human/src/blazeface/facemesh.ts

88 lines
4.3 KiB
TypeScript

import { log, join } from '../helpers';
import * as tf from '../../dist/tfjs.esm.js';
import * as blazeface from './blazeface';
import * as facepipeline from './facepipeline';
import * as coords from './coords';
export class MediaPipeFaceMesh {
facePipeline: any;
config: any;
constructor(blazeFace, blazeMeshModel, irisModel, config) {
this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel);
this.config = config;
}
async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> {
const predictions = await this.facePipeline.predict(input, config);
const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = [];
for (const prediction of (predictions || [])) {
if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing
const mesh = prediction.coords ? prediction.coords.arraySync() : [];
const meshRaw = mesh.map((pt) => [
pt[0] / input.shape[2],
pt[1] / input.shape[1],
pt[2] / this.facePipeline.meshSize,
]);
const annotations = {};
if (mesh && mesh.length > 0) {
for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]);
}
const box = prediction.box ? [
Math.max(0, prediction.box.startPoint[0]),
Math.max(0, prediction.box.startPoint[1]),
Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]),
Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]),
] : 0;
const boxRaw = prediction.box ? [
prediction.box.startPoint[0] / input.shape[2],
prediction.box.startPoint[1] / input.shape[1],
(prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2],
(prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1],
] : [];
results.push({
confidence: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,
boxConfidence: Math.round(100 * prediction.boxConfidence) / 100,
faceConfidence: Math.round(100 * prediction.faceConfidence) / 100,
box,
boxRaw,
mesh,
meshRaw,
annotations,
image: prediction.image ? prediction.image.clone() : null,
});
if (prediction.coords) prediction.coords.dispose();
if (prediction.image) prediction.image.dispose();
}
return results;
}
}
let faceModels:[any, any, any] = [null, null, null];
export async function load(config): Promise<MediaPipeFaceMesh> {
if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {
faceModels = await Promise.all([
(!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,
(!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,
(!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,
]);
if (config.face.mesh.enabled) {
if (!faceModels[1] || !faceModels[1].modelUrl) log('load model failed:', config.face.mesh.modelPath);
else if (config.debug) log('load model:', faceModels[1].modelUrl);
}
if (config.face.iris.enabled) {
if (!faceModels[2] || !faceModels[1].modelUrl) log('load model failed:', config.face.iris.modelPath);
else if (config.debug) log('load model:', faceModels[2].modelUrl);
}
} else if (config.debug) {
log('cached model:', faceModels[0].model.modelUrl);
log('cached model:', faceModels[1].modelUrl);
log('cached model:', faceModels[2].modelUrl);
}
const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config);
return faceMesh;
}
export const triangulation = coords.TRI468;
export const uvmap = coords.UV468;