._AddN=function(){return(b0=a._AddN=a.asm.r).apply(null,arguments)},v0=a._All=function(){return(v0=a._All=a.asm.s).apply(null,arguments)},w0=a._Any=function(){return(w0=a._Any=a.asm.t).apply(null,arguments)},k0=a._ArgMax=function(){return(k0=a._ArgMax=a.asm.u).apply(null,arguments)},I0=a._AvgPool=function(){return(I0=a._AvgPool=a.asm.v).apply(null,arguments)},wa=a._BatchMatMul=function(){return(wa=a._BatchMatMul=a.asm.w).apply(null,arguments)},S0=a._Ceil=function(){return(S0=a._Ceil=a.asm.x).apply(null,arguments)},C0=a._ClipByValue=function(){return(C0=a._ClipByValue=a.asm.y).apply(null,arguments)},T0=a._Conv2D=function(){return(T0=a._Conv2D=a.asm.z).apply(null,arguments)},N0=a._Conv2DBackpropInput=function(){return(N0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},E0=a._Cos=function(){return(E0=a._Cos=a.asm.B).apply(null,arguments)},R0=a._Cosh=function(){return(R0=a._Cosh=a.asm.C).apply(null,arguments)},_0=a._CropAndResize=function(){return(_0=a._CropAndResize=a.asm.D).apply(null,arguments)},D0=a._Cumsum=function(){return(D0=a._Cumsum=a.asm.E).apply(null,arguments)},F0=a._DepthToSpace=function(){return(F0=a._DepthToSpace=a.asm.F).apply(null,arguments)},$r=a._DepthwiseConv2dNative=function(){return($r=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},ku=a._Elu=function(){return(ku=a._Elu=a.asm.H).apply(null,arguments)},Iu=a._Equal=function(){return(Iu=a._Equal=a.asm.I).apply(null,arguments)},$0=a._Exp=function(){return($0=a._Exp=a.asm.J).apply(null,arguments)},O0=a._FlipLeftRight=function(){return(O0=a._FlipLeftRight=a.asm.K).apply(null,arguments)},P0=a._Floor=function(){return(P0=a._Floor=a.asm.L).apply(null,arguments)},M0=a._FloorDiv=function(){return(M0=a._FloorDiv=a.asm.M).apply(null,arguments)},z0=a._FusedBatchNorm=function(){return(z0=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Be=a._FusedConv2D=function(){return(Be=a._FusedConv2D=a.asm.O).apply(null,arguments)},L0=a._FusedDepthwiseConv2D=function(){return(L0=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},B0=a._Gather=function(){return(B0=a._Gather=a.asm.Q).apply(null,arguments)},W0=a._GatherNd=function(){return(W0=a._GatherNd=a.asm.R).apply(null,arguments)},V0=a._Greater=function(){return(V0=a._Greater=a.asm.S).apply(null,arguments)},U0=a._GreaterEqual=function(){return(U0=a._GreaterEqual=a.asm.T).apply(null,arguments)},H0=a._LeakyRelu=function(){return(H0=a._LeakyRelu=a.asm.U).apply(null,arguments)},Su=a._Less=function(){return(Su=a._Less=a.asm.V).apply(null,arguments)},Rd=a._LessEqual=function(){return(Rd=a._LessEqual=a.asm.W).apply(null,arguments)},_d=a._Log=function(){return(_d=a._Log=a.asm.X).apply(null,arguments)},G0=a._LogicalAnd=function(){return(G0=a._LogicalAnd=a.asm.Y).apply(null,arguments)},j0=a._Max=function(){return(j0=a._Max=a.asm.Z).apply(null,arguments)},q0=a._MaxPool=function(){return(q0=a._MaxPool=a.asm._).apply(null,arguments)},X0=a._Maximum=function(){return(X0=a._Maximum=a.asm.$).apply(null,arguments)},K0=a._Mean=function(){return(K0=a._Mean=a.asm.aa).apply(null,arguments)},Z0=a._Min=function(){return(Z0=a._Min=a.asm.ba).apply(null,arguments)},Y0=a._Minimum=function(){return(Y0=a._Minimum=a.asm.ca).apply(null,arguments)},nt=a._MirrorPad=function(){return(nt=a._MirrorPad=a.asm.da).apply(null,arguments)},J0=a._Multiply=function(){return(J0=a._Multiply=a.asm.ea).apply(null,arguments)},Q0=a._Neg=function(){return(Q0=a._Neg=a.asm.fa).apply(null,arguments)},em=a._NonMaxSuppressionV3=function(){return(em=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},di=a._NonMaxSuppressionV4=function(){return(di=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},Dd=a._NonMaxSuppressionV5=function(){return(Dd=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},Fd=a._NotEqual=function(){return(Fd=a._NotEqual=a.asm.ja).apply(null,arguments)},$d=a._OneHot=function(){return($d=a._OneHot=a.asm.ka).apply(null,arguments)},tm=a._PadV2=function(){return(tm=a._PadV2=a.asm.la).apply(null,arguments)},nm=a._Pow=function(){return(nm=a._Pow=a.asm.ma).apply(null,arguments)},Od=a._Prelu=function(){return(Od=a._Prelu=a.asm.na).apply(null,arguments)},sm=a._Prod=function(){return(sm=a._Prod=a.asm.oa).apply(null,arguments)},Pd=a._RealDiv=function(){return(Pd=a._RealDiv=a.asm.pa).apply(null,arguments)},Or=a._Relu=function(){return(Or=a._Relu=a.asm.qa).apply(null,arguments)},rm=a._Relu6=function(){return(rm=a._Relu6=a.asm.ra).apply(null,arguments)},am=a._ResizeBilinear=function(){return(am=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},tx=a._Reverse=function(){return(tx=a._Reverse=a.asm.ta).apply(null,arguments)},Md=a._RotateWithOffset=function(){return(Md=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},om=a._Round=function(){return(om=a._Round=a.asm.va).apply(null,arguments)},im=a._Rsqrt=function(){return(im=a._Rsqrt=a.asm.wa).apply(null,arguments)},lm=a._ScatterNd=function(){return(lm=a._ScatterNd=a.asm.xa).apply(null,arguments)},um=a._SelectV2=function(){return(um=a._SelectV2=a.asm.ya).apply(null,arguments)},cm=a._Sigmoid=function(){return(cm=a._Sigmoid=a.asm.za).apply(null,arguments)},dm=a._Sin=function(){return(dm=a._Sin=a.asm.Aa).apply(null,arguments)},pm=a._Softmax=function(){return(pm=a._Softmax=a.asm.Ba).apply(null,arguments)},hm=a._Sqrt=function(){return(hm=a._Sqrt=a.asm.Ca).apply(null,arguments)},fm=a._Square=function(){return(fm=a._Square=a.asm.Da).apply(null,arguments)},mm=a._SquaredDifference=function(){return(mm=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},gm=a._Step=function(){return(gm=a._Step=a.asm.Fa).apply(null,arguments)},Am=a._StridedSlice=function(){return(Am=a._StridedSlice=a.asm.Ga).apply(null,arguments)},ym=a._Sub=function(){return(ym=a._Sub=a.asm.Ha).apply(null,arguments)},xm=a._Sum=function(){return(xm=a._Sum=a.asm.Ia).apply(null,arguments)},bm=a._Tan=function(){return(bm=a._Tan=a.asm.Ja).apply(null,arguments)},vm=a._Tanh=function(){return(vm=a._Tanh=a.asm.Ka).apply(null,arguments)},wm=a._Tile=function(){return(wm=a._Tile=a.asm.La).apply(null,arguments)},km=a._TopK=function(){return(km=a._TopK=a.asm.Ma).apply(null,arguments)},Im=a._Transform=function(){return(Im=a._Transform=a.asm.Na).apply(null,arguments)},Sm=a._Transpose=function(){return(Sm=a._Transpose=a.asm.Oa).apply(null,arguments)},Cm=a.__FusedMatMul=function(){return(Cm=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Tm=a._malloc=function(){return(Tm=a._malloc=a.asm.Qa).apply(null,arguments)},Nm=a._free=function(){return(Nm=a._free=a.asm.Ra).apply(null,arguments)},zd=a.___errno_location=function(){return(zd=a.___errno_location=a.asm.Sa).apply(null,arguments)},Ld=a.stackSave=function(){return(Ld=a.stackSave=a.asm.Ta).apply(null,arguments)},Bd=a.stackRestore=function(){return(Bd=a.stackRestore=a.asm.Ua).apply(null,arguments)},Cu=a.stackAlloc=function(){return(Cu=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=ee;var pi;function Em(J){this.name="ExitStatus",this.message="Program terminated with exit("+J+")",this.status=J}fr=function J(){pi||Tu(),pi||(fr=J)};function Tu(J){if(J=J||c,Vn>0||(gn(),Vn>0))return;function re(){pi||(pi=!0,a.calledRun=!0,!P&&(ts(),ns(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),on()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=Tu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Tu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),bS="3.9.0",vS="3.9.0",wS="3.9.0",kS="3.9.0",IS="3.9.0",SS="3.9.0",CS="3.9.0",TS="3.9.0",NS=1e-7,ES=1e-4,Gd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Pu=class{refCount(e){return ws("refCount")}incRef(e){return ws("incRef")}timerAvailable(){return!0}time(e){return ws("time")}read(e){return ws("read")}readSync(e){return ws("readSync")}numDataIds(){return ws("numDataIds")}disposeData(e,t){return ws("disposeData")}write(e,t,n){return ws("write")}move(e,t,n,s,r){return ws("move")}memory(){return ws("memory")}floatPrecision(){return ws("floatPrecision")}epsilon(){return this.floatPrecision()===32?NS:ES}dispose(){return ws("dispose")}};function ws(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function bx(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,jd(e,t,n)}function RS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,jd(e,n,s),jd(t,n,s)}function Mu(e,t,n){return Math.max(e,Math.min(t,n))}function _S(e){return e%2==0?e:e+1}function jd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function DS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function FS(e,t){let n=Math.random();return t*n+(1-n)*e}function $S(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function yn(e,t,n=""){M(xr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Sa(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ca(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let s=0;s<e.length;++s)Ca(e[s],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function OS(e){return e.length===0}function xr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Jt(e){return e%1==0}function PS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function MS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function zS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return bx(t),t}function zu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function LS(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function BS(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ks(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>Jt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function vx(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ks(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function wx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function kx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Ix(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Sx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function WS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Pm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Cx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function zr(e){return typeof e=="string"||e instanceof String}function Tx(e){return typeof e=="boolean"}function Nx(e){return typeof e=="number"}function qd(e){return Array.isArray(e)?qd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Nx(e)?"float32":zr(e)?"string":Tx(e)?"bool":"float32"}function Lr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Xd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function vi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Ex(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=Ex(e+l*i,o,n,s)}return r}function wi(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Ex(0,e,t,n)}function Mm(e,t){let n=Kd(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Kd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function VS(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return wi(e,new Float32Array(n));if(t==="int32")return wi(e,new Int32Array(n));if(t==="bool")return wi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zm(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function US(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function HS(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Lm(e){return e&&e.then&&typeof e.then=="function"}function Ks(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function GS(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var Rx="tfjsflags",_x=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=jS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Ks(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Ks(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Lm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Rx in e&&e[Rx].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=XS(s,r)})}};function jS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(qS(t,s[0],s[1]),s.join("="))),t}function qS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function XS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Zs}var Zs=null;function KS(e){Zs=e}var Bm;function Dx(){if(Bm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Bm=e}return Bm}function ZS(){let e=Dx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Wm(e,t){let n=ZS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ki="Abs",Ii="Acos",Si="Acosh",Br="Add",Ta="AddN",Ci="All",Ti="Any",Na="ArgMax",Lu="ArgMin",Ni="Asin",Ei="Asinh",Ri="Atan",_i="Atanh",Di="Atan2",Ea="AvgPool",Zd="AvgPoolGrad",Bu="AvgPool3D",Yd="AvgPool3DGrad",Ra="BatchMatMul",Fi="BatchToSpaceND",Jd="Bincount",Fx="BroadcastTo",Vm="BroadcastArgs",_a="Cast",Da="Ceil",Wr="ClipByValue",Qd="Complex",Wu="ComplexAbs",$i="Concat",Fa="Conv2D",ep="Conv2DBackpropFilter",$a="Conv2DBackpropInput",Vu="Conv3D",tp="Conv3DBackpropFilterV2",np="Conv3DBackpropInputV2",Oa="Cos",Pa="Cosh",Ma="Cumsum",Oi="CropAndResize",sp="DenseBincount",Pi="DepthToSpace",za="DepthwiseConv2dNative",rp="DepthwiseConv2dNativeBackpropFilter",ap="DepthwiseConv2dNativeBackpropInput",op="Diag",Uu="Dilation2D",ip="Dilation2DBackpropInput",lp="Dilation2DBackpropFilter",La="RealDiv",up="Einsum",Ba="Elu",cp="EluGrad",Mi="Erf",zi="Equal",Wa="Exp",Li="ExpandDims",Bi="Expm1",dp="FFT",Hu="Fill",Wi="FlipLeftRight",Va="Floor",Ua="FloorDiv",Ha="FusedBatchNorm",Vi="GatherV2",Ui="GatherNd",Hi="Greater",Ga="GreaterEqual",ja="Identity",pp="IFFT",hp="Imag",Gi="IsFinite",ji="IsInf",qi="IsNan",qa="LeakyRelu",Xi="Less",Ki="LessEqual",fp="LinSpace",Xa="Log",Zi="Log1p",Yi="LogicalAnd",Gu="LogicalNot",ju="LogicalOr",$x="LogSoftmax",qu="LRN",mp="LRNGrad",Ka="Max",Za="Maximum",Ya="MaxPool",gp="MaxPoolGrad",Xu="MaxPool3D",Ap="MaxPool3DGrad",yp="MaxPoolWithArgmax",Ja="Mean",Qa="Min",eo="Minimum",to="MirrorPad",Ji="Mod",xp="Multinomial",no="Multiply",Qi="Neg",el="NotEqual",tl="NonMaxSuppressionV3",nl="NonMaxSuppressionV4",sl="NonMaxSuppressionV5",rl="OnesLike",so="OneHot",al="Pack",ro="PadV2",YS="Pool",ao="Pow",oo="Prelu",ol="Prod",Ku="Range",bp="Real",il="Reciprocal",io="Relu",ll="Reshape",Zu="ResizeNearestNeighbor",vp="ResizeNearestNeighborGrad",lo="ResizeBilinear",wp="ResizeBilinearGrad",uo="Relu6",co="Reverse",po="Round",ho="Rsqrt",ul="ScatterNd",cl="Select",dl="Selu",pl="Slice",fo="Sin",hl="Sinh",fl="Sign",mo="Sigmoid",ml="Softplus",go="Sqrt",Ao="Sum",gl="SpaceToBatchND",Al="SplitV",yo="Softmax",kp="SparseFillEmptyRows",Ip="SparseReshape",Sp="SparseSegmentMean",Cp="SparseSegmentSum",Tp="SparseToDense",xo="SquaredDifference",Yu="Square",yl="StridedSlice",Np="StringNGrams",Ep="StringSplit",Rp="StringToHashBucketFast",bo="Sub",vo="Tan",wo="Tanh",Vr="Tile",xl="TopK",bl="Transform",ko="Transpose",_p="Unique",vl="Unpack",Ju="UnsortedSegmentSum",wl="ZerosLike",Ur="Step",Dp="FromPixels",kl="RotateWithOffset",Io="_FusedMatMul",So="FusedConv2D",Co="FusedDepthwiseConv2D",Il=Wm("kernelRegistry",()=>new Map),Qu=Wm("gradRegistry",()=>new Map);function Fp(e,t){let n=Hm(e,t);return Il.get(n)}function Um(e){return Qu.get(e)}function Hr(e){let t=Il.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function To(e){let{kernelName:t,backendName:n}=e,s=Hm(t,n);Il.has(s)&&Ks(`The kernel '${t}' for backend '${n}' is already registered`),Il.set(s,e)}function Ox(e){let{kernelName:t}=e;Qu.has(t)&&Y().getBool("DEBUG")&&Ks(`Overriding the gradient for '${t}'`),Qu.set(t,e)}function JS(e,t){let n=Hm(e,t);if(!Il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Il.delete(n)}function QS(e){if(!Qu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Qu.delete(e)}function eC(e,t){Hr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});To(r)})}function Hm(e,t){return`${t}_${e}`}var w={};Me(w,{arraysEqual:()=>xr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>zm,assertNonNull:()=>Sa,assertShapesMatch:()=>yn,bytesFromStringArray:()=>Cx,bytesPerElement:()=>Pm,checkConversionForErrors:()=>Ix,clamp:()=>Mu,computeStrides:()=>vi,createScalarValue:()=>oC,createShuffledIndices:()=>zS,decodeString:()=>Pp,distSquared:()=>$S,encodeString:()=>nc,fetch:()=>lC,fingerPrint64:()=>aC,flatten:()=>Ca,getArrayFromDType:()=>kx,getTypedArrayFromDType:()=>wx,hasEncodingLoss:()=>WS,hexToLong:()=>ec,indexToLoc:()=>HS,inferDtype:()=>qd,inferFromImplicitShape:()=>BS,isBoolean:()=>Tx,isFunction:()=>Lr,isInt:()=>Jt,isNumber:()=>Nx,isPromise:()=>Lm,isScalarShape:()=>OS,isString:()=>zr,isTypedArray:()=>hn,isValidDtype:()=>Sx,locToIndex:()=>US,makeOnesTypedArray:()=>Mm,makeZerosNestedTypedArray:()=>VS,makeZerosTypedArray:()=>Kd,nearestDivisor:()=>Xd,nearestLargerEven:()=>_S,now:()=>tc,parseAxisParam:()=>ks,randUniform:()=>FS,repeatedTry:()=>LS,rightPad:()=>zu,shuffle:()=>bx,shuffleCombo:()=>RS,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>MS,squeezeShape:()=>vx,sum:()=>DS,swap:()=>jd,tanh:()=>PS,toNestedArray:()=>wi,toTypedArray:()=>Op});var Px=Ia(eS()),No=Px.default||Px;function ec(e){return No.fromString(e,!0,16)}var Mx=ec("c3a5c85c97cb3127"),Eo=ec("b492b66fbe98f273"),xn=ec("9ae16a3b2f90404f");function Gm(e){return e.xor(e.shru(47))}function zx(e,t,n){let s=e.slice(t,t+n);return No.fromBytes(Array.from(s),!0,!0)}function ft(e,t){return zx(e,t,8)}function Lx(e,t){return zx(e,t,4)}function Qt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Gr(e,t,n=ec("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function tC(e,t,n,s,r,a){r=r.add(e),a=Qt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Qt(r,44)),[r.add(s),a.add(o)]}function $p(e,t,n,s){return tC(ft(e,t),ft(e,t+8),ft(e,t+16),ft(e,t+24),n,s)}function nC(e,t=e.length){if(t>=8){let n=xn.add(t*2),s=ft(e,0).add(xn),r=ft(e,t-8),a=Qt(r,37).mul(n).add(s),o=Qt(s,25).add(r).mul(n);return Gr(a,o,n)}if(t>=4){let n=xn.add(t*2),s=Lx(e,0);return Gr(s.shl(3).add(t),Lx(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Gm(xn.mul(a).xor(Mx.mul(o))).mul(xn)}return xn}function sC(e,t=e.length){let n=xn.add(t*2),s=ft(e,0).mul(Eo),r=ft(e,8),a=ft(e,t-8).mul(n),o=ft(e,t-16).mul(xn);return Gr(Qt(s.add(r),43).add(Qt(a,30)).add(o),s.add(Qt(r.add(xn),18)).add(a),n)}function rC(e,t=e.length){let n=xn.add(t*2),s=ft(e,0).mul(xn),r=ft(e,8),a=ft(e,t-8).mul(n),o=ft(e,t-16).mul(xn),i=Qt(s.add(r),43).add(Qt(a,30)).add(o),l=Gr(i,s.add(Qt(r.add(xn),18)).add(a),n),u=ft(e,16).mul(n),c=ft(e,24),d=i.add(ft(e,t-32)).mul(n),p=l.add(ft(e,t-24)).mul(n);return Gr(Qt(u.add(c),43).add(Qt(d,30)).add(p),u.add(Qt(c.add(s),18)).add(d),n)}function aC(e,t=e.length){let n=No.fromNumber(81,!0);if(t<=32)return t<=16?nC(e,t):sC(e,t);if(t<=64)return rC(e,t);let s=n,r=n.mul(Eo).add(113),a=Gm(r.mul(xn).add(113)).mul(xn),o=[No.UZERO,No.UZERO],i=[No.UZERO,No.UZERO];s=s.mul(xn).add(ft(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Qt(s.add(r).add(o[0]).add(ft(e,l+8)),37).mul(Eo),r=Qt(r.add(o[1]).add(ft(e,l+48)),42).mul(Eo),s=s.xor(i[1]),r=r.add(o[0]).add(ft(e,l+40)),a=Qt(a.add(i[0]),33).mul(Eo),o=$p(e,l,o[1].mul(Eo),s.add(i[0])),i=$p(e,l+32,a.add(i[1]),r.add(ft(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=Eo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Qt(s.add(r).add(o[0]).add(ft(e,l+8)),37).mul(d),r=Qt(r.add(o[1]).add(ft(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(ft(e,l+40))),a=Qt(a.add(i[0]),33).mul(d),o=$p(e,l,o[1].mul(d),s.add(i[0])),i=$p(e,l+32,a.add(i[1]),r.add(ft(e,l+16))),[a,s]=[s,a],Gr(Gr(o[0],i[0],d).add(Gm(r).mul(Mx)).add(a),Gr(o[1],i[1],d).add(s),d)}function oC(e,t){return t==="string"?nc(e):Op([e],t)}function iC(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Op(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ca(e)),Y().getBool("DEBUG")&&Ix(e,t),iC(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function tc(){return Y().platform.now()}function lC(e,t){return Y().platform.fetch(e,t)}function nc(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function Pp(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var uC=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new dC)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=tc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:tc()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{cC(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function cC(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var dC=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?zu(`${s}ms`,9):s.error,i=zu(e,25),l=t.rank,u=t.size,c=zu(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function pC(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let p=c[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let p in c)a[c[p].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let p in u.inputs){let h=u.inputs[p];s[h.id]&&(c[p]=h)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function hC(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!xr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var Bx=20,sc=3,jm=7;function fC(e,t,n,s){let r=vi(t),a=mC(e,t,n,r),o=t.length,i=Mp(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function mC(e,t,n,s){let r=Ot(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?ac(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],rc(l[c+d],0,n).length)}return o}function rc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(jm))} + ${parseFloat(e[1].toFixed(jm))}j`:zr(e)?s=`'${e}'`:n==="bool"?s=Wx(e):s=parseFloat(e.toFixed(jm)).toString(),zu(s,t)}function Wx(e){return e===0?"false":"true"}function Mp(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=ac(e);return[rc(m[0],0,n)]}return n==="bool"?[Wx(e[0])]:[e[0].toString()]}if(l===1){if(i>Bx){let g=sc*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-sc)*o,i*o));return n==="complex64"&&(A=ac(A),y=ac(y)),["["+A.map((x,b)=>rc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>rc(x,r[i-sc+b],n)).join(", ")+"]"]}let m=n==="complex64"?ac(e):Array.from(e);return["["+m.map((g,A)=>rc(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,p=[];if(i>Bx){for(let m=0;m<sc;m++){let g=m*d,A=g+d;p.push(...Mp(e.slice(g,A),u,n,c,r,!1))}p.push("...");for(let m=i-sc;m<i;m++){let g=m*d,A=g+d;p.push(...Mp(e.slice(g,A),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Mp(e.slice(g,A),u,n,c,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function ac(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ht=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||kx(t,this.size),this.strides=vi(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ys().makeTensor(this.values,this.shape,this.dtype)}},Ys=null,Sl=null,gC=null;function AC(e){Ys=e}function yC(e){Sl=e}function xC(e){gC=e}var je=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=vi(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Sl.buffer(this.shape,this.dtype,e)}bufferSync(){return Sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return wi(this.shape,e,this.dtype==="complex64")}arraySync(){return wi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ys().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Pp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ys().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Pp(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ys().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ys().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Sl.print(this,e)}clone(){return this.throwIfDisposed(),Sl.clone(this)}toString(e=!1){let t=this.dataSync();return fC(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ys().makeVariable(this,e,t,n)}};Object.defineProperty(je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function bC(){return Wm("Tensor",()=>je)}bC();var oc=class extends je{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!xr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ys().disposeTensor(this),this.dataId=e.dataId,Ys().incRef(this,null)}dispose(){Ys().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(oc,Symbol.hasInstance,{value:e=>e instanceof je&&e.assign!=null&&e.assign instanceof Function});var _s={};Me(_s,{assertTypesMatch:()=>Vx,getTensorsInContainer:()=>Jm,isTensorInList:()=>wC,makeTypesMatch:()=>Tt});var qm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(qm||(qm={}));var Xm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Xm||(Xm={}));var Km;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Km||(Km={}));var Zm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Zm||(Zm={}));var Ym;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ym||(Ym={}));var vC={float32:Zm,int32:Xm,bool:Km,complex64:Ym};function Is(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return vC[e][t]}function zp(e){return Is(e,"int32")}function Tt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Is(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Vx(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function wC(e,t){return t.some(n=>n.id===e.id)}function Jm(e){let t=[],n=new Set;return Ux(e,t,n),t}function Ux(e,t,n){if(e==null)return;if(e instanceof je){t.push(e);return}if(!kC(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),Ux(a,t,n))}}function kC(e){return Array.isArray(e)||typeof e=="object"}function Qm(e){return e.kernelName!=null}var Hx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},ic=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Hx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Ks(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new uC(this.backendInstance),!0}setupRegisteredKernels(){Hr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Hr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Pu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Ks(`Initialization of backend ${e} failed`),Ks(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Ks(`Initialization of backend ${e} failed`),Ks(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return ic.nextTensorId++}nextVariableId(){return ic.nextVariableId++}clone(e){let t=z.runKernel(ja,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return z.runKernel(_a,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Fp(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Qm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Qm(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Fp(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:S}=b;return this.makeTensorFromDataId(v,k,S)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=Qm(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Um(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&zr(e[0])&&(r=e.map(i=>nc(i)));let a=s.write(r,t,n),o=new je(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=Cx(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new je(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new oc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Pm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof oc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Pm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Um(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],p=Kd(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Jm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof je,()=>"The result y returned by f() must be a tensor.");let a=pC(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?IC(r.shape):n,hC(o,a,l=>this.tidy(l),SC);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Lr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Lr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,p)=>{c[p]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=tc(),n=await this.backend.time(e);return n.wallMs=tc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Hx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ic.nextTensorId=0;ic.nextVariableId=0;function IC(e){let t=Mm(Ot(e),"float32");return z.makeTensor(t,e,"float32")}function Gx(){let e=Dx();if(e._tfengine==null){let t=new _x(e);e._tfengine=new ic(t)}return KS(e._tfengine.ENV),AC(()=>e._tfengine),e._tfengine}var z=Gx();function SC(e,t){let n={a:e,b:t};return z.runKernel(Br,n)}var lc={};Me(lc,{isBrowser:()=>jx,isMobile:()=>TC});function CC(){return typeof navigator!="undefined"&&navigator!=null}function TC(e){if(e||CC()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function jx(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ds=Y();Ds.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ds.registerFlag("IS_BROWSER",()=>jx());Ds.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ds.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ds.registerFlag("PROD",()=>!1);Ds.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ds.getBool("DEBUG"));Ds.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ds.registerFlag("IS_TEST",()=>!1);Ds.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ds.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Js(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&qx(e,s,[]),s}function qx(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)qx(e[r],s,n.concat(r))}function Xx(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,s="numeric"){if(e instanceof je)return Xx(s,e.dtype,t,n),e;let r=qd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),Xx(s,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Js(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Op(e,r):Ca(e,[],!0);return z.makeTensor(i,a,r)}function uc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>F(a,`${t}[${o}]`,n,s))}var Kx="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Kx;let r=(...a)=>{z.startScope(n);try{let o=s(...a);return Lm(o)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(o),o}catch(o){throw z.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function NC(e,t){let n=F(e,"real","complex"),s=F(t,"imag","complex");yn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return z.runKernel(Qd,r)}var jr=W({complex_:NC});function qr(e,t,n,s){if(s==null&&(s=qd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zm(t);let r=Ot(t),a=Ot(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ot(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Op(e,s):Ca(e,[],!0),z.makeTensor(e,t,s)}function en(e,t,n){let s=Js(e,n);return qr(e,t,s,n)}var eg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Lp=4;async function EC(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Lp*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=Lp,f.set(A,m),m+=A.length}d(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:RC(a),specs:n}}function Zx(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Ot(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=eg[d.dtype],h=e.slice(r,r+u*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=PC()),c=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}else if(i==="string"){let d=Ot(a.shape);c=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Lp))[0];r+=Lp;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let d=eg[i],p=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(p);else if(i==="int32")c=new Int32Array(p);else if(i==="bool")c=new Uint8Array(p);else if(i==="complex64"){c=new Float32Array(p);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let A=0;A<h.length;A++)h[A]=c[A*2],f[A]=c[A*2+1];let m=en(h,l,"float32"),g=en(f,l,"float32");n[o]=jr(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=en(c,l,i))}return n}function RC(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var tg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Yx(e){return tg?Buffer.byteLength(e):new Blob([e]).size}function _C(e){if(tg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function DC(e){if(tg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function ng(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function Jx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Qx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function sg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function cc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Yx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Yx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function FC(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function $C(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function OC(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function PC(){let e=FC(),t=$C(),n=OC();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var _t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return _t.instance==null&&(_t.instance=new _t),_t.instance}static registerSaveRouter(e){_t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){_t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return _t.getHandlers(e,"save")}static getLoadHandlers(e,t){return _t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?_t.getInstance().loadRouters:_t.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},MC=e=>_t.registerSaveRouter(e),zC=e=>_t.registerLoadRouter(e),LC=e=>_t.getSaveHandlers(e),BC=(e,t)=>_t.getLoadHandlers(e,t),rg="tensorflowjs",ag=1,Ro="models_store",Xr="model_info_store";function e5(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function og(e){let t=e.result;t.createObjectStore(Ro,{keyPath:"modelPath"}),t.createObjectStore(Xr,{keyPath:"modelPath"})}var _o=class{constructor(e){if(this.indexedDB=e5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(rg,ag);r.onupgradeneeded=()=>og(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Ro,"readonly"),l=o.objectStore(Ro).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=cc(t),i=a.transaction(Xr,"readwrite"),l=i.objectStore(Xr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Ro,"readwrite");let p=c.objectStore(Ro).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(Xr);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};_o.URL_SCHEME="indexeddb://";var t5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(_o.URL_SCHEME)?WC(e.slice(_o.URL_SCHEME.length)):null;_t.registerSaveRouter(t5);_t.registerLoadRouter(t5);function WC(e){return new _o(e)}function VC(e){return e.startsWith(_o.URL_SCHEME)?e.slice(_o.URL_SCHEME.length):e}var UC=class{constructor(){this.indexedDB=e5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(rg,ag);n.onupgradeneeded=()=>og(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Xr,"readonly"),o=r.objectStore(Xr).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=VC(e),new Promise((t,n)=>{let s=this.indexedDB.open(rg,ag);s.onupgradeneeded=()=>og(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Xr,"readwrite"),o=a.objectStore(Xr),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Ro,"readwrite");let p=l.objectStore(Ro).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},br="/",Cl="tensorflowjs_models",n5="info",HC="model_topology",GC="weight_specs",jC="weight_data",qC="model_metadata";function s5(e){return{info:[Cl,e,n5].join(br),topology:[Cl,e,HC].join(br),weightSpecs:[Cl,e,GC].join(br),weightData:[Cl,e,jC].join(br),modelMetadata:[Cl,e,qC].join(br)}}function r5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function XC(e){let t=e.split(br);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(br)}function KC(e){return e.startsWith(Do.URL_SCHEME)?e.slice(Do.URL_SCHEME.length):e}var Do=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=s5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=cc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,_C(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw r5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=DC(a),t}};Do.URL_SCHEME="localstorage://";var a5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Do.URL_SCHEME)?ZC(e.slice(Do.URL_SCHEME.length)):null;_t.registerSaveRouter(a5);_t.registerLoadRouter(a5);function ZC(e){return new Do(e)}var YC=class{constructor(){M(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Cl+br,n=br+n5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=XC(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=KC(e);let t=s5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return r5(t),n}},Tl="://",as=class{constructor(){this.managers={}}static getInstance(){return as.instance==null&&(as.instance=new as),as.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Tl)&&(e=e.slice(0,e.indexOf(Tl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=as.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Bp(e){if(e.indexOf(Tl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${as.getSchemes().join(",")}`);return{scheme:e.split(Tl)[0],path:e.split(Tl)[1]}}async function o5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=_t.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=_t.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Bp(e).scheme,l=Bp(e).path,u=i===Bp(e).scheme,c=await r.load();n&&u&&await as.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await as.getManager(i).removeModel(l),d.modelArtifactsInfo}async function JC(){let e=as.getSchemes(),t={};for(let n of e){let s=await as.getManager(n).listModels();for(let r in s){let a=n+Tl+r;t[a]=s[r]}}return t}async function QC(e){let t=Bp(e);return as.getManager(t.scheme).removeModel(t.path)}async function e9(e,t){return o5(e,t,!1)}async function t9(e,t){return o5(e,t,!0)}var n9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new n9);try{as.registerManager(Do.URL_SCHEME,new YC)}catch(e){}try{as.registerManager(_o.URL_SCHEME,new UC)}catch(e){}}var s9={importFetch:()=>tS()},ig,r9=class{constructor(){this.util=bi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(ig==null&&(ig=s9.importFetch()),ig(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new r9);function Ve(e,t="float32",n){return t=t||"float32",zm(e),new Ht(e,t,n)}function a9(e,t){let n=F(e,"x","cast");if(!Sx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return z.runKernel(_a,s,r)}var ce=W({cast_:a9});function o9(e){let n={x:F(e,"x","clone","string_or_numeric")};return z.runKernel(ja,n)}var Fs=W({clone_:o9});function i5(e,t=!1){console.log(e.toString(t))}Gx();var i9={buffer:Ve,cast:ce,clone:Fs,print:i5};yC(i9);var Dn={};Me(Dn,{browserFiles:()=>f9,browserHTTPRequest:()=>x9,concatenateArrayBuffers:()=>ng,copyModel:()=>e9,decodeWeights:()=>Zx,encodeWeights:()=>EC,fromMemory:()=>v9,getLoadHandlers:()=>BC,getModelArtifactsForJSON:()=>sg,getModelArtifactsInfoForJSON:()=>cc,getSaveHandlers:()=>LC,http:()=>cg,isHTTPScheme:()=>ug,listModels:()=>JC,loadWeights:()=>m9,moveModel:()=>t9,registerLoadRouter:()=>zC,registerSaveRouter:()=>MC,removeModel:()=>QC,weightsLoaderFactory:()=>d5,withSaveHandler:()=>w9});var l9="model",u9=".json",c9=".weights.bin";function l5(e){return new Promise(t=>setTimeout(t)).then(e)}var Nl=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Nl.URL_SCHEME)&&(e=e.slice(Nl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=l9),this.modelJsonFileName=e+u9,this.weightDataFileName=e+c9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=Qx(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await l5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await l5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:cc(e)}}}};Nl.URL_SCHEME="downloads://";var d9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=sg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,ng(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Jx(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=Jx(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},p9=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Nl.URL_SCHEME)?h9(e.slice(Nl.URL_SCHEME.length)):null;_t.registerSaveRouter(p9);function h9(e="model"){return new Nl(e)}function f9(e){return new d9(e)}function u5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function c5(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await u5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await u5(i,t.onProgress,l,u)}async function m9(e,t="",n,s){return d5(o=>c5(o,{requestInit:s}))(e,t,n)}function d5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=eg[A]*Ot(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(c[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=Zx(v,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var g9="application/octet-stream",A9="application/json",lg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=Qx(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:A9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:g9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:cc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return sg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=y9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await c5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,ng(l)]}};lg.URL_SCHEME_REGEX=/^https?:\/\//;function y9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function ug(e){return e.match(lg.URL_SCHEME_REGEX)!=null}var p5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>ug(s)):n=ug(e),n)return cg(e,t)}return null};_t.registerSaveRouter(p5);_t.registerLoadRouter(p5);function cg(e,t){return new lg(e,t)}function x9(e,t){return cg(e,t)}var dg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},b9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function v9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new dg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new dg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new dg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function w9(e){return new b9(e)}var h5={};Me(h5,{confusionMatrix:()=>T9});function k9(e,t,n=!1,s=!1){let r=F(e,"a","matMul"),a=F(t,"b","matMul");[r,a]=Tt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return z.runKernel(Ra,o,i)}var Ue=W({matMul_:k9});function I9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return z.runKernel(so,a,o)}var dc=W({oneHot_:I9});function S9(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return z.runKernel(ko,s,r)}var Ze=W({transpose_:S9});function C9(e,t,n){let s=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=dc(ce(s,"int32"),n),o=dc(ce(r,"int32"),n),i=Ze(a),l=Ue(i,o);return ce(l,"int32")}var T9=W({confusionMatrix_:C9}),os={};Me(os,{fromPixels:()=>$9,fromPixelsAsync:()=>D9,toPixels:()=>F9});function Wp(e,t,n){if(Sa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Js(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return qr(e,t,s,n)}var El;function f5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Fp(Dp,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(Dp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(El==null&&(El=document.createElement("canvas").getContext("2d")),El.canvas.width=u,El.canvas.height=c,El.drawImage(e,0,0,u,c),d=El.getImageData(0,0,u,c).data);let p;if(t===4)p=new Int32Array(d);else{let f=u*c;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Wp(p,[c,u,t],"int32")}function N9(e){return e!=null&&e.data instanceof Uint8Array}function E9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function R9(e){return e!=null&&e.width!==0&&e.height!==0}function _9(e){return E9()&&!(e instanceof ImageBitmap)&&R9(e)&&!N9(e)}async function D9(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&_9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return f5(n,t)}async function F9(e,t){let n=F(e,"img","toPixels");if(!(e instanceof je)){let u=n;n=ce(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let p=0;p<a;p++){let h=o[u*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[p]=h*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var $9=W({fromPixels_:f5}),pg={};Me(pg,{prepareAndValidate:()=>m5});function m5(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...vi(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var hg={};Me(hg,{calculateShapes:()=>g5,validateInput:()=>mg,validateUpdateShape:()=>fg});function fg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function mg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}fg(n,t,e)}function g5(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ot(t.shape)/i,u=[...vi(n.slice(0,r)),1],c=Ot(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var bn={};Me(bn,{assertParamsValid:()=>O9,computeFlatOffset:()=>M9,computeOutShape:()=>A5,getNormalizedAxes:()=>v5,isSliceContinous:()=>P9,maskToAxes:()=>Vp,parseSliceParams:()=>T5,sliceInfo:()=>z9,startForAxis:()=>S5,startIndicesWithElidedDims:()=>w5,stopForAxis:()=>C5,stopIndicesWithElidedDims:()=>k5,stridesForAxis:()=>I5,stridesWithElidedDims:()=>y5});function O9(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Vp(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function A5(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function y5(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function x5(e,t,n){return n<=e?n:n-(t-1)}function b5(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function v5(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),p=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=w5(o,h,f,s,e),d=k5(i,h,f,r,e),p=y5(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=S5(o,s,a,e,h,l),d[h]=C5(i,r,a,e,h,l),p[h]=I5(a,h,l);return{begin:c,end:d,strides:p}}function w5(e,t,n,s,r){let a=[...r],o=b5(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=x5(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function k5(e,t,n,s,r){let a=[...r],o=b5(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=x5(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Mu(0,a[i],r[i])}return a}function I5(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function S5(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Mu(0,o,l-1),o}function C5(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Mu(0,o,l):o=Mu(-1,o,l-1),o}function P9(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function M9(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function T5(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function z9(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let p=Vp(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,f=Vp(i),m=e.slice();f.forEach(S=>{u[S]=0,c[S]=1,m.splice(S,0,1)});let{begin:g,end:A,strides:y}=v5(m,p,h,u,c,d,r,a,o);u=g,c=A,d=y;let x=Vp(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=A5(u,c,d),v=b.filter((S,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var oe={};Me(oe,{Serializable:()=>N5,SerializationMap:()=>Fo,registerClass:()=>Kr});var N5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Fo=class{constructor(){this.classNameMap={}}static getMap(){return Fo.instance==null&&(Fo.instance=new Fo),Fo.instance}static register(e){Fo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Kr(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Fo.register(e)}var E5={};Me(E5,{TEST_EPSILON_FLOAT16:()=>R5,encodeStrings:()=>_5,expectArrayBuffersEqual:()=>G9,expectArraysClose:()=>B9,expectArraysEqual:()=>V9,expectNumbersClose:()=>U9,expectPromiseToFail:()=>W9,expectValuesInRange:()=>H9,testEpsilon:()=>gg});var L9=.001,R5=.1;function B9(e,t,n){return n==null&&(n=gg()),Ag(e,t,(s,r)=>yg(s,r,n))}function gg(){return z.backend.floatPrecision()===32?L9:R5}function Ag(e,t,n){let s=!0;if((hn(e)||hn(t))&&(s=!1),hn(e)&&hn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Js(e),i=Js(t);if(!xr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=hn(e)?e:Ca(e),a=hn(t)?t:Ca(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function W9(e,t){e().then(()=>t.fail(),()=>t())}function V9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return zr(e)||zr(e[0])||zr(t)||zr(t[0])?Ag(e,n,(s,r)=>s==r):Ag(e,t,(s,r)=>yg(s,r,0))}function U9(e,t,n){if(n==null&&(n=gg()),!yg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function yg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function H9(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function G9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function _5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?_5(n):e[t]=nc(n)}return e}var Up="3.9.0";function D5(){Y().set("PROD",!0)}function j9(){Y().set("DEBUG",!0)}function q9(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function xg(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}xC(xg);function X9(){z.disposeVariables()}function Ss(){return z}function Hp(){return z.memory()}function K9(e){return z.profile(e)}function H(e,t){return z.tidy(e,t)}function Z(e){Jm(e).forEach(n=>n.dispose())}function tn(e){return z.keep(e)}function Z9(e){return z.time(e)}function bg(e){return z.setBackend(e)}function Gp(){return z.ready()}function Rl(){return z.backendName}function Y9(e){z.removeBackend(e)}function vg(e){return z.findBackend(e)}function J9(e){return z.findBackendFactory(e)}function _l(e,t,n=1){return z.registerBackend(e,t,n)}function Dl(){return z.backend}function Q9(e,t){Y().setPlatform(e,t)}function eT(e,t){let n=F(e,"a","add"),s=F(t,"b","add");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(Br,r)}var ae=W({add_:eT});function tT(e,t){let n=F(e,"a","floorDiv"),s=F(t,"b","floorDiv");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(Ua,r)}var wg=W({floorDiv_:tT});function nT(e,t){let n=F(e,"a","div"),s=F(t,"b","div");if([n,s]=Tt(n,s),n.dtype==="int32"&&s.dtype==="int32")return wg(n,s);let r={a:n,b:s},a={};return z.runKernel(La,r,a)}var de=W({div_:nT});function sT(e,t){let n=F(e,"a","mul"),s=F(t,"b","mul");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(no,r)}var L=W({mul_:sT});function rT(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(Wu,n)}else{let n={x:t};return z.runKernel(ki,n)}}var Gt=W({abs_:rT});function aT(e){let n={x:F(e,"x","acos")};return z.runKernel(Ii,n)}var F5=W({acos_:aT});function oT(e){let n={x:F(e,"x","acosh")};return z.runKernel(Si,n)}var $5=W({acosh_:oT});function iT(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>F(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!xr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return z.runKernel(Ta,s)}var jp=W({addN_:iT});function lT(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(Ci,r,a)}var kg=W({all_:lT});function uT(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(Ti,r,a)}var qp=W({any_:uT});function cT(e,t=0){let s={x:F(e,"x","argMax")},r={axis:t};return z.runKernel(Na,s,r)}var Qs=W({argMax_:cT});function dT(e,t=0){let s={x:F(e,"x","argMin")},r={axis:t};return z.runKernel(Lu,s,r)}var O5=W({argMin_:dT});function pT(e){let n={x:F(e,"x","asin")};return z.runKernel(Ni,n)}var P5=W({asin_:pT});function hT(e){let n={x:F(e,"x","asinh")};return z.runKernel(Ei,n)}var M5=W({asinh_:hT});function fT(e){let n={x:F(e,"x","atan")};return z.runKernel(Ri,n)}var z5=W({atan_:fT});function mT(e,t){let n=F(e,"a","atan2"),s=F(t,"b","atan2");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(Di,r)}var L5=W({atan2_:mT});function gT(e){let n={x:F(e,"x","atanh")};return z.runKernel(_i,n)}var B5=W({atanh_:gT});function AT(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=U5(r);return pc(e,i,n,a,s,null,null,l)}function W5(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Xp(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return pc(e,u,n,s,r,a,!1,o)}function yT(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=Sg(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return V5(e,c,n,s,r,!1,d,a)}function pc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=Xp(n),[A,y]=Xp(s),x=Fl(p,A),b=Fl(h,y),{padInfo:v,outHeight:k,outWidth:S}=vT(r,u,c,m,g,x,b,a,i),C=o?f*d:f,_;return i==="channelsFirst"?_=[l,C,k,S]:i==="channelsLast"&&(_=[l,k,S,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:S,outChannels:C,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:_,filterShape:t}}function V5(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,p]=e;else if(o==="channelsFirst")[l,p,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=Sg(n),[b,v,k]=Sg(s),S=Fl(h,b),C=Fl(f,v),_=Fl(m,k),{padInfo:O,outDepth:E,outHeight:R,outWidth:T}=wT(r,u,c,d,A,y,x,S,C,_,i),P=a?g*p:g,V;return o==="channelsFirst"?V=[l,P,E,R,T]:o==="channelsLast"&&(V=[l,E,R,T,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:p,outDepth:E,outHeight:R,outWidth:T,outChannels:P,padInfo:O,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:C,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:V,filterShape:t}}function xT(e,t,n,s,r){s==null&&(s=Ig(e,t,n));let a=e[0],o=e[1],i=$o((a-t+2*s)/n+1,r),l=$o((o-t+2*s)/n+1,r);return[i,l]}function bT(e,t,n,s,r,a){r==null&&(r=Ig(e,t,s));let o=e[0],i=e[1],l=e[2],u=$o((o-t+2*r)/s+1,a),c=$o((i-t+2*r)/s+1,a),d=$o((l-t+2*r)/s+1,a);return[u,c,d,n]}function Ig(e,t,n,s=1){let r=Fl(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Xp(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Sg(e){return typeof e=="number"?[e,e,e]:e}function Fl(e,t){return t<=1?e:e+(e-1)*(t-1)}function vT(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=xT([t,n],a,s,e,i);c=h[0],d=h[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;u={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=$o((t-a+p+h)/s+1,i),d=$o((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function wT(e,t,n,s,r,a,o,i,l,u,c){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=bT([t,n,s,1],i,1,r,e,c);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:v,left:k,right:S,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function $o(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Zr(e){let[t,n,s]=Xp(e);return t===1&&n===1&&s===1}function er(e,t){return Zr(e)||Zr(t)}function U5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function kT(e,t){let s={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return z.runKernel(ll,s,r)}var U=W({reshape_:kT});function IT(e,t,n,s,r){let a=F(e,"x","avgPool","float32"),o=1;M(er(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(Jt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=z.runKernel(Ea,u,c);return d=ce(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kp=W({avgPool_:IT});function ST(e,t,n,s,r,a="NDHWC"){let o=F(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Jt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=z.runKernel(Bu,u,c);return d=ce(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Cg=W({avgPool3d_:ST});function CT(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=uc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Fs(n[0]);let s=n,r={axis:t};return z.runKernel($i,s,r)}var mt=W({concat_:CT});function TT(e){let n={x:F(e,"x","sigmoid")};return z.runKernel(mo,n)}var Hn=W({sigmoid_:TT});function NT(e,t,n){let s=F(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return z.runKernel(pl,r,a)}var _e=W({slice_:NT});function ET(e){let n={x:F(e,"x","tanh")};return z.runKernel(wo,n)}var $l=W({tanh_:ET});function RT(e,t,n,s,r,a){let o=F(e,"forgetBias","basicLSTMCell"),i=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(s,"data","basicLSTMCell"),c=F(r,"c","basicLSTMCell"),d=F(a,"h","basicLSTMCell"),p=mt([u,d],1),h=Ue(p,i),f=ae(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=_e(f,[0,0],A),x=_e(f,[0,g],A),b=_e(f,[0,g*2],A),v=_e(f,[0,g*3],A),k=ae(L(Hn(y),$l(x)),L(c,Hn(ae(o,b)))),S=L($l(k),Hn(v));return[k,S]}var _T=W({basicLSTMCell_:RT});function DT(e,t,n){let s=F(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return z.runKernel(Fi,a,o)}var Zp=W({batchToSpaceND_:DT});function FT(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function $T(e,t,n,s,r,a){a==null&&(a=.001);let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;s!=null&&(c=F(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:FT(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=z.runKernel(Ha,p,h);return U(f,o.shape)}var Ol=W({batchNorm_:$T});function OT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var H5=W({batchNorm2d_:OT});function PT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var G5=W({batchNorm3d_:PT});function MT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var j5=W({batchNorm4d_:MT});function zT(e,t,n){let s=F(e,"x","bincount"),r=F(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return z.runKernel(Jd,a,o)}var Tg=W({bincount_:zT});function LT(e,t){let n=F(e,"s0","broadcastArgs","int32"),s=F(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return z.runKernel(Vm,r)}var q5=W({broadcastArgs_:LT});function BT(e,t){let n=F(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Fs(n);let i={x:n},l={reps:a};return z.runKernel(Vr,i,l)}var hc=W({broadcastTo_:BT});function WT(e){let n={x:F(e,"x","ceil")};return z.runKernel(Da,n)}var X5=W({ceil_:WT});function VT(e,t,n){let s=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Wr,r,a)}var Gn=W({clipByValue_:VT});function UT(e){return mt(e,0)}var K5=W({concat1d_:UT});function HT(e,t){return mt(e,t)}var Pl=W({concat2d_:HT});function GT(e,t){return mt(e,t)}var Z5=W({concat3d_:GT});function jT(e,t){return mt(e,t)}var Y5=W({concat4d_:jT});function qT(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(Jt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(er(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=z.runKernel(Fa,p,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Yr=W({conv2d_:qT});function XT(e,t,n,s,r="NWC",a=1,o){let i=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(Jt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(er(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Yr(p,d,[1,n],s,"NHWC",[1,a],o);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Ng=W({conv1d_:XT});function KT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(Jt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=z.runKernel($a,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Eg=W({conv2DBackpropInput_:KT});function ZT(e,t,n,s,r,a){let o=F(e,"x","conv2dTranspose"),i=F(t,"filter","conv2dTranspose");return Eg(n,o,i,s,r,"NHWC",a)}var Rg=W({conv2dTranspose_:ZT});function YT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=F(e,"x","conv3d"),i=F(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(er(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=z.runKernel(Vu,c,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var _g=W({conv3d_:YT});function JT(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=z.runKernel(np,c,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var J5=W({conv3DBackpropInput_:JT});function QT(e,t,n,s,r){let a=F(e,"x","conv3dTranspose"),o=F(t,"filter","conv3dTranspose");return J5(n,a,o,s,r)}var Q5=W({conv3dTranspose_:QT});function eN(e){let n={x:F(e,"x","cos")};return z.runKernel(Oa,n)}var Yp=W({cos_:eN});function tN(e){let n={x:F(e,"x","cosh")};return z.runKernel(Pa,n)}var Dg=W({cosh_:tN});function nN(e,t=0,n=!1,s=!1){let a={x:F(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return z.runKernel(Ma,a,o)}var Fg=W({cumsum_:nN});function sN(e,t,n,s=!1){let r=F(e,"x","denseBincount"),a=F(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return z.runKernel(sp,o,i)}var eb=W({denseBincount_:sN});function rN(e,t,n="NHWC"){let s=F(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return z.runKernel(Pi,i,l)}var tb=W({depthToSpace_:rN});function aN(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(Jt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=z.runKernel(za,d,p);return c?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var fc=W({depthwiseConv2d_:aN});function oN(e){let n={x:F(e,"x","diag")};return z.runKernel(op,n)}var iN=W({diag_:oN});function lN(e,t,n,s,r=[1,1],a="NHWC"){let o=F(e,"x","dilation2d"),i=F(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=z.runKernel(Uu,c,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nb=W({dilation2d_:lN});function uN(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function jt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function yt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function cN(e,t){let n=F(e,"a","equal","string_or_numeric"),s=F(t,"b","equal","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(zi,r)}var is=W({equal_:cN});function dN(e,t,n){let s=F(t,"a","where"),r=F(n,"b","where"),a=F(e,"condition","where","bool"),o=yt(yt(a.shape,s.shape),r.shape),i=hc(a,o),l=hc(s,o),u=hc(r,o),c={condition:i,t:l,e:u};return z.runKernel(cl,c)}var vn=W({where_:dN});function pN(e){let n={x:F(e,"x","zerosLike")};return z.runKernel(wl,n)}var Ye=W({zerosLike_:pN});function hN(e,t){let n=F(e,"a","div"),s=F(t,"b","div");[n,s]=Tt(n,s);let r=de(n,s),a=Ye(r),o=is(s,a);return vn(o,a,r)}var sb=W({divNoNan_:hN});function fN(e,t){let n=F(e,"t1","dot"),s=F(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ue(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ue(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ue(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ue(n,o)}}var mN=W({dot_:fN});function gN(e,...t){let n=t.map((r,a)=>F(r,`tensors${a}`,"einsum")),s={equation:e};return z.runKernel(up,n,s)}var rb=W({einsum_:gN});function AN(e){let n={x:F(e,"x","elu")};return z.runKernel(Ba,n)}var mc=W({elu_:AN});function yN(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return z.runKernel(Mi,n)}var ab=W({erf_:yN});function xN(e){let n={x:F(e,"x","exp")};return z.runKernel(Wa,n)}var ls=W({exp_:xN});function bN(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return z.runKernel(Li,s,r)}var Mt=W({expandDims_:bN});function vN(e){let n={x:F(e,"x","expm1")};return z.runKernel(Bi,n)}var ob=W({expm1_:vN});function wN(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return z.runKernel(Vr,s,r)}var Cs=W({tile_:wN});function kN(e,t,n,s="float32"){t==null&&(t=e);let r=Ve([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Cs(Mt(o,0),[n[0],1,1]);if(n.length===2)return Cs(Mt(Mt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Cs(Mt(Mt(Mt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var $g=W({eye_:kN});function Ml(e,t,n){let s={shape:e,value:t,dtype:n};return z.runKernel(Hu,{},s)}function IN(e){let n={x:F(e,"x","floor")};return z.runKernel(Va,n)}var gc=W({floor_:IN});function SN(e,t,n=0,s=0){let r=F(e,"x","gather"),a=F(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return z.runKernel(Vi,o,i)}var zl=W({gather_:SN});function CN(e,t){let n=F(e,"a","greater","string_or_numeric"),s=F(t,"b","greater","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Hi,r)}var jn=W({greater_:CN});function TN(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),s=F(t,"b","greaterEqual","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ga,r)}var Oo=W({greaterEqual_:TN});function NN(e){let n={input:F(e,"input","imag")};return z.runKernel(hp,n)}var Jp=W({imag_:NN});function EN(e){let n={x:F(e,"x","isFinite")};return z.runKernel(Gi,n)}var RN=W({isFinite_:EN});function _N(e){let n={x:F(e,"x","isInf")};return z.runKernel(ji,n)}var DN=W({isInf_:_N});function FN(e){let n={x:F(e,"x","isNaN")};return z.runKernel(qi,n)}var ib=W({isNaN_:FN});function $N(e,t=.2){let s={x:F(e,"x","leakyRelu")},r={alpha:t};return z.runKernel(qa,s,r)}var Qp=W({leakyRelu_:$N});function ON(e,t){let n=F(e,"a","less","string_or_numeric"),s=F(t,"b","less","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Xi,r)}var Og=W({less_:ON});function PN(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),s=F(t,"b","lessEqual","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ki,r)}var Po=W({lessEqual_:PN});function lb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return z.runKernel(fp,{},s)}function MN(e,t=5,n=1,s=1,r=.5){let a=F(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(Jt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=z.runKernel(qu,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ub=W({localResponseNormalization_:MN});function zN(e){let n={x:F(e,"x","log")};return z.runKernel(Xa,n)}var us=W({log_:zN});function LN(e){let n={x:F(e,"x","log1p")};return z.runKernel(Zi,n)}var eh=W({log1p_:LN});function BN(e){return M(Lr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(s),[s],r);return r!=null&&yn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),th(o),o[0]})}}function WN(e){return M(Lr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=uc(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(...s),s,r);return r!=null&&yn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),th(o),o})}}function VN(e){return M(Lr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=z.gradients(()=>e(t),[t],n);return th(s),{grad:s[0],value:r}}}function UN(e){return M(Lr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=z.gradients(()=>e(...t),t,n);return n!=null&&yn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),th(s.grads),s}}function cb(e,t){M(Lr(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof oc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in z.registeredVariables)t.push(z.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=z.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function tr(e){return z.customGrad(e)}function th(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function HN(e){let n={x:F(e,"x","neg")};return z.runKernel(Qi,n)}var Nt=W({neg_:HN});function GN(e){let n={x:F(e,"x","softplus")};return z.runKernel(ml,n)}var Ll=W({softplus_:GN});function jN(e){let t=F(e,"x","logSigmoid");return tr(s=>({value:Nt(Ll(Nt(s))),gradFunc:o=>L(o,Hn(Nt(s)))}))(t)}var qN=W({logSigmoid_:jN});function XN(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(Ka,r,a)}var cs=W({max_:XN});function KN(e,t){let n=F(e,"a","sub"),s=F(t,"b","sub");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(bo,r)}var ge=W({sub_:KN});function ZN(e,t=null,n=!1){let s=F(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(Ao,r,a)}var ve=W({sum_:ZN});function YN(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return tr((r,a)=>{let o=!0,i=cs(r,t,!0),l=ge(r,i),u=ge(ce(l,"float32"),us(ve(ls(l),t,o)));return a([u]),{value:u,gradFunc:(d,p)=>{let[h]=p,f=!0,m=ls(h);return ge(d,L(ve(d,t,f),m))}}})(n)}var Pg=W({logSoftmax_:YN});function Mg(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function db(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function pb(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Mo(e,t){let n=t.map(s=>1);return db(e,n,t)}function JN(e,t,n){M(Mg(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function hb(e,t){if(Mg(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function zg(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function QN(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function eE(e,t=null,n=!1){let s=F(e,"x","logSumExp"),r=ks(t,s.shape),a=cs(s,r,!0),o=ge(s,a),i=ls(o),l=ve(i,r),u=us(l),c=ae(U(a,u.shape),u);if(n){let d=Mo(c.shape,r);return U(c,d)}return c}var fb=W({logSumExp_:eE});function tE(e,t){let n=F(e,"a","logicalAnd","bool"),s=F(t,"b","logicalAnd","bool");yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Yi,r)}var $s=W({logicalAnd_:tE});function nE(e){let n={x:F(e,"x","logicalNot","bool")};return z.runKernel(Gu,n)}var nh=W({logicalNot_:nE});function sE(e,t){let n=F(e,"a","logicalOr","bool"),s=F(t,"b","logicalOr","bool");yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(ju,r)}var Lg=W({logicalOr_:sE});function rE(e,t){let n=F(e,"a","logicalXor","bool"),s=F(t,"b","logicalXor","bool");return yt(n.shape,s.shape),$s(Lg(e,t),nh($s(e,t)))}var aE=W({logicalXor_:rE});function oE(e,t,n,s,r){let a=F(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(er(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(Jt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=z.runKernel(Ya,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var sh=W({maxPool_:oE});function iE(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=F(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Jt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=z.runKernel(Xu,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Bg=W({maxPool3d_:iE});function lE(e,t,n,s,r=!1){let o={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=z.runKernel(yp,o,i);return{result:l[0],indexes:l[1]}}var mb=W({maxPoolWithArgmax_:lE});function uE(e,t){let n=F(e,"a","maximum"),s=F(t,"b","maximum");[n,s]=Tt(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Za,r)}var vr=W({maximum_:uE});function cE(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(Ja,r,a)}var Dt=W({mean_:cE});function Ft(e,t="float32"){if(t==="complex64"){let s=Ft(e,"float32"),r=Ft(e,"float32");return jr(s,r)}let n=Kd(Ot(e),t);return z.makeTensor(n,e,t)}function qn(e,t="float32"){if(t==="complex64"){let s=qn(e,"float32"),r=Ft(e,"float32");return jr(s,r)}let n=Mm(Ot(e),t);return z.makeTensor(n,e,t)}function dE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=F(e,"x","meshgrid",e instanceof je?e.dtype:"float32");if(t===void 0)return[s];let r=F(t,"y","meshgrid",t instanceof je?t.dtype:"float32"),a=Ot(s.shape),o=Ot(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ue(qn([o,1],s.dtype),s),Ue(r,qn([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ue(s,qn([1,o],s.dtype)),Ue(qn([a,1],r.dtype),r)])}function pE(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(Qa,r,a)}var rh=W({min_:pE});function hE(e,t){let n=F(e,"a","minimum"),s=F(t,"b","minimum");[n,s]=Tt(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(eo,r)}var Ac=W({minimum_:hE});function fE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=F(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return z.runKernel(to,o,a)}var gb=W({mirrorPad_:fE});function mE(e,t){let n=F(e,"a","mod"),s=F(t,"b","mod");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(Ji,r)}var Ab=W({mod_:mE});function gE(e){let t=F(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var dt=W({square_:gE});function AE(e,t=null,n=!1){e=F(e,"x","moments");let s=ks(t,e.shape),r=Dt(e,s,n),a=r.shape;n||(a=Mo(r.shape,s));let o=dt(ge(ce(e,"float32"),U(r,a))),i=Dt(o,s,n);return{mean:r,variance:i}}var ah=W({moments_:AE});function yE(e,t,n,s){let r=F(t,"data","multiRNNCell"),a=uc(n,"c","multiRNNCell"),o=uc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var xE=W({multiRNNCell_:yE});function bE(e,t,n,s=!1){let r=F(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=z.runKernel(xp,l,u);return o===1?U(c,[c.size]):c}var yb=W({multinomial_:bE});function vE(e,t){let n=F(e,"a","notEqual","string_or_numeric"),s=F(t,"b","notEqual","string_or_numeric");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(el,r)}var Bl=W({notEqual_:vE});function wE(e){let n={x:F(e,"x","onesLike")};return z.runKernel(rl,n)}var ds=W({onesLike_:wE});function kE(e,t){let n=F(e,"v1","outerProduct"),s=F(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ue(r,a)}var IE=W({outerProduct_:kE});function SE(e,t,n=0){let s=F(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return z.runKernel(ro,a,r)}var Jr=W({pad_:SE});function CE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jr(e,[t],n)}var TE=W({pad1d_:CE});function NE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var EE=W({pad2d_:NE});function RE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var _E=W({pad3d_:RE});function DE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var FE=W({pad4d_:DE});function $E(e,t,n){let s=F(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return z.runKernel(gl,r,a)}var oh=W({spaceToBatchND_:$E});function OE(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=F(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(er(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=W5(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=ME([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let p=c[0]===1&&c[1]===1,[h,f]=PE([u.inHeight,u.inWidth],c,d),m=p?s:"valid",g=p?i:oh(i,c,h),y=(n==="avg"?()=>Kp(g,t,a,m):()=>sh(g,t,a,m))(),x=p?y:Zp(y,c,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function PE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function ME(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var zE=W({pool_:OE});function LE(e,t){let n=F(e,"base","pow"),s=F(t,"exp","pow");[n,s]=Tt(n,s);let r={a:n,b:s};return z.runKernel(ao,r)}var Qr=W({pow_:LE});function BE(e,t){let n=F(e,"x","prelu"),s=F(t,"alpha","prelu"),r={x:n,alpha:s};return z.runKernel(oo,r)}var ih=W({prelu_:BE});function WE(e,t=null,n=!1){let s=F(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(ol,r,a)}var Wg=W({prod_:WE});function VE(e,t,n){let s=Ot(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return z.makeTensor(r,e,n)}var UE=W({rand_:VE}),Vg=Ia(Ax()),Ug=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=Vg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},HE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=Vg.alea(r.toString()),this.randn=new Ug(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},GE=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Vg.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function jE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new HE(t,n,s,r),o=Ve(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var qE=W({randomGamma_:jE});function XE(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new Ug(t,n,s,!1,r),o=Ve(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var xb=W({randomNormal_:XE});function KE(e,t=0,n=1,s="float32",r){let a=Ve(e,s),o=new GE(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Wl=W({randomUniform_:KE});function Vl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return z.runKernel(Ku,{},r)}function ZE(e){let n={input:F(e,"input","real")};return z.runKernel(bp,n)}var yc=W({real_:ZE});function YE(e){let n={x:F(e,"x","reciprocal")};return z.runKernel(il,n)}var bb=W({reciprocal_:YE});function JE(e){let n={x:F(e,"x","relu")};return z.runKernel(io,n)}var nr=W({relu_:JE});function QE(e){let n={x:F(e,"x","relu6")};return z.runKernel(uo,n)}var Hg=W({relu6_:QE});function eR(e,t){let s={x:F(e,"x","reverse")},r={dims:t};return z.runKernel(co,s,r)}var ps=W({reverse_:eR});function tR(e){let t=F(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ps(t,0)}var nR=W({reverse1d_:tR});function sR(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ps(n,t)}var rR=W({reverse2d_:sR});function aR(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ps(n,t)}var oR=W({reverse3d_:aR});function iR(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ps(n,t)}var lR=W({reverse4d_:iR});function uR(e){let n={x:F(e,"x","round")};return z.runKernel(po,n)}var Gg=W({round_:uR});function cR(e){let n={x:F(e,"x","rsqrt")};return z.runKernel(ho,n)}var jg=W({rsqrt_:cR});function Se(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return qr(e,[],[],t)}function dR(e){let n={x:F(e,"x","selu")};return z.runKernel(dl,n)}var qg=W({selu_:dR});function pR(e,t,n,s,r,a=[1,1],o="NHWC"){let i=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(u.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${u.shape[2]}.`);let f=fc(c,l,s,r,o,a),g=Yr(f,u,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var vb=W({separableConv2d_:pR});async function hR(e,t){let n=F(e,"x","setdiff1d"),s=F(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Ht([i],n.dtype),u=new Ht([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var wb=hR;function fR(e){let n={x:F(e,"x","sign")};return z.runKernel(fl,n)}var kb=W({sign_:fR});function mR(e){let n={x:F(e,"x","sin")};return z.runKernel(fo,n)}var Xg=W({sin_:mR});function gR(e){let n={x:F(e,"x","sinh")};return z.runKernel(hl,n)}var Kg=W({sinh_:gR});function AR(e,t,n){let s=F(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var lh=W({slice1d_:AR});function yR(e,t,n){let s=F(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Zg=W({slice2d_:yR});function xR(e,t,n){let s=F(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var uh=W({slice3d_:xR});function bR(e,t,n){let s=F(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var xc=W({slice4d_:bR});function vR(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return z.runKernel(yo,s,r)}var ch=W({softmax_:vR});function wR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(dp,t)}var dh=W({fft_:wR});function kR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(pp,t)}var bc=W({ifft_:kR});function IR(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=bc(r)}else{let r=[n,2*(t-1)],a=U(yc(e),[n,t]),o=U(Jp(e),[n,t]),i=ps(_e(a,[0,1],[n,t-2]),1),l=L(ps(_e(o,[0,1],[n,t-2]),1),Se(-1)),u=mt([a,i],1),c=mt([o,l],1),d=U(jr(u,c),[r[0],r[1]]);s=bc(d)}if(s=yc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Yg=W({irfft_:IR});function SR(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(Al,r,a)}var qt=W({split_:SR});function CR(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=mt([e,Ft(f)],e.shape.length-1),n=t}else r=e;let a=Ye(r),o=U(jr(r,a),[s,n]),i=dh(o),l=Math.floor(n/2)+1,u=yc(i),c=Jp(i),d=qt(u,[l,n-l],u.shape.length-1),p=qt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(jr(d[0],p[0]),h)}var ph=W({rfft_:CR});function TR(e){let n={x:F(e,"x","sqrt")};return z.runKernel(go,n)}var fn=W({sqrt_:TR});function NR(e,t){let n=F(e,"a","squaredDifference"),s=F(t,"b","squaredDifference");[n,s]=Tt(n,s),yt(n.shape,s.shape);let r={a:n,b:s},a={};return z.runKernel(xo,r,a)}var Jg=W({squaredDifference_:NR});function ER(e,t){let n=F(e,"x","squeeze");return U(n,vx(n.shape,t).newShape)}var ut=W({squeeze_:ER});function RR(e,t=0){let n=uc(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return z.runKernel(al,s,r)}var mn=W({stack_:RR});function _R(e,t=0){let s={x:F(e,"x","step")},r={alpha:t};return z.runKernel(Ur,s,r)}var vc=W({step_:_R});function DR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return z.runKernel(yl,c,d)}var Ib=W({stridedSlice_:DR});function FR(e){let n={x:F(e,"x","tan")};return z.runKernel(vo,n)}var Sb=W({tan_:FR});function zt(e,t){Sa(e);let n=Js(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return qr(e,null,n,t)}function Os(e,t,n){if(Sa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Js(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return qr(e,t,s,n)}function $R(e,t,n){if(Sa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Js(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return qr(e,t,s,n)}function OR(e,t,n){if(Sa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Js(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return qr(e,t,s,n)}function PR(e,t,n){if(Sa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Js(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,qr(e,t,s,n)}function MR(e,t=1,n=!0){let s=F(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=z.runKernel(xl,a,o);return{values:i,indices:l}}var Cb=W({topk_:MR});function zR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new Ug(t,n,s,!0,r),o=Ve(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var hh=W({truncatedNormal_:zR});function LR(e,t=0){let n=F(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=z.runKernel(_p,s,r);return{values:a,indices:o}}var Qg=W({unique_:LR});function BR(e,t,n){let s=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");M(Jt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return z.runKernel(Ju,a,o)}var Tb=W({unsortedSegmentSum_:BR});function WR(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return z.runKernel(vl,s,r)}var hs=W({unstack_:WR});function Nb(e,t=!0,n,s){return z.makeVariable(e,t,n,s)}function Eb(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Ve(e,"int32"),r=Ve([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function VR(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),s=Eb(t.shape,n);return e!==t&&t.dispose(),s}var eA=VR;async function UR(e,t,n){let s=F(e,"tensor","boolMask"),r=F(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),yn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),d=U(r,[-1]),p=await eA(d),h=ut(p,[1]),f=zl(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),d.dispose(),p.dispose(),f}var HR=UR;function GR(e,t="euclidean",n=null,s=!1){e=F(e,"x","norm");let r=Rb(e,t,n),a=r.shape;if(s){let o=ks(n,e.shape);a=Mo(r.shape,o)}return U(r,a)}function Rb(e,t,n=null){if(e.rank===0)return Gt(e);if(e.rank!==1&&n===null)return Rb(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Gt(e),n);if(t===1/0)return cs(Gt(e),n);if(t===-1/0)return rh(Gt(e),n);if(t==="euclidean"||t===2)return fn(ve(Qr(Gt(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return cs(ve(Gt(e),n[0]),n[1]-1);if(t===1/0)return cs(ve(Gt(e),n[1]),n[0]);if(t===-1/0)return rh(ve(Gt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return fn(ve(dt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var tA=W({norm_:GR});function jR(e,t,n,s,r=!0){let a=F(e,"v","movingAverage"),o=F(t,"x","movingAverage"),i=F(n,"decay","movingAverage");Vx(a,o),M(xr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ge(l,i),c=L(ge(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=F(s,"step","movingAverage");c=de(c,ge(l,Qr(i,d)))}return ae(a,c)}var qR=W({movingAverage_:jR});function XR(e,t,n){let s=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");mg(r,s,n);let a={indices:s,updates:r},o={shape:n};return z.runKernel(ul,a,o)}var _b=W({scatterND_:XR});function KR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function ZR(e,t,n,s=0){let r=F(e,"sparseIndices","sparseToDense","int32"),a=F(t,"sparseValues","sparseToDense"),o=F(s,"defaultValue","sparseToDense",a.dtype);KR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return z.runKernel(Tp,i,l)}var nA=W({sparseToDense_:ZR});function YR(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(Ui,r)}var Db=W({gatherND_:YR});function JR(e,t){if(t==null)return e.shape.slice();if(xr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function QR(e,t,n,s){let r=F(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof je?r.clone():r;let a=JR(r,n),o=1-t,i=de(gc(ae(Wl(a,0,1,"float32",s),o)),o);return L(r,i)}var Fb=W({dropout_:QR});function $b(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function sA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return zt(r,"float32")}async function e_(e,t,n=1){let s=F(e,"predictions","inTopK"),r=F(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),yn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=wx("bool",l);for(let d=0;d<l;d++){let p=d*u,h=o.subarray(p,p+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),en(c,r.shape,"bool")}var t_=e_,ea={};Me(ea,{conv2d:()=>r_,depthwiseConv2d:()=>l_,matMul:()=>c_});function n_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(Jt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return z.runKernel(ep,d,p)}var rA=W({conv2DBackpropFilter_:n_});function fh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,vc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function mh(e,t){let n=t,s=jt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function gh(e,t,n,s){if(t==="linear")return e;if(t==="relu")return nr(e);if(t==="elu")return mc(e);if(t==="relu6")return Hg(e);if(t==="prelu")return ih(e,n);if(t==="leakyrelu")return Qp(e,s);if(t==="sigmoid")return Hn(e);throw new Error(`Unknown fused activation ${t}.`)}var Ah=(e,t)=>!(e>0)||t==="linear";function s_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Ah(z.state.gradientDepth,l)===!1){let v=Yr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),gh(v,l,u,c)}let d=F(e,"x","conv2d"),p=F(t,"filter","conv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(Jt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(er(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=pc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Tt(g,d),yt(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[S,C,_,O]=k,E=fh(v,_,l);M(Zr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Eg(C.shape,E,S,n,s),T=rA(C,E,S.shape,n,s),P=[R,T];if(O!=null){let V=mh(O,E);P.push(V)}return P},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?tr((k,S,C)=>{let _=z.runKernel(So,x,b);return C([S,k,_]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(h,p):tr((k,S,C,_)=>{let O=z.runKernel(So,x,b);return _([S,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var r_=W({fusedConv2d_:s_});function a_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return z.runKernel(rp,u,c)}var Ob=W({depthwiseConv2dNativeBackpropFilter_:a_});function o_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=z.runKernel(ap,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pb=W({depthwiseConv2dNativeBackpropInput_:o_});function i_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Ah(z.state.gradientDepth,l)===!1){let v=fc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),gh(v,l,u,c)}let d=F(e,"x","depthwiseConv2d"),p=F(t,"filter","depthwiseConv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(er(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(Jt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=pc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Tt(g,d),yt(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(Zr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,C,_,O]=k,E=fh(v,_,l),R=Pb(C.shape,E,S,n,s,a,o),T=Ob(C,E,S.shape,n,s,a,o);if(O!=null){let P=mh(g,E);return[R,T,P]}return[R,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?tr((k,S,C)=>{let _=z.runKernel(Co,x,b);return C([S,k,_]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(h,p):tr((k,S,C,_)=>{let O=z.runKernel(Co,x,b);return _([S,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var l_=W({fusedDepthwiseConv2d_:i_});function u_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Ah(z.state.gradientDepth,a)===!1){let O=Ue(e,t,n,s);return r!=null&&(O=ae(O,r)),gh(O,a,o,i)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Tt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Ot(f),A=Ot(m);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(xr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?U(l,[g,c,p]):U(l,[g,p,c]),b=s?U(u,[A,h,d]):U(u,[A,d,h]),v;r!=null&&(v=F(r,"bias","fused matMul"),[v]=Tt(v,l),yt(y,v.shape));let k;o!=null&&(k=F(o,"prelu weights","fused matMul"));let S=(O,E)=>{let[R,T,P,V]=E,j=fh(U(O,P.shape),P,a),q,X;if(!n&&!s?(q=Ue(j,T,!1,!0),X=Ue(R,j,!0,!1)):!n&&s?(q=Ue(j,T,!1,!1),X=Ue(j,R,!0,!1)):n&&!s?(q=Ue(T,j,!1,!0),X=Ue(R,j,!1,!1)):(q=Ue(T,j,!0,!0),X=Ue(j,R,!0,!0)),r!=null){let ee=mh(V,j);return[q,X,ee]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},_={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?tr((E,R,T)=>{let P=z.runKernel(Io,C,_);return T([E,R,P]),{value:U(P,y),gradFunc:S}})(x,b):tr((E,R,T,P)=>{let V=z.runKernel(Io,C,_);return P([E,R,V,T]),{value:U(V,y),gradFunc:S}})(x,b,v)}var c_=W({fusedMatMul_:u_});function d_(e){return sA(e,.54,.46)}var p_=W({hammingWindow_:d_});function h_(e){return sA(e,.5,.5)}var Mb=W({hannWindow_:h_});function f_(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=mt([_e(e,a,t-i),Ml([i],r)]);o.push(l),a+=n}return o.length===0?Os([],[0,t]):U(mt(o),[o.length,t])}var zb=W({frame_:f_});function m_(e,t,n,s,r=Mb){s==null&&(s=$b(t));let a=zb(e,t,n),o=L(a,r(t));return ph(o,s)}var g_=W({stft_:m_});function A_(e,t,n,s,r="bilinear",a=0){let o=F(e,"image","cropAndResize"),i=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return z.runKernel(Oi,c,d)}var y_=W({cropAndResize_:A_});function x_(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(Wi,n,{})}var b_=W({flipLeftRight_:x_});function v_(e){let t=F(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Cs(t,r)}var w_=W({grayscaleToRGB_:v_});function k_(e,t,n=0,s=.5){let r=F(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return z.runKernel(kl,a,o)}var I_=W({rotateWithOffset_:k_});function Ul(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function S_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),i=Ul(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return z.runKernel(tl,{boxes:a,scores:o},l)}var C_=W({nonMaxSuppression_:S_});function T_(e,t,n){let s=N_(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function N_(e,t,n){return R_(e,t,n||E_)}function E_(e,t){return e>t?1:e<t?-1:0}function R_(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Lb(e,t,n,s,r){return aA(e,t,n,s,r,0)}function Bb(e,t,n,s,r,a){return aA(e,t,n,s,r,0,!1,a,!0)}function Wb(e,t,n,s,r,a){return aA(e,t,n,s,r,a,!0)}function aA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Vb);let c=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=__(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*D_(s,c,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&T_(u,g,Vb))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function __(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-u)*(p-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function D_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Vb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function F_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),i=Ul(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=Lb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),zt(d,"int32")}var $_=F_;function O_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=Ul(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=z.runKernel(sl,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var P_=W({nonMaxSuppressionWithScore_:O_});async function M_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=Ul(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:p,selectedScores:h}=Wb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:zt(p,"int32"),selectedScores:zt(h)}}var z_=M_;function L_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=Ul(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=z.runKernel(nl,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var B_=W({nonMaxSuppressionPadded_:L_});async function W_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=Ul(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Bb(p,h,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:zt(f,"int32"),validOutputs:Se(m,"int32")}}var V_=W_;function U_(e,t,n=!1,s=!1){let r=F(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=z.runKernel(lo,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var H_=W({resizeBilinear_:U_});function G_(e,t,n=!1,s=!1){let r=F(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=z.runKernel(Zu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var j_=W({resizeNearestNeighbor_:G_});function q_(e,t="binary",n=!1,s=.5){let r=F(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=L(zt([s]),255),c,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,p]=qt(r,[1,1,1],-1);let g=L(c,a),A=L(d,o),y=L(p,i);h=ae(ae(g,A),y)}else h=e;if(t==="otsu"){let g=Tg(ce(Gg(h),"int32"),en([]),256);u=X_(g,l)}let f=n?Po(h,u):jn(h,u);return ce(L(f,255),"int32")}function X_(e,t){let n=zt([-1]),s=zt([0]),r=zt([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),u=de(ve(a),t),c=de(ve(o),t);let p=ve(L(a,Vl(0,a.size)));i=de(p,ve(a));let h=Ml(o.shape,a.size),f=ae(Vl(0,o.size),h),m=L(o,f);l=de(ve(m),ve(o));let g=ge(i,l),A=ge(i,l),y=L(u,c);r=L(L(y,g),A);let x=jn(r,s);s=vn(x,r,s),n=vn(x,zt([d]),n)}return n}var K_=W({threshold_:q_});function Z_(e,t,n="nearest",s="constant",r=0,a){let o=F(e,"image","transform","float32"),i=F(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return z.runKernel(bl,l,u)}var Y_=W({transform_:Z_});function J_(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=F(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Vl(0,a,1,"int32"),[-1,1]),l=Vl(0,o,1,"int32"),u=ge(i,l),c=$s(Po(u,Se(+t,"int32")),Oo(u,Se(-n,"int32"))),d=Ft([a,o],s.dtype);return U(mn(hs(U(s,[-1,a,o])).map(p=>vn(c,p,d))),r)}var Q_=W({bandPart_:J_});function eD(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=qt(e,e.shape[0],0).map(r=>ut(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(z.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ve(L(n[o],a)),n[o]);a=ge(a,i)}return de(a,tA(a,"euclidean"))}));return t?mn(n,0):n}var tD=W({gramSchmidt_:eD});function nD(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Ub(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=hs(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Ub(l,t);r.push(u),a.push(c)});let o=U(mn(r,0),e.shape),i=U(mn(a,0),e.shape);return[o,i]}}function Ub(e,t=!1){return z.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=$g(n),a=Fs(e),o=Os([[1]],[1,1]),i=Fs(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,p=r;[i,a,r]=z.tidy(()=>{let h=_e(a,[u,u],[n-u,1]),f=tA(h),m=_e(a,[u,u],[1,1]),g=vn(jn(m,0),Os([[-1]]),Os([[1]])),A=ge(m,L(g,f)),y=de(h,A);y.shape[0]===1?i=Fs(o):i=mt([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Nt(de(Ue(g,A),f)),b=_e(a,[u,0],[n-u,s]),v=L(x,i),k=Ze(i);if(u===0)a=ge(b,Ue(v,Ue(k,b)));else{let _=ge(b,Ue(v,Ue(k,b)));a=mt([_e(a,[0,0],[u,s]),_],0)}let S=Ze(v),C=_e(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(C,Ue(Ue(C,i),S));else{let _=ge(C,Ue(Ue(C,i),S));r=mt([_e(r,[0,0],[n,u]),_],1)}return[i,a,r]}),Z([c,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var sD=W({qr_:nD}),wn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(wn||(wn={}));function rD(e,t,n=wn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===wn.NONE)return a;if(n===wn.SUM)return ve(a);if(n===wn.MEAN){if(r==null)return Dt(a);{let o=s.size/r.size,i=de(ve(a),ve(r));return o>1?de(i,Se(o)):i}}if(n===wn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return de(ve(a),Se(s.size));{let o=L(r,qn(s.shape)),i=ce(ve(Bl(o,Se(0))),"float32");return de(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var wr=W({computeWeightedLoss_:rD});function aD(e,t,n,s=wn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),a=F(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=F(n,"weights","absoluteDifference")),yn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Gt(ge(r,a));return wr(i,o,s)}var oD=W({absoluteDifference_:aD});function iD(e,t,n,s,r=wn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","cosineDistance"),o=F(t,"predictions","cosineDistance"),i=null;s!=null&&(i=F(s,"weights","cosineDistance")),yn(a.shape,o.shape,"Error in cosineDistance: ");let l=Se(1),u=ge(l,ve(L(a,o),n,!0));return wr(u,i,r)}var lD=W({cosineDistance_:iD});function uD(e,t,n,s=wn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),a=F(t,"predictions","hingeLoss"),o=null;n!=null&&(o=F(n,"weights","hingeLoss")),yn(r.shape,a.shape,"Error in hingeLoss: ");let i=Se(1);r=ge(L(Se(2),r),i);let l=nr(ge(i,L(r,a)));return wr(l,o,s)}var cD=W({hingeLoss_:uD});function dD(e,t,n,s=1,r=wn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","huberLoss"),o=F(t,"predictions","huberLoss"),i=null;n!=null&&(i=F(n,"weights","huberLoss")),yn(a.shape,o.shape,"Error in huberLoss: ");let l=Se(s),u=Gt(ge(o,a)),c=Ac(u,l),d=ge(u,c),p=ae(L(Se(.5),dt(c)),L(l,d));return wr(p,i,r)}var pD=W({huberLoss_:dD});function hD(e,t,n,s=1e-7,r=wn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","logLoss"),o=F(t,"predictions","logLoss"),i=null;n!=null&&(i=F(n,"weights","logLoss")),yn(a.shape,o.shape,"Error in logLoss: ");let l=Se(1),u=Se(s),c=Nt(L(a,us(ae(o,u)))),d=L(ge(l,a),us(ae(ge(l,o),u))),p=ge(c,d);return wr(p,i,r)}var fD=W({logLoss_:hD});function mD(e,t,n,s=wn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),a=F(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=F(n,"weights","meanSquaredError")),yn(r.shape,a.shape,"Error in meanSquaredError: ");let i=Jg(r,a);return wr(i,o,s)}var gD=W({meanSquaredError_:mD});function AD(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),s=F(t,"logits","sigmoidCrossEntropyWithLogits");yn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=nr(s),a=L(s,n),o=eh(ls(Nt(Gt(s))));return ae(ge(r,a),o)}function yD(e,t,n,s=0,r=wn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"multiClassLabels","sigmoidCrossEntropy"),o=F(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","sigmoidCrossEntropy")),yn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Se(s),c=Se(1),d=Se(.5);a=ae(L(a,ge(c,u)),L(d,u))}let l=AD(a,o);return wr(l,i,r)}var xD=W({sigmoidCrossEntropy_:yD});function bD(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return tr((r,a,o)=>{let l=fb(a,[n],!0),u=ge(ce(a,"float32"),l);o([r,u]);let c=Nt(L(u,r));return{value:ve(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=Mo(h.shape,[n]);return[L(U(h,A),ge(ce(m,"float32"),ls(g))),L(U(h,A),ge(ls(g),ce(m,"float32")))]}}})(e,t)}function vD(e,t,n,s=0,r=wn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"onehotLabels","softmaxCrossEntropy"),o=F(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","softmaxCrossEntropy")),yn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Se(s),c=Se(1),d=Se(a.shape[1]);a=ae(L(a,ge(c,u)),de(u,d))}let l=bD(a,o);return wr(l,i,r)}var wD=W({softmaxCrossEntropy_:vD});function kD(e,t,n,s){let r=F(e,"indices","sparseFillEmptyRows"),a=F(t,"values","sparseFillEmptyRows"),o=F(n,"denseShape","sparseFillEmptyRows"),i=F(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=z.runKernel(kp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var ID=W({sparseFillEmptyRows_:kD});function SD(e,t,n){let s=F(e,"inputIndices","sparseReshape"),r=F(t,"inputShape","sparseReshape"),a=F(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=z.runKernel(Ip,o);return{outputIndices:i[0],outputShape:i[1]}}var CD=W({sparseReshape_:SD});function TD(e,t,n){let s=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean"),a=F(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return z.runKernel(Sp,o)}var ND=W({sparseSegmentMean_:TD});function ED(e,t,n){let s=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum"),a=F(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return z.runKernel(Cp,o)}var RD=W({sparseSegmentSum_:ED});function _D(e,t,n,s,r,a,o,i){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},p=z.runKernel(Np,d,c);return{nGrams:p[0],nGramsSplits:p[1]}}var DD=W({stringNGrams_:_D});function FD(e,t,n=!0){let s=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=z.runKernel(Ep,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var $D=W({stringSplit_:FD});function OD(e,t){let n=F(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return z.runKernel(Rp,r,s)}var PD=W({stringToHashBucketFast_:OD}),MD={fft:dh,ifft:bc,rfft:ph,irfft:Yg},zD={hammingWindow:p_,hannWindow:Mb,frame:zb,stft:g_},Re={flipLeftRight:b_,grayscaleToRGB:w_,resizeNearestNeighbor:j_,resizeBilinear:H_,rotateWithOffset:I_,cropAndResize:y_,nonMaxSuppression:C_,nonMaxSuppressionAsync:$_,nonMaxSuppressionWithScore:P_,nonMaxSuppressionWithScoreAsync:z_,nonMaxSuppressionPadded:B_,nonMaxSuppressionPaddedAsync:V_,threshold:K_,transform:Y_},Hb={bandPart:Q_,gramSchmidt:tD,qr:sD},LD={absoluteDifference:oD,computeWeightedLoss:wr,cosineDistance:lD,hingeLoss:cD,huberLoss:pD,logLoss:fD,meanSquaredError:gD,sigmoidCrossEntropy:xD,softmaxCrossEntropy:wD},wc={sparseFillEmptyRows:ID,sparseReshape:CD,sparseSegmentMean:ND,sparseSegmentSum:RD},yh={stringNGrams:DD,stringSplit:$D,stringToHashBucketFast:PD},kr=class extends N5{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Z(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return cb(e,t)}dispose(){this.iterations_!=null&&Z(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(kr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var xh=class extends kr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>Ye(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(L(i,this.rho),L(dt(o),1-this.rho)),c=L(de(fn(ae(l,this.epsilon)),fn(ae(i,this.epsilon))),o),d=ae(L(l,this.rho),L(dt(c),1-this.rho));i.assign(u),l.assign(d);let p=ae(L(c,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Z(this.accumulatedGrads.map(e=>e.variable)),Z(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};xh.className="Adadelta";Kr(xh);var bh=class extends kr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Ml(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,dt(a));o.assign(i);let l=ae(L(de(a,fn(ae(i,z.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Z(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};bh.className="Adagrad";Kr(bh);var vh=class extends kr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let o=z.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>Ye(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>Ye(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(L(u,this.beta1),L(l,1-this.beta1)),p=ae(L(c,this.beta2),L(dt(l),1-this.beta2)),h=de(d,n),f=de(p,s);u.assign(d),c.assign(p);let m=ae(L(de(h,ae(fn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Z(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Qr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};vh.className="Adam";Kr(vh);var wh=class extends kr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=de(-this.learningRate,ae(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=z.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ye(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ye(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(L(u,this.beta1),L(l,1-this.beta1)),p=L(c,this.beta2),h=Gt(l),f=vr(p,h);u.assign(d),c.assign(f);let m=ae(L(de(s,n),de(d,ae(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Z(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};wh.className="Adamax";Kr(wh);var kc=class extends kr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=z.registeredVariables[n];H(()=>{let o=ae(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=tn(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};kc.className="SGD";Kr(kc);var kh=class extends kc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>Ye(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(L(this.m,a),o);this.useNesterov?i=ae(L(this.c,ae(o,L(l,this.m))),r):i=ae(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Z(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};kh.className="Momentum";Kr(kh);var Ih=class extends kr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>Ye(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(L(i,this.decay),L(dt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(L(c,this.decay),L(o,1-this.decay)),p=de(L(o,this.learningRate),fn(ge(u,ae(dt(d),this.epsilon)))),h=ae(L(l,this.momentum),p);i.assign(u),c.assign(d),l.assign(h);let f=ge(r,h);r.assign(f)}else{let c=ae(L(i,this.decay),L(dt(o),1-this.decay)),d=ae(L(l,this.momentum),de(L(o,this.learningRate),fn(ae(c,this.epsilon))));i.assign(c),l.assign(d);let p=ge(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Z(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Z(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Z(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Ih.className="RMSProp";Kr(Ih);var zo=class{static sgd(e){return new kc(e)}static momentum(e,t,n=!1){return new kh(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Ih(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new vh(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new xh(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new wh(e,t,n,s,r)}static adagrad(e,t=.1){return new bh(e,t)}},Lo={sgd:zo.sgd,momentum:zo.momentum,adadelta:zo.adadelta,adagrad:zo.adagrad,rmsprop:zo.rmsprop,adamax:zo.adamax,adam:zo.adam},BD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Sh(){return new Promise(e=>BD(()=>e()))}var D={};Me(D,{ERF_A1:()=>YD,ERF_A2:()=>JD,ERF_A3:()=>QD,ERF_A4:()=>eF,ERF_A5:()=>tF,ERF_P:()=>ZD,PARALLELIZE_THRESHOLD:()=>oA,SELU_SCALE:()=>jb,SELU_SCALEALPHA:()=>Gb,applyActivation:()=>gh,assertAndGetBroadcastShape:()=>yt,assertAxesAreInnerMostDims:()=>JN,assertParamsConsistent:()=>WD,assignToTypedArray:()=>iF,axesAreInnerMostDims:()=>Mg,calculateShapes:()=>g5,checkEinsumDimSizes:()=>hF,combineLocations:()=>db,complexWithEvenIndex:()=>rF,complexWithOddIndex:()=>aF,computeConv2DInfo:()=>pc,computeConv3DInfo:()=>V5,computeDefaultPad:()=>Ig,computeDilation2DInfo:()=>AT,computeOptimalWindowSize:()=>UD,computeOutAndReduceShapes:()=>pb,computeOutShape:()=>VD,computePool2DInfo:()=>W5,computePool3DInfo:()=>yT,convertConv2DDataFormat:()=>U5,decodeEinsumEquation:()=>dF,eitherStridesOrDilationsAreOne:()=>er,expandShapeToKeepDim:()=>Mo,exponent:()=>uF,exponents:()=>lF,fromStringArrayToUint8:()=>wF,fromUint8ToStringArray:()=>vF,getAxesPermutation:()=>hb,getBroadcastDims:()=>uN,getComplexWithIndex:()=>oF,getEinsumComputePath:()=>fF,getEinsumPermutation:()=>pF,getFusedBiasGradient:()=>mh,getFusedDyActivation:()=>fh,getImageCenter:()=>HD,getInnerMostAxes:()=>QN,getPermuted:()=>jD,getReductionAxes:()=>jt,getReshaped:()=>GD,getReshapedPermuted:()=>qD,getSliceBeginCoords:()=>XD,getSliceSize:()=>KD,getUndoAxesPermutation:()=>zg,isIdentityPermutation:()=>mF,log:()=>GS,mergeRealAndImagArrays:()=>nF,prepareAndValidate:()=>m5,prepareSplitSize:()=>AF,segment_util:()=>Kb,shouldFuse:()=>Ah,slice_util:()=>bn,splitRealAndImagArrays:()=>sF,tupleValuesAreOne:()=>Zr,upcastType:()=>Is,validateInput:()=>mg,validateUpdateShape:()=>fg,warn:()=>Ks});function WD(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function VD(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var oA=30;function UD(e){return e<=oA?e:Xd(e,Math.floor(Math.sqrt(e)))}function HD(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function GD(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function jD(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function qD(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function XD(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function KD(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Gb=1.7580993408473768,jb=1.0507009873554805,ZD=.3275911,YD=.254829592,JD=-.284496736,QD=1.421413741,eF=-1.453152027,tF=1.061405429;function nF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function sF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function rF(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function aF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function oF(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function iF(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function lF(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function uF(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var iA="->",cF=/->/g,qb=",",Xb="...";function dF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(cF,"").length)/iA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${iA}").`);let[s,r]=e.split(iA);M(s.indexOf(Xb)===-1,()=>`The ellipsis notation ("${Xb}") is not supported yet.`);let a=s.split(qb),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==qb&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let u=i.length,c=r.length,d=[];for(let p=c;p<u;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function pF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function hF(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function fF(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=gF(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function mF(e){return e.every((t,n)=>t===n)}function gF(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function AF(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Kb={};Me(Kb,{collectGatherOpShapeInfo:()=>bF,computeOutShape:()=>xF,segOpComputeOptimalWindowSize:()=>yF});function yF(e,t){let n=!1,s;for(e<=oA?(s=e,n=!0):s=Xd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Xd(e,s+1);return s}function xF(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function bF(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function vF(e){try{return e.map(t=>Pp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function wF(e){return e.map(t=>nc(t))}var sr={};Me(sr,{nonMaxSuppressionV3Impl:()=>Lb,nonMaxSuppressionV4Impl:()=>Bb,nonMaxSuppressionV5Impl:()=>Wb,whereImpl:()=>Eb});var Zb={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,vc(ce(n,"float32"),-1))}}},kF={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dt(ce(n,"float32")),r=fn(ge(Se(1),s));return Nt(de(e,r))}}}},IF={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=fn(ge(dt(ce(n,"float32")),1));return de(e,s)}}}},SF={kernelName:Br,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=e,l=jt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=jt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},CF={kernelName:Ta,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},TF={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ye(n)}}},NF={kernelName:Lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ye(n)}}},EF={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,fn(ge(Se(1),dt(ce(n,"float32")))))}}},RF={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=fn(ae(Se(1),dt(ce(n,"float32"))));return de(e,s)}}}},_F={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=ae(dt(n),dt(s)),l=L(e,de(s,i)),u=jt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(dt(n),dt(s)),l=Nt(L(e,de(n,i))),u=jt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},DF={kernelName:Ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(dt(ce(n,"float32")),1))}}},FF={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ge(Se(1),dt(ce(n,"float32"))))}}};function $F(e,t,n,s,r,a){let o=F(e,"dy","avgPool3dGrad"),i=F(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(Jt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=z.runKernel(Yd,d,p);return c?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var OF=W({avgPool3dGrad_:$F}),PF={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>OF(e,s,r,a,o,i)}}};function MF(e,t,n,s,r){let a=F(e,"dy","avgPoolGrad"),o=F(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=z.runKernel(Zd,c,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var zF=W({avgPoolGrad_:MF}),LF={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>zF(e,s,r,a,o)}}},BF={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ue(e,r,!1,!0),b:()=>Ue(s,e,!0,!1)}:!a&&o?{a:()=>Ue(e,r,!1,!1),b:()=>Ue(e,s,!0,!1)}:a&&!o?{a:()=>Ue(r,e,!1,!0),b:()=>Ue(s,e,!1,!1)}:{a:()=>Ue(r,e,!0,!0),b:()=>Ue(e,s,!0,!0)}}},WF={kernelName:Fi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>oh(e,s,r)}}},VF={kernelName:Fx,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ve(e,i,!0)}}},UF={kernelName:_a,gradFunc:e=>({x:()=>e.clone()})},HF={kernelName:Da,gradFunc:e=>({x:()=>Ye(e)})},GF={kernelName:Wr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>vn($s(Oo(s,r),Po(s,a)),e,Ye(e))}}},jF={kernelName:Wu,inputsToSave:["x"],gradFunc:Zb.gradFunc},qF={kernelName:$i,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=ks(r,t[0].shape)[0],o=s.map(l=>l[a]);return qt(e,o,a).map(l=>()=>l)}},XF={kernelName:Fa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Zr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Eg(s.shape,e,r,o,i,l),filter:()=>rA(s,e,r.shape,o,i,l)}}},KF={kernelName:$a,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Yr(e,r,a,o,i,1,l),filter:()=>rA(e,s,r.shape,a,o,i,l)}}};function ZF(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return z.runKernel(tp,i,l)}var YF=W({conv3DBackpropFilter_:ZF}),JF={kernelName:Vu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Zr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>J5(o.shape,e,i,r,a),filter:()=>YF(o,e,i.shape,r,a)}}},QF={kernelName:Oa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Nt(Xg(ce(n,"float32"))),e)}}},e$={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Kg(ce(n,"float32")),e)}}},t$={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=hb([r],s.rank),l=Fg(e,r,a,!o);return i!=null&&(l=Ze(l,i)),l}}}},n$={kernelName:za,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Zr(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(er(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(Jt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Pb(l.shape,e,u,r,a,i,o),filter:()=>Ob(l,e,u.shape,r,a,i,o)}}},s$={kernelName:Uu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>z.runKernel(ip,a,n),filter:()=>z.runKernel(lp,o,n)}}},r$={kernelName:Ba,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>z.runKernel(cp,s)}}},a$={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ls(Nt(dt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},o$={kernelName:Wa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},i$={kernelName:Li,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},l$={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ls(n))}}},u$={kernelName:Va,gradFunc:e=>({x:()=>Ye(e)})},c$={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=jt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=jt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=dt(s);return Nt(de(i,ce(u,"float32")))}}}},d$={kernelName:Ha,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Se(1):i,u=jt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=ge(r,a),p=L(e,l),h=jg(ae(o,Se(s))),f=L(L(L(h,h),h),Se(-.5));return{x:()=>a.rank===1?U(L(L(e,Cs(U(h,[1,1,1,a.shape[0]]),c)),l),r.shape):U(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Se(-1)),p);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=L(d,h),v=L(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},p$={kernelName:Vi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=ks(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,p=l.slice(a,l.length).slice(1),h=p.length,f=Yb(0,d),m=Yb(d+1,d+1+h),g=Jb([c,[u],p]),A=U(e,g),y=U(r,[u]),x=Jb([[d],f,m]),b=Ze(A,x),v=Tb(b,y,s.shape[o]),k=zg(x);return v=Ze(v,k),v},indices:()=>r}}};function Yb(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Jb(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var h$={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ye(n),b:()=>Ye(s)}}},f$={kernelName:ja,gradFunc:e=>({x:()=>ce(e,"float32")})},m$={kernelName:Gi,gradFunc:e=>({x:()=>Ye(e)})},g$={kernelName:ji,gradFunc:e=>({x:()=>Ye(e)})},A$={kernelName:qi,gradFunc:e=>({x:()=>Ye(e)})},y$={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=jn(s,0);return{x:()=>vn(a,e,L(e,r))}}},x$={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(n,1))}}},b$={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ce(n,"float32"))}}},v$={kernelName:$x,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=ls(s);return ge(e,L(ve(e,r,a),o))}}}};function w$(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return z.runKernel(mp,i,l)}var k$=W({localResponseNormalizationBackprop_:w$}),I$={kernelName:qu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>k$(s,r,e,a,o,i,l)}}};function Qb(e,t,n,s){return t.rank<n.rank&&(t=U(t,Mo(t.shape,s))),e.rank<n.rank&&(e=U(e,Mo(e.shape,s))),{x:()=>L(e,ce(is(n,t),e.dtype))}}var e3={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=ks(r,a.shape),l=Qb(e,o,a,i);return{x:()=>l.x()}}},S$={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ce(Oo(n,s),"float32")),b:()=>L(e,ce(Og(n,s),"float32"))}}};function C$(e,t,n,s,r,a,o){let i=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),c=i,d=l,p=u,h=!1;l.rank===4&&(h=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(Jt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=z.runKernel(Ap,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var T$=W({maxPool3dGrad_:C$}),N$={kernelName:Xu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>T$(e,s,r,a,o,i,l)}}};function E$(e,t,n,s,r,a,o){let i=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(Jt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return z.runKernel(gp,c,d)}var R$=W({maxPoolGrad_:E$}),_$={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>R$(e,s,r,a,o,i)}}},D$={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ks(r,s.shape),i=pb(s.shape,a)[1],l=Ot(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let d=U(e,c);return de(L(d,qn(s.shape,"float32")),l)}}}},F$={kernelName:Qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=ks(r,a.shape),l=Qb(e,o,a,i);return{x:()=>l.x()}}},$$={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ce(Po(n,s),"float32")),b:()=>L(e,ce(jn(n,s),"float32"))}}},O$={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},P$={kernelName:Ji,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=jt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=L(e,Nt(gc(de(n,s)))),l=jt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},M$={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=L(e,ce(s,"float32")),l=jt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=jt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},z$={kernelName:Qi,gradFunc:e=>({x:()=>Nt(e)})},L$={kernelName:so,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ft(n.shape,"float32")}}},B$={kernelName:rl,gradFunc:e=>({x:()=>Ye(e)})},W$={kernelName:al,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return hs(e,s).map(a=>()=>a)}},t3={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},V$={kernelName:ao,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=yt(a.shape,o.shape);return{a:()=>{let c=ce(o,"float32"),d=L(e,L(c,Qr(a,ge(c,Se(1))))),p=jt(a.shape,i);return p.length>0&&(d=ve(d,p)),U(d,a.shape)},b:()=>{let c=jn(a,0),d=vn(c,us(a),Ye(a)),p=L(e,L(r,d)),h=jt(o.shape,i);return h.length>0&&(p=ve(p,h)),U(p,o.shape)}}}},U$={kernelName:oo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=jn(n,0);return{x:()=>vn(r,e,L(e,s)),alpha:()=>{let a=vn(r,Ye(e),L(e,n)),o=jt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},H$={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=jt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=jt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=dt(s);return Nt(de(i,ce(u,"float32")))}}}},G$={kernelName:il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Nt(dt(n)))}}},j$={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Po(n,6),vc(n));return{x:()=>L(e,ce(s,"float32"))}}},q$={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ce(vc(n),"float32"))}}},X$={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},K$={kernelName:lo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(wp,r,n)}}},Z$={kernelName:Zu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(vp,r,n)}}},Y$={kernelName:co,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ks(s,e.shape);return{x:()=>ps(e,r)}}},J$={kernelName:po,gradFunc:e=>({x:()=>Ye(e)})},Q$={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Nt(de(e,L(Qr(n,1.5),2)))}}},eO={kernelName:cl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ye(n),"float32"),t:()=>L(e,ce(n,e.dtype)),e:()=>L(e,ce(nh(n),e.dtype))}}},tO={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=jn(n,Se(0)),r=Se(Gb),a=Se(jb),o=L(e,a),i=L(L(e,r),ls(ce(n,"float32")));return vn(s,o,i)}}}},nO={kernelName:mo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,ge(Se(1),n)))}}},sO={kernelName:fl,gradFunc:e=>({x:()=>Ye(e)})},rO={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Yp(ce(n,"float32")),e)}}},aO={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Dg(ce(n,"float32")),e)}}},oO={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=T5(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Jr(e,u)}}},iO={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>ge(o,L(ve(o,[r],a),s))}}},lO={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Hn(n))}}},n3={kernelName:gl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Zp(e,s,r)}}},s3={kernelName:Al,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>mt(e,s)}}},uO={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,L(fn(ce(n,"float32")),2))}}},cO={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ce(n,"float32"),2))}}},dO={kernelName:xo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Se(2);return{a:()=>L(e,L(r,ge(n,s))),b:()=>L(e,L(r,ge(s,n)))}}},pO={kernelName:Ur,gradFunc:e=>({x:()=>Ye(e)})},hO={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=e,l=jt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=jt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(Nt(i),s.shape)}}}},fO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ks(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=L(i,qn(s.shape,"float32"));return{x:()=>l}}},mO={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,dt(Yp(n)))}}},gO={kernelName:wo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ge(Se(1),dt(n)),e)}}},AO={kernelName:Vr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ye(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ae(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ae(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},yO={kernelName:ko,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=zg(r);return{x:()=>Ze(e,a)}}},xO={kernelName:vl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>mn(e,r)}}},bO={kernelName:Ju,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vO(e,n)}}};function vO(e,t){let n=vr(t,Ye(t)),s=zl(e,n),r=Oo(t,Se(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Mt(r,i+1);r=$s(r,qn(s.shape,"bool"));let o=Ye(s);return vn(r,s,o)}var wO={kernelName:wl,gradFunc:e=>({x:()=>Ye(e)})},kO=[Zb,kF,IF,SF,CF,TF,NF,EF,RF,_F,DF,FF,PF,LF,BF,WF,VF,UF,HF,GF,jF,qF,KF,XF,JF,QF,e$,t$,n$,s$,H$,r$,a$,o$,i$,l$,c$,u$,d$,p$,h$,f$,m$,g$,A$,y$,x$,b$,v$,I$,e3,e3,S$,N$,_$,D$,F$,$$,O$,P$,M$,z$,L$,B$,W$,t3,t3,V$,U$,G$,j$,q$,X$,K$,Z$,Y$,J$,Q$,eO,tO,nO,sO,rO,aO,oO,iO,lO,n3,n3,s3,s3,uO,dO,cO,pO,hO,fO,mO,gO,AO,yO,xO,bO,wO];for(let e of kO)Ox(e);var r3={};Me(r3,{maxNorm:()=>TO,minMaxNorm:()=>RO,nonNeg:()=>EO,unitNorm:()=>NO});var lA;function Xt(){return lA==null&&(lA=Dl().epsilon()),lA}function Ps(){return"channelsLast"}var Ir=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ir.prototype)}},Ms=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ms.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Pe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pe.prototype)}},a3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,a3.prototype)}};function Bo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new a3(t)}function o3(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Fn(e){return e.length===1?e[0]:e}function xt(e){return Array.isArray(e)?e:[e]}function Sr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Wo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ts={};function uA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function cA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>cA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:cA(s))}}}function Ic(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ts)o=Ts[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ts?[i,l]=Ts.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Ts))u[h]=Ts[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let d=Object.assign({},Ts);for(let h of Object.keys(n))Ts[h]=n[h];cA(a.config);let p=l(i,a.config,n,r);return Ts=Object.assign({},d),p}else{let u=Object.assign({},Ts);for(let d of Object.keys(n))Ts[d]=n[d];let c=new i(a.config);return Ts=Object.assign({},u),c}}}function IO(e,t){return e<t?-1:e>t?1:0}function Ch(e,t){return-1*IO(e,t)}function ta(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function SO(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Vo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function dA(e,t,n=0,s=1/0){return rr(n>=0),rr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function nn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>nn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${i3(e)}.`)}function i3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>i3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function CO(e,t){let n=w.now(),s;return(...a)=>{let o=w.now();return o-n<t||(n=o,s=e(...a)),s}}function l3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function pA(e,t){return H(()=>fn(ve(L(e,e),t,!0)))}var Sc=class extends oe.Serializable{getConfig(){return{}}},hA=class extends Sc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=pA(e,this.axis),n=Gn(t,0,this.maxValue);return L(e,de(n,ae(Xt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};hA.className="MaxNorm";oe.registerClass(hA);var fA=class extends Sc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>de(e,ae(Xt(),pA(e,this.axis))))}getConfig(){return{axis:this.axis}}};fA.className="UnitNorm";oe.registerClass(fA);var mA=class extends Sc{apply(e){return nr(e)}};mA.className="NonNeg";oe.registerClass(mA);var gA=class extends Sc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=pA(e,this.axis),n=ae(L(this.rate,Gn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,de(n,ae(Xt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};gA.className="MinMaxNorm";oe.registerClass(gA);var u3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return uA(e)}function c3(e,t={}){return Ic(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Zt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in u3?u3[e]:e,config:{}};return c3(n)}else return e instanceof Sc?e:c3(e)}function TO(e){return new hA(e)}function NO(e){return new fA(e)}function EO(){return new mA}function RO(e){return new gA(e)}var d3={};Me(d3,{constant:()=>QO,glorotNormal:()=>oP,glorotUniform:()=>aP,heNormal:()=>iP,heUniform:()=>lP,identity:()=>sP,leCunNormal:()=>uP,leCunUniform:()=>cP,ones:()=>JO,orthogonal:()=>dP,randomNormal:()=>tP,randomUniform:()=>eP,truncatedNormal:()=>nP,varianceScaling:()=>rP,zeros:()=>YO});var _O=["channelsFirst","channelsLast"],DO=["nearest","bilinear"],FO=["valid","same","causal"],$O=["max","avg"],OO=["sum","mul","concat","ave"],Hl=new Map;function Pt(e){Vo(_O,"DataFormat",e)}function PO(e){Vo(DO,"InterpolationFormat",e)}function fs(e){Vo(FO,"PaddingMode",e)}function p3(e){Vo($O,"PoolMode",e)}var Cc=[],h3="/";function Uo(e,t){Cc.push(e);try{let n=t();return Cc.pop(),n}catch(n){throw Cc.pop(),n}}function MO(){return Cc.length===0?"":Cc.join(h3)+h3}function f3(e){if(!g3(e))throw new Error("Not a valid tensor name: '"+e+"'");return MO()+e}function m3(e){if(!g3(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var zO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function g3(e){return!!e.match(zO)}function LO(e){return e===parseInt(e.toString(),10)}function na(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Gl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function sa(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function zs(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Th(e,t){return ce(e,t)}function Tc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function BO(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Tc(e,1);return xA(n,[1,t,1])})}function WO(e){let t=[na(e.shape)];return U(e,t)}function VO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],na(e.shape,1)];return U(e,t)}function Ho(e,t,n){return H(()=>{switch(e.rank){case 1:return lh(e,t,n);case 2:return Zg(e,[t,0],[n,e.shape[1]]);case 3:return uh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return xc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function AA(e,t,n){return H(()=>{switch(e.rank){case 1:return lh(e,t,n);case 2:return Zg(e,[0,t],[e.shape[0],n]);case 3:return uh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return xc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Nh(e,t,n,s){return H(()=>{switch(e.rank){case 1:return lh(e,t,n);case 2:switch(s){case 1:return Ho(e,t,n);case 2:return AA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Ho(e,t,n);case 2:return uh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return AA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Ho(e,t,n);case 2:return xc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return xc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return AA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function yA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),mt(e,t)}function A3(e,t){switch(e.rank){case 1:return K5([e,t]);case 2:return Pl([e,t],0);case 3:return Z5([e,t],0);case 4:return Y5([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function xA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Cs(e,t)}function Eh(e,t=0,n=1,s,r){return xb(e,t,n,s,r)}function ar(e,t,n,s){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return ea.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?bA(e.rank,s,Ps()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ze(t,c),[l,-1]);let d=[...r,...u],p=!1,h=!1;return U(ea.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?bA(e.rank,s,Ps()):null,activation:n}),d)}}function y3(e,t,n){return H(()=>(Array.isArray(t)?t=zt(t,"int32"):t=ce(t,"int32"),zl(e,t,n)))}function Nc(e){return L(e,e)}function bA(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ls(e,t,n){return H(()=>(n==null&&(n=Ps()),Pt(n),ae(e,bA(e.rank,t,n))))}function UO(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return mc(e)}function HO(e){return H(()=>de(e,ae(Gt(e),1)))}function x3(e,t,n,s){return H(()=>Fb(e,t,n,s))}function GO(e){return H(()=>{let t=ae(.5,L(.2,e));return Gn(t,0,1)})}function Ec(e,t,n=!1){return n?e():t()}var jO=["fanIn","fanOut","fanAvg"],qO=["normal","uniform","truncatedNormal"];function XO(e){Vo(jO,"FanMode",e)}function KO(e){Vo(qO,"Distribution",e)}var Ns=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},vA=class extends Ns{apply(e,t){return Ft(e,t)}};vA.className="Zeros";oe.registerClass(vA);var Rh=class extends Ns{apply(e,t){return qn(e,t)}};Rh.className="Ones";oe.registerClass(Rh);var wA=class extends Ns{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>L(Se(this.value),qn(e,t)))}getConfig(){return{value:this.value}}};wA.className="Constant";oe.registerClass(wA);var kA=class extends Ns{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};kA.className="RandomUniform";oe.registerClass(kA);var IA=class extends Ns{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return Eh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};IA.className="RandomNormal";oe.registerClass(IA);var SA=class extends Ns{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return hh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};SA.className="TruncatedNormal";oe.registerClass(SA);var CA=class extends Ns{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,$g(e[0]))})}getConfig(){return{gain:this.gain}}};CA.className="Identity";oe.registerClass(CA);function ZO(e,t="channelsLast"){let n,s;if(Pt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=na(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=na(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=na(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var $n=class extends Ns{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,XO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,KO(this.distribution),this.seed=e.seed}apply(e,t){let n=ZO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return hh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Wl(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";oe.registerClass($n);var _h=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};_h.className="GlorotUniform";oe.registerClass(_h);var Dh=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Dh.className="GlorotNormal";oe.registerClass(Dh);var Fh=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Fh.className="HeNormal";oe.registerClass(Fh);var $h=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};$h.className="HeUniform";oe.registerClass($h);var Oh=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Oh.className="LeCunNormal";oe.registerClass(Oh);var Ph=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Ph.className="LeCunNormal";oe.registerClass(Ph);var TA=class extends Ns{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Eh(n,0,1,"float32"),r=Hb.gramSchmidt(s);return e[0]>e[1]&&(r=Ze(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};TA.className="Orthogonal";oe.registerClass(TA);var b3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function v3(e,t={}){return Ic(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Et(e){return uA(e)}function kt(e){if(typeof e=="string"){let t=e in b3?b3[e]:e;if(t==="GlorotNormal")return new Dh;if(t==="GlorotUniform")return new _h;if(t==="HeNormal")return new Fh;if(t==="HeUniform")return new $h;if(t==="LeCunNormal")return new Oh;if(t==="LeCunUniform")return new Ph;{let n={};return n.className=t,n.config={},v3(n)}}else return e instanceof Ns?e:v3(e)}function YO(){return new vA}function JO(){return new Rh}function QO(e){return new wA(e)}function eP(e){return new kA(e)}function tP(e){return new IA(e)}function nP(e){return new SA(e)}function sP(e){return new CA(e)}function rP(e){return new $n(e)}function aP(e){return new _h(e)}function oP(e){return new Dh(e)}function iP(e){return new Fh(e)}function lP(e){return new $h(e)}function uP(e){return new Oh(e)}function cP(e){return new Ph(e)}function dP(e){return new TA(e)}var w3={};Me(w3,{Layer:()=>Je,RNN:()=>lr,RNNCell:()=>zc,activation:()=>qM,add:()=>nz,alphaDropout:()=>Lz,average:()=>sz,averagePooling1d:()=>G1,averagePooling2d:()=>j1,averagePooling3d:()=>q1,avgPool1d:()=>pz,avgPool2d:()=>fz,avgPool3d:()=>gz,avgPooling1d:()=>hz,avgPooling2d:()=>mz,avgPooling3d:()=>Az,batchNormalization:()=>uz,bidirectional:()=>_z,concatenate:()=>rz,conv1d:()=>zM,conv2d:()=>LM,conv2dTranspose:()=>BM,conv3d:()=>WM,conv3dTranspose:()=>VM,convLstm2d:()=>Tz,convLstm2dCell:()=>Nz,cropping2D:()=>HM,dense:()=>XM,depthwiseConv2d:()=>jM,dot:()=>lz,dropout:()=>KM,elu:()=>DM,embedding:()=>tz,flatten:()=>YM,gaussianDropout:()=>zz,gaussianNoise:()=>Mz,globalAveragePooling1d:()=>yz,globalAveragePooling2d:()=>xz,globalMaxPool1d:()=>Fz,globalMaxPool2d:()=>$z,globalMaxPooling1d:()=>_v,globalMaxPooling2d:()=>Dv,gru:()=>vz,gruCell:()=>wz,input:()=>tv,inputLayer:()=>_M,layerNormalization:()=>cz,leakyReLU:()=>$M,lstm:()=>kz,lstmCell:()=>Iz,masking:()=>Bz,maxPool1d:()=>Oz,maxPool2d:()=>Pz,maxPooling1d:()=>Fv,maxPooling2d:()=>$v,maxPooling3d:()=>bz,maximum:()=>az,minimum:()=>oz,multiply:()=>iz,permute:()=>ez,prelu:()=>OM,reLU:()=>FM,repeatVector:()=>JM,reshape:()=>QM,rnn:()=>Ez,separableConv2d:()=>UM,simpleRNN:()=>Sz,simpleRNNCell:()=>Cz,softmax:()=>PM,spatialDropout1d:()=>ZM,stackedRNNCells:()=>Rz,thresholdedReLU:()=>MM,timeDistributed:()=>Dz,upSampling2d:()=>GM,zeroPadding2d:()=>dz});var pP=0;function k3(){return pP++}var Mh={};function zh(e=""){return e in Mh||(Mh[e]=0),Mh[e]+=1,e+Mh[e].toString()}function NA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Lh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ot(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Bh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var I3="Variable",S3=class{constructor(e,t="float32",n=I3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=k3(),n=n==null?I3:n,this.originalName=f3(n),this.name=m3(this.originalName),this.trainable_=s,this.constraint=r,this.val=Nb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),hP(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function hP(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function EA(e){return e.map(t=>t.read())}function RA(e){e.forEach(t=>{t[0].write(t[1])})}var Lt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Bs=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=k3(),a!=null&&(this.originalName=f3(a),this.name=m3(this.originalName)),this.rank=t.length}},fP=0,Wh=class{constructor(e,t){this.callArgs=t,this.id=fP++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},mP=0,Je=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=mP++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+zh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ms(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=xt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=xt(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=xt(e),s=!0;for(let a of n)if(!(a instanceof Bs)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Bs){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return Uo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of xt(e))a.push(o.shape);this.build(Fn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=xt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Fn(i),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=gP(e),o=this.computeOutputShape(a),i,l=AP(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Bs(l,u,this,xt(e),t,this.name,c)):i=new Bs(l,o,this,xt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ms(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Bh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return EA(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=EA(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}RA(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=kt("zeros"));let i=s.apply(t,n),l=new S3(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=xt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=xt(e);t=xt(t),n=xt(n),s=xt(s),r=Lh(r),a=Lh(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Wh({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function gP(e){e=xt(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function AP(e){return"float32"}function C3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=C3(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var jl=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:zh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Bs(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Wh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";oe.registerClass(jl);function T3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ra(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Z(s)}}function N3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var E3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(E3||(E3={}));var yP=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},R3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},xP=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>ae(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=L(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),tn(t[n])}))}},_3=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},D3=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=yP),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=CO(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await ra(n),s.push(this.yield(e,t,n))),s.push(Sh()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ra(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ra(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Sh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ra(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ra(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Sh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ra(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ra(e),await this.trainEnd(e))}};function F3(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:xt(e).map(s=>new D3(s,t))}var Es=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Es.checkForDuplicate(t),Es.constructors[e]==null&&(Es.constructors[e]=[]),Es.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Es.constructors)Es.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Es.constructors={}}static createCallbacks(e){let t=[];for(let n in Es.constructors){let s=+n;e>=s&&t.push(...Es.constructors[s])}return t.map(n=>new n)}};Es.constructors={};function $3(e,t,n,s,r,a,o,i,l){let u=new _3,c=[new xP,...Es.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new R3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Ws(e,t={},n=!1){return Ic(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Vh(e,t){return H(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(Nc(e),t,!0),s=Ml(n.shape,Xt()),r=fn(vr(n,s));return de(e,r)})}function Go(e,t){return H(()=>Dt(Nc(ge(t,e)),-1))}function Uh(e,t){return H(()=>Dt(Gt(ge(t,e)),-1))}function Xl(e,t){return H(()=>{let n=ge(e,t),s=Gn(Gt(e),Xt(),Number.MAX_VALUE),r=Gt(de(n,s));return L(100,Dt(r,-1))})}function bP(e,t){return H(()=>{let n=Gn(t,Xt(),Number.MAX_VALUE),s=us(ae(1,n)),r=Gn(e,Xt(),Number.MAX_VALUE),a=us(ae(1,r));return Dt(Nc(ge(s,a)),-1)})}function vP(e,t){return H(()=>{let n=vr(0,ge(1,L(e,t)));return Dt(Nc(n),-1)})}function wP(e,t){return H(()=>{let n=vr(0,ge(1,L(e,t)));return Dt(n,-1)})}function kP(e,t){return H(()=>{let n=ve(L(e,t),-1),s=cs(L(ge(1,e),t),-1);return vr(0,ae(1,ge(s,n)))})}function IP(e,t){return H(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ae(s,Ll(L(-2,s))),n);return Dt(r,-1)})}function Rc(e,t,n=!1){return H(()=>{if(n)t=ch(t);else{let s=ve(t,t.shape.length-1,!0);t=de(t,s)}return t=Gn(t,Xt(),1-Xt()),Nt(ve(L(ce(e,"float32"),us(t)),t.shape.length-1))})}function Hh(e,t,n=!1){return H(()=>{let s=ce(gc(WO(e)),"int32");t=Gn(t,Xt(),1-Xt());let r=t.shape,a=U(dc(s,r[r.length-1]),r);return Rc(a,t,n)})}function SP(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=nr(t),s=Nt(Gt(t));return ae(ge(n,L(t,e)),eh(ls(s)))})}function Gh(e,t){return H(()=>{let n;return n=Gn(t,Xt(),1-Xt()),n=us(de(n,ge(1,n))),Dt(SP(e,n),-1)})}function CP(e,t){return H(()=>{let n=Gn(e,Xt(),1),s=Gn(t,Xt(),1);return ve(L(e,us(de(n,s))),-1)})}function TP(e,t){return H(()=>{let n=us(ae(Xt(),t));return Dt(ge(t,L(e,n)),-1)})}function _A(e,t){return H(()=>{let n=Vh(e,-1),s=Vh(t,-1),r=L(n,s);return Nt(ve(r,-1))})}var jh={meanSquaredError:Go,meanAbsoluteError:Uh,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:bP,squaredHinge:vP,hinge:wP,categoricalHinge:kP,logcosh:IP,categoricalCrossentropy:Rc,sparseCategoricalCrossentropy:Hh,binaryCrossentropy:Gh,kullbackLeiblerDivergence:CP,poisson:TP,cosineProximity:_A};function DA(e){if(typeof e=="string"){if(e in jh)return jh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function FA(e,t){return H(()=>{let n=L(.5,ds(t)),s=Th(jn(t,n),e.dtype);return Dt(is(e,s),-1)})}function $A(e,t){return H(()=>Th(is(Qs(e,-1),Qs(t,-1)),"float32"))}function O3(e,t){return H(()=>ce(ve($s(is(e,1),is(t,1))),"float32"))}function NP(e,t){return H(()=>ce(ve($s(is(e,1),is(t,0))),"float32"))}function EP(e,t){return H(()=>ce(ve($s(is(e,0),is(t,1))),"float32"))}function P3(e,t){return H(()=>{let n=O3(e,t),s=EP(e,t),r=ae(n,s);return ce(vn(jn(r,0),de(n,r),0),"float32")})}function RP(e,t){return H(()=>{let n=O3(e,t),s=NP(e,t),r=ae(n,s);return ce(vn(jn(r,0),de(n,r),0),"float32")})}function M3(e,t){return Gh(e,t)}function z3(e,t){return e.rank===t.rank&&(e=ut(e,[e.rank-1])),t=Qs(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(is(e,t),"float32")}var _P=Go,DP=Go,FP=Uh,$P=Uh,OP=Xl,PP=Xl,OA=Rc,MP=_A,L3=Hh,qh={binaryAccuracy:FA,categoricalAccuracy:$A,precision:P3,categoricalCrossentropy:OA,sparseCategoricalCrossentropy:L3,mse:_P,MSE:DP,mae:FP,MAE:$P,mape:OP,MAPE:PP,cosine:MP};function zP(e){if(typeof e=="string"&&e in qh)return qh[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Xh(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(jh))if(jh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(qh))if(qh[n]===e){t=n;break}return t!==void 0?t:e.name}}function LP(e){let t={Adagrad:()=>Lo.adagrad(.01),Adadelta:()=>Lo.adadelta(1,.95,Xt()),Adam:()=>Lo.adam(.001,.9,.999,Xt()),Adamax:()=>Lo.adamax(.002,.9,.999,Xt(),0),RMSProp:()=>Lo.rmsprop(.001,.9,0,Xt()),SGD:()=>Lo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var B3=1*1024*1024;function W3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!PA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>B3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${B3}.`)}}function PA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!PA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!PA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function BP(e,t,n,s=console.log){let r=VP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Kh(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?UP(i[c],n,s):HP(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=WP(e),u=Bh(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function WP(e){let t;return e.collectedTrainableWeights!=null?t=Bh(e.collectedTrainableWeights):t=Bh(e.trainableWeights),t}function VP(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Kh(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function UP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Kh(o,t,n)}function HP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let p=c.inboundLayers[d].name,h=c.nodeIndices[d],f=c.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];Kh(u,t,s);for(let c=1;c<a.length;++c)Kh(["","","",a[c]],t,s)}function V3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function _c(e,t){if(e===null)return null;if(typeof e=="string")return Wo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];V3(t,r,a)?n.push(a):n.push(_c(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Wo(s);n[a]=_c(r,a)}}return n}}function MA(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];V3(t,r,a)?n.push(a):n.push(MA(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Sr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=MA(r,s)}return n}}var zA="3.9.0";function GP(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var jo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof jo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=GP(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Bs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Bs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Z(this.id2Mask)}},LA={},U3={};function Dc(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,p;if(LA[c]==null){let f=jP(o,t);d=f.sorted,p=f.recipientCounts,LA[c]=d,U3[c]=p}d=LA[c],p={},r||Object.assign(p,U3[c]);let h=new jo(t);for(let f=0;f<d.length;++f){if(s!=null){let _=Hp().numTensors;_>s.maxNumTensors&&(s.maxNumTensors=_),_<s.minNumTensors&&(s.minNumTensors=_)}let m=d[f],g=m.sourceLayer;if(g instanceof jl)continue;let A=[],y=[],x=[],b=!1;for(let _ of m.inputs){let O=h.getValue(_),E=h.getMask(_);A.push(O),y.push(E),E!=null&&(b=!0),r||(p[_.name]--,p[_.name]===0&&!t.hasKey(_)&&i.indexOf(_.name)===-1&&!O.isDisposed&&_.sourceLayer.stateful!==!0&&x.push(O))}b&&(n=n||{},n.mask=y[0]);let v=xt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let S=XP(m),C=Array.isArray(S)?S:[S];for(let _=0;_<C.length;++_){h.hasKey(C[_])||h.add(C[_],v[_],Array.isArray(k)?k[0]:k);let O=i.indexOf(C[_].name);O!==-1&&(l[O]=v[_])}r||Z(x)}return h.disposeMasks(),a?l:l[0]}function jP(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=H3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=H3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:qP(s)}}function qP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function H3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function XP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var or=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=zh(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ta(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);ta(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[v];if(x.indexOf(S)!==-1)throw new Ms(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(S)!==-1)return;this.containerNodes.add(or.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let C=S.inboundLayers.length;for(let _=0;_<C;_++){let O=S.inputTensors[_],E=S.inboundLayers[_],R=S.nodeIndices[_],T=S.tensorIndices[_];i(O,y,x,E,R,T)}for(y.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],u=[];for(let A of this.outputs)i(A,l,u);let c=o.slice().reverse();for(let A of c){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],S=v.inboundNodes[k],C=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(y+1,C),n[S.id]=S}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(Ch);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof or&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(Ch);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Ms(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new Ms(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Wh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}RA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${zA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=MA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=xt(e);let n=new jo;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Dc(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=xt(e);let n;return t==null?n=Bo(null,e.length):n=xt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Lh(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Ch);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];c.push(x)}let d=u.computeOutputShape(Fn(c)),p=Lh(d),h=u.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];rr(i in n),r.push(n[i])}return Fn(r)}runInternalGraph(e,t){t==null&&(t=Bo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Ch);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,p=u.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=xt(c.call(x,f)),y=xt(c.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=xt(c.call(m,f)),y=xt(c.computeMask(m,g));if(c.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){rr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof or?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=or.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=or.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],p=or.nodeKey(a,c),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=or.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=or.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=or.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=v){o(m,g);return}let C=S.inboundNodes[v];A.push(C.outputTensors[k])}A.length>0&&m.apply(Fn(A),y)}function l(m){let g=m.name,A=Ws(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!SO(a);)for(let m of c){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];rr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];rr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function KP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function G3(e,t){return KP(e,t,"classWeight")}async function j3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Fs(e);if(e.shape.length===2){if(e.shape[1]>1)return Qs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Z(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),zt(o,"float32")}else return null}function ZP(e,t){return L(e,t)}var YP=32;function q3(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=X3("input",e.inputNames,n),o=X3("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function X3(e,t,n){if(n instanceof je)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function JP(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function QP(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(K3(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=JP(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=F3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=$3(c,d,n.epochs,null,null,eM(t,n),null,r,u);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=q3(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let S=[];if(n.classWeight!=null){let O=G3(n.classWeight,e.outputNames);for(let E=0;E<O.length;++E)S.push(await j3(v[E],null,O[E]))}let C=b.concat(v).concat(S),_=i(C);Z(C);for(let O=0;O<l.length;++O){let E=l[O],R=_[O];k[E]=R,tn(R)}await p.onBatchEnd(y,k),N3(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;K3(n.validationData)?b=xt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=xt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?YP:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function eM(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function K3(e){return typeof e.iterator=="function"}function tM(e){return typeof e.next=="function"}async function nM(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=tM(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=q3(e,u.value),p=c.concat(d),h=H(()=>r(p));if(Z(p),l===0)for(let m=0;m<h.length;++m)a.push(Se(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=H(()=>ae(a[m],L(f,g))),l>0&&Z(A)}Z(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=de(a[u],i),Z(c)}return Fn(a)}function BA(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Fc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Ho(s,t,n-t)):Ho(e,t,n-t)}function WA(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>WA(n,t)):y3(e,t.dtype==="int32"?t:ce(t,"int32")))}function VA(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function sM(e,t,n,s,r,a,o,i,l,u,c,d,p,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),p==null&&(p=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=zs(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=$3(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Pe("batch shuffling is not implemneted yet");c&&w.shuffle(A);let k=zt(A),S=VA(g,r);for(let C=0;C<S.length;++C){let _={};if(await y.onBatchBegin(C,_),H(()=>{let O=S[C][0],E=S[C][1],R=Ho(k,O,E-O);_.batch=C,_.size=E-O;let T=WA(n,R),P=t(T);for(let V=0;V<s.length;++V){let j=s[V],q=P[V];_[j]=q,tn(q)}if(C===S.length-1&&m){let V=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=V[j];tn(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,_),N3(_),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function rM(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;BA(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],c=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,C=await e.standardizeUserData(o,i,null,null,S,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=Fc(r,S,C),r=Fc(r,0,S),u=Fc(a,S,C),a=Fc(a,0,S),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(S=>"val_"+S))):(x=null,m=[],b=y.slice());let v=F3(s.callbacks,s.yieldEvery);return await sM(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,qo(r,t),qo(a,n),qo(l,o),qo(u,i),c!=null&&Z(c)}}function Z3(e){let t=[];e instanceof je&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Tc(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function qo(e,t){if(e==null)return;let n=[];if(t instanceof je)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof je)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function aM(e){return e instanceof je}function UA(e){return Array.isArray(e)}function Y3(e){return!aM(e)&&!UA(e)}function J3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(UA(e)&&e.length>0)o=!0;else if(Y3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Y3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(UA(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=Z3(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function oM(e,t,n){let s=ta(e.map(a=>a.shape[0]));s.sort();let r=ta(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function iM(e,t,n){let s=[Go,Gh,Rc];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Rc&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],p=u[c];if(p!=null&&d!==p)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Q3(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function lM(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var uM="layers-model",Cr=class extends or{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");BP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=LP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof kr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(DA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>DA(o))}else{let a=DA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Uo("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=lM(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Uo("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Gh?["accuracy","acc"].indexOf(h)!==-1?d=FA:["crossentropy","ce"].indexOf(h)!==-1&&(d=M3):this.lossFunctions[a]===Hh?["accuracy","acc"].indexOf(h)!==-1?d=z3:["crossentropy","ce"].indexOf(h)!==-1&&(d=L3):["accuracy","acc"].indexOf(h)!==-1?d=$A:["crossentropy","ce"].indexOf(h)!==-1&&(d=OA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,c=u+g}else p=zP(h),c=u+Xh(h);let f;Uo(c,()=>{f=p}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;BA(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Fn(l)}finally{qo(a[0],e),qo(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),nM(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new jo;if(e instanceof je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Dc(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Bo(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let r=VA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=Fc(e,l,u),d=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)d.push({key:this.inputs[h],value:c[h]});else d.push({key:this.inputs[0],value:c});let p=new jo(d);return Dc(this.outputs,p)}).forEach((l,u)=>a[u].push(l));return Fn(a.map(o=>mt(o,0)))})}predict(e,t={}){let n=Z3(e);Q3(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return BA(s),this.predictLoop(n,s)}finally{qo(n,e)}}predictOnBatch(e){Q3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ms("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Hh?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=J3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=J3(t,this.feedOutputNames,r,!1,"target"),oM(e,t,null),iM(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=G3(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await j3(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Pe("Verbose mode is not implemented yet.");if(r!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let i=VA(a,n),l=zt(zs(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],p=Ho(l,c,d-c),h=WA(t,p),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ae(o[m],L(d-c,g))}}for(let u=0;u<o.length;++u)o[u]=de(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;o3(e,s)>1&&(r+=`_${o3(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let d=new jo(c),p=Dc(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=ZP(g,r[f]));let A=Dt(g);t.push(A),f===0?h=g:h=ae(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Dt(g(s[A],p[A]))}tn(m),a.push(m)}return h=Dt(h),this.calculateLosses().forEach(f=>{h=ae(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new jo(a),i=Dc(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Dt(u(r[l],i[l]));l===0?n=c:n=ae(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=Dt(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return rM(this,e,t,n)}async fitDataset(e,t){return QP(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return Z(o),Fn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Hp().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Hp().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Sr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(Xh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(Xh(e)));{let e={};for(let t in this.metrics)e[t]=Sr(Xh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_c(e.optimizer_config),n=Ws(t),s;if(typeof e.loss=="string")s=Wo(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Wo(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Wo(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Wo(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Wo(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Dn.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Dn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:uM,generatedBy:`TensorFlow.js tfjs-layers v${zA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Dn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Dn.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;W3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){W3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Cr.className="Model";oe.registerClass(Cr);var ev=class extends Cr{};ev.className="Functional";oe.registerClass(ev);async function cM(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=_c(n),r=Ws(s,t);if(e.weightsManifest!=null){let a=await Dn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Z(a)}return r}async function dM(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Dn.getLoadHandlers(e,t);if(n.length===0)n.push(Dn.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return pM(e,void 0,t)}async function pM(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Ws(_c(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=hM(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Z(u),Z(c.map(d=>d.tensor))}return i}function hM(e,t){let n=Dn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Kl=class extends Cr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:zh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof Cr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=T3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=C3(this.outputs[0])}this.inboundNodes=[],new Wh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Bo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ot(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Cr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ms("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ms("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ms("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ms("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Kl))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Ws(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";oe.registerClass(Kl);function fM(e){return new Cr(e)}function mM(e){return new Kl(e)}function gM(e,t){return t==null&&(t={}),dM(e,t)}function tv(e){return T3(e)}function AM(e,t){Es.registerCallbackConstructor(e,t)}var On=class extends oe.Serializable{getConfig(){return{}}},nv=class extends On{apply(e,t=1){return UO(e,t)}};nv.className="elu";oe.registerClass(nv);var sv=class extends On{apply(e){return qg(e)}};sv.className="selu";oe.registerClass(sv);var rv=class extends On{apply(e){return nr(e)}};rv.className="relu";oe.registerClass(rv);var av=class extends On{apply(e){return H(()=>Ac(6,nr(e)))}};av.className="relu6";oe.registerClass(av);var ov=class extends On{apply(e){return e}};ov.className="linear";oe.registerClass(ov);var iv=class extends On{apply(e){return Hn(e)}};iv.className="sigmoid";oe.registerClass(iv);var lv=class extends On{apply(e){return GO(e)}};lv.className="hardSigmoid";oe.registerClass(lv);var uv=class extends On{apply(e){return Ll(e)}};uv.className="softplus";oe.registerClass(uv);var cv=class extends On{apply(e){return HO(e)}};cv.className="softsign";oe.registerClass(cv);var dv=class extends On{apply(e){return $l(e)}};dv.className="tanh";oe.registerClass(dv);var HA=class extends On{apply(e,t=-1){return ch(e,t)}};HA.className="softmax";oe.registerClass(HA);var pv=class extends On{apply(e,t=-1){return Pg(e,t)}};pv.className="logSoftmax";oe.registerClass(pv);var hv=class extends On{apply(e,t=1){return H(()=>L(Hn(L(e,t)),e))}};hv.className="swish";oe.registerClass(hv);var fv=class extends On{apply(e){return H(()=>L(e,$l(Ll(e))))}};fv.className="mish";oe.registerClass(fv);function aa(e){return e.getClassName()}function GA(e,t={}){return Ic(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function oa(e){if(e==null){let t={};return t.className="linear",t.config={},GA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},GA(t)}else return e instanceof On?e:GA(e)}function jA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var mv=class extends oe.Serializable{},$c=class extends mv{constructor(e){super();jA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Ft([1]);return this.hasL1&&(t=ae(t,ve(L(this.l1,Gt(e))))),this.hasL2&&(t=ae(t,ve(L(this.l2,Nc(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};$c.className="L1L2";oe.registerClass($c);function yM(e){return jA(e),new $c({l1:e!=null?e.l1:null,l2:0})}function xM(e){return jA(e),new $c({l2:e!=null?e.l2:null,l1:0})}var gv={l1l2:"L1L2"};function pt(e){return uA(e)}function Av(e,t={}){return Ic(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function It(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in gv?gv[e]:e,config:{}};return Av(n)}else return e instanceof mv?e:Av(e)}var qA=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=nr(e);return this.maxValue!=null&&(n=Gn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};qA.className="ReLU";oe.registerClass(qA);var XA=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Qp(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};XA.className="LeakyReLU";oe.registerClass(XA);var KA=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=kt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=It(e.alphaRegularizer),this.alphaConstraint=Zt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ot(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Lt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),ih(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Et(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};KA.className="PReLU";oe.registerClass(KA);var ZA=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return mc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="ELU";oe.registerClass(ZA);var YA=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return L(n,ce(jn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};YA.className="ThresholdedReLU";oe.registerClass(YA);var JA=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new HA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Softmax";oe.registerClass(JA);function Zl(e,t,n){if(typeof e=="number")return Bo(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!LO(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Vs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function ir(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+sa([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function QA(e,t){return H(()=>(Pt(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function yv(e,t){return H(()=>(Pt(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function bM(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=Ps()),Pt(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ze(e,[0,2,1])),r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Ng(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ls(i,n)),i})}function xv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=Ps()),Pt(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=QA(e,a);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ea.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function vM(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=Ps()),Pt(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=yv(e,a);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=_g(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ls(i,n)),a==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var e1=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e1.verifyArgs(t),this.rank=e,nn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Zl(t.kernelSize,e,"kernelSize"),this.strides=Zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,fs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=oa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=kt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Zt(t.biasConstraint),this.biasRegularizer=It(t.biasRegularizer),this.activityRegularizer=It(t.activityRegularizer),this.dilationRate=Zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!dA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:aa(this.activation),useBias:this.useBias,biasInitializer:Et(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Oc=class extends e1{constructor(e,t){super(e,t);this.kernel=null,Oc.verifyArgs(t),this.filters=t.filters,nn(this.filters,"filters"),this.kernelInitializer=kt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Zt(t.kernelConstraint),this.kernelRegularizer=It(t.kernelRegularizer)}build(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=Le(e);let n,s=this.bias==null?null:this.bias.read(),r=l3(this.activation.getClassName());if(r!=null&&this.rank===2)n=xv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=bM(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=xv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=vM(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ot(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Vs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Et(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Pc=class extends Oc{constructor(e){super(2,e);Pc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!dA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Pc.className="Conv2D";oe.registerClass(Pc);var Mc=class extends Oc{constructor(e){super(3,e);Mc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Mc.className="Conv3D";oe.registerClass(Mc);var t1=class extends Pc{constructor(e){super(e);if(this.inputSpec=[new Lt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ot(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Lt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Le(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=ir(i,d,u,this.padding),f=ir(l,p,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let g=Rg(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ze(g,[0,3,1,2])),this.bias!=null&&(g=Ls(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ot(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=ir(t[s],i,a,this.padding),t[r]=ir(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};t1.className="Conv2DTranspose";oe.registerClass(t1);var n1=class extends Mc{constructor(e){super(e);if(this.inputSpec=[new Lt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ot(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Lt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Le(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=ir(l,f,d,this.padding),y=ir(u,m,p,this.padding),x=ir(c,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let v=Q5(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ze(v,[0,4,1,2,3])),this.bias!==null&&(v=Ls(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=ot(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=ir(t[s],u,o,this.padding),t[r]=ir(t[r],c,i,this.padding),t[a]=ir(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};n1.className="Conv3DTranspose";oe.registerClass(n1);var bv=class extends Oc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=It(t.depthwiseRegularizer),this.depthwiseConstraint=Zt(t.depthwiseConstraint),this.pointwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=It(t.pointwiseRegularizer),this.pointwiseConstraint=Zt(t.pointwiseConstraint)}build(e){if(e=ot(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Lt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=Le(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=vb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ls(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.pointwiseInitializer=Et(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};bv.className="SeparableConv";var s1=class extends bv{constructor(e){super(2,e)}};s1.className="SeparableConv2D";oe.registerClass(s1);var Zh=class extends Oc{constructor(e){super(1,e);Zh.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!dA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Zh.className="Conv1D";oe.registerClass(Zh);var r1=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=Nh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Nh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Nh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Nh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};r1.className="Cropping2D";oe.registerClass(r1);var a1=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,PO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=Le(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Re.resizeNearestNeighbor(n,[r,a]):Re.resizeBilinear(n,[r,a]);return Ze(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Re.resizeNearestNeighbor(n,[r,a]):Re.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};a1.className="UpSampling2D";oe.registerClass(a1);function wM(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=Ps()),Pt(r);let o=QA(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=fc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ze(o,[0,3,1,2])),o})}var o1=class extends e1{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=kt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Zt(e.depthwiseConstraint),this.depthwiseRegularizer=It(e.depthwiseRegularizer)}build(e){if(e=ot(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=Le(e);let n=wM(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ls(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Vs(t,this.kernelSize[0],this.padding,this.strides[0]),a=Vs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};o1.className="DepthwiseConv2D";oe.registerClass(o1);function vv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function wv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(zs(2,l));if(t=Ze(t,u),a!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===l-1&&(r=Mt(r,-1)),r=Ze(r,u)),s&&(t=ps(t,0),r!=null&&(r=ps(r,0)));let c=[],d,p=n,h=t.shape[0],f=hs(t),m;r!=null&&(m=hs(r));for(let A=0;A<h;++A){let y=f[A],x=H(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=H(()=>{let v=m[A],k=ge(ds(v),v),S=ae(L(x[0],v),L(p[0],k)),C=p.map((_,O)=>ae(L(x[1][O],v),L(_,k)));return{output:S,newStates:C}});d=b.output,p=b.newStates}i&&c.push(d)}let g;return i&&(g=mn(c,1)),[d,g,p]})}var lr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Qh({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Lt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){NA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");NA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Lt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Pe("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Lt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ft([n,s])):this.states_=[Ft([n,this.cell.stateSize])];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ft([n,s])):this.states_[0]=Ft([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>tn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=vv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Lt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Bs){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=wv((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?c:u;return this.returnState?[p].concat(d):p})}getInitialState(e){return H(()=>{let t=Ft(e.shape);return t=ve(t,[1,2]),t=Tc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?xA(t,[1,n]):t):this.cell.stateSize>1?[xA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===lr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Ws(s,n);return new e(Object.assign(t,{cell:r}))}};lr.className="RNN";oe.registerClass(lr);var zc=class extends Je{},Yh=class extends zc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=oa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Gl([1,sa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,sa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ia({ones:()=>ds(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ia({ones:()=>ds(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=ar(L(e,a),this.kernel.read()):r=ar(e,this.kernel.read()),this.bias!=null&&(r=Ls(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ae(r,ar(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:aa(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Yh.className="SimpleRNNCell";oe.registerClass(Yh);var i1=class extends lr{constructor(e){e.cell=new Yh(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};i1.className="SimpleRNN";oe.registerClass(i1);var Jh=class extends zc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,nn(this.units,"units"),this.activation=oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Gl([1,sa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,sa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ia({ones:()=>ds(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ia({ones:()=>ds(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=ar(e,this.kernel.read());this.useBias&&(u=Ls(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let c=this.recurrentKernel.read(),[d,p]=qt(c,[2*this.units,this.units],c.rank-1),h=ar(s,d),[f,m,g]=qt(u,3,u.rank-1),[A,y]=qt(h,2,h.rank-1);o=this.recurrentActivation.apply(ae(f,A)),i=this.recurrentActivation.apply(ae(m,y));let x=ar(L(i,s),p);l=this.activation.apply(ae(g,x));let b=ae(L(o,s),L(ae(1,Nt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:aa(this.activation),recurrentActivation:aa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Jh.className="GRUCell";oe.registerClass(Jh);var l1=class extends lr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Jh(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};l1.className="GRU";oe.registerClass(l1);var Lc=class extends zc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Gl([1,sa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,sa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ot(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ns{apply(i,l){let u=r.apply([a]),c=new Rh().apply([a]),d=r.apply([a*2]);return A3(A3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ia({ones:()=>ds(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ia({ones:()=>ds(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=ar(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=ae(d,ar(s,this.recurrentKernel.read())),this.useBias&&(d=Ls(d,this.bias.read()));let[p,h,f,m]=qt(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),u=ae(L(l,r),L(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=L(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:aa(this.activation),recurrentActivation:aa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Lc.className="LSTMCell";oe.registerClass(Lc);var u1=class extends lr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Lc(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};u1.className="LSTM";oe.registerClass(u1);var Qh=class extends zc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){NA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Uo(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Ws(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return EA(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}RA(t)}};Qh.className="StackedRNNCells";oe.registerClass(Qh);function ia(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>x3(t(),n),o=()=>Ec(a,t,s);return!r||r<=1?tn(o().clone()):Array(r).fill(void 0).map(o).map(l=>tn(l.clone()))}var kM=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},kv=class extends lr{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Lt({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ft(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ft(r)):this.states_=[Ft(r)];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ft(r)):this.states_[0]=Ft(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>tn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Vs(l,s[0],r,a[0],o[0]),d=Vs(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};kv.className="ConvRNN2D";var ef=class extends Lc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,nn(this.filters,"filters"),this.kernelSize=Zl(n,2,"kernelSize"),this.kernelSize.forEach(i=>nn(i,"kernelSize")),this.strides=Zl(s||1,2,"strides"),this.strides.forEach(i=>nn(i,"strides")),this.padding=r||"valid",fs(this.padding),this.dataFormat=a||"channelsLast",Pt(this.dataFormat),this.dilationRate=Zl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>nn(i,"dilationRate"))}build(e){var t;e=ot(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ns{apply(d,p){let h=l.apply([u]),f=qn([u]),m=l.apply([u*2]);return yA([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ia({ones:()=>ds(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(ee,te,ne)=>!te||!te[ne]?ee:L(te[ne],ee),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ia({ones:()=>ds(r),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,k]=qt(this.kernel.read(),o,y),[S,C,_,O]=this.useBias?qt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,_,this.padding),p=this.inputConv(p,k,O,this.padding);let[E,R,T,P]=qt(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,R),g=this.recurrentConv(g,T),A=this.recurrentConv(A,P);let V=this.recurrentActivation.apply(ae(u,f)),j=this.recurrentActivation.apply(ae(c,m)),q=ae(L(j,a),L(V,this.activation.apply(ae(d,g)))),X=L(this.recurrentActivation.apply(ae(p,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=kM(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Yr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ls(r,n,this.dataFormat):r}recurrentConv(e,t){return Yr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};ef.className="ConvLSTM2DCell";oe.registerClass(ef);var c1=class extends kv{constructor(e){let t=new ef(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};c1.className="ConvLSTM2D";oe.registerClass(c1);var tf=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ec(()=>x3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};tf.className="Dropout";oe.registerClass(tf);var d1=class extends tf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};d1.className="SpatialDropout1D";oe.registerClass(d1);var p1=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,nn(this.units,"units"),this.activation=oa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Zt(e.kernelConstraint),this.biasConstraint=Zt(e.biasConstraint),this.kernelRegularizer=It(e.kernelRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.activityRegularizer=It(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ot(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ot(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e),s=l3(this.activation.getClassName()),r;return s!=null?r=ar(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=ar(n,this.kernel.read()),this.bias!=null&&(r=Ls(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:aa(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};p1.className="Dense";oe.registerClass(p1);var h1=class extends Je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ot(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],na(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ze(n,s)}return VO(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};h1.className="Flatten";oe.registerClass(h1);var f1=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=oa(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:aa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};f1.className="Activation";oe.registerClass(f1);var m1=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=Le(e),BO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};m1.className="RepeatVector";oe.registerClass(m1);var g1=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=na(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};g1.className="Reshape";oe.registerClass(g1);var A1=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zs(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Lt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ot(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ze(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};A1.className="Permute";oe.registerClass(A1);var y1=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),s=-1;return qp(Bl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e),s=-1,r=!0,a=qp(Bl(n,this.maskValue),s,r);return L(n,ce(a,n.dtype))})}};y1.className="Masking";oe.registerClass(y1);var x1=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(xt(e.inputLength))}this.inputDim=e.inputDim,nn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,nn(this.outputDim,"outputDim"),this.embeddingsInitializer=kt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=It(e.embeddingsRegularizer),this.activityRegularizer=It(e.activityRegularizer),this.embeddingsConstraint=Zt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=Le(e),Bl(e,Ye(e))):null)}computeOutputShape(e){if(e=ot(e),this.inputLength==null)return[...e,this.outputDim];let t=xt(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=Th(n,"int32"));let s=y3(this.embeddings.read(),U(n,[n.size]));return U(s,ot(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Et(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};x1.className="Embedding";oe.registerClass(x1);var Xo=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ot(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ta(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&ta(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=sa(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Tc(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),p=U(i,[c].concat(na(u.slice(1))));p=Ze(p,[1,0]),p=U(p,d),n.push(p),r=!0}else if(l>1){let u=zs(1,l).concat([0]);n.push(Ze(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(Ze(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(zs(0,o-1));a=Ze(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=ta(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Mt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=$s(n,t[s]);return n})}},b1=class extends Xo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return t})}};b1.className="Add";oe.registerClass(b1);var v1=class extends Xo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};v1.className="Multiply";oe.registerClass(v1);var w1=class extends Xo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return L(1/e.length,t)})}};w1.className="Average";oe.registerClass(w1);var k1=class extends Xo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=vr(t,e[n]);return t})}};k1.className="Maximum";oe.registerClass(k1);var I1=class extends Xo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ac(t,e[n]);return t})}};I1.className="Minimum";oe.registerClass(I1);var S1=class extends Xo{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>yA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ce(ds(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Mt(t[a],-1)):s.push(t[a]);let r=mt(s,this.axis);return kg(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};S1.className="Concatenate";oe.registerClass(S1);function Bc(e,t){for(;e<0;)e+=t;return e}function IM(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(L(e,t),a[0]):i=ve(L(Ze(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Ue(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=ut(i,u)}return i.shape.length===1&&(i=Mt(i,1)),i})}var C1=class extends Xo{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Bc(r,e[a].shape.length)):s=[Bc(this.axes,t.shape.length),Bc(this.axes,n.shape.length)],this.normalize&&(t=Vh(t,s[0]),n=Vh(n,s[1])),IM(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Bc(this.axes,e.length),Bc(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};C1.className="Dot";oe.registerClass(C1);var T1=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);return Ec(()=>ae(Eh(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};T1.className="GaussianNoise";oe.registerClass(T1);var N1=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?Ec(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Eh(n.shape,1,r))},()=>n,t.training||!1):n})}};N1.className="GaussianDropout";oe.registerClass(N1);var E1=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ec(()=>{let r=Le(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Oo(Wl(n),this.rate);l=Th(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(L(r,l),L(ae(l,-1),i));return ae(L(d,u),c)},()=>Le(e),t.training||!1)}return e})}};E1.className="AlphaDropout";oe.registerClass(E1);function Wc(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=H5(e,t,n,s,r,a);else if(e.rank===3)o=G5(e,t,n,s,r,a);else if(e.rank===4)o=j5(e,t,n,s,r,a);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function SM(e,t,n,s,r=.001){return H(()=>{let a=ah(e,s),o=a.mean,i=a.variance;return[Wc(e,o,i,n,t,r),o,i]})}function CM(e,t,n,s,r=.001){return H(()=>{let a=ah(e,s),o=a.mean,i=a.variance,l=[];for(let f of zs(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),p=n==null?null:U(n,l);return[Wc(e,u,c,p,d,r),o,i]})}function TM(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),zs(0,e.rank-1))?SM(e,t,n,s,r):CM(e,t,n,s,r)}var R1=class extends Je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.movingMeanInitializer=kt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=kt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Zt(e.betaConstraint),this.gammaConstraint=Zt(e.gammaConstraint),this.betaRegularizer=It(e.betaRegularizer),this.gammaRegularizer=It(e.gammaRegularizer)}build(e){e=ot(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Lt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=Le(e),r=s.shape,a=r.length,o=zs(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Bo(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!w.arraysEqual(u,zs(0,a).slice(0,a-1)),d=()=>{if(c){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Wc(s,A,y,x,b,this.epsilon)}else return Wc(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=TM(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{H(()=>{let b=1-x,v=A.read(),k=L(ge(v,y),b);A.write(ge(v,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),movingMeanInitializer:Et(this.movingMeanInitializer),movingVarianceInitializer:Et(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};R1.className="BatchNormalization";oe.registerClass(R1);var _1=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.betaRegularizer=It(e.betaRegularizer),this.gammaRegularizer=It(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ot(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ta(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Le(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=ah(n,this.axis,a),l=Bo(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?U(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=Cs(o,p),i=Cs(i,p),c=Cs(c,h),d=Cs(d,h),Wc(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};_1.className="LayerNormalization";oe.registerClass(_1);function NM(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ps()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Jr(e,s)})}var D1=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Ps():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Lt({ndim:4})]}computeOutputShape(e){e=ot(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>NM(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};D1.className="ZeroPadding2D";oe.registerClass(D1);function nf(e,t,n,s,r,a){return H(()=>{Pt(r),p3(a),fs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Ps()),a==null&&(a="max"),e=QA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=sh(e,t,n,i):o=Kp(e,t,n,i),r==="channelsFirst"&&(o=Ze(o,[0,3,1,2])),o})}function Iv(e,t,n,s,r,a){return H(()=>{Pt(r),p3(a),fs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Ps()),a==null&&(a="max"),e=yv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Bg(e,t,n,i):o=Cg(e,t,n,i),r==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var Sv=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(nn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,fs(this.padding),this.inputSpec=[new Lt({ndim:3})]}computeOutputShape(e){e=ot(e);let t=Vs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Tc(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ut(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},F1=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),nf(e,t,n,s,r,"max")}};F1.className="MaxPooling1D";oe.registerClass(F1);var $1=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),nf(e,t,n,s,r,"avg")}};$1.className="AveragePooling1D";oe.registerClass($1);var Cv=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),fs(this.padding),this.inputSpec=[new Lt({ndim:4})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Vs(t,this.poolSize[0],this.padding,this.strides[0]),n=Vs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},O1=class extends Cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),nf(e,t,n,s,r,"max")}};O1.className="MaxPooling2D";oe.registerClass(O1);var P1=class extends Cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),nf(e,t,n,s,r,"avg")}};P1.className="AveragePooling2D";oe.registerClass(P1);var Tv=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),fs(this.padding),this.inputSpec=[new Lt({ndim:5})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Vs(t,this.poolSize[0],this.padding,this.strides[0]),n=Vs(n,this.poolSize[1],this.padding,this.strides[1]),s=Vs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},M1=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),Iv(e,t,n,s,r,"max")}};M1.className="MaxPooling3D";oe.registerClass(M1);var z1=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Pt(r),fs(s),Iv(e,t,n,s,r,"avg")}};z1.className="AveragePooling3D";oe.registerClass(z1);var Nv=class extends Je{constructor(e){super(e);this.inputSpec=[new Lt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},L1=class extends Nv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Le(e);return Dt(n,1)})}};L1.className="GlobalAveragePooling1D";oe.registerClass(L1);var B1=class extends Nv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Le(e);return cs(n,1)})}};B1.className="GlobalMaxPooling1D";oe.registerClass(B1);var Ev=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new Lt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},W1=class extends Ev{call(e,t){return H(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Dt(n,[1,2]):Dt(n,[2,3])})}};W1.className="GlobalAveragePooling2D";oe.registerClass(W1);var V1=class extends Ev{call(e,t){return H(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?cs(n,[1,2]):cs(n,[2,3])})}};V1.className="GlobalMaxPooling2D";oe.registerClass(V1);var Rv=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Ws(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},U1=class extends Rv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ot(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ot(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=Le(e),wv((a,o)=>[Le(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};U1.className="TimeDistributed";oe.registerClass(U1);function EM(e){Vo(OO,"BidirectionalMergeMode",e)}var RM="concat",H1=class extends Rv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ws(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Ws(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?RM:e.mergeMode,EM(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Fn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=vv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Lt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Bs;for(let l of a)if(l instanceof Bs!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=ps(r,1));let o;return this.mergeMode==="concat"?o=yA([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=L(.5,ae(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Uo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Uo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ws(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};H1.className="Bidirectional";oe.registerClass(H1);function _M(e){return new jl(e)}function DM(e){return new ZA(e)}function FM(e){return new qA(e)}function $M(e){return new XA(e)}function OM(e){return new KA(e)}function PM(e){return new JA(e)}function MM(e){return new YA(e)}function zM(e){return new Zh(e)}function LM(e){return new Pc(e)}function BM(e){return new t1(e)}function WM(e){return new Mc(e)}function VM(e){return new n1(e)}function UM(e){return new s1(e)}function HM(e){return new r1(e)}function GM(e){return new a1(e)}function jM(e){return new o1(e)}function qM(e){return new f1(e)}function XM(e){return new p1(e)}function KM(e){return new tf(e)}function ZM(e){return new d1(e)}function YM(e){return new h1(e)}function JM(e){return new m1(e)}function QM(e){return new g1(e)}function ez(e){return new A1(e)}function tz(e){return new x1(e)}function nz(e){return new b1(e)}function sz(e){return new w1(e)}function rz(e){return new S1(e)}function az(e){return new k1(e)}function oz(e){return new I1(e)}function iz(e){return new v1(e)}function lz(e){return new C1(e)}function uz(e){return new R1(e)}function cz(e){return new _1(e)}function dz(e){return new D1(e)}function G1(e){return new $1(e)}function pz(e){return G1(e)}function hz(e){return G1(e)}function j1(e){return new P1(e)}function fz(e){return j1(e)}function mz(e){return j1(e)}function q1(e){return new z1(e)}function gz(e){return q1(e)}function Az(e){return q1(e)}function yz(e){return new L1(e)}function xz(e){return new W1(e)}function _v(e){return new B1(e)}function Dv(e){return new V1(e)}function Fv(e){return new F1(e)}function $v(e){return new O1(e)}function bz(e){return new M1(e)}function vz(e){return new l1(e)}function wz(e){return new Jh(e)}function kz(e){return new u1(e)}function Iz(e){return new Lc(e)}function Sz(e){return new i1(e)}function Cz(e){return new Yh(e)}function Tz(e){return new c1(e)}function Nz(e){return new ef(e)}function Ez(e){return new lr(e)}function Rz(e){return new Qh(e)}function _z(e){return new H1(e)}function Dz(e){return new U1(e)}var Fz=_v,$z=Dv,Oz=Fv,Pz=$v;function Mz(e){return new T1(e)}function zz(e){return new N1(e)}function Lz(e){return new E1(e)}function Bz(e){return new y1(e)}var Ov={};Me(Ov,{MAPE:()=>Yz,MSE:()=>eL,binaryAccuracy:()=>Wz,binaryCrossentropy:()=>Vz,categoricalAccuracy:()=>Hz,categoricalCrossentropy:()=>Gz,cosineProximity:()=>Xz,mape:()=>Jz,meanAbsoluteError:()=>Kz,meanAbsolutePercentageError:()=>Zz,meanSquaredError:()=>Qz,mse:()=>tL,precision:()=>jz,recall:()=>qz,sparseCategoricalAccuracy:()=>Uz});function Wz(e,t){return FA(e,t)}function Vz(e,t){return M3(e,t)}function Uz(e,t){return z3(e,t)}function Hz(e,t){return $A(e,t)}function Gz(e,t){return OA(e,t)}function jz(e,t){return P3(e,t)}function qz(e,t){return RP(e,t)}function Xz(e,t){return _A(e,t)}function Kz(e,t){return Uh(e,t)}function Zz(e,t){return Xl(e,t)}function Yz(e,t){return Xl(e,t)}function Jz(e,t){return Xl(e,t)}function Qz(e,t){return Go(e,t)}function eL(e,t){return Go(e,t)}function tL(e,t){return Go(e,t)}var Pv={};Me(Pv,{modelFromJSON:()=>cM});var Mv={};Me(Mv,{l1:()=>sL,l1l2:()=>nL,l2:()=>rL});function nL(e){return new $c(e)}function sL(e){return yM(e)}function rL(e){return xM(e)}var zv=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Cr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function sf(e,t){return e<t}function Lv(e,t){return e>t}var Bv=class extends zv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=sf:this.mode==="max"?this.monitorFunc=Lv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Lv:this.monitorFunc=sf,this.monitorFunc===sf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===sf?1/0:-1/0}async onEpochEnd(e,t){await ra(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function aL(e){return new Bv(e)}var oL={earlyStopping:aL},Us;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Us||(Us={}));var Wv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Wv||(Wv={}));var X1={};function iL(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};X1[e]=n}function Vv(e){return X1[e]}function lL(e){delete X1[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return kn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>kn(p,n,s,r));let u=kn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:w.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function kn(e,t,n,s){let[r,a]=Xn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[rf(r,i)]);return o!==void 0?t[rf(r,o)][a]:void 0}function uL(e,t,n){return t[rf(e,n.currentContextId)]}function Tr(e,t){let[n,s,r]=Xn(e);return[rf(n,t&&t.currentContextId),s,r]}function rf(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function af(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Nr(e){return e.kept?e:Fs(e)}var Uv={};Me(Uv,{json:()=>cL});var cL=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Hv={};Me(Hv,{json:()=>dL});var dL=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Gv={};Me(Gv,{json:()=>pL});var pL=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],jv={};Me(jv,{json:()=>hL});var hL=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],qv={};Me(qv,{json:()=>fL});var fL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Xv={};Me(Xv,{json:()=>mL});var mL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Kv={};Me(Kv,{json:()=>gL});var gL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Zv={};Me(Zv,{json:()=>AL});var AL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Yv={};Me(Yv,{json:()=>yL});var yL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Jv={};Me(Jv,{json:()=>xL});var xL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Qv={};Me(Qv,{json:()=>bL});var bL=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};Me(e7,{json:()=>vL});var vL=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],t7={};Me(t7,{json:()=>wL});var wL=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],n7={};Me(n7,{json:()=>kL});var kL=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],s7={};Me(s7,{json:()=>IL});var IL=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],r7={};Me(r7,{json:()=>SL});var SL=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],a7={};Me(a7,{json:()=>CL});var CL=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],o7={};Me(o7,{json:()=>TL});var TL=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],i7={};Me(i7,{json:()=>NL});var NL=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],l7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Uv,Hv,Gv,jv,qv,Xv,Kv,Zv,Yv,Jv,Qv,e7,t7,n7,s7,r7,a7,o7,i7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Tr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Tr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Tr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Vv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=K1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=K1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Y1(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Y1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Z1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Z1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=a2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=a2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=r2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Q1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Q1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=e2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=c7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=c7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=Tr(c.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:J1(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,a.push(p),r[d]=p}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((p,h)=>{let[f,,m]=Tr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,p]=Tr(l[c.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function EL(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function u7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):EL(e);return t?n:n.toLowerCase()}function K1(e,t,n,s=!1){let r=e[t];return r!=null?u7(r.s,s):n}function Z1(e,t,n){let s=e[t];return s?s.b:n}function Y1(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function J1(e){switch(typeof e=="string"&&(e=Us[e]),e){case Us.DT_FLOAT:return"float32";case Us.DT_INT32:case Us.DT_INT64:case Us.DT_INT8:case Us.DT_UINT8:return"int32";case Us.DT_BOOL:return"bool";case Us.DT_DOUBLE:return"float32";case Us.DT_STRING:return"string";default:return null}}function c7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Q1(e,t,n){let s=e[t];return s&&s.type?J1(s.type):n}function e2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>J1(r)):n}function d7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function t2(e,t,n){let s=e[t];return s&&s.shape?d7(s.shape):n}function n2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function s2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>u7(a,s)):n}function r2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>d7(r)):n}function a2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var RL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return kn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return kn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Y1(this.node.rawAttrs,e,t);if(n.s!=null)return K1(this.node.rawAttrs,e,t);if(n.b!=null)return Z1(this.node.rawAttrs,e,t);if(n.shape!=null)return t2(this.node.rawAttrs,e,t);if(n.type!=null)return Q1(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return n2(this.node.rawAttrs,e,t);if(n.list.s!=null)return s2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return r2(this.node.rawAttrs,e,t);if(n.list.b!=null)return a2(this.node.rawAttrs,e,t);if(n.list.type!=null)return e2(this.node.rawAttrs,e,t)}return t}},_L=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[jp(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Ab(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[de(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[sb(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[wg(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Ac(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[vr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Qr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Jg(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},DL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Gt(I("x",e,t,n))];case"Acos":return[F5(I("x",e,t,n))];case"Acosh":return[$5(I("x",e,t,n))];case"Asin":return[P5(I("x",e,t,n))];case"Asinh":return[M5(I("x",e,t,n))];case"Atan":return[z5(I("x",e,t,n))];case"Atan2":return[L5(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[B5(I("x",e,t,n))];case"Ceil":return[X5(I("x",e,t,n))];case"Complex":return[jr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Yp(I("x",e,t,n))];case"Cosh":return[Dg(I("x",e,t,n))];case"Elu":return[mc(I("x",e,t,n))];case"Erf":return[ab(I("x",e,t,n))];case"Exp":return[ls(I("x",e,t,n))];case"Expm1":return[ob(I("x",e,t,n))];case"Floor":return[gc(I("x",e,t,n))];case"Log":return[us(I("x",e,t,n))];case"Log1p":return[eh(I("x",e,t,n))];case"Imag":return[Jp(I("x",e,t,n))];case"Neg":return[Nt(I("x",e,t,n))];case"Reciprocal":return[bb(I("x",e,t,n))];case"Real":return[yc(I("x",e,t,n))];case"Relu":return[nr(I("x",e,t,n))];case"Round":return[Gg(I("x",e,t,n))];case"Selu":return[qg(I("x",e,t,n))];case"Sigmoid":return[Hn(I("x",e,t,n))];case"Sin":return[Xg(I("x",e,t,n))];case"Sign":return[kb(I("x",e,t,n))];case"Sinh":return[Kg(I("x",e,t,n))];case"Softplus":return[Ll(I("x",e,t,n))];case"Sqrt":return[fn(I("x",e,t,n))];case"Square":return[dt(I("x",e,t,n))];case"Tanh":return[$l(I("x",e,t,n))];case"Tan":return[Sb(I("x",e,t,n))];case"ClipByValue":return[Gn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Hg(I("x",e,t,n))];case"Rsqrt":return[jg(kn(e.inputNames[0],t,n))];case"Prod":return[Wg(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Qp(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ih(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[ib(kn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Rs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function p7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Vc(e,t,n){let s=o2(e,n),r=!p7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=o2(a.shape,s)}),!p7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function o2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var FL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),tn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Rs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,tn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return en([],[0].concat(this.elementShape));let n=this.readMany(e);return Rs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),mn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return en([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Rs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),mt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,hs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(_e(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Uc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Rs(t,r.shape,"TensorList shape mismatch: "),tn(r)}),this.idTensor=Se(0),this.maxNumElements=s,tn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Uc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Rs(e,this.elementShape,"TensorList shape mismatch: ");let s=Vc(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return mn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Vc(this.elementShape,this.tensors,e),s=this.tensors.pop();return Rs(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Rs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");tn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Rs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Vc(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Rs(this.elementShape,t.shape,"TensorList shape mismatch: "),tn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Rs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Vc(this.elementShape,this.tensors,n);return e.length===0?en([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return mn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Rs(this.elementShape,t,"TensorList shape mismatch: ");let n=Vc(this.elementShape,this.tensors,t);return this.size()===0?en([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return mt(s,0)})}};function $L(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Rs(r,t,"TensorList shape mismatch: ");let a=hs(e);return new Uc(a,t,s)}function OL(e,t,n){return new Uc([],e,t,n)}function PL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Uc([],n,e.dtype,s),o=hs(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function ML(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=o2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];c[d]=U(_e(e,h,f),o)}return e.dispose(),c}),u=new Uc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var zL=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[Nr(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Nr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>kn(r,t,n)!==void 0);if(s){let r=kn(s,t,n);return[Nr(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Nr(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Nr(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Nr(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new FL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Se(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=PL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=OL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=$L(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=ML(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function h7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),d=af(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var LL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Ng(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=af(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Yr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=h7(e,t,n);return[ea.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=h7(e,t,n);return[ea.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=af(e,t,n);return[Rg(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=af(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[fc(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[_g(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Kp(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[sh(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=mb(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Cg(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Bg(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[nb(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BL=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Ml(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[lb(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[yb(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[dc(s,r,a,o)]}case"Ones":return[qn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[ds(I("x",e,t,n))];case"RandomUniform":return[Wl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Vl(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[hh(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ft(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ye(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function i2(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var WL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=i2(e,t,n),u=await Re.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=i2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Re.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=i2(e,t,n);return[await Re.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ce(I("condition",e,t,n),"bool"),r=[await eA(s)];return s.dispose(),r}case"ListDiff":return wb(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},VL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=Cb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=Qg(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=Qg(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},UL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[kn(e.name,t,n)||s];case"Placeholder":return[kn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Nr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Nr(u));case"Snapshot":let r=I("x",e,t,n);return[Nr(r)];case"Shape":return[zt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>zt(u.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},HL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,tn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=hs(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];tn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return mn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},GL=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new HL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Re.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Re.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Re.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qL=(e,t,n)=>{switch(e.op){case"Equal":return[is(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Bl(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[jn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Oo(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Og(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Po(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[$s(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[nh(I("a",e,t,n))];case"LogicalOr":return[Lg(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[vn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[rb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[ea.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},KL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ol(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ol(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[ub(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ch(I("x",e,t,n))];case"LogSoftmax":return[Pg(I("x",e,t,n))];case"SparseToDense":return[nA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZL=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[cs(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Dt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[rh(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ve(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[kg(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[qp(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Qs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[O5(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wg(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Fg(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[Tg(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[eb(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},YL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[mt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[zl(s,ce(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[zl(a,ce(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[ps(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[ps(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[_e(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Ib(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=ut(r[0]).shape,i=r.map(l=>{let u=w.arraysEqual(l.shape,a);if(!u&&!w.arraysEqual(ut(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[mn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return hs(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Cs(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return qt(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[_b(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Db(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[nA(s,a,r,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},JL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=wc.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=wc.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[wc.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[wc.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},QL=(e,t,n)=>{switch(e.op){case"FFT":return[dh(I("x",e,t,n))];case"IFFT":return[bc(I("x",e,t,n))];case"RFFT":return[ph(I("x",e,t,n))];case"IRFFT":return[Yg(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eB=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=yh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=yh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[yh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tB=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Mt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[ut(I("x",e,t,n),s)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[gb(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Jr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[oh(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Zp(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[tb(I("x",e,t,n),s,r)]}case"BroadcastTo":return[hc(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[q5(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function f7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>_L(a,o,i));case"basic_math":return H(()=>DL(a,o,i));case"control":return zL(a,o,i);case"convolution":return H(()=>LL(a,o,i));case"creation":return H(()=>BL(a,o,i));case"dynamic":return WL(a,o,i);case"evaluation":return H(()=>VL(a,o,i));case"image":return H(()=>jL(a,o,i));case"graph":return H(()=>UL(a,o,i));case"logical":return H(()=>qL(a,o,i));case"matrices":return H(()=>XL(a,o,i));case"normalization":return H(()=>KL(a,o,i));case"reduction":return H(()=>ZL(a,o,i));case"slice_join":return H(()=>YL(a,o,i));case"sparse":return H(()=>JL(a,o,i));case"spectral":return H(()=>QL(a,o,i));case"string":return H(()=>eB(a,o,i));case"transformation":return H(()=>tB(a,o,i));case"hash_table":return GL(a,o,i,s);case"custom":let l=Vv(a.op);if(l&&l.customExecutor)return l.customExecutor(new RL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var m7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function g7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(p=>Xn(p)[0]),c=[];s!=null&&(c=s.map(p=>Xn(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((A7(p)||oB(p)||iB(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&u.indexOf(p.name)===-1&&c.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function nB(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Xn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return u}var sB=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],rB=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],aB=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function A7(e){return sB.indexOf(e.op)>=0}function oB(e){return rB.indexOf(e.op)>=0}function iB(e){return aB.indexOf(e.op)>=0}var l2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new l2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=g7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return nB(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Xn(c)[0]]),r=t.map(c=>Xn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new m7(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Xn(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=f7(m,d,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,c,p,r,h)}}return this.parent==null&&c.dispose(p),t.map(f=>kn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=uL(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new m7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>kn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!c.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Xn(y)[0]]),o=n.map(y=>Xn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=g7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Xn(y),v=[];v[b]=e[y],h[x]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!A7(y)&&!kn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([d]=Tr(c.node.name,n)),s[c.node.name]==null){let p=f7(c.node,s,n,this._resourceManager);d||([d]=Tr(c.node.name,n));let h=n.currentContext;w.isPromise(p)?u.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Tr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!kn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!kn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Xn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Xn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},lB=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},uB="?tfjs-format=file",cB="model.json",y7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new lB}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Dn.browserHTTPRequest(e,this.loadOptions);else{let t=Dn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Dn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Dn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new l2(l7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=l7.Instance.transformGraph(e.modelInitializer);this.initializer=new l2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Dn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${cB}${uB}`);let n=new y7(e,t);return await n.load(),n}var dB="3.9.0",x7={};Me(x7,{CSVDataset:()=>_7,Dataset:()=>Jl,FileDataSource:()=>z7,TextLineDataset:()=>N7,URLDataSource:()=>L7,array:()=>$B,csv:()=>GB,func:()=>jB,generator:()=>qB,microphone:()=>KB,version_data:()=>ZB,webcam:()=>XB,zip:()=>OB});var pB=Ia(yx()),hB=Ia(yx());function fB(e,t){return of(e,t)}function of(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Yl(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=of(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function mB(e,t=v7){return b7(e,t)}function b7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Yl(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=b7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function v7(e){return e===null?null:Yl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function w7(e,t){let n=new Map;of(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return of(e,t,n)}function Yl(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=xx();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof je)&&!(e instanceof Promise)&&!t)}function gB(e){return e==null||AB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof je||w.isTypedArray(e)}function AB(e){return e===null||typeof e!="object"&&typeof e!="function"}function yB(e){return fB(e,xB)}function xB(e){return e instanceof je?{value:e.clone(),recurse:!1}:Yl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var k7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},u2=class extends k7{constructor(){super(u2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};u2.INITIAL_CAPACITY=32;function I7(e){return new wB(e)}function c2(e){return new kB(e)}function bB(e,t){return new C7(e,t)}function vB(e,t=la.FAIL){return new DB(e,t)}var sn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new RB(this,e)}filter(e){return new NB(this,e)}map(e){return new EB(this,e)}mapAsync(e){return new S7(this,e)}serialMapAsync(e){return new S7(this,e).serial()}flatmap(e){return new _B(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new TB(this,e,t)}columnMajorBatch(e,t=!0,n=v7){return this.rowMajorBatch(e,t).map(r=>mB(r,n))}concatenate(e,t){return new C7(I7([this,e]),t)}take(e){return e<0||e==null?this:new CB(this,e)}skip(e){return e<0||e==null?this:new SB(this,e)}prefetch(e){return new T7(this,e)}shuffle(e,t){return new FB(this,e,t)}serial(){return new IB(this)}},wB=class extends sn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:yB(e),done:!1}}},kB=class extends sn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},IB=class extends sn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},SB=class extends sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Z(e.value)}return this.upstream.next()}},CB=class extends sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},TB=class extends sn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},NB=class extends sn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Z(e.value)}}},EB=class extends sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},RB=class extends sn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},S7=class extends sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},d2=class extends sn{constructor(){super();this.outputQueue=new u2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},_B=class extends d2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return!0}},C7=class extends sn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},la;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(la||(la={}));var DB=class extends sn{constructor(e,t=la.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof sn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await w7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case la.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case la.SHORTEST:return{value:null,done:!0};case la.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},T7=class extends sn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new k7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},FB=class extends T7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=hB.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,PB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let s=c2(async()=>({value:await t.iterator(),done:!1}));return bB(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Kn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=pB.alea(t||w.now().toString());return Kn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function $B(e){return Kn(async()=>I7(e),e.length)}function OB(e){if(!Yl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Kn(async()=>{let n=await w7(e,s=>{if(s instanceof Jl)return{value:s.iterator(),recurse:!1};if(Yl(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return vB(n,la.SHORTEST)},t)}function PB(e){if(e===null)return null;let t=e[0];return gB(t)?{value:MB(e),recurse:!1}:{value:null,recurse:!0}}function MB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof je?mn(e):en(e)}var N7=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},lf='"',Hc=Symbol("out"),E7=Symbol("field"),uf=Symbol("quote"),p2=Symbol("quoteafterquote"),R7=Symbol("quoteinquote"),_7=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new N7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Hc;for(let o=0;o<r;o++)switch(a){case Hc:switch(e.charAt(o)){case lf:s=o+1,a=uf;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Hc;break;default:a=E7,s=o;break}break;case E7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Hc,s=o+1;break;default:}break;case uf:switch(e.charAt(o)){case lf:a=p2;break;default:}break;case p2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Hc,s=o+1;break;case lf:a=uf;break;default:a=R7;break}break;case R7:switch(e.charAt(o)){case lf:a=uf;break;default:}break;default:}if(a===p2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},D7=class extends sn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new D7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),en(n,t)}},F7=class extends sn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=zt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Os([a,r,i,o],[1,4])}else this.cropBox=Os([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new F7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=os.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Mt(ce(e,"float32"),0),n;n=Re.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},$7=class{},O7=class extends sn{split(e){return new zB(this,e)}},zB=class extends O7{constructor(e,t){super();this.upstream=e,this.impl=new LB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},LB=class extends d2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},BB=class extends sn{decodeUTF8(){return new WB(this)}},WB=class extends O7{constructor(e){super();this.upstream=e,this.impl=new VB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},VB=class extends d2{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=xx();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},P7=class extends BB{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function UB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=HB(e));let r=await w.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new P7(a,t)}else throw new Error(r.statusText)}var HB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function M7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var z7=class extends $7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(M7(this.input)&&Y().get("IS_NODE")){let e=bi("fs");this.input=e.readFileSync(this.input.substr(7))}return new P7(this.input,this.options)}},L7=class extends $7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return M7(this.url)?new z7(this.url,this.fileOptions).iterator():UB(this.url,this.fileOptions)}};function GB(e,t={}){return new _7(new L7(e),t)}function jB(e){let t=c2(e);return Kn(async()=>t)}function qB(e){return Kn(async()=>{let t=await e();return c2(()=>t.next())})}async function XB(e,t){return F7.create(e,t)}async function KB(e){return D7.create(e)}var ZB="3.9.0";function Ie(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var YB=sr.whereImpl,cf=class extends Pu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Gd(this,Ss())}nextDataId(){return cf.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&D.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return D.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ss().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ie([e],"where");let t=this.readSync(e.dataId);return YB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};cf.nextDataId=0;var h2={};Me(h2,{addImpl:()=>W7,bincountImpl:()=>m2,bincountReduceImpl:()=>V7,ceilImpl:()=>U7,concatImpl:()=>g2,equalImpl:()=>H7,expImpl:()=>j7,expm1Impl:()=>X7,floorImpl:()=>K7,gatherNdImpl:()=>Z7,gatherV2Impl:()=>Y7,greaterEqualImpl:()=>Q7,greaterImpl:()=>J7,lessEqualImpl:()=>tw,lessImpl:()=>ew,linSpaceImpl:()=>nw,logImpl:()=>sw,maxImpl:()=>rw,maximumImpl:()=>aw,minimumImpl:()=>ow,multiplyImpl:()=>A2,negImpl:()=>iw,notEqualImpl:()=>lw,prodImpl:()=>uw,rangeImpl:()=>x2,rsqrtImpl:()=>cw,sigmoidImpl:()=>LW,simpleAbsImpl:()=>B7,sliceImpl:()=>hf,sparseFillEmptyRowsImpl:()=>pw,sparseReshapeImpl:()=>hw,sparseSegmentReductionImpl:()=>b2,sqrtImpl:()=>VW,squaredDifferenceImpl:()=>fw,stridedSliceImpl:()=>mw,stringNGramsImpl:()=>gw,stringSplitImpl:()=>Aw,stringToHashBucketFastImpl:()=>yw,subImpl:()=>xw,tileImpl:()=>bw,topKImpl:()=>ww,transposeImpl:()=>y2,uniqueImpl:()=>kw});function B7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var JB=e=>{let{x:t}=e.inputs,n=e.backend;Ie(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=B7(r),n.makeOutput(s,t.shape,"float32")},QB={kernelName:ki,backendName:"cpu",kernelFunc:JB};function Bt(e){return(t,n,s,r,a)=>{let o=D.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),u=w.sizeFromShape(o),c=w.getTypedArrayFromDType(a,u),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=D.getBroadcastDims(t,o),g=D.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<c.length;++A)c[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<c.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(S=>x[S]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(S=>v[S]=0);let k=w.locToIndex(v,p,f);c[A]=e(s[b],r[k])}return[c,o]}}function Zn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var eW={kernelName:Qd,backendName:"cpu",kernelFunc:Zn};function df(e,t,n="float32"){if(n==="complex64"){let r=df(e,t,"float32"),a=df(e,t,"float32");return Zn({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function ur(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var tW={kernelName:ja,backendName:"cpu",kernelFunc:ur};function Ko(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var nW={kernelName:bp,backendName:"cpu",kernelFunc:Ko};function ua(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ur({inputs:{x:r},backend:n});let o=df(n,r.shape,r.dtype),i=ua({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Zn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Ko({inputs:{input:r},backend:n}),i=ua({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=ur({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,u]=Bt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var sW={kernelName:_a,backendName:"cpu",kernelFunc:ua};function rn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ie([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?D.fromUint8ToStringArray(u):u,p=o.dtype==="string"?D.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=ua({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,p=c.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=ua({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,S]=n(o.shape,i.shape,h,f,x,b),C=l.makeTensorInfo(S,"float32",v),_=l.makeTensorInfo(S,"float32",k),O=Zn({inputs:{real:C,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(_),O}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(h,d,p)}}}function f2(e){return(t,n,s,r,a,o)=>{let i=D.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),u=i.length,c=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=D.getBroadcastDims(t,i),f=D.getBroadcastDims(n,i),m=D.mergeRealAndImagArrays(s,r),g=D.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,S=v%g.length,C=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[v]=C.real,p[v]=C.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,u,c),S=k.slice(-A);h.forEach(R=>S[R]=0);let C=w.locToIndex(S,A,y),_=k.slice(-x);f.forEach(R=>_[R]=0);let O=w.locToIndex(_,x,b),E=e(m[C*2],m[C*2+1],g[O*2],g[O*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var W7=Bt((e,t)=>e+t),rW=f2((e,t,n,s)=>({real:e+n,imag:t+s})),Gc=rn(Br,W7,rW),aW={kernelName:Br,backendName:"cpu",kernelFunc:Gc};function m2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function V7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Ve([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function ca(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function it(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ie(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=w.sizeFromShape(o.shape),c=n||o.dtype,d=w.getArrayFromDType(c,u);for(let p=0;p<u;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,c,d)}}function Ql(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ie(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var U7=ca(e=>Math.ceil(e)),oW=Ql(Da,U7),iW={kernelName:Da,backendName:"cpu",kernelFunc:oW};function g2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?D.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var H7=Bt((e,t)=>e===t?1:0),G7=rn(zi,H7,null,"bool"),lW={kernelName:zi,backendName:"cpu",kernelFunc:G7},j7=ca(e=>Math.exp(e)),q7=Ql(Wa,j7),uW={kernelName:Wa,backendName:"cpu",kernelFunc:q7},X7=ca(e=>Math.expm1(e)),cW=Ql(Bi,X7),dW={kernelName:Bi,backendName:"cpu",kernelFunc:cW},K7=ca(e=>Math.floor(e)),pW=Ql(Va,K7),hW={kernelName:Va,backendName:"cpu",kernelFunc:pW};function Z7(e,t,n,s,r,a,o,i,l){let u=Ve([s,a],n);for(let c=0;c<s;c++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[c*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(p*a+h))}return u}function Y7(e,t,n){let s=Ve(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var J7=Bt((e,t)=>e>t?1:0),fW=rn(Hi,J7,null,"bool"),mW={kernelName:Hi,backendName:"cpu",kernelFunc:fW},Q7=Bt((e,t)=>e>=t?1:0),gW=rn(Ga,Q7,null,"bool"),AW={kernelName:Ga,backendName:"cpu",kernelFunc:gW},ew=Bt((e,t)=>e<t?1:0),yW=rn(Xi,ew,null,"bool"),xW={kernelName:Xi,backendName:"cpu",kernelFunc:yW},tw=Bt((e,t)=>e<=t?1:0),bW=rn(Ki,tw,null,"bool"),vW={kernelName:Ki,backendName:"cpu",kernelFunc:bW};function nw(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var sw=ca(e=>Math.log(e)),wW=Ql(Xa,sw),kW={kernelName:Xa,backendName:"cpu",kernelFunc:wW};function rw(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var aw=Bt((e,t)=>Math.max(e,t)),IW=rn(Za,aw),SW={kernelName:Za,backendName:"cpu",kernelFunc:IW},ow=Bt((e,t)=>Math.min(e,t)),CW=rn(eo,ow),TW={kernelName:eo,backendName:"cpu",kernelFunc:CW},A2=Bt((e,t)=>e*t),NW=f2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),pf=rn(no,A2,NW),EW={kernelName:no,backendName:"cpu",kernelFunc:pf};function iw(e,t,n){let s=w.createScalarValue(-1,n);return A2([],t,s,e,n)}function RW(e){let{inputs:t,backend:n}=e,{x:s}=t;Ie(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=iw(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var _W={kernelName:Qi,backendName:"cpu",kernelFunc:RW},lw=Bt((e,t)=>e!==t?1:0),DW=rn(el,lw,null,"bool"),FW={kernelName:el,backendName:"cpu",kernelFunc:DW};function y2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<o;++c){let d=w.indexToLoc(c,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);u[h]=e[c]}return u}function ms(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ie(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=y2(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var $W={kernelName:ko,backendName:"cpu",kernelFunc:ms};function uw(e,t,n,s){let[r,a]=D.computeOutAndReduceShapes(e,s),o=Is(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let p=0;p<l;++p)d*=n[c+p];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function OW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ie(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=D.getAxesPermutation(l,i),c=l,d=r,p=[];u!=null&&(d=ms({inputs:{x:r},backend:n,attrs:{perm:u}}),p.push(d),c=D.getInnerMostAxes(c.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=uw(d.shape,d.dtype,h,c),A=m;return o&&(A=D.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var PW={kernelName:ol,backendName:"cpu",kernelFunc:OW};function x2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var cw=ca(e=>1/Math.sqrt(e)),MW=Ql(ho,cw),zW={kernelName:ho,backendName:"cpu",kernelFunc:MW},LW=ca(e=>1/(1+Math.exp(-e))),dw=it(mo,e=>1/(1+Math.exp(-e))),BW={kernelName:mo,backendName:"cpu",kernelFunc:dw};function hf(e,t,n,s,r){let a=bn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=bn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?D.fromUint8ToStringArray(e):e,u=Ve(s,r,l),c=Ve(n,r);for(let d=0;d<c.size;++d){let p=c.indexToLoc(d),h=p.map((f,m)=>f+t[m]);c.set(u.get(...h),...p)}return r==="string"?D.fromStringArrayToUint8(c.values):c.values}function Zo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ie(r,"slice");let[i,l]=bn.parseSliceParams(r,a,o);bn.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=hf(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var WW={kernelName:pl,backendName:"cpu",kernelFunc:Zo};function pw(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,u,c]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;u[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)c[y]=y;return[g,[i,d],A,u,c]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],S=(v===0?0:f[v-1])+k;x[v]++;for(let C=0;C<d;++C)A[S*d+C]=e[b*d+C];y[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;y[k]=o}return[A,[g,d],y,u,c]}}function hw(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${g}`);c=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/u);if(u*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function b2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*u,y*u);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)f[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)f[y*u+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*u,d*u),[f,p]}var VW=ca(e=>Math.sqrt(e)),UW=it(go,e=>Math.sqrt(e)),HW={kernelName:go,backendName:"cpu",kernelFunc:UW},fw=Bt((e,t)=>{let n=e-t;return n*n}),GW=rn(xo,fw),jW={kernelName:xo,backendName:"cpu",kernelFunc:GW};function mw(e,t,n,s){let r=Ve(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var qW=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<c;++A)p+=e[d+A].length;p+=u*this.rightPad.length,p+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<c-1;++A)g(e[d+A]),g(this.separator);if(c>0){g(e[d+c-1]);for(let A=0;A<u;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<u-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,p,c),u+=p}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,p=1;this.createNGrams(e,l,o,u,p,d)}}return[o,a]}};function gw(e,t,n,s,r,a,o,i){return new qW(n,s,r,a,o,i).compute(e,t)}function XW(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Aw(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;XW(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,c]}function yw(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var xw=Bt((e,t)=>e-t),KW=f2((e,t,n,s)=>({real:e-n,imag:t-s})),v2=rn(bo,xw,KW),ZW={kernelName:bo,backendName:"cpu",kernelFunc:v2};function bw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Ve(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var jc=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function vw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*c/i+d)),h=Math.min(s,Math.floor(t+(i-l)*c/i+d));vw(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),jc(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;jc(e[a],r)<0;)a=a+1;for(;jc(e[o],r)>0;)o=o-1}jc(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function ww(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),u=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(vw(f,s),f=f.slice(0,s)),r&&f.sort(jc);let m=d*s,g=l.subarray(m,m+s),A=u.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[Ve(c,n,l),Ve(c,"int32",u)]}function kw(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Ht(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Ht(d,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var YW="3.9.0";_l("cpu",()=>new cf,1);var Iw=it(Ba,e=>e>=0?e:Math.exp(e)-1),JW={kernelName:Ba,backendName:"cpu",kernelFunc:Iw};function Sw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ie([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var QW={kernelName:qa,backendName:"cpu",kernelFunc:Sw},eV=Bt((e,t)=>e<0?t*e:e);function Cw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ie([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=eV(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var tV={kernelName:oo,backendName:"cpu",kernelFunc:Cw},Tw=it(io,e=>Math.max(0,e)),nV={kernelName:io,backendName:"cpu",kernelFunc:Tw},Nw=it(uo,e=>Math.min(Math.max(0,e),6)),sV={kernelName:uo,backendName:"cpu",kernelFunc:Nw};function w2(e,t,n,s,r){if(n==="linear")return ur({inputs:{x:t},backend:e});if(n==="relu")return Tw({inputs:{x:t},backend:e});if(n==="elu")return Iw({inputs:{x:t},backend:e});if(n==="relu6")return Nw({inputs:{x:t},backend:e});if(n==="prelu")return Cw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return Sw({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return dw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function bt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var rV={kernelName:ll,backendName:"cpu",kernelFunc:bt};function Ew(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ie([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=bt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=bt({inputs:{x:a},backend:n,attrs:{shape:k}}),_=o?S.shape[1]:S.shape[2],O=o?S.shape[2]:S.shape[1],E=i?C.shape[1]:C.shape[2],R=Math.max(g,A),T=n.data.get(S.dataId).values,P=n.data.get(C.dataId).values,V=w.computeStrides(S.shape),j=w.computeStrides(C.shape),[q,X,ee]=o?[V[0],1,V[1]]:[V[0],V[1],1],[te,ne,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],Q=O*E,ie=Ve([R,O,E],S.dtype),le=ie.values,pe=n.blockSize;for(let Ae=0;Ae<R;Ae++)for(let Te=0;Te<O;Te+=pe)for(let Ne=0;Ne<E;Ne+=pe)for(let De=0;De<_;De+=pe){let ze=Math.min(Te+pe,O),Oe=Math.min(Ne+pe,E),ct=Math.min(De+pe,_);for(let st=Te;st<ze;st++)for(let rt=Ne;rt<Oe;rt++){let tt=0;for(let lt=De;lt<ct;lt++){let Ge=Math.min(Ae,g-1)*q,En=Math.min(Ae,A-1)*se,Ct=T[Ge+st*X+lt*ee],Wn=P[lt*te+rt*ne+En];tt+=Ct*Wn}le[Ae*Q+(st*E+rt)]+=tt}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,ie.dtype,ie.values)}var aV={kernelName:Ra,backendName:"cpu",kernelFunc:Ew};function oV(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p,h,f,m=[];p=Ew({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=Gc({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),c&&(f=w2(n,p,c,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var iV={kernelName:Io,backendName:"cpu",kernelFunc:oV},lV=it(Ii,e=>Math.acos(e)),uV={kernelName:Ii,backendName:"cpu",kernelFunc:lV},cV=it(Si,e=>Math.acosh(e)),dV={kernelName:Si,backendName:"cpu",kernelFunc:cV};function pV(e){let{inputs:t,backend:n}=e,s=t;Ie(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Ve(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var hV={kernelName:Ta,backendName:"cpu",kernelFunc:pV};function fV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ie(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ms({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,p]=D.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x&&v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var mV={kernelName:Ci,backendName:"cpu",kernelFunc:fV};function gV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ie(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ms({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,p]=D.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x||v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var AV={kernelName:Ti,backendName:"cpu",kernelFunc:gV};function yV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ie(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ms({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],D.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=D.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var xV={kernelName:Na,backendName:"cpu",kernelFunc:yV};function bV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ie(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ms({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],D.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=D.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var vV={kernelName:Lu,backendName:"cpu",kernelFunc:bV},wV=it(Ni,e=>Math.asin(e)),kV={kernelName:Ni,backendName:"cpu",kernelFunc:wV},IV=it(Ei,e=>Math.asinh(e)),SV={kernelName:Ei,backendName:"cpu",kernelFunc:IV},CV=it(Ri,e=>Math.atan(e)),TV={kernelName:Ri,backendName:"cpu",kernelFunc:CV},NV=Bt((e,t)=>Math.atan2(e,t)),EV=rn(Di,NV),RV={kernelName:Di,backendName:"cpu",kernelFunc:EV},_V=it(_i,e=>Math.atanh(e)),DV={kernelName:_i,backendName:"cpu",kernelFunc:_V};function k2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ve(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let C=0;C<r.outHeight;++C){let _=C*o-p,O=Math.max(0,_),E=Math.min(r.inHeight,c+_),R=v+C*y;for(let T=0;T<r.outWidth;++T){let P=T*i-h,V=Math.max(0,P),j=Math.min(r.inWidth,d+P),q=f,X=0,ee=0;for(let ne=O;ne<E;ne+=l){let se=k+ne*s[1];for(let Q=V;Q<j;Q+=u){let ie=se+Q*s[2],le=e[ie+S];a==="max"&&le>q?q=le:a==="avg"&&(X+=le,ee++)}if(isNaN(q))break}let te=R+T*x+S;g[te]=a==="avg"?X/ee:q}}}return m}function Rw(e,t,n,s,r=!1,a=!1){let o=Ve(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Ve(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-f,C=S;for(;C<0;)C+=c;let _=Math.min(s.inWidth,p+S),O=Number.NEGATIVE_INFINITY,E=-1;for(let R=b;R<v;R+=u){let T=R-x;for(let P=C;P<_;P+=c){let V=P-S,j=m.get(g,R,P,A);j>O&&(O=j,r?E=a?((g*s.inHeight+R)*s.inWidth+P)*s.inChannels+A:(R*s.inWidth+P)*s.inChannels+A:E=T*p+V)}}o.set(E,g,y,k,A)}}return o}function _w(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ve(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let _=0;_<r.batchSize;++_){let O=_*v,E=_*s[0];for(let R=0;R<r.inChannels;++R)for(let T=0;T<r.outDepth;++T){let P=T*o-m,V=P;for(;V<0;)V+=u;let j=Math.min(r.inDepth,p+P),q=O+T*k;for(let X=0;X<r.outHeight;++X){let ee=X*i-g,te=ee;for(;te<0;)te+=c;let ne=Math.min(r.inHeight,h+ee),se=q+X*S;for(let Q=0;Q<r.outWidth;++Q){let ie=Q*l-A,le=ie;for(;le<0;)le+=d;let pe=Math.min(r.inWidth,f+ie),Ae=se+Q*C,Te=y,Ne=0,De=0;for(let Oe=V;Oe<j;Oe+=u){let ct=E+Oe*s[1];for(let st=te;st<ne;st+=c){let rt=ct+st*s[2];for(let tt=le;tt<pe;tt+=d){let lt=rt+tt*s[3],Ge=e[lt+R];if(a==="max"&&Ge>Te?Te=Ge:a==="avg"&&(Ne+=Ge,De++),isNaN(Te))break}if(isNaN(Te))break}if(isNaN(Te))break}let ze=Ae+R;b[ze]=a==="avg"?Ne/De:Te}}}}return x}function FV(e,t){let n=Ve(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-h,S=k;for(;S<0;)S+=i;let C=Math.min(t.inHeight,c+k);for(let _=0;_<t.outWidth;++_){let O=_*a-f,E=O;for(;E<0;)E+=l;let R=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,P=-1;for(let V=x;V<b;V+=o){let j=V-y;for(let q=S;q<C;q+=i){let X=q-k;for(let ee=E;ee<R;ee+=l){let te=ee-O,ne=e.get(m,V,q,ee,g);ne>=T&&(T=ne,P=j*c*d+X*c+te)}}}n.set(P,m,A,v,_,g)}}}return n}function $V(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ie(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=ur({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=k2(p,r.shape,r.dtype,h,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var OV={kernelName:Ea,backendName:"cpu",kernelFunc:$V};function PV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ie(r,"avgPool3d");let c=D.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=_w(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var MV={kernelName:Bu,backendName:"cpu",kernelFunc:PV};function zV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ie([r,a],"avgPool3DGrad");let c=D.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,p=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,A=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,C=k-1-c.padInfo.left,_=v-1-c.padInfo.top,O=Ve(a.shape,"float32"),E=1/(f*m*g),R=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inDepth;++V)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=V-S,ee=j-_,te=q-C,ne=0;for(let se=0;se<b;se+=A){let Q=(X+se)/d;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ie=0;ie<v;ie+=y){let le=(ee+ie)/p;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let pe=0;pe<k;pe+=x){let Ae=(te+pe)/h;if(Ae<0||Ae>=c.outWidth||Math.floor(Ae)!==Ae)continue;ne+=R.get(T,Q,le,Ae,P)}}}O.set(ne*E,T,V,j,q,P)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var LV={kernelName:Yd,backendName:"cpu",kernelFunc:zV};function BV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ie([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=D.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,p=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,A=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=A-1-c.padInfo.top,v=Ve(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,C=Ve(r.shape,"float32",S);for(let _=0;_<c.batchSize;++_)for(let O=0;O<c.inChannels;++O)for(let E=0;E<c.inHeight;++E)for(let R=0;R<c.inWidth;++R){let T=E-b,P=R-x,V=0;for(let j=0;j<A;j+=m){let q=(T+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=g){let ee=(P+X)/p;if(ee<0||ee>=c.outWidth||Math.floor(ee)!==ee)continue;V+=C.get(_,q,ee,O)}}v.set(V*k,_,E,R,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var WV={kernelName:Zd,backendName:"cpu",kernelFunc:BV};function VV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ie([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,v=0,k=0,S=0;for(let C=0;C<c.length;++C)m[C]=f[b++]+(c[C]-d[v++])*h[k++]/Math.sqrt(p[S++]+u),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),S>=y&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var UV={kernelName:Ha,backendName:"cpu",kernelFunc:VV};function HV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ie([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),p=D.getSliceSize(c,o,a.length),h=bt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ms({inputs:{x:h},backend:n,attrs:{perm:u}}),m=bt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Zo({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var GV={kernelName:Fi,backendName:"cpu",kernelFunc:HV};function jV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=m2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var qV={kernelName:Jd,backendName:"cpu",kernelFunc:jV};function XV(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=D.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var KV={kernelName:Vm,backendName:"cpu",kernelFunc:XV},ZV=it(Wr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),YV={kernelName:Wr,backendName:"cpu",kernelFunc:ZV},JV=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},QV={kernelName:Wu,backendName:"cpu",kernelFunc:JV};function eu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var eU={kernelName:hp,backendName:"cpu",kernelFunc:eu};function tu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=D.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return ur({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(D.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Ko({inputs:{input:b},backend:n})),g=i.map(b=>eu({inputs:{input:b},backend:n})),A=tu({inputs:m,backend:n,attrs:{axis:a}}),y=tu({inputs:g,backend:n,attrs:{axis:a}}),x=Zn({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return bt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=D.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,p=g2(c,o,t[0].dtype,d),h=D.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var tU={kernelName:$i,backendName:"cpu",kernelFunc:tu};function Dw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Ie([r,a],"conv2d");let d=D.convertConv2DDataFormat(l),p=D.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Ht(p.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),S=v[0],C=x?v[1]:v[2],_=x?v[2]:1,O=x?1:v[1],E=b.strides[0],R=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,P=x?1:b.strides[1],V=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<p.batchSize;++X){let ee=X*S,te=X*E;for(let ne=0;ne<p.outHeight;++ne){let se=te+ne*R,Q=ne*p.strideHeight-y;for(let ie=0;ie<h;++ie){let le=Q+ie*m;if(le<0||le>=p.inHeight)continue;let pe=ie*k[0],Ae=ee+le*C;for(let Te=0;Te<p.outWidth;++Te){let Ne=se+Te*T,De=Te*p.strideWidth-A;for(let ze=0;ze<f;++ze){let Oe=De+ze*g;if(Oe<0||Oe>=p.inWidth)continue;let ct=pe+ze*k[1],st=Ae+Oe*_,rt=ct;for(let tt=0;tt<p.inChannels;++tt){let lt=V[st+tt*O];for(let Ge=0;Ge<p.outChannels;++Ge)q[Ne+Ge*P]+=lt*j[rt+Ge];rt+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var nU={kernelName:Fa,backendName:"cpu",kernelFunc:Dw};function sU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Ie([r,a],"conv2dBackpropFilter");let d=D.convertConv2DDataFormat(l),p=D.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Ht(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new Ht(r.shape,r.dtype,v),C=new Ht(a.shape,a.dtype,k);for(let _=0;_<m;++_){let O=Math.max(0,Math.ceil((b-_)/h)),E=Math.min(p.outHeight,(p.inHeight+b-_)/h);for(let R=0;R<g;++R){let T=Math.max(0,Math.ceil((x-R)/f)),P=Math.min(p.outWidth,(p.inWidth+x-R)/f);for(let V=0;V<p.inChannels;++V)for(let j=0;j<p.outChannels;++j){let q=0;for(let X=0;X<p.batchSize;++X)for(let ee=O;ee<E;++ee){let te=_+ee*h-b;for(let ne=T;ne<P;++ne){let se=R+ne*f-x;A?q+=S.get(X,te,se,V)*C.get(X,ee,ne,j):q+=S.get(X,V,te,se)*C.get(X,j,ee,ne)}}y.set(q,_,R,V,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var rU={kernelName:ep,backendName:"cpu",kernelFunc:sU};function aU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Ie([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=D.convertConv2DDataFormat(u),f=D.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new Ht(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:S,filterWidth:C,inChannels:_,inHeight:O,inWidth:E,outChannels:R,outHeight:T,outWidth:P,strideHeight:V,strideWidth:j}=f;h=f.dataFormat;let q=S-1-f.padInfo.top,X=C-1-f.padInfo.left,ee=h==="channelsLast",te=m.strides[0],ne=ee?m.strides[1]:m.strides[2],se=ee?m.strides[2]:1,Q=ee?1:m.strides[1],ie=p[0],le=ee?p[1]:p[2],pe=ee?p[2]:1,Ae=ee?1:p[1];for(let Te=0;Te<k;++Te)for(let Ne=0;Ne<_;++Ne)for(let De=0;De<O;++De){let ze=De-q,Oe=Math.max(0,Math.ceil(ze/V)),ct=Math.min(T,(S+ze)/V);for(let st=0;st<E;++st){let rt=st-X,tt=Math.max(0,Math.ceil(rt/j)),lt=Math.min(P,(C+rt)/j),Ge=0;for(let Ct=Oe;Ct<ct;++Ct){let Wn=Ct*V-ze;for(let an=tt;an<lt;++an){let vs=an*j-rt,gn=ie*Te+le*Ct+pe*an,ts=x*(S-1-Wn)+b*(C-1-vs)+v*Ne;for(let ns=0;ns<R;++ns){let on=A[gn+Ae*ns],ss=y[ts+ns];Ge+=on*ss}}}let En=te*Te+ne*De+se*st+Q*Ne;g[En]=Ge}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var oU={kernelName:$a,backendName:"cpu",kernelFunc:aU};function iU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ie([r,a],"conv3d");let u=D.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,A=g.front,y=g.left,x=g.top,b=new Ht(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,C=w.computeStrides(r.shape),_=w.computeStrides(a.shape);for(let O=0;O<u.batchSize;++O){let E=O*C[0],R=O*b.strides[0];for(let T=0;T<u.outDepth;++T){let P=R+T*b.strides[1],V=T*u.strideDepth-A;for(let j=0;j<c;++j){let q=V+j*h;if(q<0||q>=u.inDepth)continue;let X=j*_[0],ee=E+q*C[1];for(let te=0;te<u.outHeight;++te){let ne=P+te*b.strides[2],se=te*u.strideHeight-x;for(let Q=0;Q<d;++Q){let ie=se+Q*f;if(ie<0||ie>=u.inHeight)continue;let le=X+Q*_[1],pe=ee+ie*C[2];for(let Ae=0;Ae<u.outWidth;++Ae){let Te=ne+Ae*u.outChannels,Ne=Ae*u.strideWidth-y;for(let De=0;De<p;++De){let ze=Ne+De*m;if(ze<0||ze>=u.inWidth)continue;let Oe=le+De*_[2],ct=pe+ze*u.inChannels,st=Oe;for(let rt=0;rt<u.inChannels;++rt){let tt=v[ct+rt];for(let lt=0;lt<u.outChannels;++lt)S[Te+lt]+=tt*k[st+lt];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var lU={kernelName:Vu,backendName:"cpu",kernelFunc:iU};function uU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ie([r,a],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=D.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Ht(d.filterShape,"float32"),x=y.values,[b,v,k,S]=y.strides,C=n.data.get(a.dataId).values,[_,O,E,R]=c,T=n.data.get(r.dataId).values,[P,V,j,q]=u,X=d.padInfo.front,ee=d.padInfo.left,te=d.padInfo.top;for(let ne=0;ne<m;++ne){let se=Math.max(0,Math.ceil((X-ne)/p)),Q=Math.min(d.outDepth,(d.inDepth+X-ne)/p),ie=ne*b;for(let le=0;le<g;++le){let pe=Math.max(0,Math.ceil((te-le)/h)),Ae=Math.min(d.outHeight,(d.inHeight+te-le)/h),Te=le*v+ie;for(let Ne=0;Ne<A;++Ne){let De=Math.max(0,Math.ceil((ee-Ne)/f)),ze=Math.min(d.outWidth,(d.inWidth+ee-Ne)/f),Oe=Ne*k+Te;for(let ct=0;ct<d.inChannels;++ct){let st=ct*S+Oe;for(let rt=0;rt<d.outChannels;++rt){let tt=0;for(let lt=0;lt<d.batchSize;++lt){let Ge=lt*P,En=lt*_;for(let Ct=se;Ct<Q;++Ct){let an=(ne+Ct*p-X)*V+Ge,vs=Ct*O+En;for(let gn=pe;gn<Ae;++gn){let ns=(le+gn*h-te)*j+an,on=gn*E+vs;for(let ss=De;ss<ze;++ss){let Vn=(Ne+ss*f-ee)*q+ns,qs=ss*R+on;tt+=T[Vn+ct]*C[qs+rt]}}}}x[st+rt]=tt}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var cU={kernelName:tp,backendName:"cpu",kernelFunc:uU};function dU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ie([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=D.computeConv3DInfo(l,a.shape,i,1,o),p=new Ht(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,S=n.data.get(a.dataId).values,[C,_,O,E]=c,{batchSize:R,filterDepth:T,filterHeight:P,filterWidth:V,inChannels:j,inDepth:q,inHeight:X,inWidth:ee,outChannels:te,outDepth:ne,outHeight:se,outWidth:Q,strideDepth:ie,strideHeight:le,strideWidth:pe}=d,Ae=T-1-d.padInfo.front,Te=P-1-d.padInfo.top,Ne=V-1-d.padInfo.left;for(let De=0;De<R;++De)for(let ze=0;ze<j;++ze)for(let Oe=0;Oe<q;++Oe){let ct=Oe-Ae,st=Math.max(0,Math.ceil(ct/ie)),rt=Math.min(ne,(T+ct)/ie);for(let tt=0;tt<X;++tt){let lt=tt-Te,Ge=Math.max(0,Math.ceil(lt/le)),En=Math.min(se,(P+lt)/le);for(let Ct=0;Ct<ee;++Ct){let Wn=Ct-Ne,an=Math.max(0,Math.ceil(Wn/pe)),vs=Math.min(Q,(V+Wn)/pe),gn=0;for(let ts=st;ts<rt;++ts){let ns=ts*ie-ct;for(let on=Ge;on<En;++on){let ss=on*le-lt;for(let rs=an;rs<vs;++rs){let Vn=rs*pe-Wn,qs=x*De+b*ts+v*on+k*rs,fr=C*(T-1-ns)+_*(P-1-ss)+O*(V-1-Vn)+E*ze;for(let Dr=0;Dr<te;++Dr){let li=y[qs+Dr],Xs=S[fr+Dr];gn+=li*Xs}}}}h[f*De+m*Oe+g*tt+A*Ct+ze]=gn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var pU={kernelName:np,backendName:"cpu",kernelFunc:dU},hU=it(Oa,e=>Math.cos(e)),fU={kernelName:Oa,backendName:"cpu",kernelFunc:hU},mU=it(Pa,e=>Math.cosh(e)),gU={kernelName:Pa,backendName:"cpu",kernelFunc:mU};function AU(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=Ve([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let S=0;S<f;S++){let C=S*4,_=y[C],O=y[C+1],E=y[C+2],R=y[C+3],T=x[S];if(T>=c)continue;let P=m>1?(E-_)*(d-1)/(m-1):0,V=g>1?(R-O)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let q=m>1?_*(d-1)+j*P:.5*(_+E)*(d-1);if(q<0||q>d-1){for(let X=0;X<g;X++)for(let ee=0;ee<h;ee++){let te=ee+X*k[2]+j*k[1]+S*k[0];A.values[te]=u}continue}if(l==="bilinear"){let X=Math.floor(q),ee=Math.ceil(q),te=q-X;for(let ne=0;ne<g;ne++){let se=g>1?O*(p-1)+ne*V:.5*(O+R)*(p-1);if(se<0||se>p-1){for(let pe=0;pe<h;pe++){let Ae=pe+ne*k[2]+j*k[1]+S*k[0];A.values[Ae]=u}continue}let Q=Math.floor(se),ie=Math.ceil(se),le=se-Q;for(let pe=0;pe<h;pe++){let Ae=pe+Q*v[2]+X*v[1]+T*v[0],Te=b[Ae];Ae=pe+ie*v[2]+X*v[1]+T*v[0];let Ne=b[Ae];Ae=pe+Q*v[2]+ee*v[1]+T*v[0];let De=b[Ae];Ae=pe+ie*v[2]+ee*v[1]+T*v[0];let ze=b[Ae],Oe=Te+(Ne-Te)*le,ct=De+(ze-De)*le;Ae=pe+ne*k[2]+j*k[1]+S*k[0],A.values[Ae]=Oe+(ct-Oe)*te}}}else for(let X=0;X<g;++X){let ee=g>1?O*(p-1)+X*V:.5*(O+R)*(p-1);if(ee<0||ee>p-1){for(let se=0;se<h;se++){let Q=se+X*k[2]+j*k[1]+S*k[0];A.values[Q]=u}continue}let te=Math.round(ee),ne=Math.round(q);for(let se=0;se<h;se++){let Q=se+te*v[2]+ne*v[1]+T*v[0],ie=se+X*k[2]+j*k[1]+S*k[0];A.values[ie]=b[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var yU={kernelName:Oi,backendName:"cpu",kernelFunc:AU};function xU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ie(r,"cumsum");let l=D.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=ms({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=D.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=Is(u.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(u.shape,d,p);if(l!=null){let A=D.getUndoAxesPermutation(l),y=ms({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var bU={kernelName:Ma,backendName:"cpu",kernelFunc:xU};function vU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=m2(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=V7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var wU={kernelName:sp,backendName:"cpu",kernelFunc:vU};function kU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,p=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let k=Math.floor(v/a),S=v%a,C=(b*a+S)*h;for(let _=0;_<h;++_){let E=_+C+c*(k+u*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var IU={kernelName:Pi,backendName:"cpu",kernelFunc:kU};function Fw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Ie([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=D.computeConv2DInfo(r.shape,a.shape,o,p,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,k=new Ht(h.outShape,r.dtype),S=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,_=k.values;for(let O=0;O<h.batchSize;++O){let E=O*c[0],R=O*k.strides[0];for(let T=0;T<h.outHeight;++T){let P=R+T*k.strides[1],V=T*h.strideHeight-b;for(let j=0;j<f;++j){let q=V+j*g;if(q<0||q>=h.inHeight)continue;let X=j*d[0],ee=E+q*c[1];for(let te=0;te<h.outWidth;++te){let ne=P+te*k.strides[2],se=te*h.strideWidth-x;for(let Q=0;Q<m;++Q){let ie=se+Q*A;if(ie<0||ie>=h.inWidth)continue;let le=X+Q*d[1],pe=ee+ie*h.inChannels,Ae=ne,Te=le;for(let Ne=0;Ne<h.inChannels;++Ne){let De=S[pe+Ne];for(let ze=0;ze<v;++ze)_[Ae+ze]+=De*C[Te+ze];Ae+=v,Te+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var SU={kernelName:za,backendName:"cpu",kernelFunc:Fw};function CU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Ie([r,a],"depthwiseConv2dNativeBackpropFilter");let d=D.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Ht(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Ht(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new Ht(a.shape,a.dtype,k);for(let C=0;C<f;++C){let _=Math.max(0,Math.ceil((y-C)/p)),O=Math.min(d.outHeight,(d.inHeight+y-C)/p);for(let E=0;E<m;++E){let R=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let P=0;P<d.outChannels;++P){let V=Math.trunc(P/x),j=P%x,q=0;for(let X=0;X<d.batchSize;++X)for(let ee=_;ee<O;++ee){let te=C+ee*p-y;for(let ne=R;ne<T;++ne){let se=E+ne*h-A;q+=v.get(X,te,se,V)*S.get(X,ee,ne,P)}}g.set(q,C,E,V,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var TU={kernelName:rp,backendName:"cpu",kernelFunc:CU};function NU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Ie([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=D.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new Ht(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,S=n.data.get(a.dataId).values,[C,_,O]=p,{batchSize:E,filterHeight:R,filterWidth:T,inChannels:P,inHeight:V,inWidth:j,outChannels:q,outHeight:X,outWidth:ee,strideHeight:te,strideWidth:ne}=h,se=R-1-h.padInfo.top,Q=T-1-h.padInfo.left,ie=q/P;for(let le=0;le<E;++le)for(let pe=0;pe<P;++pe)for(let Ae=0;Ae<V;++Ae){let Te=Ae-se,Ne=Math.max(0,Math.ceil(Te/te)),De=Math.min(X,(R+Te)/te);for(let ze=0;ze<j;++ze){let Oe=ze-Q,ct=Math.max(0,Math.ceil(Oe/ne)),st=Math.min(ee,(T+Oe)/ne),rt=0;for(let tt=Ne;tt<De;++tt){let lt=tt*te-Te;for(let Ge=ct;Ge<st;++Ge){let En=Ge*ne-Oe,Ct=b*le+v*tt+k*Ge,Wn=C*(R-1-lt)+_*(T-1-En)+O*pe;for(let an=0;an<ie;++an){let vs=pe*ie+an,gn=x[Ct+vs],ts=S[Wn+an];rt+=gn*ts}}}m[g*le+A*Ae+y*ze+pe]=rt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var EU={kernelName:ap,backendName:"cpu",kernelFunc:NU};function RU(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Ve([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var _U={kernelName:op,backendName:"cpu",kernelFunc:RU},DU={kernelName:Uu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:_,outShape:O}=D.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(O),R=O.length,T=w.getArrayFromDType(s.dtype,E);for(let V=0;V<h;++V)for(let j=0;j<A;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let ee=X*v-x.left;for(let te=0;te<g;++te){let ne=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<k;++Q){let ie=q+Q*C;if(ie>=0&&ie<f)for(let le=0;le<S;++le){let pe=ee+le*_;if(pe>=0&&pe<m){let Ae=w.locToIndex([V,ie,pe,te],c,w.computeStrides(s.shape)),Te=w.locToIndex([Q,le,te],p,w.computeStrides(r.shape)),Ne=u[Ae]+d[Te];Ne>ne&&(ne=Ne)}}}let se=w.locToIndex([V,j,X,te],R,w.computeStrides(O));T[se]=ne}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},FU={kernelName:lp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:_}=D.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===_.length,()=>`Error in ${lp}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let O=w.toNestedArray(_,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let V=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,te=0,ne=0;for(let se=0;se<v;++se){let Q=V+se*S;if(Q>=0&&Q<h)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let pe=c[T][Q][le][X]+d[se][ie][X];pe>ee&&(ee=pe,te=se,ne=ie)}}}E[te][ne][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},$U={kernelName:ip,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:_}=D.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===_.length,()=>`Error in ${ip}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let O=w.toNestedArray(_,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let V=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,te=V<0?0:V,ne=q<0?0:q;for(let se=0;se<v;++se){let Q=V+se*S;if(Q>=0&&Q<h)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let pe=c[T][Q][le][X]+d[se][ie][X];pe>ee&&(ee=pe,te=Q,ne=le)}}}E[T][te][ne][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function qc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ie(r,"sum");let i;r.dtype==="bool"?i=ua({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=ur({inputs:{x:r},backend:n});let l=i.shape.length,u=w.parseAxisParam(a,i.shape),c=D.getAxesPermutation(u,l),d=u,p=i;c!=null&&(p=ms({inputs:{x:i},backend:n,attrs:{perm:c}}),d=D.getInnerMostAxes(d.length,l)),D.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=D.computeOutAndReduceShapes(p.shape,d),m=D.upcastType(p.dtype,"int32"),g=df(n,h,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let S=0;S<A;++S)k+=x[v+S];y[b]=k}if(o){let b=D.expandShapeToKeepDim(g.shape,u),v=g;g=bt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(p),g}var OU={kernelName:Ao,backendName:"cpu",kernelFunc:qc};function PU(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=D.decodeEinsumEquation(r,a.length);D.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=D.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=D.getEinsumPermutation(h,l[g]),x;D.isIdentityPermutation(A)?x=a[g]:(x=ms({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=bt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=pf({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=qc({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var MU={kernelName:up,backendName:"cpu",kernelFunc:PU};function zU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ie([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var LU={kernelName:cp,backendName:"cpu",kernelFunc:zU},BU=D.ERF_P,WU=D.ERF_A1,VU=D.ERF_A2,UU=D.ERF_A3,HU=D.ERF_A4,GU=D.ERF_A5,jU=it(Mi,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+BU*n);return t*(1-((((GU*s+HU)*s+UU)*s+VU)*s+WU)*s*Math.exp(-n*n))}),qU={kernelName:Mi,backendName:"cpu",kernelFunc:jU};function ff(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),bt({inputs:{x:r},backend:n,attrs:{shape:i}})}var XU={kernelName:Li,backendName:"cpu",kernelFunc:ff},KU=Bt((e,t)=>e/t),I2=rn(La,KU),S2={kernelName:La,backendName:"cpu",kernelFunc:I2};function $w(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let A=Zo({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=Zo({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Zn({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=ZU(x,t,n),k=D.mergeRealAndImagArrays(b,v);for(let S=0;S<a;S++){let C=D.getComplexWithIndex(k,S);d[g*a+S]=C.real,p[g*a+S]=C.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),f=n.makeTensorInfo(u,"float32",p),m=Zn({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function ZU(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(YU(s)){let i=C2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=ur({inputs:{x:d},backend:n}),h=S2.kernelFunc({inputs:{a:u,b:d},backend:n}),f=S2.kernelFunc({inputs:{a:c,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=D.mergeRealAndImagArrays(a,o),l=JU(i,s,t);return D.splitRealAndImagArrays(l)}}function YU(e){return(e&e-1)==0}function C2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=D.mergeRealAndImagArrays(e,t),o=n/2,i=D.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),p=r.makeTensorInfo(c,"float32",u),h=Zn({inputs:{real:d,imag:p},backend:r}),f=D.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=Zn({inputs:{real:y,imag:x},backend:r}),v=C2(l,u,o,s,r),k=v.real,S=v.imag,C=[k.length],_=r.makeTensorInfo(C,"float32",k),O=r.makeTensorInfo(C,"float32",S),E=Zn({inputs:{real:_,imag:O},backend:r}),R=C2(m,g,o,s,r),T=R.real,P=R.imag,V=[T.length],j=r.makeTensorInfo(V,"float32",T),q=r.makeTensorInfo(V,"float32",P),X=Zn({inputs:{real:j,imag:q},backend:r}),ee=D.exponents(n,s),te=[ee.real.length],ne=r.makeTensorInfo(te,"float32",ee.real),se=r.makeTensorInfo(te,"float32",ee.imag),Q=Zn({inputs:{real:ne,imag:se},backend:r}),ie=pf({inputs:{a:Q,b:X},backend:r}),le=Gc({inputs:{a:E,b:ie},backend:r}),pe=v2({inputs:{a:E,b:ie},backend:r}),Ae=Ko({inputs:{input:le},backend:r}),Te=Ko({inputs:{input:pe},backend:r}),Ne=eu({inputs:{input:le},backend:r}),De=eu({inputs:{input:pe},backend:r}),ze=tu({inputs:[Ae,Te],backend:r,attrs:{axis:0}}),Oe=tu({inputs:[Ne,De],backend:r,attrs:{axis:0}}),ct=r.data.get(ze.dataId).values,st=r.data.get(Oe.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(Oe),{real:ct,imag:st}}function JU(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=D.exponent(r*i,t,n),u=D.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),D.assignToTypedArray(s,a,o,r)}return s}function QU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=bt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=$w(i,!1,n),u=bt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var eH={kernelName:dp,backendName:"cpu",kernelFunc:QU};function T2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return nH(i,r,o),t.makeTensorInfo(s,o,i)}var tH={kernelName:Hu,backendName:"cpu",kernelFunc:T2};function nH(e,t,n){e.fill(t)}var sH={kernelName:Wi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let A=g*u;for(let y=0;y<u;y++){let x=Math.round(l-g-1),b=h+m+A+y,v=c[b];if(x>=0&&x<l){let k=x*u,S=h+m+k+y;v=c[S]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},rH=Bt((e,t)=>Math.floor(e/t)),aH=rn(Ua,rH,null,"int32"),oH={kernelName:Ua,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=Dw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Gc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=w2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var lH={kernelName:So,backendName:"cpu",kernelFunc:iH};function uH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=Fw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Gc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=w2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var cH={kernelName:Co,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=D.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=Z7(p,h,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var pH={kernelName:Ui,backendName:"cpu",kernelFunc:dH};function hH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ie([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=w.sizeFromShape(a.shape),c=w.parseAxisParam(o,r.shape)[0],d=D.segment_util.collectGatherOpShapeInfo(r,a,c,l),p=bt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=bt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(h),g=n.bufferSync(p),A=Y7(g,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,A.dtype,A.values)}var fH={kernelName:Vi,backendName:"cpu",kernelFunc:hH};function mH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=bt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=$w(i,!0,n),u=bt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var gH={kernelName:pp,backendName:"cpu",kernelFunc:mH},AH=it(Gi,e=>Number.isFinite(e)?1:0,"bool"),yH={kernelName:Gi,backendName:"cpu",kernelFunc:AH},xH=it(ji,e=>Math.abs(e)===1/0?1:0,"bool"),bH={kernelName:ji,backendName:"cpu",kernelFunc:xH},vH=it(qi,e=>Number.isNaN(e)?1:0,"bool"),wH={kernelName:qi,backendName:"cpu",kernelFunc:vH};function kH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=nw(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var IH={kernelName:fp,backendName:"cpu",kernelFunc:kH},SH=it(Zi,e=>Math.log1p(e)),CH={kernelName:Zi,backendName:"cpu",kernelFunc:SH},TH=Bt((e,t)=>e&&t),NH=rn(Yi,TH,null,"bool"),EH={kernelName:Yi,backendName:"cpu",kernelFunc:NH},RH=it(Gu,e=>e?0:1,"bool"),_H={kernelName:Gu,backendName:"cpu",kernelFunc:RH},DH=Bt((e,t)=>e||t),FH=rn(ju,DH,null,"bool"),$H={kernelName:ju,backendName:"cpu",kernelFunc:FH};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ie(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%u,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var PH={kernelName:qu,backendName:"cpu",kernelFunc:OH};function MH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Ie(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),k=0;for(let S=b;S<v;S++)k+=Math.pow(f[S],2);k=u*k+l;for(let S=b;S<v;S++){let C=-2*u*c*f[S]*m[y]/k;y===S&&(C+=Math.pow(k,-c)),C*=h[y],g[S]+=C}}return n.makeTensorInfo(o.shape,r.dtype,g)}var zH={kernelName:mp,backendName:"cpu",kernelFunc:MH};function Ow(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=w.parseAxisParam(a,l),d=c,p=D.getAxesPermutation(d,u),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=y2(h,l,r.dtype,p,b),d=D.getInnerMostAxes(d.length,u),l=b}Ie(r,"max"),D.assertAxesAreInnerMostDims("max",d,u);let[f,m]=D.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=rw(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=D.expandShapeToKeepDim(f,c)),{dataId:y,shape:x,dtype:r.dtype}}var LH={kernelName:Ka,backendName:"cpu",kernelFunc:Ow};function BH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ie(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=ur({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=k2(p,r.shape,r.dtype,h,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var WH={kernelName:Ya,backendName:"cpu",kernelFunc:BH};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ie(r,"maxPool3d");let c=D.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=_w(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var UH={kernelName:Xu,backendName:"cpu",kernelFunc:VH};function HH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ie([r,a],"maxPool3DGrad");let c=D.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),p=FV(d,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,S=v-1-c.padInfo.left,C=b-1-c.padInfo.top,_=Ve(a.shape,"float32"),O=n.bufferSync(r);for(let E=0;E<c.batchSize;++E)for(let R=0;R<c.inChannels;++R)for(let T=0;T<c.inDepth;++T)for(let P=0;P<c.inHeight;++P)for(let V=0;V<c.inWidth;++V){let j=T-k,q=P-C,X=V-S,ee=0;for(let te=0;te<x;te+=g){let ne=(j+te)/h;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let se=0;se<b;se+=A){let Q=(q+se)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let ie=0;ie<v;ie+=y){let le=(X+ie)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let pe=x*b*v-1-p.get(E,ne,Q,le,R),Ae=te*b*v+se*v+ie,Te=pe===Ae?1:0;if(Te===0)continue;ee+=O.get(E,ne,Q,le,R)*Te}}}_.set(ee,E,T,P,V,R)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var GH={kernelName:Ap,backendName:"cpu",kernelFunc:HH};function jH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ie([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=D.computePool2DInfo(i.shape,l,u,1,c,d),h=n.data.get(i.dataId).values,f=Ve(p.outShape,i.dtype,Rw(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=Ve(i.shape,"float32"),C=n.data.get(r.dataId).values,_=Ve(r.shape,"float32",C);for(let O=0;O<p.batchSize;++O)for(let E=0;E<p.inChannels;++E)for(let R=0;R<p.inHeight;++R)for(let T=0;T<p.inWidth;++T){let P=R-k,V=T-v,j=0;for(let q=0;q<x;q+=A){let X=(P+q)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let ee=0;ee<b;ee+=y){let te=(V+ee)/g;if(te<0||te>=p.outWidth||Math.floor(te)!==te)continue;let ne=x*b-1-f.get(O,X,te,E),se=q*b+ee,Q=ne===se?1:0;if(Q===0)continue;j+=_.get(O,X,te,E)*Q}}S.set(j,O,R,T,E)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var qH={kernelName:gp,backendName:"cpu",kernelFunc:jH};function XH(e,t,n,s,r){let a=w.computeStrides(t),o=k2(e,t,n,a,r,"max"),i=Rw(e,t,n,r,!0,s);return[o.values,i.values]}var KH={kernelName:yp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ie(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=D.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=XH(u,s.shape,s.dtype,i,c),h=l.write(d,c.outShape,s.dtype),f=l.write(p,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),u=D.computeOutAndReduceShapes(r.shape,i)[1],c=w.sizeFromShape(u),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(p);let h=ua({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=I2({inputs:{a:h,b:p},backend:n});d.push(f);let m=qc({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var YH={kernelName:Ja,backendName:"cpu",kernelFunc:ZH};function JH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ie(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ms({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,p]=D.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var QH={kernelName:Qa,backendName:"cpu",kernelFunc:JH};function eG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ie(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var tG={kernelName:to,backendName:"cpu",kernelFunc:eG},nG=Bt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),sG=rn(Ji,nG),rG={kernelName:Ji,backendName:"cpu",kernelFunc:sG},aG=Ia(Ax());function Pw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),u=Ow({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=D.expandShapeToKeepDim(u.shape,l),d=bt({inputs:{x:u},backend:n,attrs:{shape:c}}),p=v2({inputs:{a:r,b:d},backend:n}),h=q7({inputs:{x:p},backend:n}),f=qc({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=bt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=I2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var oG={kernelName:yo,backendName:"cpu",kernelFunc:Pw};function iG(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ie(r,"multinomial");let l=i?r:Pw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,p=[u,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=aG.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var lG={kernelName:xp,backendName:"cpu",kernelFunc:iG},uG=sr.nonMaxSuppressionV3Impl;function cG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ie(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=uG(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var dG={kernelName:tl,backendName:"cpu",kernelFunc:cG},pG=sr.nonMaxSuppressionV4Impl;function hG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Ie(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=pG(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var fG={kernelName:nl,backendName:"cpu",kernelFunc:hG},mG=sr.nonMaxSuppressionV5Impl;function gG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Ie(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=mG(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var AG={kernelName:sl,backendName:"cpu",kernelFunc:gG};function yG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ie(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var xG={kernelName:so,backendName:"cpu",kernelFunc:yG};function mf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Ko({inputs:{input:s},backend:n}),a=mf({inputs:{x:r},backend:n}),o=eu({inputs:{input:s},backend:n}),i=mf({inputs:{x:o},backend:n}),l=Zn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return T2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var bG={kernelName:wl,backendName:"cpu",kernelFunc:mf};function Mw(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Ko({inputs:{input:s},backend:n}),a=Mw({inputs:{x:r},backend:n}),o=eu({inputs:{input:s},backend:n}),i=mf({inputs:{x:o},backend:n}),l=Zn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return T2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var vG={kernelName:rl,backendName:"cpu",kernelFunc:Mw};function zw(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ff({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=ff({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=tu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var wG={kernelName:al,backendName:"cpu",kernelFunc:zw};function kG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ie(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<c;y++){let b=w.indexToLoc(y,d,p).map((k,S)=>k+l[S]),v=w.locToIndex(b,f,m);g[v]=u[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var Lw={kernelName:ro,backendName:"cpu",kernelFunc:kG},IG=Bt((e,t)=>Math.pow(e,t)),SG=rn(ao,IG),CG={kernelName:ao,backendName:"cpu",kernelFunc:SG};function TG(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=x2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var NG={kernelName:Ku,backendName:"cpu",kernelFunc:TG},EG=it(il,e=>1/e),RG={kernelName:il,backendName:"cpu",kernelFunc:EG};function _G(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ie(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,c,f])),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let S=0;S<u;S++){let C;o?C=b*(S+.5)-.5:C=b*S;let _=Math.max(0,Math.floor(C)),O=C-_,E=Math.min(p-1,Math.ceil(C)),R=k*l[0]+_*l[1],T=k*l[0]+E*l[1];for(let P=0;P<c;P++){let V;o?V=v*(P+.5)-.5:V=v*P;let j=Math.max(0,Math.floor(V)),q=V-j,X=Math.min(h-1,Math.ceil(V)),ee=R+j*l[2],te=T+j*l[2],ne=R+X*l[2],se=T+X*l[2];for(let Q=0;Q<f;Q++){let ie=m[ee+Q],le=m[te+Q],pe=m[ne+Q],Ae=m[se+Q],Te=ie+(pe-ie)*q,Ne=le+(Ae-le)*q,De=Te+(Ne-Te)*O;g[x++]=De}}}return n.makeTensorInfo([d,u,c,f],"float32",g)}var DG={kernelName:lo,backendName:"cpu",kernelFunc:_G};function FG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ie([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,u,c,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*u*c*d),m=[o&&p>1?u-1:u,o&&h>1?c-1:c],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let S=0;S<p;S++){let C=S*A,_=Math.floor(C),O=Math.min(Math.ceil(C),u-1),E=k+_*i[1],R=k+O*i[1],T=C-_,P=1-T;for(let V=0;V<h;V++){let j=V*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),ee=j-q,te=1-ee,ne=E+q*i[2],se=E+X*i[2],Q=R+q*i[2],ie=R+X*i[2],le=P*te,pe=P*ee,Ae=T*te,Te=T*ee;for(let Ne=0;Ne<d;Ne++){let De=x[b++];f[ne+Ne]+=De*le,f[se+Ne]+=De*pe,f[Q+Ne]+=De*Ae,f[ie+Ne]+=De*Te}}}}return n.makeTensorInfo([l,c,u,d],"float32",f)}var $G={kernelName:wp,backendName:"cpu",kernelFunc:FG};function OG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ie(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*u*c*f),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let S=k*l[0];for(let C=0;C<u;C++){let _=o?x*(C+.5):x*C,O=Math.min(p-1,a?Math.round(_):Math.floor(_));o&&(O=Math.max(0,O));let E=S+O*l[1];for(let R=0;R<c;R++){let T=o?b*(R+.5):b*R,P=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(P=Math.max(0,P));let V=E+P*l[2];for(let j=0;j<f;j++){let q=m[V+j];g[v++]=q}}}}return n.makeTensorInfo([d,u,c,f],r.dtype,g)}var PG={kernelName:Zu,backendName:"cpu",kernelFunc:OG};function MG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ie([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[u,c,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?c-1:c,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,S=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let _=0;_<u;_++){let O=_*i[0];for(let E=0;E<c;E++){let R=O+E*i[1],T=Math.floor(E*v),P=Math.floor(T-S/2);for(let V=0;V<d;V++){let j=R+V*i[2],q=Math.floor(V*k),X=Math.floor(q-C/2);for(let ee=0;ee<p;ee++){let te=0;for(let ne=0;ne<S;ne++){let se=ne+P;if(se<0||se>=h)continue;let Q=O+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(E===le)for(let pe=0;pe<C;pe++){let Ae=pe+X;if(Ae<0||Ae>=f)continue;let Te=Q+Ae*l[2],Ne=Ae*b,De=Math.min(d-1,o?Math.round(Ne):Math.floor(Ne));V===De&&(te+=g[Te+ee])}}m[j+ee]=te}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var zG={kernelName:vp,backendName:"cpu",kernelFunc:MG};function LG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ie(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return ur({inputs:{x:r},backend:n});let l=new Ht(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(u.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var BG={kernelName:co,backendName:"cpu",kernelFunc:LG},WG={kernelName:kl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[u,c,d,p]=s.shape,[h,f]=D.getImageCenter(o,c,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*p;for(let k=0;k<c;k++){let S=k*(d*p);for(let C=0;C<d;C++){let _=C*p;for(let O=0;O<p;O++){let E=[u,k,C,O],R=E[2],T=E[1],P=(R-h)*A-(T-f)*g,V=(R-h)*g+(T-f)*A;P=Math.round(P+h),V=Math.round(V+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),P>=0&&P<d&&V>=0&&V<c){let X=V*(d*p),ee=P*p,te=v+X+ee+O;j=y[te]}let q=v+S+_+O;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},VG=it(po,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),UG={kernelName:po,backendName:"cpu",kernelFunc:VG};function Bw(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,p=t.values;if(s===0)return Ve(n,t.dtype);let h=Ve(c,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)u?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function HG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=D.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Bw(h,f,o,d,u,l,i,c,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var GG={kernelName:ul,backendName:"cpu",kernelFunc:HG};function jG(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ie([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Is(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=u[f];return n.makeTensorInfo(r.shape,c,d)}var qG={kernelName:cl,backendName:"cpu",kernelFunc:jG},XG=D.SELU_SCALEALPHA,KG=D.SELU_SCALE,ZG=it(dl,e=>e>=0?KG*e:XG*(Math.exp(e)-1)),YG={kernelName:dl,backendName:"cpu",kernelFunc:ZG},JG=it(fl,e=>e<0?-1:e>0?1:0),QG={kernelName:fl,backendName:"cpu",kernelFunc:JG},ej=it(fo,e=>Math.sin(e)),tj={kernelName:fo,backendName:"cpu",kernelFunc:ej},nj=it(hl,e=>Math.sinh(e)),sj={kernelName:hl,backendName:"cpu",kernelFunc:nj},rj=11920928955078125e-23,Ww=Math.log(rj)+2,aj=it(ml,e=>{let t=e>-Ww,n=e<Ww,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),oj={kernelName:ml,backendName:"cpu",kernelFunc:aj};function ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ie([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=Lw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=D.getReshaped(u.shape,a,i,!1),d=D.getPermuted(c.length,a.length,!1),p=D.getReshapedPermuted(u.shape,a,i,!1),m=bt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=ms({inputs:{x:m},backend:n,attrs:{perm:d}}),v=bt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var lj={kernelName:gl,backendName:"cpu",kernelFunc:ij};function uj(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,p,h,f,m]=pw(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var cj={kernelName:kp,backendName:"cpu",kernelFunc:uj};function dj(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=hw(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var pj={kernelName:Ip,backendName:"cpu",kernelFunc:dj};function hj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=b2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var fj={kernelName:Sp,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=b2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var gj={kernelName:Cp,backendName:"cpu",kernelFunc:mj};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=D.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=Bw(f,m,i,p,c,u,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var yj={kernelName:Tp,backendName:"cpu",kernelFunc:Aj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=Zo({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});return u[i]+=d,h})}var bj={kernelName:Al,backendName:"cpu",kernelFunc:xj},vj={kernelName:Yu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ie(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},wj=it(Ur,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),kj={kernelName:Ur,backendName:"cpu",kernelFunc:wj};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s;Ie(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=bn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=bt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=Zo({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=bt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),S=mw(y,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let v=bt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Sj={kernelName:yl,backendName:"cpu",kernelFunc:Ij};function Cj(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.data.get(c.dataId).values,h=n.data.get(d.dataId).values,[f,m]=gw(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Tj={kernelName:Np,backendName:"cpu",kernelFunc:Cj};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=Aw(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Ej={kernelName:Ep,backendName:"cpu",kernelFunc:Nj};function Rj(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=yw(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var _j={kernelName:Rp,backendName:"cpu",kernelFunc:Rj},Dj=it(vo,e=>Math.tan(e)),Fj={kernelName:vo,backendName:"cpu",kernelFunc:Dj},$j=it(wo,e=>Math.tanh(e)),Oj={kernelName:wo,backendName:"cpu",kernelFunc:$j};function Pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ie(r,"tile");let o=bw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var Mj={kernelName:Vr,backendName:"cpu",kernelFunc:Pj};function zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ie(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=ww(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var Lj={kernelName:xl,backendName:"cpu",kernelFunc:zj};function Bj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let _=0;_<c;++_){let O=a.shape[0]===1?S:S.subarray(_*8,_*8+8);for(let E=0;E<f;++E)for(let R=0;R<m;++R)for(let T=0;T<h;++T){let P,V=O[6]*R+O[7]*E+1;if(V===0)continue;let j=(O[0]*R+O[1]*E+O[2])/V,q=(O[3]*R+O[4]*E+O[5])/V,X=Vw(j,p,i),ee=Vw(q,d,i);switch(o){case"nearest":P=jj(k,d,p,y,x,b,_,ee,X,T,l);break;case"bilinear":P=qj(k,d,p,y,x,b,_,ee,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let te=_*y+E*x+R*b+T;v[te]=P}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var Wj={kernelName:bl,backendName:"cpu",kernelFunc:Bj};function Vw(e,t,n){switch(n){case"reflect":return Vj(e,t);case"wrap":return Uj(e,t);case"nearest":return Gj(e,t);case"constant":default:return Hj(e,t)}}function Vj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function Uj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function Hj(e,t){return e}function Gj(e,t){return w.clamp(0,e,t-1)}function Xc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function jj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),p=Math.round(l);return Xc(e,t,n,s,r,a,o,d,p,u,c)}function qj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Xc(e,t,n,s,r,a,o,d,p,u,c)+(l-p)*Xc(e,t,n,s,r,a,o,d,f,u,c),g=(f-l)*Xc(e,t,n,s,r,a,o,h,p,u,c)+(l-p)*Xc(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-d)*g}function Xj(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ie(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=kw(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Kj={kernelName:_p,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){c[a]=h;let f=Zo({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});p[h]=bt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var Yj={kernelName:vl,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ie(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=ff({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,c.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=G7({inputs:{a:g,b:p},backend:n}),y=ua({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=pf({inputs:{a:y,b:r},backend:n}),b=qc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(A),c.push(y),c.push(x),c.push(b)}let h=zw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Qj={kernelName:Ju,backendName:"cpu",kernelFunc:Jj},eq=[iV,QB,uV,dV,aW,hV,mV,AV,xV,vV,kV,SV,TV,RV,DV,OV,MV,LV,WV,aV,UV,GV,qV,KV,sW,iW,YV,eW,QV,tU,rU,oU,nU,cU,pU,lU,fU,gU,yU,bU,wU,IU,SU,TU,EU,_U,DU,$U,FU,S2,MU,JW,LU,lW,qU,uW,XU,dW,eH,tH,sH,hW,oH,lH,cH,pH,fH,mW,AW,tW,gH,eU,yH,bH,wH,QW,xW,vW,IH,kW,CH,EH,_H,$H,PH,zH,SW,WH,UH,GH,qH,KH,LH,YH,QH,TW,tG,rG,lG,EW,_W,dG,fG,AG,FW,xG,vG,wG,Lw,CG,tV,PW,NG,nW,RG,nV,sV,rV,DG,$G,PG,zG,BG,WG,UG,zW,GG,qG,YG,BW,QG,tj,sj,WW,oG,oj,lj,cj,pj,fj,gj,yj,bj,HW,vj,jW,kj,Sj,Tj,Ej,_j,ZW,OU,Fj,Oj,Mj,Lj,$W,Wj,Kj,Yj,Qj,bG];for(let e of eq)To(e);var Uw={};Me(Uw,{assertNotComplex:()=>su,bindCanvasToFramebuffer:()=>pq,bindColorTextureToFramebuffer:()=>xf,bindTextureToProgramUniformSampler:()=>r6,bindTextureUnit:()=>t6,bindVertexBufferToProgramAttribute:()=>R2,callAndCheck:()=>be,canBeRepresented:()=>Hw,createFragmentShader:()=>qw,createFramebuffer:()=>e6,createProgram:()=>Xw,createStaticIndexBuffer:()=>Yw,createStaticVertexBuffer:()=>Zw,createTexture:()=>Jw,createVertexShader:()=>jw,getBatchDim:()=>Jo,getExtensionOrThrow:()=>Yc,getFramebufferErrorMessage:()=>a6,getMaxTexturesInShader:()=>u6,getNumChannels:()=>cq,getProgramUniformLocation:()=>s6,getProgramUniformLocationOrThrow:()=>n6,getRowsCols:()=>Qo,getShapeAs3D:()=>bf,getTextureShapeFromLogicalShape:()=>i6,getWebGLDisjointQueryTimerVersion:()=>c6,getWebGLErrorMessage:()=>Gw,getWebGLMaxTextureSize:()=>l6,hasExtension:()=>As,isCapableOfRenderingToFloatTexture:()=>d6,isDownloadFloatTextureEnabled:()=>p6,isReshapeFree:()=>Qc,isWebGLFenceEnabled:()=>h6,isWebGLVersionEnabled:()=>D2,linkProgram:()=>Kw,resetMaxTextureSize:()=>hq,resetMaxTexturesInShader:()=>fq,unbindColorTextureFromFramebuffer:()=>_2,unbindTextureUnit:()=>dq,validateFramebuffer:()=>Jc,validateProgram:()=>yf,validateTextureSize:()=>Qw});var Yo={},N2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function gf(e,t){Yo[e]=t}function cr(e){if(!(e in Yo)){let n=nq(e);if(n!==null)Yo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Yo[e];return t.isContextLost()?(delete Yo[e],cr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Yo[e])}function tq(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function nq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=tq(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Yo[e]},!1),e===1?t.getContext("webgl",N2)||t.getContext("experimental-webgl",N2):t.getContext("webgl2",N2)}var Kc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Kc||(Kc={}));var gs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(gs||(gs={}));var un;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(un||(un={}));function Zc(e,t){return[t,e]}function sq(e,t){return e*t}function Af(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function nu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function rq(e,t){let[n,s]=nu(e,t);return n*s*4}function E2(e,t){let n=e,s,r,a,o,i,l,u,c,d,p;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:p}}function be(e,t){let n=t();return Y().getBool("DEBUG")&&aq(e),n}function aq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Gw(e,t))}var oq=596e-10,iq=65504;function Hw(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||oq<Math.abs(e)&&Math.abs(e)<iq)}function Gw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Yc(e,t){return Er(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function jw(e,t){let n=Er(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function qw(e,t){let n=Er(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw uq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var lq=/ERROR: [0-9]+:([0-9]+):/g;function uq(e,t){let n=lq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function Xw(e){return Er(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Kw(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function yf(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Zw(e,t){let n=Er(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Yw(e,t){let n=Er(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function cq(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function Jw(e){return Er(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Qw(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function e6(e){return Er(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function R2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function t6(e,t,n){o6(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function dq(e,t){o6(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n6(e,t,n){return Er(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function s6(e,t,n){return e.getUniformLocation(t,n)}function r6(e,t,n,s){be(e,()=>t6(e,t,s)),be(e,()=>e.uniform1i(n,s))}function pq(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function xf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function _2(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Jc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+a6(e,t))}function a6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Er(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function o6(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Jo(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Qo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function bf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Jo(e),...Qo(e)]),t}function i6(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Jo(e),a=2,o=2;return e.length&&([a,o]=Qo(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function vf(e){return e%2==0}function Qc(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||vf(n)&&vf(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&vf(e[0])&&vf(t[0])}var wf,kf;function l6(e){if(wf==null){let t=cr(e);wf=t.getParameter(t.MAX_TEXTURE_SIZE)}return wf}function hq(){wf=null}function fq(){kf=null}function u6(e){if(kf==null){let t=cr(e);kf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,kf)}function c6(e){if(e===0)return 0;let t,n=cr(e);return As(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:As(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function As(e,t){return e.getExtension(t)!=null}function D2(e){try{if(cr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d6(e){if(e===0)return!1;let t=cr(e);if(e===1){if(!As(t,"OES_texture_float"))return!1}else if(!As(t,"EXT_color_buffer_float"))return!1;return F2(t)}function p6(e){if(e===0)return!1;let t=cr(e);if(e===1){if(!As(t,"OES_texture_float")||!As(t,"WEBGL_color_buffer_float"))return!1}else{if(As(t,"EXT_color_buffer_float"))return F2(t);let s="EXT_color_buffer_half_float";if(As(t,s)){let r=t.getExtension(s);return mq(t,r)}return!1}return F2(t)}function F2(e){let t=E2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function mq(e,t){let n=E2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function h6(e){return e!==2?!1:cr(e).fenceSync!=null}function su(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ee=Y();Ee.registerFlag("HAS_WEBGL",()=>Ee.getNumber("WEBGL_VERSION")>0);Ee.registerFlag("WEBGL_VERSION",()=>D2(2)?2:D2(1)?1:0);Ee.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ee.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ee.get("WEBGL_VERSION")===2);Ee.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ee.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ee.registerFlag("WEBGL_PACK",()=>Ee.getBool("HAS_WEBGL"));Ee.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_CLIP",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_REDUCE",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_CONV_IM2COL",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>l6(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>u6(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ee.getNumber("WEBGL_VERSION");return e===0?0:c6(e)});Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ee.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!lc.isMobile());Ee.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d6(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ee.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ee.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ee.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p6(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_FENCE_API_ENABLED",()=>h6(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ee.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ee.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ee.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>lc.isMobile()&&Ee.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ee.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ee.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ee.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ee.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function In(){let e,t,n,s,r,a,o,i,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function ei(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function If(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function gq(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Aq(e,t,n="index"){let s=e.map((a,o)=>o),r=gq(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function $2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function O2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var f6=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:m6}=D;function yq(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=P2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>xq(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=In(),l=wq(i),u,c,d=Sq(i);return t.isPacked?(u=bq(t.logicalShape,o,n.enableShapeUniforms),c=Iq(i)):(u=vq(t.logicalShape,o,n.enableShapeUniforms),c=kq(i)),n.packedInputs&&(d+=Eq),[d,l,c,r,u,a,n.userCode].join(`
|
|
`)}function ru(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Wq(e,t);case 1:return Uq(e,t);case 2:return Gq(e,t);case 3:return qq(e,t);case 4:return Kq(e,t);case 5:return Zq(e);case 6:return Yq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function g6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Bq(e);case 1:return Vq(e,t);case 2:return Hq(e,t);case 3:return jq(e,t);default:return Xq(e,t)}}function xq(e,t,n=!1,s){let r="";n?r+=g6(e,s):r+=ru(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Jq(e,t):r+=Qq(e,t)),r}function bq(e,t,n){switch(e.length){case 0:return A6();case 1:return Rq(e,t,n);case 2:return zq(e,t,n);case 3:return Dq(e,t,n);default:return $q(e,t,n)}}function vq(e,t,n){switch(e.length){case 0:return A6();case 1:return _q(e,t,n);case 2:return Lq(e,t,n);case 3:return Fq(e,t,n);case 4:return Oq(e,t,n);case 5:return Pq(e,t);case 6:return Mq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function wq(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function kq(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Iq(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Sq(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Cq}
|
|
${Tq}
|
|
${Nq}
|
|
`}var Cq=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Tq=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Nq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Eq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function A6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function Rq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function _q(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Dq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function Fq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${If(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=ei(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function $q(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function Oq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${If(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=ei(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Pq(e,t){let n=ei(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Mq(e,t){let n=ei(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function zq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Lq(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ti(e){return`offset${e}`}function Bq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=In();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Wq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=ti(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Vq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=In();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function Uq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${au(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=ti(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Hq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=In();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function Gq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=ou(e,l),h=["row","col"];return`
|
|
${ru(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${iu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],d=ti(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function jq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=ou(e,p),m=["b","row","col"];return`
|
|
${g6(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${iu(m,h)});
|
|
}
|
|
`}let i=In();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function qq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),u=i;if(u.length<n.length){let m=ou(e,u),g=["row","col","depth"];return`
|
|
${ru(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${iu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,d=c[0],p=c[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=ti(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Xq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=In();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function Kq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let y=ou(e,l),x=["row","col","depth","depth2"];return`
|
|
${ru(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${iu(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=ti(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Zq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let m=ou(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${ru(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${iu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ti(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Yq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=ou(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ru(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${iu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===c&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ti(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function au(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Jq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=m6(e.shapeInfo.logicalShape,t.logicalShape),l=ht(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function Qq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ht(l),c=m6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&c.length>=1?p="coords = 0;":p=c.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function ht(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function P2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function ou(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function iu(e,t){return t.map(n=>e[n]).join(", ")}function eX(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=yq(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function y6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function tX(e,t,n,s,r){t.program.enableShapeUniforms||(y6(t.inShapeInfos,n),y6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=P2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function nX(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:d}=P2(e.packedInputs,o.shape,l),p="",h="",f="";if(c.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let v=w.computeStrides(c);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=D.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${u?d:""}_${c.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function ys(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var sX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Kc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=In();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?If(["r","c","d"],e):ei(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},rX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Kc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=In();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?If(["r","c","d"],e):ei(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},aX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=gs.DOWNLOAD;let t=In();this.outputShape=e,this.userCode=`
|
|
${f6}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},oX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=gs.DOWNLOAD;let t=In();this.outputShape=e,this.userCode=`
|
|
${f6}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},iX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=In();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},lX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=In();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},x6={};Me(x6,{bindVertexProgramAttributeStreams:()=>N6,createBufferFromOutputTexture:()=>_6,createFloat16MatrixTexture:()=>I6,createFloat16PackedMatrixTexture:()=>T6,createFloat32MatrixTexture:()=>k6,createIndexBuffer:()=>w6,createPackedMatrixTexture:()=>C6,createUnsignedBytesMatrixTexture:()=>S6,createVertexBuffer:()=>v6,createVertexShader:()=>b6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>F6,downloadFloat32MatrixFromBuffer:()=>D6,downloadMatrixFromPackedOutputTexture:()=>O6,downloadPackedMatrixFromBuffer:()=>$6,getInternalFormatForFloat16MatrixTexture:()=>z2,getInternalFormatForFloat16PackedMatrixTexture:()=>W2,getInternalFormatForFloat32MatrixTexture:()=>M2,getInternalFormatForPackedMatrixTexture:()=>B2,getInternalFormatForUnsignedBytesMatrixTexture:()=>L2,uploadDenseMatrixToTexture:()=>E6,uploadPixelDataToTexture:()=>R6});function b6(e){let t=In(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return jw(e,n)}function v6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Zw(e,t)}function w6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Yw(e,t)}function ed(e,t,n,s,r,a){Qw(t,n);let o=Jw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function M2(e){return e.internalFormatFloat}function k6(e,t,n,s){let[r,a]=Zc(t,n);return ed(e,r,a,M2(s),s.textureFormatFloat,e.FLOAT)}function z2(e){return e.internalFormatHalfFloat}function I6(e,t,n,s){let[r,a]=Zc(t,n);return ed(e,r,a,z2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function L2(e){return e.downloadTextureFormat}function S6(e,t,n,s){let[r,a]=Zc(t,n);return ed(e,r,a,L2(s),e.RGBA,e.UNSIGNED_BYTE)}function B2(e){return e.internalFormatPackedFloat}function C6(e,t,n,s){let[r,a]=nu(t,n);return ed(e,r,a,B2(s),e.RGBA,e.FLOAT)}function W2(e){return e.internalFormatPackedHalfFloat}function T6(e,t,n,s){let[r,a]=nu(t,n);return ed(e,r,a,W2(s),e.RGBA,s.textureTypeHalfFloat)}function N6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),R2(e,t,"clipSpacePos",n,3,a,s)&&R2(e,t,"uv",n,2,a,r)}function E6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function D6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function F6(e,t,n,s){let[r,a]=Zc(t,n),o=4,i=new Uint8Array(sq(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function $6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(rq(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function O6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Sf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,gf(t,e)):this.gl=cr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Yc(this.gl,r),As(this.gl,a))this.textureHalfFloatExtension=Yc(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),As(this.gl,s))this.colorBufferHalfFloatExtension=Yc(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",As(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(As(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=v6(this.gl),this.indexBuffer=w6(this.gl),this.framebuffer=e6(this.gl),this.textureConfig=E2(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),k6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),I6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),S6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),R6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),E6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),T6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),C6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_2(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return $6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return D6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=_6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>O6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=qw(t,e);this.vertexShader==null&&(this.vertexShader=b6(t));let s=Xw(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),Kw(t,s),this.debug&&yf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=N6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&yf(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?n6(this.gl,e,t):s6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),r6(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=nu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&yf(this.gl,this.program),Jc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Yc(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=uX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),xf(this.gl,e,this.framebuffer),this.debug&&Jc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(xf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Jc(this.gl)):_2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;xf(s,e,this.framebuffer),this.debug&&Jc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function uX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:cX,bincountImpl:P6,bincountReduceImpl:dX,ceilImpl:pX,concatImpl:hX,equalImpl:fX,expImpl:mX,expm1Impl:gX,floorImpl:AX,gatherNdImpl:yX,gatherV2Impl:xX,greaterImpl:bX,greaterEqualImpl:vX,lessImpl:wX,lessEqualImpl:kX,linSpaceImpl:IX,logImpl:SX,maxImpl:CX,maximumImpl:TX,minimumImpl:NX,multiplyImpl:EX,negImpl:RX,notEqualImpl:_X,prodImpl:DX,rangeImpl:FX,rsqrtImpl:$X,sigmoidImpl:OX,simpleAbsImpl:M6,sliceImpl:PX,sparseFillEmptyRowsImpl:MX,sparseReshapeImpl:zX,sparseSegmentReductionImpl:z6,sqrtImpl:LX,stridedSliceImpl:BX,stringNGramsImpl:WX,stringSplitImpl:VX,stringToHashBucketFastImpl:UX,subImpl:HX,tileImpl:GX,topKImpl:jX,transposeImpl:V2,uniqueImpl:qX}=h2;function L6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Sn(e,t){return t===1?[e]:L6(e,t)}function XX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var KX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Sn("rc",t),s=ht(t),r=YX(t,e,n),a=JX(t,e[e.length-1],e[e.length-2],n),o=QX(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function ZX(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function YX(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function JX(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function QX(e,t){let n=e.length,s=ZX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var B6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${eK(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function eK(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?Aq(["r","c","d"],"inputShape"):ei(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var tK=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=V6(t,n),r=U6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=W6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===un.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===un.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===un.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===un.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===un.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=V6(n,s),a=U6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=W6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function nK(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function W6(e,t,n,s,r){let a=sK(t,s),o;if(r){let[l,u]=nu(e[0],e[1]);o=l*u}else{let[l,u]=Zc(e[0],e[1]);o=l*u}let i=nK(n,a);return o*i}function sK(e,t){switch(e){case un.PACKED_2X2_FLOAT32:return B2(t);case un.PACKED_2X2_FLOAT16:return W2(t);case un.UNPACKED_FLOAT32:return M2(t);case un.UNPACKED_FLOAT16:return z2(t);case un.PACKED_4X1_UNSIGNED_BYTE:return L2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function rK(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?un.PACKED_2X2_FLOAT32:un.UNPACKED_FLOAT32:e?un.PACKED_2X2_FLOAT16:un.UNPACKED_FLOAT16}function V6(e,t){if(e===gs.UPLOAD)return un.PACKED_2X2_FLOAT32;if(e===gs.RENDER||e==null)return rK(t);if(e===gs.DOWNLOAD||e===gs.PIXELS)return un.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function U6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var da=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Hs="if (isnan(x)) return x;",aK="return x;",H6="return abs(x);",oK="return (x >= 0.0) ? x : (exp(x) - 1.0);",iK=Hs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,lK=Hs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Cf="return x;",uK="return 1.0 / (1.0 + exp(-1.0 * x));",cK="return x;",dK=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,pK=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,hK=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,fK="return 1.0 / (1.0 + exp(-1.0 * x));",lu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},mK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Sn("rc",t),s=ht(t),r=XX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},gK=sr.whereImpl,AK=1e-7,yK=1e-4,Tf={};function xK(e){return e in Tf||(Tf[e]={}),Tf[e]}var bK=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),vK=600;function wK(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*vK/1024/1024}var uu=class extends Pu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=cr(Y().getNumber("WEBGL_VERSION"));this.binaryCache=xK(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new Sf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new tK(this.gpgpu),this.numMBBeforeWarning=wK(),this.texData=new Gd(this,Ss())}nextDataId(){return uu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:gs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:gs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new lu(o,Cf):d=new da(o,Cf);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);c=D.mergeRealAndImagArrays(d,p)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new lu(s,Cf):h=new da(s,Cf);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Af(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=D.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;be(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ss().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Hw(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Af(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?bf(t):t,i=a?new oX(o):new aX(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=bK){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){D.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return gK(e.shape,t)}packedUnaryOp(e,t,n){let s=new lu(e.shape,t),r=this.compileAndRun(s,[e],n);return Ss().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=M6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,H6,e.dtype);let t=new da(e.shape,H6),n=this.compileAndRun(t,[e]);return Ss().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ss().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new mK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new KX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Jo(e.shape),...Qo(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Jo(t),...Qo(t)],a=new B6(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=bf(s),o,i=Af(a);n?o=new rX(a):o=new sX(a);let l=!0,u=[i],c=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,u,l);return{dtype:r,shape:s,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Kc.DENSE){let m=Af(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Qc(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=nX(e,l,u),d=this.getAndSaveBinary(c,()=>eX(this.gpgpu,e,l,u)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),tX(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?AK:yK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let c=t.texShape;if(c==null&&(c=i6(n,i),t.texShape=c),r!=null){let d=bf(n),p,h=c[1],f=c[0],m=r instanceof Uint8Array;i?([h,f]=nu(c[0],c[1]),p=new lX(d,m)):p=new iX(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=gs.PIXELS:this.texData.get(g.dataId).usage=gs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=kK(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};uu.nextDataId=0;function kK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var IK="3.9.0";function G6(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}lc.isBrowser()&&_l("webgl",()=>new uu,2);var SK={forceHalfFloat:G6},j6=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,cu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=D.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Nf=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,td=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=D.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=ys(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ht(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Sn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Yn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var CK={kernelName:ja,backendName:"webgl",kernelFunc:Yn};function pa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Yn({inputs:{x:s},backend:n}),l=Yn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var TK={kernelName:Qd,backendName:"webgl",kernelFunc:pa},q6="return (a < 0.) ? b * a : a;",X6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function NK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new td(X6,r.shape,o.shape):new cu(q6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var EK={kernelName:qa,backendName:"webgl",kernelFunc:NK},K6="return (a < 0.) ? b * a : a;",Z6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function RK(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new td(Z6,s.shape,r.shape):new cu(K6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var _K={kernelName:oo,backendName:"webgl",kernelFunc:RK},Y6="if (isnan(x)) return x;",DK=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,FK=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new lu(o.shape,t):c=new da(o.shape,e),i.runWebGLProgram(c,[o],l)}}function cn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new cu(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,S],Is(b.dtype,v.dtype))}),y=pa({inputs:{real:g,imag:A},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(A),y}let d=a||Is(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?D.fromUint8ToStringArray(f):f,A=l.dtype==="string"?D.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,g,A,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new td(t,l.shape,u.shape,n):h=new cu(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],d)}}function Ef(e,t=!1){if(e==="linear")return t?cK:aK;if(e==="relu")return t?pK:iK;if(e==="elu")return t?dK:oK;if(e==="relu6")return t?hK:lK;if(e==="prelu")return t?Z6:K6;if(e==="leakyrelu")return t?X6:q6;if(e==="sigmoid")return t?fK:uK;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var J6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=ys(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Q6={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},e4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=D.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},t4="return a * b;";function U2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=D.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new e4(Q6.REAL,s.shape,r.shape),c=new e4(Q6.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=pa({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=EX(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),p=n.texData.get(d.dataId);return p.values=u,d}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new td(t4,s.shape,r.shape):o=new cu(t4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var $K={kernelName:no,backendName:"webgl",kernelFunc:U2};function OK(e,t,n){let s=[Jo(e.shape),...Qo(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Jo(t),...Qo(t)],o=new B6(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(l);w.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Qc(r.shape,l)&&!(c.texture!==null&&Qc(c.shape,l))?OK(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var PK={kernelName:ll,backendName:"webgl",kernelFunc:ye},n4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},MK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function zK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=D.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function ni(e,t,n,s){let r=zK(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new n4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new n4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new MK({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var LK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ht(this.rank),r=BK(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function BK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var WK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ht(this.rank),r=L6("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rf(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new WK(e.shape,t):new LK(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function VK(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=D.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=Rf(e,l,s),i=D.getInnerMostAxes(i.length,a)),D.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=D.computeOutAndReduceShapes(c.shape,i),h=d;n&&(h=D.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=ye({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=zp(e.dtype),x=ni(A,y,"sum",s),b=ye({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function _f(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return VK(r,a,o,n)}var UK={kernelName:Ao,backendName:"webgl",kernelFunc:_f};function Cn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=V2(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=p}else u=Rf(r,a,o);return u}var HK={kernelName:ko,backendName:"webgl",kernelFunc:Cn},s4=1e3;function Df({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],p=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],S=s?[y,f,p]:[y,p,f],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),_=ye({inputs:{x:t},backend:r,attrs:{shape:S}}),O=[C,_],E=Math.max(A,y),R=n?C.shape[1]:C.shape[2],T=a!=null,P=o!=null,V=l==="leakyrelu",j=l!=null?Ef(l,!0):null,q=T||P||V||j!=null,X;if((h===1||f===1)&&R>s4&&q===!1){let te=C,ne=_;n&&(te=Cn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),O.push(te)),s&&(ne=Cn({inputs:{x:_},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne));let se=f!==1,Q=f===1,ie=te;se&&(ie=ye({inputs:{x:te},backend:r,attrs:{shape:[E,R,1]}}),O.push(ie));let le=f===1?2:1,pe=ne;Q&&(pe=ye({inputs:{x:ne},backend:r,attrs:{shape:[E,1,R]}}),O.push(pe));let Ae=U2({inputs:{a:ie,b:pe},backend:r});X=_f({inputs:{x:Ae},backend:r,attrs:{axis:le,keepDims:!0}}),O.push(Ae)}else{let te=Is(e.dtype,t.dtype),ne=new J6(k,S,[E,h,f],n,s,T,j,P,V),se=[C,_];if(a!=null&&se.push(a),P&&se.push(o),V){let Q=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));se.push(Q),O.push(Q)}X=r.runWebGLProgram(ne,se,te)}let ee=ye({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let te of O)r.disposeIntermediateTensorInfo(te);return ee}function GK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return Df({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var jK={kernelName:Io,backendName:"webgl",kernelFunc:GK},r4="return abs(x);";function qK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=M6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(s.shape,r4):r=new da(s.shape,r4),n.runWebGLProgram(r,[s],s.dtype)}var XK={kernelName:ki,backendName:"webgl",kernelFunc:qK},KK=Hs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,ZK=Qe({opSnippet:KK}),YK={kernelName:Ii,backendName:"webgl",kernelFunc:ZK},JK=Hs+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,QK=Qe({opSnippet:JK}),eZ={kernelName:Si,backendName:"webgl",kernelFunc:QK},a4="return a + b;",tZ=cn({opSnippet:a4,packedOpSnippet:a4,supportsComplex:!0,cpuKernelImpl:cX}),nZ={kernelName:Br,backendName:"webgl",kernelFunc:tZ},sZ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},rZ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Ff(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Yn({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=Ff({inputs:s.slice(0,l),backend:n}),c=Ff({inputs:s.slice(l),backend:n});return Ff({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Is(l,u)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new rZ(s[0].shape,a):new sZ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var aZ={kernelName:Ta,backendName:"webgl",kernelFunc:Ff};function oZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,i)),D.assertAxesAreInnerMostDims("all",u,i);let[p,h]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ni(m,m.dtype,"all",n),A;if(o){let y=D.expandShapeToKeepDim(p,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var iZ={kernelName:Ci,backendName:"webgl",kernelFunc:oZ};function lZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,i)),D.assertAxesAreInnerMostDims("any",u,i);let[p,h]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ni(m,m.dtype,"any",n),A;if(o){let y=D.expandShapeToKeepDim(p,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var uZ={kernelName:Ti,backendName:"webgl",kernelFunc:lZ},cZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},dZ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ht(i),u=Sn("coords",i),c,d;if(a===1){d=i+1;let S=ht(d);c=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[i-2]};`}else d=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=Sn("sourceLocR",d-1).concat("inIdx.r"),g=Sn("sourceLocG",d-1).concat("inIdx.g"),A=Sn("sourceLocB",d-1).concat("inIdx.b"),y=Sn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function o4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=D.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new cZ(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=o4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function i4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=D.computeOptimalWindowSize(a),i=new dZ(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=i4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function l4(e,t,n,s){let r=[n];if(D.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=D.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(c),p=ye({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=o4(e,p,s);a.push(h);let f=ye({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return i4(e,t,s)}function pZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Cn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),D.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=l4(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var hZ={kernelName:Na,backendName:"webgl",kernelFunc:pZ};function fZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Cn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),D.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=l4(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var mZ={kernelName:Lu,backendName:"webgl",kernelFunc:fZ},gZ=Hs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,AZ=Qe({opSnippet:gZ}),yZ={kernelName:Ni,backendName:"webgl",kernelFunc:AZ},xZ=Hs+"return log(x + sqrt(x * x + 1.0));",bZ=Qe({opSnippet:xZ}),vZ={kernelName:Ei,backendName:"webgl",kernelFunc:bZ},wZ=Hs+`
|
|
return atan(x);
|
|
`,kZ=Qe({opSnippet:wZ}),IZ={kernelName:Ri,backendName:"webgl",kernelFunc:kZ},SZ=DK+`
|
|
return atan(a, b);
|
|
`,CZ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+FK+`
|
|
return result;
|
|
`,TZ=cn({opSnippet:SZ,packedOpSnippet:CZ}),NZ={kernelName:Di,backendName:"webgl",kernelFunc:TZ},EZ=Hs+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,RZ=Qe({opSnippet:EZ}),_Z={kernelName:_i,backendName:"webgl",kernelFunc:RZ},nd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},H2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${_} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new nd(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var FZ={kernelName:Ea,backendName:"webgl",kernelFunc:DZ};function $Z(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=D.computePool3DInfo(r.shape,a,o,c,i,l,u),p=new H2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var OZ={kernelName:Bu,backendName:"webgl",kernelFunc:$Z},PZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=D.computePool3DInfo(o.shape,i,l,d,u,c),h=new MZ(p);return n.runWebGLProgram(h,[r],o.dtype)}var LZ={kernelName:Yd,backendName:"webgl",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;su([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=D.computePool2DInfo(o.shape,i,l,1,u),d=new PZ(c);return n.runWebGLProgram(d,[r],o.dtype)}var WZ={kernelName:Zd,backendName:"webgl",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Df({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var UZ={kernelName:Ra,backendName:"webgl",kernelFunc:VZ},HZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],D.assertAndGetBroadcastShape(e,t),D.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(D.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(D.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},GZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],D.assertAndGetBroadcastShape(e,t),D.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(D.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(D.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},jZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new GZ(s.shape,r.shape,a.shape,c,d,l):new HZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(p,u,u[0].dtype)},qZ={kernelName:Ha,backendName:"webgl",kernelFunc:jZ},XZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=KZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${G2[o]} = start[${o}] + coords.${G2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},G2=["x","y","z","w","u","v"];function KZ(e){if(e===1)return"sourceLoc";if(e<=6)return G2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var ZZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ht(this.rank),n=Sn("coords",this.rank),s=Sn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function YZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=bn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function du(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=bn.parseSliceParams(r,a,o);if(bn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=PX(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:u}=n.texData.get(r.dataId),c=bn.isSliceContinous(r.shape,i,l);if(u||!c){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZZ(l):new XZ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),YZ(r,i,l,n)}var JZ={kernelName:pl,backendName:"webgl",kernelFunc:du},QZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),p=D.getSliceSize(c,o,a.length),h=[],f=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ye({inputs:{x:m},backend:n,attrs:{shape:c}}),A=du({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},eY={kernelName:Fi,backendName:"webgl",kernelFunc:QZ};function tY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=P6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var nY={kernelName:Jd,backendName:"webgl",kernelFunc:tY},sY="return float(a != b);",u4=cn({opSnippet:sY,cpuKernelImpl:_X,dtype:"bool"}),rY={kernelName:el,backendName:"webgl",kernelFunc:u4};function sd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.real},backend:n})}var aY={kernelName:bp,backendName:"webgl",kernelFunc:sd},oY="return float(int(x));";function iY(e,t){let n=new da(e.shape,oY),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function j2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Yn({inputs:{x:r},backend:n});let o=Ft(r.shape),i=j2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=pa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=sd({inputs:{input:r},backend:n}),i=j2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Yn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return iY(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=u4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var lY={kernelName:_a,backendName:"webgl",kernelFunc:j2},c4="return ceil(x);",uY=Qe({opSnippet:c4,packedOpSnippet:c4,cpuKernelImpl:pX}),cY={kernelName:Da,backendName:"webgl",kernelFunc:uY},dY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},pY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function hY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new pY(r.shape):i=new dY(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var fY={kernelName:Wr,backendName:"webgl",kernelFunc:hY},mY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function d4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function gY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new mY(s.shape),o=[d4(s,r.complexTensorInfos.real),d4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var AY={kernelName:Wu,backendName:"webgl",kernelFunc:gY},yY=class{constructor(e){this.outputShape=[],this.outputShape=D.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},xY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=D.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ht(s),a=Sn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${$f(o,l,m)}),
|
|
vec2(${$f(u,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${$f(o,l,h)}),
|
|
vec2(${$f(u,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function $f(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function Of(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var bY={kernelName:hp,backendName:"webgl",kernelFunc:Of};function pu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>sd({inputs:{input:m},backend:n})),d=e.map(m=>Of({inputs:{input:m},backend:n})),p=pu(c,t,n),h=pu(d,t,n),f=pa({inputs:{real:p,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return ye({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=D.computeOutShape(c.map(A=>A.shape),1),h=c[0].shape[0]===1,f=hX(d,p,s,h),m=D.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=pu(e.slice(0,c),t,n),p=pu(e.slice(c),t,n),h=pu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new xY(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=vY(e,t,n),i=new yY(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function vY(e,t,n){let s=D.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function p4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=D.computeOutShape(t.map(u=>u.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>w.sizeFromShape(u.shape)>0);if(i.length===1)return Yn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return D.assertParamsConsistent(l,a),pu(i,a,n)}var wY={kernelName:$i,backendName:"webgl",kernelFunc:p4},h4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},kY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},IY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let{dataFormat:n}=t,s=In(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function f4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&c>s4)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(Qc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let S=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let C=Df({a:v,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(C.dataId);w.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,_.shape=n.outShape,g=Yn({inputs:{x:C},backend:s}),g.shape=n.outShape,A.push(C)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Df({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ye({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function m4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=p*d,A=[m,g],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let S=new IY(A,n),C=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],_=s.runWebGLProgram(S,[v],"float32",C),O=ye({inputs:{x:_},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(_),b.push(O);let E=r!=null,R=a!=null,T=i==="leakyrelu",P=i?Ef(i,!0):null,V=new J6(O.shape,k.shape,[1,g,n.outChannels],y,x,E,P,R,T),j=[O,k];if(r&&j.push(r),R&&j.push(a),T){let te=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(te),b.push(te)}let q=s.runWebGLProgram(V,j,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],ee=ye({inputs:{x:q},backend:s,attrs:{shape:X}});b.push(q);for(let te of b)s.disposeIntermediateTensorInfo(te);return ee}function SY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=D.convertConv2DDataFormat(l),p=D.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=f4({x:r,filter:a,convInfo:p,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=m4({x:r,filter:a,convInfo:p,backend:n});else{let m=new h4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ye({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var CY={kernelName:Fa,backendName:"webgl",kernelFunc:SY},TY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},NY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=D.convertConv2DDataFormat(l),p=D.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),h=new TY(p);return n.runWebGLProgram(h,[r,a],"float32")}var DY={kernelName:ep,backendName:"webgl",kernelFunc:_Y};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=D.convertConv2DDataFormat(u),p=D.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),h=new NY(p);return n.runWebGLProgram(h,[r,a],"float32")}var $Y={kernelName:$a,backendName:"webgl",kernelFunc:FY};function OY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=D.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new kY(u);return n.runWebGLProgram(c,[r,a],"float32")}var PY={kernelName:Vu,backendName:"webgl",kernelFunc:OY};function MY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=D.computeConv3DInfo(r.shape,l,o,1,i),c=new EY(u);return n.runWebGLProgram(c,[r,a],"float32")}var zY={kernelName:tp,backendName:"webgl",kernelFunc:MY};function LY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=D.computeConv3DInfo(l,a.shape,i,1,o),c=new RY(u);return n.runWebGLProgram(c,[r,a],"float32")}var BY={kernelName:np,backendName:"webgl",kernelFunc:LY},WY=Y6+`
|
|
return cos(x);
|
|
`,VY=Qe({opSnippet:WY}),UY={kernelName:Oa,backendName:"webgl",kernelFunc:VY},HY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,GY=Qe({opSnippet:HY}),jY={kernelName:Pa,backendName:"webgl",kernelFunc:GY},qY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},XY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new qY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},KY={kernelName:Oi,backendName:"webgl",kernelFunc:XY},g4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${A4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ht(s)} coords = getOutputCoords();
|
|
int end = ${y4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${y4(s,"coords")} = idx;
|
|
val += getX(${A4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function A4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function y4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function ZY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=D.getAxesPermutation([a],l),c=r;u!=null&&(c=Cn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=D.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=c.shape[d],h=Yn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new g4(c.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new g4(c.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=D.getUndoAxesPermutation(u),m=Cn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var YY={kernelName:Ma,backendName:"webgl",kernelFunc:ZY};function JY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=P6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=dX(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var QY={kernelName:sp,backendName:"webgl",kernelFunc:JY},eJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function tJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new eJ(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var nJ={kernelName:Pi,backendName:"webgl",kernelFunc:tJ},x4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ys(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},b4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ys(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,d=c,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;for(let g=0;g<u;g++){for(let A=0;A<c;A++)p+=`
|
|
xTexelC${A*2} = vec4(0.0);
|
|
xTexelC${A*2}Ready = 0;
|
|
xTexelC${A*2+1} = vec4(0.0);
|
|
xTexelC${A*2+1}Ready = 0;
|
|
xC${A} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + ${g} * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let A=0;A<(d+1)/2;A++){let y=A*2;if(p+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?p+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?p+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:p+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(p+=`
|
|
wTexel = getW(${g}, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(p+=`
|
|
wTexel = getW(${g}, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`}let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function sJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=D.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new b4(d):p=new x4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var rJ={kernelName:za,backendName:"webgl",kernelFunc:sJ},aJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},oJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=D.computeConv2DInfo(r.shape,c,o,i,l,u,!0),p=new aJ(d);return n.runWebGLProgram(p,[r,a],"float32")}var lJ={kernelName:rp,backendName:"webgl",kernelFunc:iJ};function uJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=D.computeConv2DInfo(c,a.shape,o,i,l,u,!0),p=new oJ(d);return n.runWebGLProgram(p,[r,a],"float32")}var cJ={kernelName:ap,backendName:"webgl",kernelFunc:uJ},dJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function pJ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new dJ(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var hJ={kernelName:op,backendName:"webgl",kernelFunc:pJ},fJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=D.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new fJ(u);c=n.runWebGLProgram(d,[r,a],"float32");let p=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),p}var gJ={kernelName:Uu,backendName:"webgl",kernelFunc:mJ};function AJ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=D.decodeEinsumEquation(r,a.length);D.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=D.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=D.getEinsumPermutation(h,l[g]),x;D.isIdentityPermutation(A)?x=a[g]:(x=Cn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=ye({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=U2({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=_f({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var yJ={kernelName:up,backendName:"webgl",kernelFunc:AJ},xJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",bJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,vJ=Qe({opSnippet:xJ,packedOpSnippet:bJ}),wJ={kernelName:Ba,backendName:"webgl",kernelFunc:vJ},kJ="return (b >= 1.0) ? a : a * (b + 1.0);",IJ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,SJ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new td(IJ,s.shape,r.shape):new cu(kJ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},CJ={kernelName:cp,backendName:"webgl",kernelFunc:SJ},TJ=`
|
|
return vec4(equal(a, b));
|
|
`,NJ="return float(a == b);",EJ=cn({opSnippet:NJ,packedOpSnippet:TJ,dtype:"bool",cpuKernelImpl:fX}),RJ={kernelName:zi,backendName:"webgl",kernelFunc:EJ},_J=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${D.ERF_P};
|
|
float a1 = ${D.ERF_A1};
|
|
float a2 = ${D.ERF_A2};
|
|
float a3 = ${D.ERF_A3};
|
|
float a4 = ${D.ERF_A4};
|
|
float a5 = ${D.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,DJ=Qe({opSnippet:_J}),FJ={kernelName:Mi,backendName:"webgl",kernelFunc:DJ},v4="return exp(x);",w4=Qe({opSnippet:v4,packedOpSnippet:v4,cpuKernelImpl:mX}),$J={kernelName:Wa,backendName:"webgl",kernelFunc:w4};function q2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var OJ={kernelName:Li,backendName:"webgl",kernelFunc:q2},k4="return exp(x) - 1.0;",PJ=Qe({opSnippet:k4,packedOpSnippet:k4,cpuKernelImpl:gX}),MJ={kernelName:Bi,backendName:"webgl",kernelFunc:PJ},I4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function S4(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new I4("real",l,t),c=new I4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=pa({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function zJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return S4(s,!1,n)}var LJ={kernelName:dp,backendName:"webgl",kernelFunc:zJ},BJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function rd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new BJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var WJ={kernelName:Hu,backendName:"webgl",kernelFunc:rd},VJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},UJ={kernelName:Wi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new VJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},C4="return floor(x);",HJ=Qe({opSnippet:C4,packedOpSnippet:C4,cpuKernelImpl:AX}),GJ={kernelName:Va,backendName:"webgl",kernelFunc:HJ},jJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,qJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,XJ=cn({opSnippet:jJ,packedOpSnippet:qJ,dtype:"int32"}),KJ={kernelName:Ua,backendName:"webgl",kernelFunc:XJ},ZJ=class{constructor(e){this.variableNames=["A"];let t=In(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},YJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=In(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JJ={kernelName:Dp,backendName:"webgl",kernelFunc:QJ},hu;function QJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=l,hu.canvas.height=u,hu.drawImage(r,0,0,l,u),r=hu.canvas);let p=n.makeTensorInfo(c,"int32");n.texData.get(p.dataId).usage=gs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Y().getBool("WEBGL_PACK")?new YJ(d):new ZJ(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=D.convertConv2DDataFormat(c),g=D.computeConv2DInfo(r.shape,a.shape,l,d,u,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=f4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=m4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=h==="leakyrelu",S=h?Ef(h,!1):null,C=new h4(g,b,S,v,k),_=[r,a];if(o&&_.push(o),i&&_.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));_.push(O),y.push(O)}A=n.runWebGLProgram(C,_,"float32")}let x=ye({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var tQ={kernelName:So,backendName:"webgl",kernelFunc:eQ};function nQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=D.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),A=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?Ef(p,A):null,x=[r,a],b=o!=null,v=i!=null,k=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(O),f.push(O)}let S;A?S=new b4(g,b,y,v,k):S=new x4(g,b,y,v,k);let C=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(S,x,"float32",C);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),_}var sQ={kernelName:Co,backendName:"webgl",kernelFunc:nQ},rQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ht(t.length),r=ht(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function aQ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,u,c,d]=D.prepareAndValidate(s,r),p=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ye({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=yX(A,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new rQ(o,d,[u,c]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ye({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var oQ={kernelName:Ui,backendName:"webgl",kernelFunc:aQ},iQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),s=lQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function lQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function T4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=D.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=w.sizeFromShape(a.shape),d=[],p=ye({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(p),d.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(p),b=xX(x,y,f);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new iQ(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let A=ye({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var uQ={kernelName:Vi,backendName:"webgl",kernelFunc:T4},cQ="return float(a > b);",dQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,pQ=cn({opSnippet:cQ,packedOpSnippet:dQ,cpuKernelImpl:bX,dtype:"bool"}),hQ={kernelName:Hi,backendName:"webgl",kernelFunc:pQ},fQ="return float(a >= b);",mQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,gQ=cn({opSnippet:fQ,packedOpSnippet:mQ,dtype:"bool",cpuKernelImpl:vX}),AQ={kernelName:Ga,backendName:"webgl",kernelFunc:gQ};function yQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return S4(s,!0,n)}var xQ={kernelName:pp,backendName:"webgl",kernelFunc:yQ},bQ="return float(!isnan(x) && !isinf(x));",vQ=Qe({opSnippet:bQ,dtype:"bool"}),wQ={kernelName:Gi,backendName:"webgl",kernelFunc:vQ},kQ="return float(isinf(x));",IQ=Qe({opSnippet:kQ,dtype:"bool"}),SQ={kernelName:ji,backendName:"webgl",kernelFunc:IQ},CQ="return float(isnan(x));",TQ=Qe({opSnippet:CQ,dtype:"bool"}),NQ={kernelName:qi,backendName:"webgl",kernelFunc:TQ},EQ="return float(a < b);",RQ=`
|
|
return vec4(lessThan(a, b));
|
|
`,_Q=cn({opSnippet:EQ,packedOpSnippet:RQ,cpuKernelImpl:wX,dtype:"bool"}),DQ={kernelName:Xi,backendName:"webgl",kernelFunc:_Q},FQ="return float(a <= b);",$Q=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,OQ=cn({opSnippet:FQ,packedOpSnippet:$Q,cpuKernelImpl:kX,dtype:"bool"}),PQ={kernelName:Ki,backendName:"webgl",kernelFunc:OQ};function MQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=IX(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var zQ={kernelName:fp,backendName:"webgl",kernelFunc:MQ},LQ=`if (x < 0.0) return NAN;
|
|
return log(x);`,BQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,WQ=Qe({opSnippet:LQ,packedOpSnippet:BQ,cpuKernelImpl:SX}),VQ={kernelName:Xa,backendName:"webgl",kernelFunc:WQ},UQ="return log(1.0 + x);",HQ=Qe({opSnippet:UQ}),GQ={kernelName:Zi,backendName:"webgl",kernelFunc:HQ},jQ="return float(a >= 1.0 && b >= 1.0);",qQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,XQ=cn({opSnippet:jQ,packedOpSnippet:qQ,dtype:"bool"}),KQ={kernelName:Yi,backendName:"webgl",kernelFunc:XQ},ZQ="return float(!(x >= 1.0));",YQ=Qe({opSnippet:ZQ}),JQ={kernelName:Gu,backendName:"webgl",kernelFunc:YQ},QQ="return float(a >= 1.0 || b >= 1.0);",eee=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,tee=cn({opSnippet:QQ,packedOpSnippet:eee,dtype:"bool"}),nee={kernelName:ju,backendName:"webgl",kernelFunc:tee},see=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},ree=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},aee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new ree(r.shape,a,o,i,l):new see(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},oee={kernelName:qu,backendName:"webgl",kernelFunc:aee},iee=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},lee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new iee(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},uee={kernelName:mp,backendName:"webgl",kernelFunc:lee};function cee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=ni(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function N4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=c!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let v=V2(x,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=Rf(r,c,n);u=D.getInnerMostAxes(u.length,i)}D.assertAxesAreInnerMostDims("max",u,i);let[f,m]=D.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=D.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=CX(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=cee(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var dee={kernelName:Ka,backendName:"webgl",kernelFunc:N4},pee=j6+`
|
|
return max(a, b);
|
|
`,hee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Nf+`
|
|
return result;
|
|
`,fee=cn({opSnippet:pee,packedOpSnippet:hee,cpuKernelImpl:TX}),mee={kernelName:Za,backendName:"webgl",kernelFunc:fee};function gee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new nd(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Aee={kernelName:Ya,backendName:"webgl",kernelFunc:gee};function yee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=D.computePool3DInfo(r.shape,a,o,c,i,u,l),p=new H2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var xee={kernelName:Xu,backendName:"webgl",kernelFunc:yee},bee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function wee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=D.computePool3DInfo(o.shape,i,l,d,u,c),h=new H2(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new vee(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var kee={kernelName:Ap,backendName:"webgl",kernelFunc:wee};function Iee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;su([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=D.computePool2DInfo(i.shape,l,u,1,c,d),h=!0,f=new nd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new bee(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var See={kernelName:gp,backendName:"webgl",kernelFunc:Iee};function Cee(e,t,n,s){let r=new nd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new nd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Tee={kernelName:yp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];w.assert(D.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=D.computePool2DInfo(s.shape,r,a,u,o),[d,p]=Cee(s,i,c,l);return[d,p]}};function Nee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=ni(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Eee={kernelName:Ja,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),u=l,c=D.getAxesPermutation(u,i),d=c!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=V2(b,s.shape,s.dtype,c,v);f=o.makeTensorInfo(v,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Rf(s,c,o);h.push(f),u=D.getInnerMostAxes(u.length,i)}D.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=D.computeOutAndReduceShapes(f.shape,u),A=m;r&&(A=D.expandShapeToKeepDim(m,l));let y=Nee(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,r.shape.length)),D.assertAxesAreInnerMostDims("min",u,i);let[p,h]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ni(m,m.dtype,"min",n),A;if(o){let y=D.expandShapeToKeepDim(p,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var _ee={kernelName:Qa,backendName:"webgl",kernelFunc:Ree},Dee=j6+`
|
|
return min(a, b);
|
|
`,Fee=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Nf+`
|
|
return result;
|
|
`,$ee=cn({opSnippet:Dee,packedOpSnippet:Fee,cpuKernelImpl:NX}),Oee={kernelName:eo,backendName:"webgl",kernelFunc:$ee},Pee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=ht(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Mee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=ht(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Sn("rc",s),l=Sn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},zee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Mee(s.shape,r,a):new Pee(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Lee={kernelName:to,backendName:"webgl",kernelFunc:zee},Bee=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Wee=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Nf+`
|
|
return result;
|
|
`,Vee=cn({opSnippet:Bee,packedOpSnippet:Wee}),Uee={kernelName:Ji,backendName:"webgl",kernelFunc:Vee},Hee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Gee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,jee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,E4=cn({opSnippet:Gee,packedOpSnippet:jee,checkOutOfBounds:!0}),qee={kernelName:La,backendName:"webgl",kernelFunc:E4},R4="return a - b;",_4=cn({opSnippet:R4,packedOpSnippet:R4,supportsComplex:!0,cpuKernelImpl:HX}),Xee={kernelName:bo,backendName:"webgl",kernelFunc:_4};function D4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=N4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=D.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=_4({inputs:{a:r,b:u},backend:n}),d=w4({inputs:{x:c},backend:n}),p=_f({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ye({inputs:{x:p},backend:n,attrs:{shape:l}}),f=E4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Kee={kernelName:yo,backendName:"webgl",kernelFunc:D4};function Zee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:D4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new Hee(u,c,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Yee={kernelName:xp,backendName:"webgl",kernelFunc:Zee},F4="return -x;";function Jee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=RX(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(s.shape,F4):r=new da(s.shape,F4),n.runWebGLProgram(r,[s],s.dtype)}var Qee={kernelName:Qi,backendName:"webgl",kernelFunc:Jee},ete=sr.nonMaxSuppressionV3Impl;function tte(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=ete(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var nte={kernelName:tl,backendName:"webgl",kernelFunc:tte},ste=sr.nonMaxSuppressionV4Impl;function rte(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=ste(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var ate={kernelName:nl,backendName:"webgl",kernelFunc:rte},ote=sr.nonMaxSuppressionV5Impl;function ite(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=ote(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var lte={kernelName:sl,backendName:"webgl",kernelFunc:ite},ute=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},cte=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),u=new ute(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let p=[...r.shape,a],h=ye({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},dte={kernelName:so,backendName:"webgl",kernelFunc:cte};function Pf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=sd({inputs:{input:s},backend:n}),a=Pf({inputs:{x:r},backend:n}),o=Of({inputs:{input:s},backend:n}),i=Pf({inputs:{x:o},backend:n}),l=pa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return rd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var pte={kernelName:wl,backendName:"webgl",kernelFunc:Pf};function $4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=sd({inputs:{input:s},backend:n}),a=$4({inputs:{x:r},backend:n}),o=Of({inputs:{input:s},backend:n}),i=Pf({inputs:{x:o},backend:n}),l=pa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return rd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var hte={kernelName:rl,backendName:"webgl",kernelFunc:$4};function fte(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return q2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=q2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=p4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var mte={kernelName:al,backendName:"webgl",kernelFunc:fte},gte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ht(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Ate=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ht(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Sn("rc",s),l=Sn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},O4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let u=a.map((c,d)=>c[0]+r.shape[d]+c[1]);return rd({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ate(r.shape,a,o):new gte(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},yte={kernelName:ro,backendName:"webgl",kernelFunc:O4},xte=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,bte=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Nf+`
|
|
return result;
|
|
`,vte=cn({opSnippet:xte,packedOpSnippet:bte}),wte={kernelName:ao,backendName:"webgl",kernelFunc:vte};function kte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=w.parseAxisParam(a,r.shape),c=u,d=D.getAxesPermutation(c,i),p=r;d!=null&&(p=Cn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=D.getInnerMostAxes(c.length,i),l.push(p)),D.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=DX(p.shape,p.dtype,f,c);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=D.computeOutAndReduceShapes(p.shape,c),g=w.sizeFromShape(m),A=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=zp(r.dtype),x=ni(A,y,"prod",n);h=ye({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=D.expandShapeToKeepDim(h.shape,u);h=ye({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Ite={kernelName:ol,backendName:"webgl",kernelFunc:kte},P4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=FX(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Ste={kernelName:Ku,backendName:"webgl",kernelFunc:P4},Cte="return 1.0 / x;",Tte=Qe({opSnippet:Cte}),Nte={kernelName:il,backendName:"webgl",kernelFunc:Tte},Ete=Hs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Rte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_te=Qe({opSnippet:Ete,packedOpSnippet:Rte}),Dte={kernelName:io,backendName:"webgl",kernelFunc:_te},Fte=Hs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,$te=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ote=Qe({opSnippet:Fte,packedOpSnippet:$te}),Pte={kernelName:uo,backendName:"webgl",kernelFunc:Ote},Mte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},zte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Lte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zte(r.shape,l,u,a,o):new Mte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Bte={kernelName:lo,backendName:"webgl",kernelFunc:Lte},Wte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Vte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Wte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ute={kernelName:wp,backendName:"webgl",kernelFunc:Vte},Hte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Gte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function jte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Gte(r.shape,l,u,a,o):new Hte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var qte={kernelName:Zu,backendName:"webgl",kernelFunc:jte},Xte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Kte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Xte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Zte={kernelName:vp,backendName:"webgl",kernelFunc:Kte},Yte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ht(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Jte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Sn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ht(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Qte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Yn({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jte(r.shape,i):new Yte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var ene={kernelName:co,backendName:"webgl",kernelFunc:Qte},tne=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},nne={kernelName:kl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new tne(s.shape,a),[u,c]=D.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},sne=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,rne=Qe({opSnippet:sne}),ane={kernelName:po,backendName:"webgl",kernelFunc:rne},one="return inversesqrt(x);",ine=Qe({opSnippet:one,cpuKernelImpl:$X}),lne={kernelName:ho,backendName:"webgl",kernelFunc:ine},M4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ht(r.length),l=ht(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function une(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=D.calculateShapes(a,r,o),p=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ye({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new M4(l,i,h.shape.length,f.shape.length,c,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=ye({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var cne={kernelName:ul,backendName:"webgl",kernelFunc:une},dne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=ht(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function pne(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new dne(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Is(r.dtype,a.dtype))}var hne={kernelName:cl,backendName:"webgl",kernelFunc:pne},fne=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${D.SELU_SCALEALPHA};
|
|
float scale = ${D.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,mne=Qe({opSnippet:fne}),gne={kernelName:dl,backendName:"webgl",kernelFunc:mne},z4="return 1.0 / (1.0 + exp(-1.0 * x));",Ane=Qe({opSnippet:z4,packedOpSnippet:z4,cpuKernelImpl:OX}),yne={kernelName:mo,backendName:"webgl",kernelFunc:Ane},xne=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,bne=Qe({opSnippet:xne}),vne={kernelName:fl,backendName:"webgl",kernelFunc:bne},wne=Y6+`
|
|
return sin(x);
|
|
`,kne=Qe({opSnippet:wne}),Ine={kernelName:fo,backendName:"webgl",kernelFunc:kne},Sne=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Cne=Qe({opSnippet:Sne}),Tne={kernelName:hl,backendName:"webgl",kernelFunc:Cne},Nne=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Ene=Qe({opSnippet:Nne}),Rne={kernelName:ml,backendName:"webgl",kernelFunc:Ene},_ne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let u=[],c=O4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=D.getReshaped(c.shape,a,i,!1),p=D.getPermuted(d.length,a.length,!1),h=D.getReshapedPermuted(c.shape,a,i,!1),f=ye({inputs:{x:c},backend:n,attrs:{shape:d}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ye({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Dne={kernelName:gl,backendName:"webgl",kernelFunc:_ne};function Fne(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,p,h,f,m]=MX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var $ne={kernelName:kp,backendName:"webgl",kernelFunc:Fne};function One(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=zX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Pne={kernelName:Ip,backendName:"webgl",kernelFunc:One};function Mne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=z6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var zne={kernelName:Sp,backendName:"webgl",kernelFunc:Mne};function Lne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=z6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Bne={kernelName:Cp,backendName:"webgl",kernelFunc:Lne};function Wne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=D.calculateShapes(a,r,i),p=!1,h=new M4(u,l,r.shape.length,a.shape.length,c,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Vne={kernelName:Tp,backendName:"webgl",kernelFunc:Wne};function Une(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=du({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=p,f})}var Hne={kernelName:Al,backendName:"webgl",kernelFunc:Une},L4="return sqrt(x);",Gne=Qe({opSnippet:L4,packedOpSnippet:L4,cpuKernelImpl:LX}),jne={kernelName:go,backendName:"webgl",kernelFunc:Gne},qne="return x * x;",Xne=Qe({opSnippet:qne}),Kne={kernelName:Yu,backendName:"webgl",kernelFunc:Xne},B4="return (a - b) * (a - b);",Zne=cn({opSnippet:B4,packedOpSnippet:B4}),Yne={kernelName:xo,backendName:"webgl",kernelFunc:Zne};function Jne({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Hs+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new da(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Qne={kernelName:Ur,backendName:"webgl",kernelFunc:Jne},ese=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ht(n.length),a=ht(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function tse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=bn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=ye({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=du({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,_=Ve(x.shape,x.dtype,C),O=BX(y,_,m,f);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let S=new ese(f,m,y);b=n.runWebGLProgram(S,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var nse={kernelName:yl,backendName:"webgl",kernelFunc:tse};function sse(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.readSync(c.dataId),h=n.readSync(d.dataId),[f,m]=WX(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var rse={kernelName:Np,backendName:"webgl",kernelFunc:sse};function ase(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=VX(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var ose={kernelName:Ep,backendName:"webgl",kernelFunc:ase};function ise(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=UX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var lse={kernelName:Rp,backendName:"webgl",kernelFunc:ise},use="return tan(x);",cse=Qe({opSnippet:use}),dse={kernelName:vo,backendName:"webgl",kernelFunc:cse},pse=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,hse=Qe({opSnippet:pse}),fse={kernelName:wo,backendName:"webgl",kernelFunc:hse},mse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ht(this.rank),r=gse(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function gse(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function W4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,c=Ve(r.shape,r.dtype,u),d=GX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new mse(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Ase={kernelName:Vr,backendName:"webgl",kernelFunc:W4},yse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},xse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function si(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function V4(e){let t=1;for(;t<e;)t*=2;return t}function bse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let O=n.readSync(r.dataId),[E,R]=jX(O,u,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,rd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(u)/c,g=ye({inputs:{x:h},attrs:{shape:[m,c]},backend:n});p&&si(n,h);let A=V4(a),y=V4(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(O,E,R)=>{let T=b(),P=new yse(R),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[E]],q=x;x=n.runWebGLProgram(P,T,"int32",j),si(n,q)};for(let O=1;O<A;O*=2){let E=O*2;for(let R=O;R>=1;R/=2)v(E,R,[m,y])}for(let O=y;O>A;O/=2){let E=b(),R=new xse([m,O/2]),P=[[c],[x===null?1:0],[A]],V=x;x=n.runWebGLProgram(R,E,"int32",P),si(n,V);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=du({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),si(n,k);let S=T4({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});si(n,g);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),si(n,k);let _=S;return S=ye({inputs:{x:S},attrs:{shape:C},backend:n}),si(n,_),[S,x]}var vse={kernelName:xl,backendName:"webgl",kernelFunc:bse},wse=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function kse(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=new wse(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Ise={kernelName:bl,backendName:"webgl",kernelFunc:kse};function Sse(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;su(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=qX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Cse={kernelName:_p,backendName:"webgl",kernelFunc:Sse};function Tse(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=du({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ye({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Nse={kernelName:vl,backendName:"webgl",kernelFunc:Tse},Ese=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=D.getAxesPermutation([u],i),d=r;c!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=D.getInnerMostAxes(1,i)[0]);let p=D.segment_util.computeOutShape(d.shape,u,o),h=w.sizeFromShape([d.shape[u]]),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=zp(r.dtype),g=(b,v,k,S,C)=>{let _=b.shape[0],O=b.shape[1],E=D.segment_util.segOpComputeOptimalWindowSize(O,C),R={windowSize:E,inSize:O,batchSize:_,numSegments:C},T=new Ese(R,v),P=n.compileAndRun(T,[b,k],S);if(l.push(P),P.shape[1]===C)return P;let V=P4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=W4({inputs:{x:V},backend:n,attrs:{reps:[O/E]}});return l.push(V),l.push(j),g(P,v,j,S,C)},A=g(f,"unsortedSegmentSum",a,m,o),y=ye({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(c!=null){l.push(y);let b=D.getUndoAxesPermutation(c);x=Cn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var _se={kernelName:Ju,backendName:"webgl",kernelFunc:Rse},Dse=[oee,uee,jK,XK,YK,eZ,nZ,aZ,iZ,uZ,hZ,mZ,yZ,vZ,NZ,IZ,_Z,OZ,FZ,LZ,WZ,UZ,qZ,eY,nY,lY,cY,fY,AY,TK,wY,DY,$Y,CY,zY,BY,PY,UY,jY,KY,YY,QY,nJ,lJ,cJ,rJ,hJ,gJ,yJ,wJ,CJ,RJ,FJ,$J,OJ,MJ,LJ,WJ,UJ,GJ,KJ,JJ,tQ,sQ,oQ,uQ,hQ,AQ,CK,xQ,bY,wQ,SQ,NQ,EK,DQ,PQ,zQ,GQ,VQ,KQ,JQ,nee,dee,xee,Aee,kee,See,Tee,mee,Eee,_ee,Oee,Lee,Uee,Yee,$K,Qee,nte,ate,lte,rY,dte,hte,mte,yte,wte,_K,Ite,Ste,aY,qee,Nte,Pte,Dte,PK,Bte,Ute,qte,Zte,ene,nne,ane,lne,cne,hne,gne,yne,vne,Ine,Tne,JZ,Kee,Rne,Dne,$ne,Pne,zne,Bne,Vne,Hne,jne,Kne,Yne,Qne,nse,rse,ose,lse,Xee,UK,dse,fse,Ase,vse,Ise,HK,Cse,Nse,_se,pte];for(let e of Dse)To(e);var Pn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Pn||(Pn={}));var ad;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(ad||(ad={}));var U4;function Fse(e){U4=e.wasm.cwrap(Io,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function $se(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=ad[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return U4(p,k,r.shape.length,h,S,a.shape.length,l,u,g,f,m,d||0,v),b}var Ose={kernelName:Io,backendName:"wasm",setupFunc:Fse,kernelFunc:$se};function dn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var Pse=dn(ki);function Tn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,p=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=D.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,u.shape.length,p,A,c.shape.length,Pn[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=D.getBroadcastDims(u.shape,f),v=D.getBroadcastDims(c.shape,f),k=b.every((C,_)=>C===_),S=v.every((C,_)=>C===_);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Mse=!0,zse=Tn(Br,Mse),H4;function Lse(e){H4=e.wasm.cwrap(Ta,null,["array","number","number","number"])}function Bse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return H4(a,r.length,Pn[s.dtype],o),s}var Wse={kernelName:Ta,backendName:"wasm",setupFunc:Lse,kernelFunc:Bse};function Mf(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Vse={kernelName:ja,backendName:"wasm",kernelFunc:Mf},G4;function Use(e){G4=e.wasm.cwrap(ko,null,["number","array","number","number","number","array","number"])}function fu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Gse(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Hse(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Mf({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return G4(c,h,l.shape.length,Pn[l.dtype],d,p,a.length),u}function Hse(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Gse(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var jse={kernelName:ko,backendName:"wasm",kernelFunc:fu,setupFunc:Use};function ha(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=D.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=D.getInnerMostAxes(o.length,r),l=fu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var j4;function qse(e){j4=e.wasm.cwrap(Ci,null,["number, number, number"])}function Xse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("all",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;j4(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Kse={kernelName:Ci,backendName:"wasm",setupFunc:qse,kernelFunc:Xse},q4;function Zse(e){q4=e.wasm.cwrap(Ti,null,["number, number, number"])}function Yse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("any",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;q4(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Jse={kernelName:Ti,backendName:"wasm",setupFunc:Zse,kernelFunc:Yse},X4;function Qse(e){X4=e.wasm.cwrap(Na,null,["number","number","number","number","number"])}function ere(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=ha(a,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;A!==o&&(l=u,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[c[0]];return X4(i,Pn[l.dtype],m,g,f),d&&t.disposeData(u.dataId),h}var tre={kernelName:Na,backendName:"wasm",kernelFunc:ere,setupFunc:Qse},K4;function nre(e){K4=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=D.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return K4(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,v),b}var rre={kernelName:Ea,backendName:"wasm",setupFunc:nre,kernelFunc:sre};function Mn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var are={kernelName:ll,backendName:"wasm",kernelFunc:Mn},Z4;function ore(e){Z4=e.wasm.cwrap(Ra,null,["number","array","number","number","array","number","number","number","number"])}function ire(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=Mn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Mn({inputs:{x:a},backend:n,attrs:{shape:k}}),_=n.dataIdMap.get(S.dataId).id,O=n.dataIdMap.get(C.dataId).id,E=o?S.shape[2]:S.shape[1],R=i?C.shape[1]:C.shape[2],T=Math.max(g,A),P=n.makeOutput([T,E,R],S.dtype),V=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(S.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return Z4(_,j,S.shape.length,O,q,C.shape.length,o,i,V),n.disposeData(S.dataId),n.disposeData(C.dataId),P.shape=b,P}var lre={kernelName:Ra,backendName:"wasm",setupFunc:ore,kernelFunc:ire};function od(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=bn.parseSliceParams(t,n,s),i=bn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=bn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+w.sizeFromShape(o))),u}if(t.dtype==="string"){let f=hf(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let p=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)ure(l,c[0],p,a,o);else if(h===3)cre(l,c[0],c[1],p,a,o);else if(h===4)dre(l,c[0],c[1],c[2],p,a,o);else{let f=hf(l,a,o,t.shape,t.dtype);p.set(f)}return u}function ure(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function cre(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let p=i;p<c;p++)for(let h=l;h<d;h++){let f=p*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function dre(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],p=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=u;g<p;g++)for(let A=c;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var pre={kernelName:pl,backendName:"wasm",kernelFunc:od};function hre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),p=D.getSliceSize(c,o,a.length),h=Mn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=fu({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Mn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=od({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var fre={kernelName:Fi,backendName:"wasm",kernelFunc:hre};function zf(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var mre={kernelName:_a,backendName:"wasm",kernelFunc:zf},gre=dn(Da),Y4;function Are(e){Y4=e.wasm.cwrap(Wr,null,["number","number","number","number"])}function yre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return Y4(i,a,o,u),l}var xre={kernelName:Wr,backendName:"wasm",setupFunc:Are,kernelFunc:yre};function J4(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=D.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return Mf({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(D.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return Mn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=D.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=g2(f,r,t[0].dtype,m),A=D.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=D.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return u+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<d.length;m++){let g=c[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var bre={kernelName:$i,backendName:"wasm",kernelFunc:J4},Q4;function vre(e){Q4=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:p}=n,h=D.convertConv2DDataFormat(p),f=D.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,C=f.strideWidth,_=f.inChannels,O=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(R.dataId).id;return Q4(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,k,S,C,_,O,T),R}var kre={kernelName:Fa,backendName:"wasm",setupFunc:vre,kernelFunc:wre},ek;function Ire(e){ek=e.wasm.cwrap($a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sre(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,p=D.convertConv2DDataFormat(l),h=D.computeConv2DInfo(c,a.shape,o,d,i,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:S,strideWidth:C}=h,_=m-1-h.padInfo.top,O=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",R=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[P,V,j]=w.computeStrides(a.shape),q=R[0],X=E?R[1]:R[2],ee=E?R[2]:1,te=E?1:R[1],ne=T[0],se=E?T[1]:T[2],Q=E?T[2]:1,ie=E?1:T[1],le=t.makeOutput(h.inShape,"float32"),pe=t.dataIdMap.get(le.dataId).id,Ae=t.dataIdMap.get(r.dataId).id,Te=t.dataIdMap.get(a.dataId).id;return ek(Ae,Te,f,m,g,y,x,A,v,k,b,S,C,_,O,P,V,j,q,X,ee,te,ne,se,Q,ie,pe),le}var Cre={kernelName:$a,backendName:"wasm",setupFunc:Ire,kernelFunc:Sre},Tre=dn(Oa),Nre=dn(Pa),X2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(X2||(X2={}));var tk;function Ere(e){tk=e.wasm.cwrap(Oi,null,["number","number","number","number","array","number","number","number","number","number"])}function Rre(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,p]=o,h=[c,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=zf({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return tk(g,A,y,c,v,d,p,X2[r],a,b),m!=null&&t.disposeData(m.dataId),x}var _re={kernelName:Oi,backendName:"wasm",setupFunc:Ere,kernelFunc:Rre},nk;function Dre(e){nk=e.wasm.cwrap(Ma,null,["number","number","number","number","number","number"])}function Fre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=D.getAxesPermutation([a],l),c=r;u!==null&&(c=fu({inputs:{x:r},attrs:{perm:u},backend:n}));let d=D.getInnerMostAxes(1,l)[0];D.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(c.shape,c.dtype),h=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(p.dataId).id;nk(f,o?1:0,i?1:0,h,m,Pn[r.dtype]);let g=p;if(u!==null){let A=D.getUndoAxesPermutation(u);g=fu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(c.dataId),n.disposeData(p.dataId)}return g}var $re={kernelName:Ma,backendName:"wasm",setupFunc:Dre,kernelFunc:Fre},sk;function Ore(e){sk=e.wasm.cwrap(Pi,null,["number","number","number","array","number","array","array","number","number"])}function Pre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return sk(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var Mre={kernelName:Pi,backendName:"wasm",setupFunc:Ore,kernelFunc:Pre},rk;function zre(e){rk=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,p=u==null?[1,1]:u,h=D.computeConv2DInfo(r.shape,a.shape,l,p,c,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,C=h.inChannels,_=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),R=s.dataIdMap.get(E.dataId).id;return rk(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,O,b,v,k,S,C,_,R),E}var Bre={kernelName:za,backendName:"wasm",setupFunc:zre,kernelFunc:Lre},Wre=dn(Ba),Vre=!1,Ure=Tn(zi,Vre,"bool"),Hre=dn(Wa);function K2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Mn({inputs:{x:r},backend:s,attrs:{shape:i}})}var Gre={kernelName:Li,backendName:"wasm",kernelFunc:K2};function ak(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var jre={kernelName:Hu,backendName:"wasm",kernelFunc:ak},ok;function qre(e){ok=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number"])}function Xre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return ok(a,i,l,u,c,o),r}var Kre={kernelName:Wi,backendName:"wasm",kernelFunc:Xre,setupFunc:qre},Zre=dn(Va),Yre=!1,Jre=Tn(Ua,Yre),ik;function Qre(e){ik=e.wasm.cwrap(Ha,null,["number","number","number","number","number","number","number"])}function eae(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return ik(c,d,p,h,f,r,g),m}var tae={kernelName:Ha,backendName:"wasm",setupFunc:Qre,kernelFunc:eae},lk;function nae(e){lk=e.wasm.cwrap(So,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=D.computeConv2DInfo(r.shape,a.shape,l,c,u,p),g=ad[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,_=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return lk(A,q,X,ee,y,v,k,b,S,C,_,O,j,E,R,T,P,V,x,g,se,f||0,ne),te}var rae={kernelName:So,backendName:"wasm",setupFunc:nae,kernelFunc:sae},uk;function aae(e){uk=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=D.computeConv2DInfo(r.shape,a.shape,l,c,u,p,!0),g=ad[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,_=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return uk(A,q,X,ee,y,v,k,b,S,C,_,O,j,E,R,T,P,V,x,g,se,f||0,ne),te}var iae={kernelName:Co,backendName:"wasm",setupFunc:aae,kernelFunc:oae},ck;function lae(e){ck=e.wasm.cwrap(Ui,null,["number","number","number","number","number","number","array","number"])}function uae(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=pg.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(u.dataId).id;return ck(h,Pn[s.dtype],m,o,d,i,g,A),u}var cae={kernelName:Ui,backendName:"wasm",setupFunc:lae,kernelFunc:uae},dk;function dae(e){dk=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function pae(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=D.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Mn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=w.sizeFromShape(a.shape),p=Mn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(p.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return dk(A,Pn[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(p.dataId),f.shape=u.outputShape,f}var hae={kernelName:Vi,backendName:"wasm",setupFunc:dae,kernelFunc:pae},fae=!1,mae=Tn(Hi,fae,"bool"),gae=!1,Aae=Tn(Ga,gae,"bool"),pk;function yae(e){pk=e.wasm.cwrap(qa,null,["number","number","number"])}function xae(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;pk(r,n,o)}return a}var bae={kernelName:qa,backendName:"wasm",setupFunc:yae,kernelFunc:xae},vae=!1,wae=Tn(Xi,vae,"bool"),kae=!1,Iae=Tn(Ki,kae,"bool"),Sae=dn(Xa),Cae=!1,Tae=Tn(Yi,Cae,"bool"),hk;function Nae(e){hk=e.wasm.cwrap(Ka,null,["number, number, number"])}function Eae(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("max",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;hk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Rae={kernelName:Ka,backendName:"wasm",setupFunc:Nae,kernelFunc:Eae},_ae=!1,Dae=Tn(Za,_ae),fk;function Fae(e){fk=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $ae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=D.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(S.dataId).id;return fk(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,v,k,C),S}var Oae={kernelName:Ya,backendName:"wasm",setupFunc:Fae,kernelFunc:$ae},mk;function Pae(e){mk=e.wasm.cwrap(Ja,null,["number, number, number"])}function Mae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t),f=d;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=zf({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;mk(l,A,b)}if(h&&t.disposeData(c.dataId),a){let b=D.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var zae={kernelName:Ja,backendName:"wasm",setupFunc:Pae,kernelFunc:Mae},gk;function Lae(e){gk=e.wasm.cwrap(Qa,null,["number, number, number"])}function Bae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;D.assertAxesAreInnerMostDims("min",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;gk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Wae={kernelName:Qa,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},Vae=!1,Uae=Tn(eo,Vae),Z2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Z2||(Z2={}));var Ak;function Hae(e){Ak=e.wasm.cwrap(to,null,["number","array","number","number","array","array","number","number"])}function Gae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(d).buffer);return Ak(o,u,t.shape.length,Pn[t.dtype],p,h,Z2[r],l),i}var jae={kernelName:to,backendName:"wasm",kernelFunc:Gae,setupFunc:Hae},qae=!0,Xae=Tn(no,qae),Kae=dn(Qi);function Y2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var yk;function Zae(e){yk=e.wasm.cwrap(tl,"number",["number","number","number","number","number"])}function Yae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=yk(u,c,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Y2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Jae={kernelName:tl,backendName:"wasm",setupFunc:Zae,kernelFunc:Yae},xk;function Qae(e){xk=e.wasm.cwrap(nl,"number",["number","number","number","number","number","bool"])}function eoe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=xk(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Y2(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var toe={kernelName:nl,backendName:"wasm",setupFunc:Qae,kernelFunc:eoe},bk;function noe(e){bk=e.wasm.cwrap(sl,"number",["number","number","number","number","number","number"])}function soe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=bk(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Y2(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var roe={kernelName:sl,backendName:"wasm",setupFunc:noe,kernelFunc:soe},aoe=!1,ooe=Tn(el,aoe,"bool"),vk;function ioe(e){vk=e.wasm.cwrap(so,null,["number","number","number","number","number"])}function loe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return vk(d,a,o,i,u),l}var uoe={kernelName:so,backendName:"wasm",setupFunc:ioe,kernelFunc:loe};function coe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var doe={kernelName:rl,backendName:"wasm",kernelFunc:coe};function poe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return K2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=K2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=J4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var hoe={kernelName:al,backendName:"wasm",kernelFunc:poe},wk;function foe(e){wk=e.wasm.cwrap(ro,null,["number","array","number","number","array","array","number","number"])}function moe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return ak({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return wk(o,c,t.shape.length,Pn[t.dtype],h,f,r,u),i}var kk={kernelName:ro,backendName:"wasm",kernelFunc:moe,setupFunc:foe},goe=!1,Aoe=Tn(ao,goe),Ik;function yoe(e){Ik=e.wasm.cwrap(oo,null,["number","number","number"])}function xoe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return Ik(a,o,l),i}var boe={kernelName:oo,backendName:"wasm",setupFunc:yoe,kernelFunc:xoe},Sk;function voe(e){Sk=e.wasm.cwrap(ol,null,["number","number","number","number"])}function woe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t),f=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Sk(l,A,Pn[y.dtype],x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var koe={kernelName:ol,backendName:"wasm",setupFunc:voe,kernelFunc:woe},Ioe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=x2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Soe={kernelName:Ku,backendName:"wasm",kernelFunc:Ioe},Coe=!0,Toe=Tn(La,Coe),Noe=dn(io),Eoe=dn(uo),Ck;function Roe(e){Ck=e.wasm.cwrap(lo,null,["number","number","number","number","number","number","number","number","number","number"])}function _oe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,p,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=zf({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return Ck(A,c,d,p,h,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Doe={kernelName:lo,backendName:"wasm",setupFunc:Roe,kernelFunc:_oe},Tk;function Foe(e){Tk=e.wasm.cwrap(co,null,["number","array","number","array","number","number"])}function $oe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return Mf({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);Tk(l,c,o.length,d,r.shape.length,u);let p=Mn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var Ooe={kernelName:co,backendName:"wasm",kernelFunc:$oe,setupFunc:Foe},Nk;function Poe(e){Nk=e.wasm.cwrap(kl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Moe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=D.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return Nk(u,d,p,h,f,a,m,g,b,x.length,c),l}var zoe={kernelName:kl,backendName:"wasm",kernelFunc:Moe,setupFunc:Poe},Loe=dn(po),Boe=dn(ho),Ek;function Woe(e){Ek=e.wasm.cwrap(ul,null,["number","number","number","number","number","number","array","number","number"])}function Voe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=hg.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return Ek(f,g,Pn[a.dtype],l,u,c,A,p,y),i}var Uoe={kernelName:ul,backendName:"wasm",setupFunc:Woe,kernelFunc:Voe},Rk;function Hoe(e){Rk=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Goe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return Rk(o,i,l,h,c),u}var joe={kernelName:cl,backendName:"wasm",kernelFunc:Goe,setupFunc:Hoe},_k;function qoe(e){_k=e.wasm.cwrap(mo,null,["number","number"])}function Xoe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||_k(s,a),r}var Koe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:qoe,kernelFunc:Xoe},Zoe=dn(fo),Dk;function Yoe(e){Dk=e.wasm.cwrap(yo,null,["number","number","number","number"])}function Joe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||Dk(r,o,i,l),a}var Qoe={kernelName:yo,backendName:"wasm",setupFunc:Yoe,kernelFunc:Joe};function eie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=kk.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=D.getReshaped(u.shape,a,i,!1),d=D.getPermuted(c.length,a.length,!1),p=D.getReshapedPermuted(u.shape,a,i,!1),m=Mn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=fu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Mn({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var tie={kernelName:gl,backendName:"wasm",kernelFunc:eie};function nie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=od({inputs:{x:r},attrs:{begin:u,size:p},backend:s});return u[i]+=d,h})}var sie={kernelName:Al,backendName:"wasm",kernelFunc:nie},rie=dn(go),aie=dn(Yu),oie=!0,iie=Tn(xo,oie),Fk;function lie(e){Fk=e.wasm.cwrap(Ur,null,["number","number","number"])}function uie(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return Fk(o,r,l),i}var cie={kernelName:Ur,backendName:"wasm",setupFunc:lie,kernelFunc:uie},$k;function die(e){$k=e.wasm.cwrap(yl,null,["number","array","number","array","array","array","array","array","number","number"])}function pie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,h=D.slice_util.maskToAxes(c);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=D.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=Mn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=D.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=D.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=D.slice_util.computeOutShape(a,o,i),S=k.filter((E,R)=>v.indexOf(R)===-1);if(i.every(E=>E===1)){let E=od({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let R=Mn({inputs:{x:E},attrs:{shape:S},backend:t});return t.disposeData(E.dataId),R}let _=t.makeOutput(S,"float32");if(!S.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(S).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),X=t.dataIdMap.get(_.dataId).id;$k(E,R,A.shape.length,T,P,V,j,q,S.length,X)}t.disposeData(A.dataId);let O=Mn({inputs:{x:_},attrs:{shape:S},backend:t});return t.disposeData(_.dataId),O}var hie={kernelName:yl,backendName:"wasm",setupFunc:die,kernelFunc:pie},fie=!0,mie=Tn(bo,fie),Ok;function gie(e){Ok=e.wasm.cwrap(Ao,null,["number, number, number"])}function Aie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ha(o,r,t),f=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ok(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var yie={kernelName:Ao,backendName:"wasm",setupFunc:gie,kernelFunc:Aie},xie=dn(vo),bie=dn(wo),Pk;function vie(e){Pk=e.wasm.cwrap(Vr,null,["number","array","number","array","number","number"])}function wie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return Pk(a,l,r.shape.length,u,i.length,Pn[c.dtype],d),c}var kie={kernelName:Vr,backendName:"wasm",setupFunc:vie,kernelFunc:wie},Mk;function Iie(e){Mk=e.wasm.cwrap(xl,null,["number","array","number","number","number","bool","number","number"])}var Sie=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return Mk(o,i,s.shape.length,Pn[s.dtype],r,a,c,p),[u,d]},Cie={kernelName:xl,backendName:"wasm",setupFunc:Iie,kernelFunc:Sie},zk;function Tie(e){zk=e.wasm.cwrap(bl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Nie(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,_;switch(i){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return zk(v,S,a.shape[0]>1,c,f,m,h,p,d,A,r.shape.length-1,C,_,l,x),y}var Eie={kernelName:bl,backendName:"wasm",setupFunc:Tie,kernelFunc:Nie};function Rie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<c.length;h++)d[a]=h,c[h]=od({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var _ie={kernelName:vl,backendName:"wasm",kernelFunc:Rie};function Die(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Fie={kernelName:wl,backendName:"wasm",kernelFunc:Die},$ie=[Pse,zse,Wse,Kse,Jse,tre,rre,lre,fre,mre,gre,xre,bre,kre,Cre,Tre,Nre,_re,$re,Mre,Bre,Wre,Ure,Hre,Gre,jre,Kre,Zre,Jre,Ose,tae,rae,iae,cae,hae,mae,Aae,Vse,bae,wae,Iae,Sae,Tae,Rae,Dae,Oae,zae,Wae,Uae,jae,Xae,Kae,Jae,toe,roe,ooe,uoe,doe,hoe,kk,Aoe,boe,koe,Soe,Toe,Noe,Eoe,are,Doe,Ooe,zoe,Boe,Loe,Uoe,joe,Koe,Zoe,pre,Qoe,tie,sie,rie,aie,iie,cie,hie,mie,yie,xie,bie,kie,Cie,Eie,jse,_ie,Fie];for(let e of $ie)To(e);var J2=Y();J2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));J2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(J2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Lk=Ia(yS()),Oie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Pie=Ia(xS()),Bk=class extends Pu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Gd(this,Ss())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return Lie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Mie(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Wk(e,t,n){if(Lf!=null)return Lf;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),ld!=null&&ld[s]!=null?ld[s]:n+s}async function zie(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Oie,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?Wk(e,t,id!=null?id:l):l+i},Q2&&(r.instantiateWasm=Mie(Wk(e,t,id!=null?id:"")));let a=!1;r.onAbort=()=>{if(a||ud)return;ud=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Lf==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Lk.default.toString()],{type:"text/javascript"}),o=(0,Lk.default)(r)):o=(0,Pie.default)(r),o.then(i=>{a=!0,ud=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Lie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Bie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Lf=null,id=null,ld={},ud=!1,Q2=!1;function Wie(e,t=!1){if(xg("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ud)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Lf=e,Q2=t}function Vk(e,t=!1){if(ud)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")id=e;else{ld=e;let n=Bie.filter(s=>ld[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Q2=t}var Vie="3.9.0",Uie=2;_l("wasm",async()=>{let{wasm:e}=await zie();return new Bk(e)},Uie);var Hie={tfjs:bS,"tfjs-core":vS,"tfjs-data":wS,"tfjs-layers":kS,"tfjs-converter":IS,"tfjs-backend-cpu":SS,"tfjs-backend-webgl":CS,"tfjs-backend-wasm":TS};function Uk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function cd(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function dd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function pd(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Re.cropAndResize(t,a,[0],n)}function Bf(e,t=1.5){let n=dd(e),s=cd(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Wf(e){let t=dd(e),n=cd(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function ey(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var Hk=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Vf=[[1,0,0],[0,1,0],[0,0,1]];function Gie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Gk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Gie(n)}function jk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function fa(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function jie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function qk(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(fa(e[r],jie(t,a)))}return n}function ty(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=jk(t[0],t[1]),o=qk(a,r),i=jk(-t[0],-t[1]);return qk(o,i)}function Xk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-fa(t[0],n),-fa(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Kk(e,t){return[fa(e,t[0]),fa(e,t[1])]}function Zk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let p=0;p<i;p++)n.push([d,u])}}}return n}var Yk=6;function qie(e,t,n){let s=_e(e,[0,1],[-1,2]),r=ae(s,t),a=_e(e,[0,3],[-1,2]),o=de(a,n),i=de(r,n),l=de(o,2),u=ge(i,l),c=ae(i,l),d=L(u,n),p=L(c,n);return Pl([d,p],1)}var Jk=class{constructor(t,n){this.model=t,this.anchorsData=Zk(t.inputs[0].shape[1]),this.anchors=Os(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){var c,d,p,h;if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return{boxes:[]};let[s,r,a]=H(()=>{let f=Re.resizeBilinear(t,[this.inputSize,this.inputSize]),m=ge(de(f,127.5),.5),g=this.model.execute(m),A;if(Array.isArray(g)){let v=g.sort((_,O)=>_.size-O.size),k=mt([v[0],v[2]],2),S=mt([v[1],v[3]],2),C=mt([S,k],1);A=ut(C,0)}else A=ut(g);let y=qie(A,this.anchors,[this.inputSize,this.inputSize]),x=_e(A,[0,0],[-1,1]),b=ut(Hn(x));return[A,y,b]});this.config=pn(this.config,n);let o=await Re.nonMaxSuppressionAsync(r,a,((c=this.config.face.detector)==null?void 0:c.maxDetected)||0,((d=this.config.face.detector)==null?void 0:d.iouThreshold)||0,((p=this.config.face.detector)==null?void 0:p.minConfidence)||0),i=await o.array();Z(o);let l=[],u=await a.data();for(let f=0;f<i.length;f++){let m=u[i[f]];if(m>(((h=this.config.face.detector)==null?void 0:h.minConfidence)||0)){let g=_e(r,[i[f],0],[1,-1]),A=H(()=>U(ut(_e(s,[i[f],Yk-1],[1,-1])),[Yk,-1]));l.push({box:Hk(g),landmarks:A,anchor:this.anchorsData[i[f]],confidence:m}),Z(g)}}return Z(s),Z(r),Z(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Qk(e){var s,r,a;let t=await gt(At(e.modelBasePath,((s=e.face.detector)==null?void 0:s.modelPath)||""),{fromTFHub:(((r=e.face.detector)==null?void 0:r.modelPath)||"").includes("tfhub.dev")}),n=new Jk(t,e);return!t||!t.modelUrl?ue("load model failed:",((a=e.face.detector)==null?void 0:a.modelPath)||""):e.debug&&ue("load model:",t.modelUrl),n}var dr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ny=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],hd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ai=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Xie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Kie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Zie=[33,133,362,263,1,78,308],qle=Xie.map(e=>hd[e]),Xle=Kie.map(e=>hd[e]),Kle=Zie.map(e=>hd[e]);var we={browser:void 0,node:void 0,worker:void 0,platform:void 0,agent:void 0,backends:[],tfjs:{version:void 0,external:void 0},wasm:{supported:void 0,simd:void 0,multithread:void 0},webgl:{supported:void 0,version:void 0,renderer:void 0},webgpu:{supported:void 0,adapter:void 0},kernels:[]};async function Uf(){var e;if(we.browser=typeof navigator!="undefined",we.node=typeof process!="undefined",we.worker=we.browser?typeof WorkerGlobalScope!="undefined":void 0,we.tfjs.version=Up,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);we.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",we.agent=navigator.userAgent.replace(t[0],""),we.platform[1]&&(we.agent=we.agent.replace(t[1],"")),we.agent=we.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(we.platform=`${process.platform} ${process.arch}`,we.agent=`NodeJS ${process.version}`);if(we.backends=Object.keys(Ss().registryFactory),we.wasm.supported=we.backends.includes("wasm"),we.wasm.supported&&(we.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),we.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")),we.webgl.supported=typeof Dl().gpgpu!="undefined",we.webgl.supported){let t=await Dl().getGPGPUContext().gl;t&&(we.webgl.version=t.getParameter(t.VERSION),we.webgl.renderer=t.getParameter(t.RENDERER))}we.webgpu.supported=we.browser&&typeof navigator.gpu!="undefined",we.webgpu.supported&&(we.webgpu.adapter=(e=await navigator.gpu.requestAdapter())==null?void 0:e.name),we.kernels=Hr(Rl()).map(t=>t.kernelName.toLowerCase())}var sy=dr.leftEyeLower0,ry=dr.rightEyeLower0,mu={leftBounds:[sy[0],sy[sy.length-1]],rightBounds:[ry[0],ry[ry.length-1]]},e8={count:468,mouth:13,symmetryLine:[13,dr.midwayBetweenEyes[0]]},Yie={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},gu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Hf(e,t,n,s){for(let r=0;r<ny.length;r++){let{key:a,indices:o}=ny[r],i=dr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var ay=class{constructor(t,n,s){var r,a;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=s,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2]),this.irisSize=(s==null?void 0:s.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,s,r){let a=cd({startPoint:n.startPoint,endPoint:n.endPoint}),o=t.map(d=>[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?ty(s,[0,0]):Vf,l=s!==0?o.map(d=>[...Kk(d,i),d[2]]):o,u=s!==0?Xk(r):Vf,c=[...dd({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+fa(c,u[0])),Math.round(d[1]+fa(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[mu.leftBounds[0]][2],s=t[mu.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=Wf(Bf(ey([t[s],t[r]]),this.irisEnlarge)),i=cd(o),l=Re.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&we.kernels.includes("flipleftright")){let u=Re.flipLeftRight(l);Z(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o<gu.numCoordinates;o++){let i=t[o*3],l=t[o*3+1],u=t[o*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*s[0]+n.startPoint[0],l/this.irisSize*s[1]+n.startPoint[1],u])}return{rawCoords:a,iris:a.slice(gu.index)}}getAdjustedIrisCoords(t,n,s){let r=t[dr[`${s}EyeUpper0`][gu.upperCenter]][2],a=t[dr[`${s}EyeLower0`][gu.lowerCenter]][2],o=(r+a)/2;return n.map((i,l)=>{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=e8.count?e8.symmetryLine:Yie.symmetryLine,o=Gk(n.landmarks[r],n.landmarks[a]),i=dd({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=Re.rotateWithOffset(s,o,0,l),c=ty(-o,i),d=t.face.mesh.enabled?pd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):pd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),p=de(d,255);return Z(d),Z(u),[o,c,p]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,mu.leftBounds[0],mu.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,mu.rightBounds[0],mu.rightBounds[1]),u=mt([a,l]);Z(a),Z(l);let c=this.irisModel.predict(u);Z(u);let d=await c.data();Z(c);let p=d.slice(0,gu.numCoordinates*3),{rawCoords:h,iris:f}=this.getEyeCoords(p,s,r,!0),m=d.slice(gu.numCoordinates*3),{rawCoords:g,iris:A}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(Hf(t,h,"left",null),Hf(t,g,"right",null)):y<1?Hf(t,h,"left",["EyeUpper0","EyeLower0"]):Hf(t,g,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,A,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let l=Uk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),u=Bf(l),c=Wf(u),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{Z(i.box.startPoint),Z(i.box.endPoint),Z(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&we.kernels.includes("rotatewithoffset"))[u,c,l]=this.correctFaceRotation(n,i,t);else{c=Vf;let d=t.clone(),p=n.face.mesh.enabled?pd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):pd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=de(p,255),Z(p),Z(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,p,h]=this.meshDetector.execute(l);Z(d);let f=(await p.data())[0];Z(p);let m=U(h,[-1,3]),g=await m.array();if(Z(h),Z(m),f<n.face.detector.minConfidence)i.confidence=f,Z(l);else{n.face.iris.enabled&&(g=await this.augmentIris(g,l));let A=this.transformRawCoords(g,i,u,c);i={...Bf(ey(A),1.5),confidence:i.confidence},n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&we.kernels.includes("rotatewithoffset")&&(Z(l),[u,c,l]=this.correctFaceRotation(n,i,t)),a.push({mesh:A,box:i,faceConfidence:f,boxConfidence:i.confidence,confidence:f,image:l}),i={...Wf(i),confidence:i.confidence,faceConfidence:f}}}o.push(i)}return n.face.mesh.enabled&&(this.storedBoxes=o.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var $t=[null,null,null],oy;async function t8(e,t){let n=await oy.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/oy.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(dr))i[c]=dr[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image})}return s}async function iy(e){return!$t[0]&&e.face.enabled||!$t[1]&&e.face.mesh.enabled||!$t[2]&&e.face.iris.enabled?($t=await Promise.all([!$t[0]&&e.face.enabled?Qk(e):null,!$t[1]&&e.face.mesh.enabled?gt(At(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!$t[2]&&e.face.iris.enabled?gt(At(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!$t[1]||!$t[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",$t[1].modelUrl)),e.face.iris.enabled&&(!$t[2]||!$t[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",$t[2].modelUrl))):e.debug&&($t[0]&&ue("cached model:",$t[0].model.modelUrl),$t[1]&&ue("cached model:",$t[1].modelUrl),$t[2]&&ue("cached model:",$t[2].modelUrl)),oy=new ay($t[0],$t[1],$t[2]),$t}var n8=ai,s8=hd;var Gs,Gf=[],r8=0,ly=Number.MAX_SAFE_INTEGER;async function uy(e){var n,s;let t=At(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return Gs?e.debug&&ue("cached model:",t):(Gs=await gt(t),Gs?e.debug&&ue("load model:",t):ue("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Gs}function cy(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function a8(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=cy(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function dy(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof je))return null;let s=[[.05,.15,.85,.85]];if(!Gs.inputs[0].shape)return null;let r=n.shape.length===3?Re.cropAndResize(Mt(n,0),s,[0],[Gs.inputs[0].shape[2],Gs.inputs[0].shape[1]]):Re.cropAndResize(n,s,[0],[Gs.inputs[0].shape[2],Gs.inputs[0].shape[1]]);return L(r,255)})}async function py(e,t,n,s){var r,a,o;return Gs?ly<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&r8===s&&((a=Gf[n])==null?void 0:a.age)&&((o=Gf[n])==null?void 0:o.age)>0?(ly++,Gf[n]):(ly=0,new Promise(async i=>{var d,p;let l=dy(e),u,c={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(u=await Gs.predict(l)),Z(l),u){let h=await u.find(b=>b.shape[1]===1).data(),f=Math.trunc(200*Math.abs(h[0]-.5))/100;f>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(c.gender=h[0]<=.5?"female":"male",c.genderScore=Math.min(.99,f));let m=Qs(u.find(b=>b.shape[1]===100),1),g=(await m.data())[0];Z(m);let A=await u.find(b=>b.shape[1]===100).data();c.age=Math.round(A[g-1]>A[g+1]?10*g-100*A[g-1]:10*g+100*A[g+1])/10;let x=await u.find(b=>b.shape[1]===1024).data();c.descriptor=[...x],u.forEach(b=>Z(b))}Gf[n]=c,r8=s,i(c)})):null}var Jie=["angry","disgust","fear","happy","sad","surprise","neutral"],js,jf=[],o8=0,hy=Number.MAX_SAFE_INTEGER,fy=[.2989,.587,.114];async function my(e){var t,n;return js?e.debug&&ue("cached model:",js.modelUrl):(js=await gt(At(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!js||!js.modelUrl?ue("load model failed:",((n=e.face.emotion)==null?void 0:n.modelPath)||""):e.debug&&ue("load model:",js.modelUrl)),js}async function gy(e,t,n,s){var r;return js?hy<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&o8===s&&jf[n]&&jf[n].length>0?(hy++,jf[n]):(hy=0,new Promise(async a=>{var g,A;let o=Re.resizeBilinear(e,[js.inputs[0].shape[2],js.inputs[0].shape[1]],!1),[i,l,u]=qt(o,3,3);Z(o);let c=L(i,fy[0]),d=L(l,fy[1]),p=L(u,fy[2]);Z(i),Z(l),Z(u);let h=jp([c,d,p]);Z(c),Z(d),Z(p);let f=H(()=>L(ge(h,.5),2));Z(h);let m=[];if((g=t.face.emotion)==null?void 0:g.enabled){let y=await js.predict(f),x=await y.data();Z(y);for(let b=0;b<x.length;b++)x[b]>(((A=t.face.emotion)==null?void 0:A.minConfidence)||0)&&m.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:Jie[b]});m.sort((b,v)=>v.score-b.score)}Z(f),jf[n]=m,o8=s,a(m)})):null}var fd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],i8=fd.length,md=fd.reduce((e,t,n)=>(e[t]=n,e),{}),Qie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],ele=Qie.map(([e,t])=>[md[e],md[t]]),l8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function u8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function c8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((u,c)=>i(u,c))}var Ay=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function yy(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+i8)}}function xy(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=yy(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function by(e,t,n){return e<t?t:e>n?n:e}function d8(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function vy(e,t){return{x:e.x+t.x,y:e.y+t.y}}var qf=1,Au=16,tle=50**2;function p8(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:by(Math.round(A.y/Au),0,y-1),x:by(Math.round(A.x/Au),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),p=i(d),f=vy(t.position,p);for(let A=0;A<o;A++){let y=l(f,u,c),x=yy(y.y,y.x,n,r);f=vy({x:y.x*Au,y:y.y*Au},{x:x.x,y:x.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:fd[n],score:g}}function nle(e,t,n,s,r){let a=l8.map(([p,h])=>[md[p],md[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],u=o.length,c=new Array(l),d=xy(e.part,Au,n);c[e.part.id]={score:e.score,part:fd[e.part.id],position:d};for(let p=u-1;p>=0;--p){let h=o[p],f=i[p];c[h]&&!c[f]&&(c[f]=p8(p,c[h],f,t,n,r))}for(let p=0;p<u;++p){let h=i[p],f=o[p];c[h]&&!c[f]&&(c[f]=p8(p,c[h],f,t,n,s))}return c}function sle(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-qf,0),u=Math.min(n+qf+1,a);for(let c=l;c<u;++c){let d=Math.max(s-qf,0),p=Math.min(s+qf+1,o);for(let h=d;h<p;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function rle(e,t){let[n,s,r]=t.shape,a=new Ay(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||sle(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function h8(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?d8(n,t,a.y,a.x)<=tle:!1})}function ale(e,t){return t.reduce((s,{position:r,score:a},o)=>(h8(e,r,o)||(s+=a),s),0)/t.length}function f8(e,t,n,s,r,a){let o=[],i=rle(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=xy(l.part,Au,e);if(h8(o,u,l.part.id))continue;let c=nle(l,t,e,n,s);c=c.filter(h=>h.score>a);let d=ale(o,c),p=u8(c);d>a&&o.push({keypoints:c,box:p,score:Math.round(100*d)/100})}return o}var Jn,ole=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function wy(e,t){let n=H(()=>{if(!Jn.inputs[0].shape)return[];let o=Re.resizeBilinear(e,[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]),i=ge(de(ce(o,"float32"),127.5),1),u=Jn.execute(i,ole).map(c=>ut(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Z(o);let r=await f8(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Jn.inputs[0].shape?c8(r,[e.shape[1],e.shape[2]],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]):[]}async function ky(e){return Jn?e.debug&&ue("cached model:",Jn.modelUrl):(Jn=await gt(At(e.modelBasePath,e.body.modelPath||"")),!Jn||!Jn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Jn.modelUrl)),Jn}function Xf(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function gd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function m8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Re.cropAndResize(t,a,[0],n)}function g8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Kf(e,t=1.5){let n=gd(e),s=Xf(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Zf(e){let t=gd(e),n=Xf(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var A8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Iy=class{constructor(t){this.model=t,this.anchors=A8.map(n=>[n.x,n.y]),this.anchorsTensor=Os(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=zt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=zt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ae(de(n,this.inputSizeTensor),this.anchorsTensor),a=de(s,this.doubleInputSizeTensor),o=L(ge(r,a),this.inputSizeTensor),i=L(ae(r,a),this.inputSizeTensor);return Pl([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(de(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=ut(s.batched),s.scores=H(()=>ut(Hn(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Re.nonMaxSuppressionAsync(s.norm,s.scores,10*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),u=H(()=>U(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:u,confidence:r[i]})}for(let i of Object.keys(s))Z(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>ge(de(Re.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Z(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),p=await l.palmLandmarks.array();Z(l.box),Z(l.palmLandmarks),i.push(g8({startPoint:c,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function ile(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function y8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ile(n)}var x8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ma(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function lle(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function b8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ma(e[r],lle(t,a)))}return n}function Sy(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=x8(t[0],t[1]),o=b8(a,r),i=x8(-t[0],-t[1]);return b8(o,i)}function v8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ma(t[0],n),-ma(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Cy(e,t){return[ma(e,t[0]),ma(e,t[1])]}var ule=5,w8=1.65,k8=[0,5,9,13,17,1,2],cle=0,dle=2,Ty=class{constructor(t,n){var s;this.handDetector=t,this.handPoseModel=n,this.inputSize=(s=this.handPoseModel)==null?void 0:s.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Cy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Kf(Zf(r),ule)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Kf(Zf(n),w8);s.palmLandmarks=[];for(let r=0;r<k8.length;r++)s.palmLandmarks.push(t[k8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Xf(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Sy(s,[0,0]),u=i.map(h=>[...Cy(h,l),h[2]]),c=v8(r),d=[...gd(n),1],p=[ma(d,c[0]),ma(d,c[1])];return u.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?y8(i.palmLandmarks[cle],i.palmLandmarks[dle]):0,u=gd(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&we.kernels.includes("rotatewithoffset")?Re.rotateWithOffset(t,l,0,c):t.clone(),p=Sy(-l,u),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,f=m8(h,d,[this.inputSize,this.inputSize]),m=de(f,255);Z(f),Z(d);let[g,A]=await this.handPoseModel.predict(m);Z(m);let y=(await g.data())[0];if(Z(g),y>=n.hand.minConfidence/4){let x=U(A,[-1,3]),b=await x.array();Z(A),Z(x);let v=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let S={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;Z(A)}else{let l=Kf(Zf(i),w8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var He={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>He.nameMapping[e],getPoints:e=>He.pointsMapping[e]},Nn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Nn.nameMapping[e]},We={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>We.nameMapping[e]};var oi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function I8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function S8(e,t){let n=I8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=I8(e[1],e[2],t[1],t[2]);return[n,s]}function C8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function ple(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>oi.NO_CURL_START_LIMIT?A=Nn.none:g>oi.HALF_CURL_START_LIMIT?A=Nn.half:A=Nn.full,A}function T8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=We.horizontalLeft:r=We.horizontalRight:s===Math.abs(t)?t>0?r=We.horizontalLeft:r=We.horizontalRight:n>0?r=We.horizontalLeft:r=We.horizontalRight,r}function N8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=We.verticalDown:r=We.verticalUp:s===Math.abs(t)?t<0?r=We.verticalDown:r=We.verticalUp:n<0?r=We.verticalDown:r=We.verticalUp,r}function hle(e,t,n,s,r,a,o,i){let l,u=N8(e,t,n,s),c=T8(r,a,o,i);return u===We.verticalUp?c===We.horizontalLeft?l=We.diagonalUpLeft:l=We.diagonalUpRight:c===We.horizontalLeft?l=We.diagonalDownLeft:l=We.diagonalDownRight,l}function fle(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),p=0,h=0,f=0,m=d/(c+1e-5);m>1.5?p+=oi.DISTANCE_VOTE_POWER:m>.66?h+=oi.DISTANCE_VOTE_POWER:f+=oi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+u*u),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===y&&(b=t[0],v=t[1]);let O=S8([b,v],[k,S]),E=C8(O,oi.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],f+=E[2];for(let T of s){let P=C8(T,oi.SINGLE_ANGLE_VOTE_POWER);p+=P[0],h+=P[1],f+=P[2]}let R;return p===Math.max(p,h,f)?R=N8(l,i,u,d):f===Math.max(h,f)?R=T8(a,r,o,c):R=hle(l,i,u,d,a,r,o,c),R}function Ny(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of He.all){let o=He.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],d=e[u[1]],p=S8(c,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of He.all){let o=a===He.thumb?1:0,i=He.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],d=ple(l,u,c),p=fle(l,u,c,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}var Ad=class{constructor(t){this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var ga=new Ad("thumbs up");ga.addCurl(He.thumb,Nn.none,1);ga.addDirection(He.thumb,We.verticalUp,1);ga.addDirection(He.thumb,We.diagonalUpLeft,.25);ga.addDirection(He.thumb,We.diagonalUpRight,.25);for(let e of[He.index,He.middle,He.ring,He.pinky])ga.addCurl(e,Nn.full,1),ga.addDirection(e,We.horizontalLeft,1),ga.addDirection(e,We.horizontalRight,1);var Wt=new Ad("victory");Wt.addCurl(He.thumb,Nn.half,.5);Wt.addCurl(He.thumb,Nn.none,.5);Wt.addDirection(He.thumb,We.verticalUp,1);Wt.addDirection(He.thumb,We.diagonalUpLeft,1);Wt.addCurl(He.index,Nn.none,1);Wt.addDirection(He.index,We.verticalUp,.75);Wt.addDirection(He.index,We.diagonalUpLeft,1);Wt.addCurl(He.middle,Nn.none,1);Wt.addDirection(He.middle,We.verticalUp,1);Wt.addDirection(He.middle,We.diagonalUpLeft,.75);Wt.addCurl(He.ring,Nn.full,1);Wt.addDirection(He.ring,We.verticalUp,.2);Wt.addDirection(He.ring,We.diagonalUpLeft,1);Wt.addDirection(He.ring,We.horizontalLeft,.2);Wt.addCurl(He.pinky,Nn.full,1);Wt.addDirection(He.pinky,We.verticalUp,.2);Wt.addDirection(He.pinky,We.diagonalUpLeft,1);Wt.addDirection(He.pinky,We.horizontalLeft,.2);Wt.setWeight(He.index,2);Wt.setWeight(He.middle,2);var E8=[ga,Wt];var mle=.7;function R8(e){let t=Ny(e),n={};for(let s of He.all)n[He.getName(s)]={curl:Nn.getName(t.curls[s]),direction:We.getName(t.directions[s])};return n}function _8(e){let t=Ny(e),n=[];for(let s of E8){let r=s.matchAgainst(t.curls,t.directions);r>=mle&&n.push({name:s.name,confidence:r})}return n}var D8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Aa,ya,F8;async function Ey(e,t){let n=await F8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(D8))a[c]=D8[c].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=R8(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function Ry(e){var n,s,r,a,o,i;!Aa||!ya?([Aa,ya]=await Promise.all([e.hand.enabled?gt(At(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?gt(At(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!Aa||!Aa.modelUrl?ue("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&ue("load model:",Aa.modelUrl),!ya||!ya.modelUrl?ue("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&ue("load model:",ya.modelUrl))):(e.debug&&ue("cached model:",Aa.modelUrl),e.debug&&ue("cached model:",ya.modelUrl));let t=new Iy(Aa);return F8=new Ty(t,ya),[Aa,ya]}var $8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],O8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var zn;async function Yf(e){return zn?e.debug&&ue("cached model:",zn.modelUrl):(zn=await gt(At(e.modelBasePath,e.body.modelPath||"")),zn.width=parseInt(zn.signature.inputs["input_1:0"].tensorShape.dim[2].size),zn.height=parseInt(zn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!zn||!zn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",zn.modelUrl)),zn}async function _y(e,t){if(!zn)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=Re.resizeBilinear(e,[zn.width,zn.height],!1),r=de(s,[255]);Z(s);let a=await zn.predict(r),o=a.find(g=>g.size===195||g.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(g=>Z(g)),Z(r);let l=[],u=(i==null?void 0:i.length)===195?$8:O8,c=5;for(let g=0;g<i.length/c;g++)l.push({id:g,part:u[g],position:[Math.trunc(n.width*i[c*g+0]/255),Math.trunc(n.height*i[c*g+1]/255),Math.trunc(i[c*g+2])+0],positionRaw:[i[c*g+0]/255,i[c*g+1]/255,i[c*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[c*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[c*g+4]))))/100});let d=l.map(g=>g.position[0]),p=l.map(g=>g.position[1]),h=[Math.min(...d),Math.min(...p),Math.max(...d)-Math.min(...d),Math.max(...p)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((g,A)=>A.score>g?A.score:g,0);return[{id:0,score:m,box:h,boxRaw:f,keypoints:l}]}var Ln,pr=[],Dy=[0,0,0,0],Fy=[0,0,0,0],Jf=0,$y=Number.MAX_SAFE_INTEGER,gle=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function P8(e){return Ln?e.debug&&ue("cached model:",Ln.modelUrl):(Ln=await gt(At(e.modelBasePath,e.body.modelPath||"")),!Ln||!Ln.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Ln.modelUrl)),Ln}function Ale(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>ge(i,L(de(i,Se(l,"int32")),Se(l,"int32"))),a=U(e,[s*n]),o=cs(a,0).dataSync()[0];if(o>t){let i=Qs(a,0),l=r(i,n).dataSync()[0],u=de(i,Se(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function Oy(e,t){var n;return $y<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(pr).length>0?($y++,[{id:0,score:Jf,box:Dy,boxRaw:Fy,keypoints:pr}]):($y=0,new Promise(async s=>{var c;let r=H(()=>{if(!Ln.inputs[0].shape)return null;let d=Re.resizeBilinear(e,[Ln.inputs[0].shape[2],Ln.inputs[0].shape[1]],!1);return L(d,2).sub(1)}),a;if(t.body.enabled&&(a=await Ln.predict(r)),Z(r),a){pr.length=0;let d=a.squeeze();Z(a);let p=d.unstack(2);Z(d);for(let h=0;h<p.length;h++){let[f,m,g]=Ale(p[h],t.body.minConfidence);Jf>(((c=t.body)==null?void 0:c.minConfidence)||0)&&pr.push({score:Math.round(100*g)/100,part:gle[h],positionRaw:[f/Ln.inputs[0].shape[2],m/Ln.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Ln.inputs[0].shape[2]),Math.round(e.shape[1]*m/Ln.inputs[0].shape[1])]})}p.forEach(h=>Z(h))}Jf=pr.reduce((d,p)=>p.score>d?p.score:d,0);let o=pr.map(d=>d.position[0]),i=pr.map(d=>d.position[1]);Dy=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=pr.map(d=>d.positionRaw[0]),u=pr.map(d=>d.positionRaw[1]);Fy=[Math.min(...l),Math.min(...u),Math.max(...l)-Math.min(...l),Math.max(...u)-Math.min(...u)],s([{id:0,score:Jf,box:Dy,boxRaw:Fy,keypoints:pr}])}))}var hr,xs=[],Py=[0,0,0,0],Rr=[0,0,0,0],_r=0,My=Number.MAX_SAFE_INTEGER,M8=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function zy(e){return hr?e.debug&&ue("cached model:",hr.modelUrl):(hr=await gt(At(e.modelBasePath,e.body.modelPath||"")),!hr||!hr.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",hr.modelUrl)),hr}async function yle(e,t,n){xs.length=0;let s=e[0][0];for(let u=0;u<s.length;u++)_r=s[u][2],_r>t.body.minConfidence&&xs.push({score:Math.round(100*_r)/100,part:M8[u],positionRaw:[s[u][1],s[u][0]],position:[Math.round((n.shape[2]||0)*s[u][1]),Math.round((n.shape[1]||0)*s[u][0])]});_r=xs.reduce((u,c)=>c.score>u?c.score:u,0);let r=xs.map(u=>u.position[0]),a=xs.map(u=>u.position[1]);Py=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];let o=xs.map(u=>u.positionRaw[0]),i=xs.map(u=>u.positionRaw[1]);Rr=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=[];return l.push({id:0,score:_r,box:Py,boxRaw:Rr,keypoints:xs}),l}async function xle(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r];if(_r=Math.round(100*a[51+4])/100,!(_r<t.body.minConfidence)){xs.length=0;for(let o=0;o<17;o++){let i=Math.round(100*a[3*o+2])/100;i>t.body.minConfidence&&xs.push({part:M8[o],score:i,positionRaw:[a[3*o+1],a[3*o+0]],position:[Math.trunc(a[3*o+1]*(n.shape[2]||0)),Math.trunc(a[3*o+0]*(n.shape[1]||0))]})}Rr=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],s.push({id:r,score:_r,boxRaw:Rr,box:[Math.trunc(Rr[0]*(n.shape[2]||0)),Math.trunc(Rr[1]*(n.shape[1]||0)),Math.trunc(Rr[2]*(n.shape[2]||0)),Math.trunc(Rr[3]*(n.shape[1]||0))],keypoints:xs})}}return s}async function Ly(e,t){return My<(t.body.skipFrames||0)&&t.skipFrame&&Object.keys(xs).length>0?(My++,[{id:0,score:_r,box:Py,boxRaw:Rr,keypoints:xs}]):(My=0,new Promise(async n=>{let s=H(()=>{if(!hr.inputs[0].shape)return null;let i=hr.inputs[0].shape[2];i===-1&&(i=256);let l=Re.resizeBilinear(e,[i,i],!1);return ce(l,"int32")}),r;t.body.enabled&&(r=await hr.predict(s)),Z(s),r||n([]);let a=await r.array(),o;r.shape[2]===17?o=await yle(a,t,e):r.shape[2]===56&&(o=await xle(a,t,e)),Z(r),n(o)}))}var yu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Qn,Qf=[],By=Number.MAX_SAFE_INTEGER,e0=2.5;async function Wy(e){if(Qn)e.debug&&ue("cached model:",Qn.modelUrl);else{Qn=await gt(At(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Qn.modelSignature.inputs);if(Qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Qn||!Qn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Qn.modelUrl)}return Qn}async function ble(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var g,A;let c=u*13,d=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]===yu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]<yu.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,S=f[y].map(V=>V*(c/u/t)),[C,_]=[v-e0/u*S[0],k-e0/u*S[1]],[O,E]=[v+e0/u*S[2]-C,k+e0/u*S[3]-_],R=[C,_,O,E];R=R.map(V=>Math.max(0,Math.min(V,1)));let T=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],P={id:r++,score:Math.round(100*b)/100,class:x+1,label:yu[x].label,box:T.map(V=>Math.trunc(V)),boxRaw:R};a.push(P)}}});e.forEach(u=>Z(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Re.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),Z(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Vy(e,t){return By<(t.object.skipFrames||0)&&t.skipFrame&&Qf.length>0?(By++,Qf):(By=0,!we.kernels.includes("mod")||!we.kernels.includes("sparsetodense")?Qf:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Re.resizeBilinear(e,[Qn.inputSize,Qn.inputSize],!1),a=de(r,255),o=a.transpose([0,3,1,2]);Z(a),Z(r);let i;t.object.enabled&&(i=await Qn.predict(o)),Z(o);let l=await ble(i,Qn.inputSize,s,t);Qf=l,n(l)}))}var es,t0=[],Uy=Number.MAX_SAFE_INTEGER;async function Hy(e){if(es)e.debug&&ue("cached model:",es.modelUrl);else{es=await gt(At(e.modelBasePath,e.object.modelPath||""));let t=Object.values(es.modelSignature.inputs);if(es.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!es.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!es||!es.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",es.modelUrl)}return es}async function vle(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=ut(e);Z(e);let i=qt(o,6,1);Z(o);let l=mn([i[1],i[0],i[3],i[2]],1),u=ut(l);Z(l);let c=ut(i[4]),d=ut(i[5]);i.forEach(m=>Z(m));let p=await Re.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);Z(u),Z(c),Z(d);let h=await p.data();Z(p);let f=0;for(let m of h){let g=Math.trunc(100*a[0][m][4])/100,A=a[0][m][5],y=yu[A].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:g,class:A,label:y,box:k,boxRaw:v})}return r}async function Gy(e,t){return Uy<(t.object.skipFrames||0)&&t.skipFrame&&t0.length>0?(Uy++,t0):(Uy=0,!we.kernels.includes("mod")||!we.kernels.includes("sparsetodense")?t0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Re.resizeBilinear(e,[es.inputSize,es.inputSize]),a=t.object.enabled?es.execute(r,["tower_0/detections"]):null;Z(r);let o=await vle(a,es.inputSize,s,t);t0=o,n(o)}))}function wle(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,p)=>(u[p]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function z8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},p=e.canvas||document.createElement("canvas"),h={},f={INTERMEDIATE:1},m=p.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),S=d[v];o.push({func:S,args:k})},this.reset=function(){o=[]};let g=function(v,k){if(!(v===i&&k===l)){if(p.width=v,i=v,p.height=k,l=k,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,S,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},A=function(v,k){let S=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,S);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let _=m.createTexture();return m.bindTexture(m.TEXTURE_2D,_),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,_,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:S,texture:_}},y=function(v){return a[v]=a[v]||A(i,l),a[v]},x=function(v=null){var _,O;let k=null,S=null,C=!1;t===0?k=n:k=(_=y(r))==null?void 0:_.texture,t++,s&&!(v&f.INTERMEDIATE)?(S=null,C=t%2==0):(r=(r+1)%2,S=(O=y(r))==null?void 0:O.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,S),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),p;for(let k=0;k<o.length;k++){s=k===o.length-1;let S=o[k];S.func.apply(this,S.args||[])}return p};let b=function(v){if(h[v])return c=h[v],m.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new wle(m,k.VERTEX_IDENTITY,v);let S=Float32Array.BYTES_PER_ELEMENT,C=4*S;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,C,0*S),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,C,2*S),h[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let S=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(S);m.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,S=(k-1)*-.5;d.colorMatrix([k,S,S,0,0,S,k,S,0,0,S,S,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,S=-128*(k-1);d.colorMatrix([k,0,0,0,S,0,k,0,0,S,0,0,k,0,S,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),S=Math.sin(v),C=.213,_=.715,O=.072;d.colorMatrix([C+k*(1-C)+S*-C,_+k*-_+S*-_,O+k*-O+S*(1-O),0,0,C+k*-C+S*.143,_+k*(1-_)+S*.14,O+k*-O+S*-.283,0,0,C+k*-C+S*-(1-C),_+k*-_+S*_,O+k*(1-O)+S*O,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),S=1/i,C=1/l,_=b(d.convolution.SHADER);m.uniform1fv(_.uniform.m,k),m.uniform2f(_.uniform.px,S,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,S=v/7/l,C=b(d.blur.SHADER);m.uniform2f(C.uniform.px,0,S),x(f.INTERMEDIATE),m.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),d.pixelate=function(v){let k=v/i,S=v/l,C=b(d.pixelate.SHADER);m.uniform2f(C.uniform.size,k,S),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var n0=2048,$e,St,Vt;function xu(e,t){let n;if(we.browser?typeof OffscreenCanvas!="undefined"?n=new OffscreenCanvas(e,t):(n=document.createElement("canvas"),n.width=e,n.height=t):n=typeof we.Canvas!="undefined"?new we.Canvas(e,t):null,!n)throw new Error("Human: Cannot create canvas");return n}function ii(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof je)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof we.Canvas!="undefined"&&e instanceof we.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof je)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Fs(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return{tensor:null,canvas:$e};let a=s,o=r;if(a>n0&&(a=n0,o=a*r/s),o>n0&&(o=n0,a=o*s/r),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("Human: Input cannot determine dimension");(!$e||($e==null?void 0:$e.width)!==a||($e==null?void 0:$e.height)!==o)&&($e=xu(a,o));let i=$e.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,$e==null?void 0:$e.width,$e==null?void 0:$e.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,$e==null?void 0:$e.width,$e==null?void 0:$e.height),t.filter.enabled){if((!Vt||!St||$e.width!==St.width||($e==null?void 0:$e.height)!==(St==null?void 0:St.height))&&(St=xu($e==null?void 0:$e.width,$e==null?void 0:$e.height),(St==null?void 0:St.width)!==($e==null?void 0:$e.width)&&(St.width=$e==null?void 0:$e.width),(St==null?void 0:St.height)!==($e==null?void 0:$e.height)&&(St.height=$e==null?void 0:$e.height),Vt=we.browser?new z8({canvas:St}):null),!Vt)return{tensor:null,canvas:$e};Vt.reset(),Vt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Vt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Vt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Vt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Vt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Vt.addFilter("hue",t.filter.hue),t.filter.negative&&Vt.addFilter("negative"),t.filter.sepia&&Vt.addFilter("sepia"),t.filter.vintage&&Vt.addFilter("brownie"),t.filter.sepia&&Vt.addFilter("sepia"),t.filter.kodachrome&&Vt.addFilter("kodachrome"),t.filter.technicolor&&Vt.addFilter("technicolor"),t.filter.polaroid&&Vt.addFilter("polaroid"),t.filter.pixelate!==0&&Vt.addFilter("pixelate",t.filter.pixelate),Vt.apply($e)}else St=$e,Vt&&(Vt=null);if(!n){let l;if(St.data){let u=[St.height,St.width,3];l=Wp(St.data,u,"int32")}else if(typeof ImageData!="undefined"&&St instanceof ImageData)l=os?os.fromPixels(St):null;else if(t.backend==="webgl"||t.backend==="humangl"){let u=xu(a,o);u.width=a,u.height=o;let c=u.getContext("2d");c==null||c.drawImage(St,0,0),l=os&&we.browser?os.fromPixels(u):null}else{let u=xu(a,o);u.width=a,u.height=o;let c=u.getContext("2d");c.drawImage(St,0,0);let d=c.getImageData(0,0,a,o);os&&we.browser?l=os.fromPixels(d):l=H(()=>{let p=en(Array.from(d.data),[a,o,4]),h=qt(p,4,2),f=mn([h[0],h[1],h[2]],2);return U(f,[p.shape[0],p.shape[1],3])})}if(l){let u=ce(l,"float32");n=Mt(u,0),Z(l),Z(u)}else throw n=Ft([1,a,o,3]),new Error("Human: Cannot create tensor from input")}}return{tensor:n,canvas:t.filter.return?St:null}}var jy=0,L8=1;async function B8(e,t){if(e.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=Re.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data();Z(s);let a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];let o=100*(Math.max(a,jy)/Math.min(a,jy)-1);jy=a;let i=o<Math.max(e.cacheSensitivity,L8);return L8=o>10*e.cacheSensitivity?0:o,i}var bs,qy=!1;async function s0(e){return bs?e.debug&&ue("cached model:",bs.modelUrl):(bs=await gt(At(e.modelBasePath,e.segmentation.modelPath||"")),!bs||!bs.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",bs.modelUrl)),bs}async function Xy(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!bs||!bs.inputs[0].shape)return null;let s=Re.resizeBilinear(e.tensor,[bs.inputs[0].shape[1],bs.inputs[0].shape[2]],!1),r=de(s,255),a=bs.predict(r);Z(s),Z(r);let o=ut(a,0);Z(a);let i;if(o.shape[2]===2){let g=o.softmax(),[A,y]=hs(g,2),x=Mt(y,2),b=Mt(x,0);Z(g),Z(A),Z(y);let v=Re.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=ut(v,0),Z(v),Z(x),Z(b)}else i=Re.resizeBilinear(o,[t,n]);if(Z(o),we.node){let g=await i.data();return Z(i),g}let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,os&&await os.toPixels(i,l),Z(i);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");p.width=t,p.height=n;let h=p.getContext("2d");return e.canvas&&await h.drawImage(e.canvas,0,0),h.globalCompositeOperation="darken",h.filter="blur(8px)",await h.drawImage(l,0,0),h.globalCompositeOperation="source-over",h.filter="none",e.canvas=p,d}async function W8(e,t,n){var a;if(qy)return null;qy=!0,bs||await s0(n);let s=ii(e,n),r=await Xy(s);if(Z(s.tensor),t&&r){let o=ii(t,n),i=o.canvas;Z(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let p=d.getImageData(0,0,c.width,c.height);for(let h=0;h<c.width*c.height;h++)p.data[4*h+0]=(255-r[4*h+0])/255*p.data[4*h+0]+r[4*h+0]/255*u[4*h+0],p.data[4*h+1]=(255-r[4*h+1])/255*p.data[4*h+1]+r[4*h+1]/255*u[4*h+1],p.data[4*h+2]=(255-r[4*h+2])/255*p.data[4*h+2]+r[4*h+2]/255*u[4*h+2],p.data[4*h+3]=(255-r[4*h+3])/255*p.data[4*h+3]+r[4*h+3]/255*u[4*h+3];d.putImageData(p,0,0),s.canvas=c}return qy=!1,s.canvas}async function V8(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?iy(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?my(e.config):null),e.models.handpose||(e.config.hand.enabled?Ry(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?ky(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?Yf(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?P8(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?zy(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?Wy(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?Hy(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?uy(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?s0(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await iy(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await my(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await Ry(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await ky(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await Yf(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await Yf(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await zy(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await Wy(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await Hy(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await uy(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await s0(e.config)))}async function U8(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].map(r=>r.executor?r:r.model):s=[e.models[n]];for(let r of s){let a=[],o=r==null?void 0:r.executor;if(o)for(let l of Object.values(o.graph.nodes)){let u=l.op.toLowerCase();a.includes(u)||a.push(u)}let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);!o&&e.config.debug&&ue("model executor not found:",n),i.length>0&&e.config.debug&&ue("model validation:",n,i)}}}var kle=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Ile=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,S,C,_]=g,O,E,R;return b<1?b>-1?(R=Math.asin(b),E=Math.atan2(-S,A),O=Math.atan2(-k,v)):(R=-Math.PI/2,E=-Math.atan2(C,_),O=0):(R=Math.PI/2,E=Math.atan2(C,_),O=0),isNaN(O)&&(O=0),isNaN(E)&&(E=0),isNaN(R)&&(R=0),{pitch:2*-O,yaw:2*-E,roll:2*-R}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),p=n(r(d,c));d=r(c,p);let h=[d[0],d[1],d[2],c[0],c[1],c[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?kle(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}},Ky=async(e,t)=>{var d,p,h,f,m,g;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Xe();let c=await t8(t,e.config);if(e.performance.face=Math.trunc(Xe()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let A=0;A<c.length;A++){if(e.analyze("Get Face"),!c[A].tensor||c[A].tensor.isDisposedInternal){ue("Face object is disposed:",c[A].tensor);continue}let y=Ile(c[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?gy(c[A].tensor||en([]),e.config,A,c.length):{}:(e.state="run:emotion",n=Xe(),o=e.config.face.emotion.enabled?await gy(c[A].tensor||en([]),e.config,A,c.length):{},e.performance.emotion=Math.trunc(Xe()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?py(c[A].tensor||en([]),e.config,A,c.length):[]:(e.state="run:description",n=Xe(),l=e.config.face.description.enabled?await py(c[A].tensor||en([]),e.config,A,c.length):[],e.performance.embedding=Math.trunc(Xe()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,r]=await Promise.all([s,a,o,i,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=c[A])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((f=(h=c[A])==null?void 0:h.annotations)==null?void 0:f.rightEyeIris)&&(delete c[A].annotations.leftEyeIris,delete c[A].annotations.rightEyeIris);let x=((m=c[A].annotations)==null?void 0:m.leftEyeIris)&&((g=c[A].annotations)==null?void 0:g.rightEyeIris)?Math.max(Math.abs(c[A].annotations.leftEyeIris[3][0]-c[A].annotations.leftEyeIris[1][0]),Math.abs(c[A].annotations.rightEyeIris[4][1]-c[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0,b=e.config.face.detector.return?ut(c[A].tensor):null;Z(c[A].tensor),c[A].tensor&&delete c[A].tensor,u.push({...c[A],id:A,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:o,iris:x!==0?Math.trunc(500/x/11.7)/100:0,rotation:y,tensor:b}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var H8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},G8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},j8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(u=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},q8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];for(let[a,o]of Object.entries(e[n].annotations))a!=="palmBase"&&Array.isArray(o)&&s.push({name:a.toLowerCase(),position:o[0]});if(s&&s.length>0){let a=s.reduce((i,l)=>i.position[2]<l.position[2]?i:l);t.push({hand:n,gesture:`${a.name} forward`});let o=s.reduce((i,l)=>i.position[1]<l.position[1]?i:l);t.push({hand:n,gesture:`${o.name} up`})}let r=_8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}return t};var Jy={};Om(Jy,{all:()=>Tle,body:()=>Z8,canvas:()=>Cle,face:()=>K8,gesture:()=>X8,hand:()=>Y8,object:()=>J8,options:()=>xa,person:()=>Sle});var xa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},ba=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("Human: Invalid Canvas")},r0=e=>Math.round(e*180/Math.PI);function Zy(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function yd(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Yy(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function xd(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Yy(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function X8(e,t,n){let s=pn(xa,n);if(!t||!e)return;let r=ba(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function K8(e,t,n){var a,o,i,l;let s=pn(xa,n);if(!t||!e)return;let r=ba(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&yd(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(p=>`${Math.trunc(100*p.score)}% ${p.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${r0(u.rotation.angle.roll)}\xB0 yaw:${r0(u.rotation.angle.yaw)}\xB0 pitch:${r0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${r0(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let p=Math.max(u.box[0],0),h=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],p+5,h+16)),r.fillStyle=s.labelColor,r.fillText(c[d],p+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Zy(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;d<ai.length/3;d++){let p=[ai[d*3+0],ai[d*3+1],ai[d*3+2]].map(h=>u.mesh[h]);Yy(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(p[0],p[1]),r.stroke()}}}}}async function Z8(e,t,n){var a;let s=pn(xa,n);if(!t||!e)return;let r=ba(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(yd(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Zy(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),xd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Yy(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),xd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),xd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),xd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),xd(r,l,s)}}}async function Y8(e,t,n){let s=pn(xa,n);if(!t||!e)return;let r=ba(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,yd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Zy(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{!i||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function J8(e,t,n){let s=pn(xa,n);if(!t||!e)return;let r=ba(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,yd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function Sle(e,t,n){let s=pn(xa,n);if(!t||!e)return;let r=ba(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,yd(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function Cle(e,t){if(!e||!t)return;ba(t),ba(e).drawImage(e,0,0)}async function Tle(e,t,n){let s=Xe(),r=pn(xa,n);if(!t||!e)return null;let a=Promise.all([K8(e,t.face,r),Z8(e,t.body,r),Y8(e,t.hand,r),J8(e,t.object,r),X8(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Xe()-s),a}function Q8(e,t,n,s,r){var i,l,u,c,d,p,h,f,m,g,A,y,x,b,v,k;let a=0,o=[];for(let S of e){let C={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let P of t)S.box[0]>P.box[0]&&S.box[0]<P.box[0]+P.box[2]&&S.box[1]+S.box[3]>P.box[1]&&S.box[1]+S.box[3]<P.box[1]+P.box[3]&&(C.body=P);if(C.body)for(let P of n)P.box[0]+P.box[2]>C.body.box[0]&&P.box[0]+P.box[2]<C.body.box[0]+C.body.box[2]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=P),P.box[0]<C.body.box[0]+C.body.box[2]&&P.box[0]>C.body.box[0]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=P);for(let P of s)P.face!==void 0&&P.face===S.id?(i=C.gestures)==null||i.push(P):P.iris!==void 0&&P.iris===S.id?(l=C.gestures)==null||l.push(P):P.body!==void 0&&P.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(P):P.hand!==void 0&&P.hand===((p=(d=C.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=C.gestures)==null||h.push(P):P.hand!==void 0&&P.hand===((m=(f=C.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=C.gestures)==null||g.push(P));let _=[],O=[],E=P=>{P&&P.length===4&&(_.push(P[0],P[0]+P[2]),O.push(P[1],P[1]+P[3]))};E((A=C.face)==null?void 0:A.box),E((y=C.body)==null?void 0:y.box),E((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let R=Math.min(..._),T=Math.min(...O);C.box=[R,T,Math.max(..._)-R,Math.max(...O)-T],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function eI(e){var s,r,a,o,i,l,u,c,d,p,h,f,m,g,A,y,x,b,v,k,S;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let _=e.body[C].box.map((R,T)=>((n-1)*Fe.body[C].box[T]+R)/n),O=e.body[C].boxRaw.map((R,T)=>((n-1)*Fe.body[C].boxRaw[T]+R)/n),E=e.body[C].keypoints.map((R,T)=>({score:R.score,part:R.part,position:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[0]+R.position[0])/n:R.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[1]+R.position[1])/n:R.position[1]],positionRaw:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[0]+R.positionRaw[0])/n:R.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[1]+R.positionRaw[1])/n:R.position[1]]}));Fe.body[C]={...e.body[C],box:_,boxRaw:O,keypoints:E}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let _=e.hand[C].box.map((P,V)=>((n-1)*Fe.hand[C].box[V]+P)/n),O=e.hand[C].boxRaw.map((P,V)=>((n-1)*Fe.hand[C].boxRaw[V]+P)/n),E=e.hand[C].keypoints?e.hand[C].keypoints.map((P,V)=>P.map((j,q)=>((n-1)*Fe.hand[C].keypoints[V][q]+j)/n)):[],R=Object.keys(e.hand[C].annotations),T={};for(let P of R)T[P]=e.hand[C].annotations[P].map((V,j)=>V.map((q,X)=>((n-1)*Fe.hand[C].annotations[P][j][X]+q)/n));Fe.hand[C]={...e.hand[C],box:_,boxRaw:O,keypoints:E,annotations:T}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let _=e.face[C].box.map((R,T)=>((n-1)*Fe.face[C].box[T]+R)/n),O=e.face[C].boxRaw.map((R,T)=>((n-1)*Fe.face[C].boxRaw[T]+R)/n),E={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};E.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,E.angle={roll:((n-1)*(((a=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((h=(p=Fe.face[C].rotation)==null?void 0:p.angle)==null?void 0:h.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},E.gaze={bearing:((n-1)*(((A=(g=Fe.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Fe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((S=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:S.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:E,box:_,boxRaw:O}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let _=e.object[C].box.map((E,R)=>((n-1)*Fe.object[C].box[R]+E)/n),O=e.object[C].boxRaw.map((E,R)=>((n-1)*Fe.object[C].boxRaw[R]+E)/n);Fe.object[C]={...e.object[C],box:_,boxRaw:O}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let _=0;_<C.length;_++)Fe.persons[_].box=C[_].box.map((O,E)=>((n-1)*Fe.persons[_].box[E]+O)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Nle(){let e=Bn.gl;!e||(Bn.extensions=e.getSupportedExtensions())}function tI(){if(!vg(Bn.name)){try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{gf(2,Bn.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new Sf(Bn.gl);_l(Bn.name,()=>new uu(e),Bn.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{Hr("webgl").forEach(t=>{let n={...t,backendName:Bn.name};To(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{Zs.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}Nle(),ue("backend registered:",Bn.name)}}async function Qy(e){if(e.initial||e.config.backend&&e.config.backend.length>0&&Rl()!==e.config.backend){let t=Xe();if(e.state="backend",e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&ue("running inside web worker"),we.browser&&e.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),we.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(ue(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),we.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let s=await navigator.gpu.requestAdapter();e.config.debug&&ue("enumerated webgpu adapter:",s)}e.config.backend==="humangl"&&tI();let n=Object.keys(Ss().registryFactory);if(e.config.debug&&ue("available backends:",n),n.includes(e.config.backend)||(ue(`error: backend ${e.config.backend} not found in registry`),e.config.backend=we.node?"tensorflow":"humangl",ue(`override: setting backend ${e.config.backend}`)),e.config.debug&&ue("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ue("wasm path:",e.config.wasmPath),typeof(ri==null?void 0:ri.setWasmPaths)!="undefined")await Vk(e.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let s=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),r=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ue(`wasm execution: ${s?"SIMD":"no SIMD"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!s&&ue("warning: wasm simd support is not enabled")}await bg(e.config.backend);try{await bg(e.config.backend),await Gp()}catch(s){ue("error: cannot set backend:",e.config.backend,s)}}if(Rl()==="humangl"){Zs.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Zs.set("WEBGL_CPU_FORWARD",!0),Zs.set("WEBGL_PACK_DEPTHWISECONV",!1),Zs.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Zs.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let n=await Dl().getGPGPUContext().gl;e.config.debug&&ue(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}D5(),await Gp(),e.performance.backend=Math.trunc(Xe()-t),e.config.backend=Rl(),Uf(),e.env=we}}var ex="2.2.0";var a0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,o0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Rle(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(a0);break;case"full":n=await t(o0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function _le(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+a0;break;case"full":case"body":n="data:image/jpeg;base64,"+o0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:we.Image&&(s=new we.Image),s.onload=async()=>{let r=xu(s.naturalWidth,s.naturalHeight);if(!r)ue("Warmup: Canvas not found"),t({});else{r.getContext("2d").drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Dle(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(a0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(o0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ue("Warmup tfjs-node not loaded");return s}async function nI(e,t){let n=Xe();if(t&&(e.config=pn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await Rle(e):typeof Image!="undefined"||we.Canvas!==void 0?s=await _le(e):s=await Dle(e);let r=Xe();return e.config.debug&&ue("Warmup",e.config.warmup,Math.round(r-n),"ms"),e.emit("warmup"),s}var bu,bd,vd,i0,rI=class{constructor(t){Fu(this,bu,void 0);Fu(this,bd,void 0);Fu(this,vd,void 0);this.analyze=(...t)=>{if(!Du(this,bd))return;let n=this.tf.engine().state.numTensors,s=Du(this,bu);$u(this,bu,n);let r=n-s;r!==0&&ue(...t,r)};Fu(this,i0,t=>{if(!Du(this,vd))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof je))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});this.image=t=>ii(t,this.config);this.emit=t=>{var n;return(n=this.events)==null?void 0:n.dispatchEvent(new Event(t))};this.next=t=>eI(t||this.result);this.warmup=t=>nI(this,t);Uf(),this.env=we,xi.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Up}/dist/`,xi.modelBasePath=this.env.browser?"../models/":"file://models/",xi.backend=this.env.browser?"humangl":"tensorflow",this.version=ex,Object.defineProperty(this,"version",{value:ex}),this.config=pn(xi,t||{}),this.tf=ri,this.draw=Jy,this.state="idle",$u(this,bu,0),$u(this,bd,!1),$u(this,vd,!1),this.initial=!0,this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=new EventTarget,this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=n8,this.faceUVMap=s8,this.emit("create")}similarity(t,n){return cy(t,n)}segmentation(t,n){return t?W8(t,n,this.config):null}enhance(t){return dy(t)}match(t,n,s=0){return a8(t,n,s)}async load(t){this.state="load";let n=Xe(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=pn(this.config,t)),this.initial&&(this.config.debug&&ue(`version: ${this.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),await Qy(this),await Gp(),this.env.browser&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await V8(this),this.initial&&this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await U8(this),this.emit("load"));let a=Math.trunc(Xe()-n);a>(this.performance.load||0)&&(this.performance.load=a)}async detect(t,n){return new Promise(async s=>{var m,g,A,y,x,b,v,k,S,C,_,O,E,R;this.state="config";let r,a;this.config=pn(this.config,n),this.state="check";let o=Du(this,i0).call(this,t);o&&(ue(o,t),s({error:o}));let i=Xe();await Qy(this),await this.load(),r=Xe();let l=ii(t,this.config);if(this.process=l,this.performance.image=Math.trunc(Xe()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&this.process&&l.tensor&&l.canvas&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Xe(),await Xy(l),a=Math.trunc(Xe()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(Z(l.tensor),l=ii(l.canvas,this.config)),this.analyze("End Segmentation:")),!l.tensor){ue("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=Xe(),this.config.skipFrame=await B8(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Xe()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],p=[];this.config.async?(u=this.config.face.enabled?Ky(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Xe(),u=this.config.face.enabled?await Ky(this,l.tensor):[],a=Math.trunc(Xe()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(((m=this.config.body.modelPath)==null?void 0:m.includes("posenet"))?c=this.config.body.enabled?wy(l.tensor,this.config):[]:((g=this.config.body.modelPath)==null?void 0:g.includes("blazepose"))?c=this.config.body.enabled?_y(l.tensor,this.config):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("efficientpose"))?c=this.config.body.enabled?Oy(l.tensor,this.config):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("movenet"))&&(c=this.config.body.enabled?Ly(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Xe(),((x=this.config.body.modelPath)==null?void 0:x.includes("posenet"))?c=this.config.body.enabled?await wy(l.tensor,this.config):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("blazepose"))?c=this.config.body.enabled?await _y(l.tensor,this.config):[]:((v=this.config.body.modelPath)==null?void 0:v.includes("efficientpose"))?c=this.config.body.enabled?await Oy(l.tensor,this.config):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("movenet"))&&(c=this.config.body.enabled?await Ly(l.tensor,this.config):[]),a=Math.trunc(Xe()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?Ey(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Xe(),d=this.config.hand.enabled?await Ey(l.tensor,this.config):[],a=Math.trunc(Xe()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(((S=this.config.object.modelPath)==null?void 0:S.includes("nanodet"))?p=this.config.object.enabled?Vy(l.tensor,this.config):[]:((C=this.config.object.modelPath)==null?void 0:C.includes("centernet"))&&(p=this.config.object.enabled?Gy(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Xe(),((_=this.config.object.modelPath)==null?void 0:_.includes("nanodet"))?p=this.config.object.enabled?await Vy(l.tensor,this.config):[]:((O=this.config.object.modelPath)==null?void 0:O.includes("centernet"))&&(p=this.config.object.enabled?await Gy(l.tensor,this.config):[]),a=Math.trunc(Xe()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,p]=await Promise.all([u,c,d,p]));let h=[];this.config.gesture.enabled&&(r=Xe(),h=[...G8(u),...H8(c),...q8(d),...j8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Xe()-r)),this.performance.total=Math.trunc(Xe()-i),this.state="idle";let f=((R=(E=this.process)==null?void 0:E.tensor)==null?void 0:R.shape)||[];this.result={face:u,body:c,hand:d,gesture:h,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return Q8(u,c,d,h,f)}},Z(l.tensor),this.emit("detect"),s(this.result)})}};bu=new WeakMap,bd=new WeakMap,vd=new WeakMap,i0=new WeakMap;return Fle;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|