mirror of https://github.com/vladmandic/human
5168 lines
1.3 MiB
5168 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var H9=Object.defineProperty;var cm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var Fa=(e,t)=>{for(var n in t)H9(e,n,{get:t[n],enumerable:!0})};var Bg=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var vn=(e,t,n)=>(Bg(e,t,"read from private field"),n?n.call(e):t.get(e)),aa=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},er=(e,t,n,a)=>(Bg(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);var aoe={};Fa(aoe,{Human:()=>n9,default:()=>n9});function Yt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function he(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var nt=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Gn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=Gn(s,i):n[r]=i}),n),{})}var Vg={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist//",debug:!0,async:!0,warmup:"full",cacheSensitivity:.004,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:10,skipFrames:21,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetected:1,minConfidence:.1},hand:{enabled:!0,rotation:!1,skipFrames:12,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:41}};function jg(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Xd={};Fa(Xd,{Abs:()=>no,Acos:()=>ao,Acosh:()=>ro,AdadeltaOptimizer:()=>Jc,AdagradOptimizer:()=>Qc,AdamOptimizer:()=>eh,AdamaxOptimizer:()=>th,Add:()=>Ir,AddN:()=>os,All:()=>so,Any:()=>io,ArgMax:()=>ls,ArgMin:()=>gu,Asin:()=>oo,Asinh:()=>lo,Atan:()=>uo,Atan2:()=>co,Atanh:()=>po,AvgPool:()=>us,AvgPool3D:()=>xu,AvgPool3DGrad:()=>Fp,AvgPoolGrad:()=>Mp,BackendWasm:()=>m6,BatchMatMul:()=>ds,BatchToSpaceND:()=>bu,Bincount:()=>$p,BroadcastTo:()=>Ox,Callback:()=>o8,CallbackList:()=>Q6,Cast:()=>ps,Ceil:()=>cs,ClipByValue:()=>Sr,Complex:()=>Dp,ComplexAbs:()=>vu,Concat:()=>ho,Conv2D:()=>hs,Conv2DBackpropFilter:()=>Op,Conv2DBackpropInput:()=>fs,Conv3D:()=>wu,Conv3DBackpropFilterV2:()=>zp,Conv3DBackpropInputV2:()=>_p,Cos:()=>ms,Cosh:()=>fo,CropAndResize:()=>mo,Cumsum:()=>As,CustomCallback:()=>t4,DataStorage:()=>Tp,DenseBincount:()=>Pp,DepthToSpace:()=>Ao,DepthwiseConv2dNative:()=>ys,DepthwiseConv2dNativeBackpropFilter:()=>Lp,DepthwiseConv2dNativeBackpropInput:()=>Wp,Diag:()=>Bp,Dilation2D:()=>ku,Dilation2DBackpropFilter:()=>jp,Dilation2DBackpropInput:()=>Vp,ENV:()=>ma,EarlyStopping:()=>u8,Einsum:()=>Up,Elu:()=>yo,EluGrad:()=>Hp,Environment:()=>$x,Equal:()=>xo,Erf:()=>go,Exp:()=>xs,ExpandDims:()=>bo,Expm1:()=>vo,FFT:()=>Gp,Fill:()=>Iu,FlipLeftRight:()=>wo,Floor:()=>bs,FloorDiv:()=>vs,FromPixels:()=>lc,FusedBatchNorm:()=>ws,FusedConv2D:()=>ni,FusedDepthwiseConv2D:()=>ai,GPGPUContext:()=>gh,GatherNd:()=>Io,GatherV2:()=>ko,GraphModel:()=>L8,Greater:()=>So,GreaterEqual:()=>ks,History:()=>e4,IFFT:()=>qp,Identity:()=>Is,Imag:()=>Xp,InputSpec:()=>Mt,IsFinite:()=>No,IsInf:()=>To,IsNan:()=>Eo,KernelBackend:()=>mu,LRN:()=>Tu,LRNGrad:()=>Zp,LayerVariable:()=>X6,LayersModel:()=>cr,LeakyRelu:()=>Ss,Less:()=>Co,LessEqual:()=>Ro,LinSpace:()=>Kp,Log:()=>Ns,Log1p:()=>Mo,LogSoftmax:()=>zx,LogicalAnd:()=>Fo,LogicalNot:()=>Su,LogicalOr:()=>Nu,MathBackendCPU:()=>sh,MathBackendWebGL:()=>Pl,Max:()=>Ts,MaxPool:()=>Cs,MaxPool3D:()=>Eu,MaxPool3DGrad:()=>Jp,MaxPoolGrad:()=>Yp,MaxPoolWithArgmax:()=>Qp,Maximum:()=>Es,Mean:()=>Rs,Min:()=>Ms,Minimum:()=>Fs,MirrorPad:()=>$s,Mod:()=>$o,MomentumOptimizer:()=>nh,Multinomial:()=>ec,Multiply:()=>Ds,Neg:()=>Do,NonMaxSuppressionV3:()=>zo,NonMaxSuppressionV4:()=>_o,NonMaxSuppressionV5:()=>Po,NotEqual:()=>Oo,OP_SCOPE_SUFFIX:()=>qx,OneHot:()=>Os,OnesLike:()=>Lo,Optimizer:()=>lr,Pack:()=>Wo,PadV2:()=>zs,Pool:()=>GI,Pow:()=>_s,Prelu:()=>Ps,Prod:()=>Bo,RMSPropOptimizer:()=>ah,RNN:()=>qa,Range:()=>Cu,Rank:()=>Tm,Real:()=>tc,RealDiv:()=>gs,Reciprocal:()=>Vo,Reduction:()=>un,Relu:()=>Ls,Relu6:()=>Bs,Reshape:()=>jo,ResizeBilinear:()=>Ws,ResizeBilinearGrad:()=>ac,ResizeNearestNeighbor:()=>Ru,ResizeNearestNeighborGrad:()=>nc,Reverse:()=>Vs,RotateWithOffset:()=>al,Round:()=>js,Rsqrt:()=>Us,SGDOptimizer:()=>od,ScatterNd:()=>Uo,Select:()=>Ho,Selu:()=>Go,Sequential:()=>ql,Sigmoid:()=>Gs,Sign:()=>Ko,Sin:()=>Hs,Sinh:()=>Xo,Slice:()=>qo,Softmax:()=>Ks,Softplus:()=>Zo,SpaceToBatchND:()=>Mu,SparseFillEmptyRows:()=>rc,SparseReshape:()=>sc,SparseToDense:()=>ic,SplitV:()=>Yo,Sqrt:()=>qs,Square:()=>Fu,SquaredDifference:()=>Zs,Step:()=>Tr,StridedSlice:()=>Jo,Sub:()=>Ys,Sum:()=>Xs,SymbolicTensor:()=>Sa,Tan:()=>Js,Tanh:()=>Qs,Tensor:()=>Le,TensorBuffer:()=>Dt,Tile:()=>Nr,TopK:()=>Qo,Transform:()=>el,Transpose:()=>ei,Unique:()=>oc,Unpack:()=>tl,UnsortedSegmentSum:()=>$u,Variable:()=>Wu,ZerosLike:()=>nl,_FusedMatMul:()=>ti,abs:()=>Ot,acos:()=>eA,acosh:()=>tA,add:()=>se,addN:()=>bc,all:()=>vc,any:()=>Hu,argMax:()=>Gu,argMin:()=>nA,asin:()=>aA,asinh:()=>rA,atan:()=>sA,atan2:()=>iA,atanh:()=>oA,avgPool:()=>Xu,avgPool3d:()=>dA,backend:()=>Eb,backend_util:()=>C,basicLSTMCell:()=>ST,batchNorm:()=>ci,batchNorm2d:()=>Fb,batchNorm3d:()=>$b,batchNorm4d:()=>Db,batchToSpaceND:()=>Ku,bincount:()=>pA,booleanMaskAsync:()=>MR,broadcastTo:()=>fl,browser:()=>li,buffer:()=>We,callbacks:()=>Vre,cast:()=>fe,ceil:()=>cA,clipByValue:()=>In,clone:()=>Oa,complex:()=>Er,concat:()=>ot,concat1d:()=>Ob,concat2d:()=>ml,concat3d:()=>zb,concat4d:()=>_b,constraints:()=>N6,conv1d:()=>kc,conv2d:()=>rr,conv2dTranspose:()=>Ic,conv3d:()=>fA,conv3dTranspose:()=>Lb,copyRegisteredKernels:()=>KI,cos:()=>Zu,cosh:()=>Sc,cosineWindow:()=>BA,cumsum:()=>Nc,customGrad:()=>_a,data:()=>W8,denseBincount:()=>Wb,deprecationWarn:()=>Jm,depthToSpace:()=>mA,depthwiseConv2d:()=>Al,deregisterOp:()=>Ure,device_util:()=>Vu,diag:()=>eE,dilation2d:()=>AA,disableDeprecationWarnings:()=>PN,dispose:()=>Ee,disposeVariables:()=>LN,div:()=>me,divNoNan:()=>yA,dot:()=>Bb,dropout:()=>l3,einsum:()=>Vb,elu:()=>yl,enableDebugMode:()=>_N,enableProdMode:()=>zN,enclosingPowerOfTwo:()=>u3,engine:()=>ar,env:()=>J,equal:()=>$r,erf:()=>gA,exp:()=>Xn,expandDims:()=>ln,expm1:()=>xA,eye:()=>bA,fft:()=>sd,fill:()=>gl,findBackend:()=>Qm,findBackendFactory:()=>GN,floor:()=>xl,floorDiv:()=>xc,forceHalfFloat:()=>Nv,fused:()=>Pr,gather:()=>hi,gatherND:()=>o3,gather_util:()=>Hm,getBackend:()=>UN,getGradient:()=>Im,getKernel:()=>uc,getKernelsForBackend:()=>sl,gpgpu_util:()=>Z7,grad:()=>RE,grads:()=>ME,greater:()=>Fn,greaterEqual:()=>Or,ifft:()=>Il,imag:()=>Tc,image:()=>Ye,inTopKAsync:()=>VR,initializers:()=>$6,input:()=>I4,io:()=>wn,irfft:()=>jc,isFinite:()=>jb,isInf:()=>Ub,isNaN:()=>vA,keep:()=>jt,kernel_impls:()=>Wa,layers:()=>H6,leakyRelu:()=>Yu,less:()=>Ec,lessEqual:()=>zr,linalg:()=>v3,linspace:()=>Hb,loadGraphModel:()=>Gt,loadLayersModel:()=>Jne,localResponseNormalization:()=>wA,log:()=>$n,log1p:()=>Cc,logSigmoid:()=>qb,logSoftmax:()=>Mc,logSumExp:()=>SA,logicalAnd:()=>la,logicalNot:()=>Ju,logicalOr:()=>Fc,logicalXor:()=>Yb,losses:()=>cF,matMul:()=>Be,math:()=>ub,max:()=>Kn,maxPool:()=>Qu,maxPool3d:()=>NA,maxPoolWithArgmax:()=>Jb,maximum:()=>Pa,mean:()=>wt,memory:()=>gc,meshgrid:()=>QE,metrics:()=>r8,min:()=>bl,minimum:()=>vl,mirrorPad:()=>TA,mod:()=>EA,model:()=>Zne,models:()=>s8,moments:()=>$c,movingAverage:()=>DR,mul:()=>_,multiRNNCell:()=>oC,multinomial:()=>Qb,neg:()=>vt,nextFrame:()=>rh,norm:()=>qc,notEqual:()=>Ai,oneHot:()=>dl,ones:()=>Dn,onesLike:()=>On,op:()=>O,outerProduct:()=>cC,pad:()=>sr,pad1d:()=>mC,pad2d:()=>yC,pad3d:()=>xC,pad4d:()=>vC,pool:()=>e3,pow:()=>ir,prelu:()=>td,print:()=>ab,prod:()=>Dc,profile:()=>WN,rand:()=>RC,randomGamma:()=>DC,randomNormal:()=>t3,randomUniform:()=>wl,range:()=>kl,ready:()=>jN,real:()=>nd,reciprocal:()=>MA,registerBackend:()=>cl,registerCallbackConstructor:()=>Qne,registerGradient:()=>_x,registerKernel:()=>ri,registerOp:()=>jre,regularizers:()=>i8,relu:()=>La,relu6:()=>Oc,removeBackend:()=>HN,reshape:()=>H,reverse:()=>zn,reverse1d:()=>jC,reverse2d:()=>HC,reverse3d:()=>qC,reverse4d:()=>KC,rfft:()=>id,round:()=>zc,rsqrt:()=>_c,scalar:()=>Se,scatterND:()=>i3,scatter_util:()=>Gm,selu:()=>Pc,separableConv2d:()=>FA,sequential:()=>Yne,serialization:()=>ae,setBackend:()=>VN,setPlatform:()=>qN,setWasmPath:()=>nQ,setWasmPaths:()=>aQ,setWebGLContext:()=>ph,setdiff1dAsync:()=>n3,shared:()=>GA,sigmoid:()=>kn,sign:()=>$A,signal:()=>pF,sin:()=>Lc,sinh:()=>Wc,slice:()=>Re,slice1d:()=>Bc,slice2d:()=>DA,slice3d:()=>Vc,slice4d:()=>ad,slice_util:()=>on,softmax:()=>rd,softplus:()=>fi,spaceToBatchND:()=>ed,sparse:()=>w3,sparseToDense:()=>WA,spectral:()=>dF,split:()=>an,sqrt:()=>Jt,square:()=>it,squaredDifference:()=>Uc,squeeze:()=>_r,stack:()=>_n,step:()=>Sl,stridedSlice:()=>OA,sub:()=>ge,sum:()=>ke,sumOutType:()=>hc,tan:()=>zA,tanh:()=>pi,tensor:()=>oa,tensor1d:()=>Tt,tensor2d:()=>ga,tensor3d:()=>Ac,tensor4d:()=>vR,tensor5d:()=>wR,tensor6d:()=>kR,tensor_util:()=>Aa,test_util:()=>Sb,tidy:()=>W,tile:()=>Dr,time:()=>BN,topk:()=>_A,train:()=>gi,transpose:()=>Ze,truncatedNormal:()=>Hc,unique:()=>Gc,unregisterGradient:()=>XI,unregisterKernel:()=>qI,unsortedSegmentSum:()=>PA,unstack:()=>ua,upcastType:()=>ia,util:()=>k,valueAndGrad:()=>FE,valueAndGrads:()=>$E,variable:()=>a3,variableGrads:()=>Gb,version:()=>Rie,version_converter:()=>Use,version_core:()=>ON,version_cpu:()=>n7,version_layers:()=>ly,version_wasm:()=>y6,version_webgl:()=>Sv,webgl:()=>QW,webgl_util:()=>I7,where:()=>nn,whereAsync:()=>LA,zeros:()=>Ct,zerosLike:()=>Ue});var G9=Object.create,Np=Object.defineProperty,q9=Object.getOwnPropertyDescriptor,X9=Object.getOwnPropertyNames,K9=Object.getPrototypeOf,Z9=Object.prototype.hasOwnProperty,Y9=e=>Np(e,"__esModule",{value:!0}),Ji=e=>{if(typeof cm!="undefined")return cm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Np(e,n,{get:t[n],enumerable:!0})},J9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of X9(t))!Z9.call(e,a)&&a!=="default"&&Np(e,a,{get:()=>t[a],enumerable:!(n=q9(t,a))||n.enumerable});return e},Qi=e=>J9(Y9(Np(e!=null?G9(K9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),Q9=xt(()=>{}),eI=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ug=xt(()=>{}),iI=xt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(n)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var P=$.g(i),V=u,j=0;P<d;)P=(P+j)*s,V*=s,j=$.g(1);for(;P>=p;)P/=2,V/=2,j>>>=1;return(P+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(w($.S),n),(v.pass||N||function(P,V,j,U){return U&&(U.S&&A(U,$),P.state=function(){return A($,{})}),j?(a[l]=P,V):P})(z,R,"global"in v?v.global:this==a,v.state)}a["seed"+l]=m;function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(N||(b=[N++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%N]+(v=z[R])],z[$]=v;(T.g=function(P){for(var V,j=0,U=T.i,X=T.j,G=T.S;P--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=r.navigator,N=v&&v.plugins;return[+new Date,r,N,r.screen,w(n)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Ug()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Hg=xt((e,t)=>{var n=eI(),a=tI(),r=nI(),s=aI(),i=rI(),o=sI(),l=iI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),fu=xt(()=>{}),oI=xt(()=>{}),lI=xt(()=>{}),uI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Ve&&Kt(Q.buffer),An}function i(){return Q.buffer!=Ve&&Kt(Q.buffer),gt}function o(){return Q.buffer!=Ve&&Kt(Q.buffer),yn}function l(){return Q.buffer!=Ve&&Kt(Q.buffer),Un}function u(){return Q.buffer!=Ve&&Kt(Q.buffer),rn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(S,E){p=S,c=E});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],A="./this.program",y=function(S,E){throw E},g=!1,x=!1,w=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!w&&!x;var v=d.ENVIRONMENT_IS_PTHREAD||!1;v&&(Ve=d.buffer);var N="";function T(S){return d.locateFile?d.locateFile(S,N):N+S}var R,$,z,P,V,j;if(w){x?N=fu().dirname(N)+"/":N=__dirname+"/",R=function(S,E){return V||(V=Ji("fs")),j||(j=fu()),S=j.normalize(S),V.readFileSync(S,E?null:"utf8")},z=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof hu))throw S}),process.on("unhandledRejection",Ya),y=function(S){process.exit(S)},d.inspect=function(){return"[Emscripten Module object]"};var U;try{U=oI()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(R=function(S){return read(S)}),z=function(S){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(E=read(S,"binary"),ce(typeof E=="object"),E)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(R=function(S,E){return V||(V=Ji("fs")),j||(j=fu()),S=j.normalize(S),V.readFileSync(S,E?null:"utf8")},z=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E}):(R=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.send(null),E.responseText},x&&(z=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),$=function(S,E,L){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}L()},q.onerror=L,q.send(null)}),P=function(S){document.title=S});w&&typeof performance=="undefined"&&(global.performance=lI().performance);var X=d.print||console.log.bind(console),G=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(A=d.thisProgram),d.quit&&(y=d.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,ne;d.wasmBinary&&(ne=d.wasmBinary);var ie=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Ya("no native wasm support detected");var Q,de,oe=!1,ye;function ce(S,E){S||Ya("Assertion failed: "+E)}function Ie(S){var E=d["_"+S];return ce(E,"Cannot call unknown function "+S+", make sure it is exported"),E}function Ne(S,E,L,q,pe){var le={string:function(bn){var Yi=0;if(bn!=null&&bn!==0){var Wg=(bn.length<<2)+1;Yi=Xi(Wg),et(bn,Yi,Wg)}return Yi},array:function(bn){var Yi=Xi(bn.length);return Xe(bn,Yi),Yi}};function ue(bn){return E==="string"?De(bn):E==="boolean"?Boolean(bn):bn}var be=Ie(S),tt=[],Bt=0;if(q)for(var $t=0;$t<q.length;$t++){var vr=le[L[$t]];vr?(Bt===0&&(Bt=cu()),tt[$t]=vr(q[$t])):tt[$t]=q[$t]}var Zi=be.apply(null,tt);return Zi=ue(Zi),Bt!==0&&qi(Bt),Zi}function $e(S,E,L,q){L=L||[];var pe=L.every(function(ue){return ue==="number"}),le=E!=="string";return le&&pe&&!q?Ie(S):function(){return Ne(S,E,L,arguments,q)}}function ze(S,E,L){for(var q=E+L,pe="";!(E>=q);){var le=S[E++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var ue=S[E++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|ue);continue}var be=S[E++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|S[E++]&63,le<65536)pe+=String.fromCharCode(le);else{var tt=le-65536;pe+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return pe}function De(S,E){return S?ze(i(),S,E):""}function Qe(S,E,L,q){if(!(q>0))return 0;for(var pe=L,le=L+q-1,ue=0;ue<S.length;++ue){var be=S.charCodeAt(ue);if(be>=55296&&be<=57343){var tt=S.charCodeAt(++ue);be=65536+((be&1023)<<10)|tt&1023}if(be<=127){if(L>=le)break;E[L++]=be}else if(be<=2047){if(L+1>=le)break;E[L++]=192|be>>6,E[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;E[L++]=224|be>>12,E[L++]=128|be>>6&63,E[L++]=128|be&63}else{if(L+3>=le)break;E[L++]=240|be>>18,E[L++]=128|be>>12&63,E[L++]=128|be>>6&63,E[L++]=128|be&63}}return E[L]=0,L-pe}function et(S,E,L){return Qe(S,i(),E,L)}function st(S){for(var E=0,L=0;L<S.length;++L){var q=S.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++L)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function Xe(S,E){s().set(S,E)}function dt(S,E){return S%E>0&&(S+=E-S%E),S}var Ve,An,gt,jn,Xt,yn,Un,Mn,rn;function Kt(S){Ve=S,d.HEAP8=An=new Int8Array(S),d.HEAP16=jn=new Int16Array(S),d.HEAP32=yn=new Int32Array(S),d.HEAPU8=gt=new Uint8Array(S),d.HEAPU16=Xt=new Uint16Array(S),d.HEAPU32=Un=new Uint32Array(S),d.HEAPF32=Mn=new Float32Array(S),d.HEAPF64=rn=new Float64Array(S)}var Ra=d.INITIAL_MEMORY||16777216;if(v)Q=d.wasmMemory,Ve=d.buffer;else if(d.wasmMemory)Q=d.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Ra/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ve=Q.buffer),Ra=Ve.byteLength,Kt(Ve);var ta,na=[],mr=[],Ka=[],Ar=[],Bi=[],Ma=!1,rp=!1;v||mr.push({func:function(){xp()}});function B0(){if(!v){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)ip(d.preRun.shift());ji(na)}}function au(){Ma=!0,!v&&ji(mr)}function V0(){v||ji(Ka)}function sp(){v||(rp=!0)}function gn(){if(!v){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)j0(d.postRun.shift());ji(Bi)}}function ip(S){na.unshift(S)}function j0(S){Bi.unshift(S)}var Za=0,yr=null,ns=null;function U0(S){ce(!v,"addRunDependency cannot be used in a pthread worker"),Za++,d.monitorRunDependencies&&d.monitorRunDependencies(Za)}function H0(S){if(Za--,d.monitorRunDependencies&&d.monitorRunDependencies(Za),Za==0&&(yr!==null&&(clearInterval(yr),yr=null),ns)){var E=ns;ns=null,E()}}d.preloadedImages={},d.preloadedAudios={};function Ya(S){d.onAbort&&d.onAbort(S),v&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,ye=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(S);throw c(E),E}function op(S,E){return String.prototype.startsWith?S.startsWith(E):S.indexOf(E)===0}var Vi="data:application/octet-stream;base64,";function lp(S){return op(S,Vi)}var G0="file://";function up(S){return op(S,G0)}var xn="tfjs-backend-wasm-threaded-simd.wasm";lp(xn)||(xn=T(xn));function dp(S){try{if(S==xn&&ne)return new Uint8Array(ne);if(z)return z(S);throw"both async and sync fetching of the wasm failed"}catch(E){Ya(E)}}function q0(){if(!ne&&(g||x)){if(typeof fetch=="function"&&!up(xn))return fetch(xn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+xn+"'";return S.arrayBuffer()}).catch(function(){return dp(xn)});if($)return new Promise(function(S,E){$(xn,function(L){S(new Uint8Array(L))},E)})}return Promise.resolve().then(function(){return dp(xn)})}function X0(){var S={a:Lf};function E(ue,be){var tt=ue.exports;if(d.asm=tt,ta=d.asm.F,de=be,!v){var Bt=we.unusedWorkers.length;we.unusedWorkers.forEach(function($t){we.loadWasmModuleToWorker($t,function(){--Bt||H0("wasm-instantiate")})})}}v||U0("wasm-instantiate");function L(ue){E(ue.instance,ue.module)}function q(ue){return q0().then(function(be){return WebAssembly.instantiate(be,S)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),Ya(be)})}function pe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!lp(xn)&&!up(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,S);return be.then(L,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(d.instantiateWasm)try{var le=d.instantiateWasm(S,E);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return pe().catch(c),{}}var K0={9816:function(){throw"Canceled!"},9834:function(S,E){setTimeout(function(){Dg(S,E)},0)}};function pp(){we.initRuntime()}function ji(S){for(;S.length>0;){var E=S.shift();if(typeof E=="function"){E(d);continue}var L=E.func;typeof L=="number"?E.arg===void 0?ta.get(L)():ta.get(L)(E.arg):L(E.arg===void 0?null:E.arg)}}function ru(S,E){if(S<=0||S>s().length||S&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var L=Atomics.load(o(),Ki>>2),q=0;if(L==S){var pe=Atomics.compareExchange(o(),Ki>>2,L,0);if(pe==L&&(--E,q=1,E<=0))return 1}var le=Atomics.notify(o(),S>>2,E);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}d._emscripten_futex_wake=ru;function Z0(S){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var E=we.pthreads[S];E.worker.terminate(),we.freeThreadData(E),we.runningWorkers.splice(we.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function Y0(S){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=we.pthreads[S];E.worker.postMessage({cmd:"cancel"})}function J0(S){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=we.pthreads[S];if(E){o()[S+12>>2]=0;var L=E.worker;we.returnWorkerToPool(L)}}var we={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),E=0;E<S;++E)we.allocateUnusedWorker()},initRuntime:function(){for(var S=rs(228),E=0;E<228/4;++E)l()[S/4+E]=0;o()[S+12>>2]=S;var L=S+152;o()[L>>2]=L;for(var q=rs(512),E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),dm(S,!x,1),$g(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;we.threadExitHandlers.length>0;)we.threadExitHandlers.pop()();v&&Gi()&&Fg()},runExitHandlersAndDeinitThread:function(S,E){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),we.runExitHandlers(),Atomics.store(l(),S+4>>2,E),Atomics.store(l(),S+0>>2,1),ru(S+0,2147483647),dm(0,0,0)},threadExit:function(S){var E=Gi();E&&(we.runExitHandlersAndDeinitThread(E,S),v&&postMessage({cmd:"exit"}))},threadCancel:function(){we.runExitHandlersAndDeinitThread(Gi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in we.pthreads){var E=we.pthreads[S];E&&E.worker&&we.returnWorkerToPool(E.worker)}we.pthreads={};for(var L=0;L<we.unusedWorkers.length;++L){var q=we.unusedWorkers[L];q.terminate()}we.unusedWorkers=[];for(var L=0;L<we.runningWorkers.length;++L){var q=we.runningWorkers[L],E=q.pthread;we.freeThreadData(E),q.terminate()}we.runningWorkers=[]},freeThreadData:function(S){if(S){if(S.threadInfoStruct){var E=o()[S.threadInfoStruct+100>>2];o()[S.threadInfoStruct+100>>2]=0,pu(E),pu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&pu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){we.runWithoutMainThreadQueuedCalls(function(){delete we.pthreads[S.pthread.threadInfoStruct],we.unusedWorkers.push(S),we.runningWorkers.splice(we.runningWorkers.indexOf(S),1),we.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[Lg>>2]=0;try{S()}finally{o()[Lg>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,E){S.onmessage=function(L){var q=L.data,pe=q.cmd;if(S.pthread&&(we.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Gi()){var le=we.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),we.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")lm();else if(pe==="spawnThread")yp(L.data);else if(pe==="cleanupThread")J0(q.thread);else if(pe==="killThread")Z0(q.thread);else if(pe==="cancelThread")Y0(q.thread);else if(pe==="loaded")S.loaded=!0,E&&E(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(pe==="print")X("Thread "+q.threadId+": "+q.text);else if(pe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(pe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(pe==="exit"){var ue=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ue&&we.returnWorkerToPool(S)}else if(pe==="exitProcess")try{U9(q.returnCode)}catch(be){if(be instanceof hu)return;throw be}else pe==="cancelDone"?we.returnWorkerToPool(S):pe==="objectTransfer"?we.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):G("worker sent an unknown command "+pe);we.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){G("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},w&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:de})},allocateUnusedWorker:function(){var S=T("tfjs-backend-wasm-threaded-simd.worker.js");we.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return we.unusedWorkers.length==0&&(we.allocateUnusedWorker(),we.loadWasmModuleToWorker(we.unusedWorkers[0])),we.unusedWorkers.length>0?we.unusedWorkers.pop():null},busySpinWait:function(S){for(var E=performance.now()+S;performance.now()<E;);}};function Q0(S,E){_g(S,E),qi(S)}d.establishStackSpace=Q0;function ef(){return ie}d.getNoExitRuntime=ef;function tf(S,E){return ta.get(S)(E)}d.invokeEntryPoint=tf;function nf(S,E,L,q){Ya("Assertion failed: "+De(S)+", at: "+[E?De(E):"unknown filename",L,q?De(q):"unknown function"])}function af(S,E){var L=_main(S,E)}var as;w?as=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:v?as=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?as=dateNow:as=function(){return performance.now()};function rf(S){return o()[Rg()>>2]=S,S}function sf(S,E){if(v)return gr(1,1,S,E)}function of(S,E){if(S==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=we.pthreads[S],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function lf(){Ya()}function uf(S,E,L){var q=ff(E,L);return K0[S].apply(null,q)}function df(S,E){}function pf(S,E,L){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=E)return-6;for(var q=performance.now(),pe=q+L,le=Atomics.exchange(o(),Ki>>2,S);;){if(q=performance.now(),q>pe)return le=Atomics.exchange(o(),Ki>>2,0),-73;if(le=Atomics.exchange(o(),Ki>>2,0),le==0)break;if(lm(),Atomics.load(o(),S>>2)!=E)return-6;le=Atomics.exchange(o(),Ki>>2,S)}return 0}else{var ue=Atomics.wait(o(),S>>2,E,L);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function cf(S,E,L){i().copyWithin(S,E,E+L)}function hf(){return w?Ji("os").cpus().length:navigator.hardwareConcurrency}function gr(S,E){for(var L=arguments.length-2,q=cu(),pe=L,le=Xi(pe*8),ue=le>>3,be=0;be<L;be++){var tt=arguments[2+be];u()[ue+be]=tt}var Bt=zg(S,pe,le,E);return qi(q),Bt}var su=[],iu=[];function ff(S,E){iu.length=0;var L;for(E>>=2;L=i()[S++];){var q=L<105;q&&E&1&&E++,iu.push(q?u()[E++>>1]:o()[E]),++E}return iu}function mf(S,E,L){su.length=E;for(var q=L>>3,pe=0;pe<E;pe++)su[pe]=u()[q+pe];var le=S<0,ue=le?K0[-S-1]:Pf[S];return ue.apply(null,su)}function Af(){return i().length}function yf(S){try{return Q.grow(S-Ve.byteLength+65535>>>16),Kt(Q.buffer),1}catch(E){}}function gf(S){var E=Af();if(S<=E)return!1;var L=2147483648;if(S>L)return!1;for(var q=1;q<=4;q*=2){var pe=E*(1+.2/q);pe=Math.min(pe,S+100663296);var le=Math.min(L,dt(Math.max(S,pe),65536)),ue=yf(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var S=Pe.eventHandlers.length-1;S>=0;--S)Pe._removeHandler(S);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(Ar.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,E,L){function q(ue,be){if(ue.length!=be.length)return!1;for(var tt in ue)if(ue[tt]!=be[tt])return!1;return!0}for(var pe in Pe.deferredCalls){var le=Pe.deferredCalls[pe];if(le.targetFunction==S&&q(le.argsList,L))return}Pe.deferredCalls.push({targetFunction:S,precedence:E,argsList:L}),Pe.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(S){for(var E=0;E<Pe.deferredCalls.length;++E)Pe.deferredCalls[E].targetFunction==S&&(Pe.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var S=0;S<Pe.deferredCalls.length;++S){var E=Pe.deferredCalls[S];Pe.deferredCalls.splice(S,1),--S,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,E){for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S&&(!E||E==Pe.eventHandlers[L].eventTypeString)&&Pe._removeHandler(L--)},_removeHandler:function(S){var E=Pe.eventHandlers[S];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Pe.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var E=function(q){++Pe.inEventHandler,Pe.currentEventHandler=S,Pe.runDeferredCalls(),S.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=E,S.target.addEventListener(S.eventTypeString,E,S.useCapture),Pe.eventHandlers.push(S),Pe.registerRemoveEventListeners();else for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S.target&&Pe.eventHandlers[L].eventTypeString==S.eventTypeString&&Pe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,E,L,q,pe){var le=cu(),ue=Xi(12);o()[ue>>2]=L,o()[ue+4>>2]=q,o()[ue+8>>2]=pe,um(0,S,637534208,E,q,ue),qi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return we.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function xf(S){var E=st(S)+1,L=rs(E);return et(S,L,E),L}function bf(S,E,L,q){var pe=cu(),le=Xi(12),ue=0;E&&(ue=xf(E)),o()[le>>2]=ue,o()[le+4>>2]=L,o()[le+8>>2]=q,um(0,S,657457152,0,ue,le),qi(pe)}function vf(S,E,L,q){E=E?De(E):"",bf(S,E,L,q)}function wf(S){return S>2?De(S):S}var kf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function If(S){S=wf(S);var E=kf[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return E}function ou(S){return If(S)}function cp(S,E,L){var q=ou(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var pe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=E,q.height=L,pe&&q.GLctxObject.GLctx.viewport(0,0,E,L)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return vf(ue,S,E,L),1}else return-4;return 0}function hp(S,E,L){return v?gr(2,1,S,E,L):cp(S,E,L)}function Sf(S,E,L){var q=ou(S);return q?cp(S,E,L):hp(S,E,L)}function Nf(S){}function Tf(S,E){}function Ef(S){var E=S.getExtension("ANGLE_instanced_arrays");if(E)return S.vertexAttribDivisor=function(L,q){E.vertexAttribDivisorANGLE(L,q)},S.drawArraysInstanced=function(L,q,pe,le){E.drawArraysInstancedANGLE(L,q,pe,le)},S.drawElementsInstanced=function(L,q,pe,le,ue){E.drawElementsInstancedANGLE(L,q,pe,le,ue)},1}function Cf(S){var E=S.getExtension("OES_vertex_array_object");if(E)return S.createVertexArray=function(){return E.createVertexArrayOES()},S.deleteVertexArray=function(L){E.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){E.bindVertexArrayOES(L)},S.isVertexArray=function(L){return E.isVertexArrayOES(L)},1}function Rf(S){var E=S.getExtension("WEBGL_draw_buffers");if(E)return S.drawBuffers=function(L,q){E.drawBuffersWEBGL(L,q)},1}function Mf(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Je.lastError||(Je.lastError=S)},getNewId:function(S){for(var E=Je.counter++,L=S.length;L<E;L++)S[L]=null;return E},getSource:function(S,E,L,q){for(var pe="",le=0;le<E;++le){var ue=q?o()[q+le*4>>2]:-1;pe+=De(o()[L+le*4>>2],ue<0?void 0:ue)}return pe},createContext:function(S,E){var L=S.getContext("webgl",E);if(!L)return 0;var q=Je.registerContext(L,E);return q},registerContext:function(S,E){var L=rs(8);o()[L+4>>2]=Gi();var q={handle:L,attributes:E,version:E.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Je.contexts[L]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&Je.initExtensions(q),L},makeContextCurrent:function(S){return Je.currentContext=Je.contexts[S],d.ctx=xr=Je.currentContext&&Je.currentContext.GLctx,!(S&&!xr)},getContext:function(S){return Je.contexts[S]},deleteContext:function(S){Je.currentContext===Je.contexts[S]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[S].GLctx.canvas),Je.contexts[S]&&Je.contexts[S].GLctx.canvas&&(Je.contexts[S].GLctx.canvas.GLctxObject=void 0),pu(Je.contexts[S].handle),Je.contexts[S]=null},initExtensions:function(S){if(S||(S=Je.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var E=S.GLctx;Ef(E),Cf(E),Rf(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),Mf(E);var L=E.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&E.getExtension(q)})}},populateUniformTable:function(S){for(var E=Je.programs[S],L=Je.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,pe=xr.getProgramParameter(E,35718),le=0;le<pe;++le){var ue=xr.getActiveUniform(E,le),be=ue.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var tt=xr.getUniformLocation(E,be);if(tt){var Bt=Je.getNewId(Je.uniforms);q[be]=[ue.size,Bt],Je.uniforms[Bt]=tt;for(var $t=1;$t<ue.size;++$t){var vr=be+"["+$t+"]";tt=xr.getUniformLocation(E,vr),Bt=Je.getNewId(Je.uniforms),Je.uniforms[Bt]=tt}}}}},Ff=["default","low-power","high-performance"];function $f(S,E){var L=E>>2,q=o()[L+(24>>2)],pe={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:Ff[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=ou(S);if(!le||pe.explicitSwapControl)return 0;var ue=Je.createContext(le,pe);return ue}function Df(S,E){return $f(S,E)}var Ui={mappings:{},buffers:[null,[],[]],printChar:function(S,E){var L=Ui.buffers[S];E===0||E===10?((S===1?X:G)(ze(L,0)),L.length=0):L.push(E)},varargs:void 0,get:function(){Ui.varargs+=4;var S=o()[Ui.varargs-4>>2];return S},getStr:function(S){var E=De(S);return E},get64:function(S,E){return S}};function fp(S){return v?gr(3,1,S):0}function mp(S,E,L,q,pe){if(v)return gr(4,1,S,E,L,q,pe)}function Ap(S,E,L,q){if(v)return gr(5,1,S,E,L,q);for(var pe=0,le=0;le<L;le++){for(var ue=o()[E+le*8>>2],be=o()[E+(le*8+4)>>2],tt=0;tt<be;tt++)Ui.printChar(S,i()[ue+tt]);pe+=be}return o()[q>>2]=pe,0}function Of(S){var E=we.threadExitHandlers.pop();S&&E()}function zf(S,E){we.threadExitHandlers.push(function(){ta.get(S)(E)})}function yp(S){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=we.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";we.runningWorkers.push(E);for(var L=rs(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var pe=S.stackBase+S.stackSize,le=we.pthreads[S.pthread_ptr]={worker:E,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),S.detached),Atomics.store(l(),ue+(100>>2),L),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),S.stackSize),Atomics.store(l(),ue+(76>>2),pe),Atomics.store(l(),ue+(104>>2),S.stackSize),Atomics.store(l(),ue+(104+8>>2),pe),Atomics.store(l(),ue+(104+12>>2),S.detached);var be=Mg(),tt=be+40;Atomics.store(l(),ue+(172>>2),tt),E.pthread=le;var Bt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};E.runPthread=function(){Bt.time=performance.now(),E.postMessage(Bt,S.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function _f(S,E,L,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(v&&(pe.length===0||le))return Og(687865856,S,E,L,q);if(le)return le;var ue=0,be=0,tt=0;E&&E!=-1?(ue=o()[E>>2],ue+=81920,be=o()[E+8>>2],tt=o()[E+12>>2]!==0):ue=2097152;var Bt=be==0;Bt?be=Pg(16,ue):(be-=ue,ce(be>0));for(var $t=rs(228),vr=0;vr<228>>2;++vr)l()[($t>>2)+vr]=0;o()[S>>2]=$t,o()[$t+12>>2]=$t;var Zi=$t+152;o()[Zi>>2]=Zi;var bn={stackBase:be,stackSize:ue,allocatedOwnStack:Bt,detached:tt,startRoutine:L,pthread_ptr:$t,arg:q,transferList:pe};return v?(bn.cmd="spawnThread",postMessage(bn,pe)):yp(bn),0}function gp(S){if(v)return gr(6,1,S);switch(S){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return rf(28),-1}v||we.initMainThreadBlock();var xr,Pf=[null,sf,hp,fp,mp,Ap,gp],Lf={e:nf,r:af,x:of,b:lf,y:uf,j:df,c:pf,d:ru,f:as,p:cf,z:hf,u:mf,q:gf,v:Sf,i:Nf,t:Tf,w:Df,m:fp,n:mp,g:Ap,o:pp,a:Q||d.wasmMemory,k:Of,l:zf,h:_f,s:gp},Cg=X0(),xp=d.___wasm_call_ctors=function(){return(xp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},Wf=d._init=function(){return(Wf=d._init=d.asm.B).apply(null,arguments)},Bf=d._register_tensor=function(){return(Bf=d._register_tensor=d.asm.C).apply(null,arguments)},Vf=d._dispose_data=function(){return(Vf=d._dispose_data=d.asm.D).apply(null,arguments)},jf=d._dispose=function(){return(jf=d._dispose=d.asm.E).apply(null,arguments)},Uf=d._Abs=function(){return(Uf=d._Abs=d.asm.G).apply(null,arguments)},Hf=d._Add=function(){return(Hf=d._Add=d.asm.H).apply(null,arguments)},Gf=d._AddN=function(){return(Gf=d._AddN=d.asm.I).apply(null,arguments)},qf=d._All=function(){return(qf=d._All=d.asm.J).apply(null,arguments)},Xf=d._Any=function(){return(Xf=d._Any=d.asm.K).apply(null,arguments)},Kf=d._ArgMax=function(){return(Kf=d._ArgMax=d.asm.L).apply(null,arguments)},Zf=d._AvgPool=function(){return(Zf=d._AvgPool=d.asm.M).apply(null,arguments)},Yf=d._BatchMatMul=function(){return(Yf=d._BatchMatMul=d.asm.N).apply(null,arguments)},Jf=d._Ceil=function(){return(Jf=d._Ceil=d.asm.O).apply(null,arguments)},Qf=d._ClipByValue=function(){return(Qf=d._ClipByValue=d.asm.P).apply(null,arguments)},em=d._Conv2D=function(){return(em=d._Conv2D=d.asm.Q).apply(null,arguments)},tm=d._Conv2DBackpropInput=function(){return(tm=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},nm=d._Cos=function(){return(nm=d._Cos=d.asm.S).apply(null,arguments)},am=d._CropAndResize=function(){return(am=d._CropAndResize=d.asm.T).apply(null,arguments)},rm=d._Cumsum=function(){return(rm=d._Cumsum=d.asm.U).apply(null,arguments)},sm=d._DepthToSpace=function(){return(sm=d._DepthToSpace=d.asm.V).apply(null,arguments)},im=d._DepthwiseConv2dNative=function(){return(im=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},bp=d._Equal=function(){return(bp=d._Equal=d.asm.X).apply(null,arguments)},vp=d._Exp=function(){return(vp=d._Exp=d.asm.Y).apply(null,arguments)},wp=d._FlipLeftRight=function(){return(wp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},lu=d._Floor=function(){return(lu=d._Floor=d.asm._).apply(null,arguments)},Hi=d._FloorDiv=function(){return(Hi=d._FloorDiv=d.asm.$).apply(null,arguments)},om=d._FusedBatchNorm=function(){return(om=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},uu=d._FusedConv2D=function(){return(uu=d._FusedConv2D=d.asm.ba).apply(null,arguments)},K=d._FusedDepthwiseConv2D=function(){return(K=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},te=d._Gather=function(){return(te=d._Gather=d.asm.da).apply(null,arguments)},Te=d._GatherNd=function(){return(Te=d._GatherNd=d.asm.ea).apply(null,arguments)},Ke=d._Greater=function(){return(Ke=d._Greater=d.asm.fa).apply(null,arguments)},It=d._GreaterEqual=function(){return(It=d._GreaterEqual=d.asm.ga).apply(null,arguments)},ft=d._LeakyRelu=function(){return(ft=d._LeakyRelu=d.asm.ha).apply(null,arguments)},je=d._Less=function(){return(je=d._Less=d.asm.ia).apply(null,arguments)},He=d._LessEqual=function(){return(He=d._LessEqual=d.asm.ja).apply(null,arguments)},Zt=d._Log=function(){return(Zt=d._Log=d.asm.ka).apply(null,arguments)},Ja=d._LogicalAnd=function(){return(Ja=d._LogicalAnd=d.asm.la).apply(null,arguments)},Qa=d._Max=function(){return(Qa=d._Max=d.asm.ma).apply(null,arguments)},kp=d._MaxPool=function(){return(kp=d._MaxPool=d.asm.na).apply(null,arguments)},du=d._Maximum=function(){return(du=d._Maximum=d.asm.oa).apply(null,arguments)},Hn=d._Mean=function(){return(Hn=d._Mean=d.asm.pa).apply(null,arguments)},br=d._Min=function(){return(br=d._Min=d.asm.qa).apply(null,arguments)},Ip=d._Minimum=function(){return(Ip=d._Minimum=d.asm.ra).apply(null,arguments)},a9=d._MirrorPad=function(){return(a9=d._MirrorPad=d.asm.sa).apply(null,arguments)},r9=d._Multiply=function(){return(r9=d._Multiply=d.asm.ta).apply(null,arguments)},s9=d._Neg=function(){return(s9=d._Neg=d.asm.ua).apply(null,arguments)},i9=d._NonMaxSuppressionV3=function(){return(i9=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},o9=d._NonMaxSuppressionV4=function(){return(o9=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},l9=d._NonMaxSuppressionV5=function(){return(l9=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},u9=d._NotEqual=function(){return(u9=d._NotEqual=d.asm.ya).apply(null,arguments)},d9=d._OneHot=function(){return(d9=d._OneHot=d.asm.za).apply(null,arguments)},p9=d._PadV2=function(){return(p9=d._PadV2=d.asm.Aa).apply(null,arguments)},c9=d._Pow=function(){return(c9=d._Pow=d.asm.Ba).apply(null,arguments)},h9=d._Prelu=function(){return(h9=d._Prelu=d.asm.Ca).apply(null,arguments)},f9=d._Prod=function(){return(f9=d._Prod=d.asm.Da).apply(null,arguments)},m9=d._RealDiv=function(){return(m9=d._RealDiv=d.asm.Ea).apply(null,arguments)},A9=d._Relu=function(){return(A9=d._Relu=d.asm.Fa).apply(null,arguments)},y9=d._Relu6=function(){return(y9=d._Relu6=d.asm.Ga).apply(null,arguments)},g9=d._ResizeBilinear=function(){return(g9=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},x9=d._Reverse=function(){return(x9=d._Reverse=d.asm.Ia).apply(null,arguments)},b9=d._RotateWithOffset=function(){return(b9=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},v9=d._Round=function(){return(v9=d._Round=d.asm.Ka).apply(null,arguments)},w9=d._Rsqrt=function(){return(w9=d._Rsqrt=d.asm.La).apply(null,arguments)},k9=d._ScatterNd=function(){return(k9=d._ScatterNd=d.asm.Ma).apply(null,arguments)},I9=d._SelectV2=function(){return(I9=d._SelectV2=d.asm.Na).apply(null,arguments)},S9=d._Sigmoid=function(){return(S9=d._Sigmoid=d.asm.Oa).apply(null,arguments)},N9=d._Sin=function(){return(N9=d._Sin=d.asm.Pa).apply(null,arguments)},T9=d._Softmax=function(){return(T9=d._Softmax=d.asm.Qa).apply(null,arguments)},E9=d._Sqrt=function(){return(E9=d._Sqrt=d.asm.Ra).apply(null,arguments)},C9=d._Square=function(){return(C9=d._Square=d.asm.Sa).apply(null,arguments)},R9=d._SquaredDifference=function(){return(R9=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},M9=d._Step=function(){return(M9=d._Step=d.asm.Ua).apply(null,arguments)},F9=d._StridedSlice=function(){return(F9=d._StridedSlice=d.asm.Va).apply(null,arguments)},$9=d._Sub=function(){return($9=d._Sub=d.asm.Wa).apply(null,arguments)},D9=d._Sum=function(){return(D9=d._Sum=d.asm.Xa).apply(null,arguments)},O9=d._Tan=function(){return(O9=d._Tan=d.asm.Ya).apply(null,arguments)},z9=d._Tanh=function(){return(z9=d._Tanh=d.asm.Za).apply(null,arguments)},_9=d._Tile=function(){return(_9=d._Tile=d.asm._a).apply(null,arguments)},P9=d._TopK=function(){return(P9=d._TopK=d.asm.$a).apply(null,arguments)},L9=d._Transform=function(){return(L9=d._Transform=d.asm.ab).apply(null,arguments)},W9=d._Transpose=function(){return(W9=d._Transpose=d.asm.bb).apply(null,arguments)},B9=d.__FusedMatMul=function(){return(B9=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},rs=d._malloc=function(){return(rs=d._malloc=d.asm.db).apply(null,arguments)},pu=d._free=function(){return(pu=d._free=d.asm.eb).apply(null,arguments)},Rg=d.___errno_location=function(){return(Rg=d.___errno_location=d.asm.fb).apply(null,arguments)},Mg=d._emscripten_get_global_libc=function(){return(Mg=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},Gi=d._pthread_self=function(){return(Gi=d._pthread_self=d.asm.hb).apply(null,arguments)},Fg=d.___pthread_tsd_run_dtors=function(){return(Fg=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},lm=d._emscripten_main_thread_process_queued_calls=function(){return(lm=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},V9=d._emscripten_current_thread_process_queued_calls=function(){return(V9=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},$g=d._emscripten_register_main_browser_thread_id=function(){return($g=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},Dg=d.__emscripten_do_dispatch_to_thread=function(){return(Dg=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},Og=d._emscripten_sync_run_in_main_thread_4=function(){return(Og=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},zg=d._emscripten_run_in_main_runtime_thread_js=function(){return(zg=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},um=d.__emscripten_call_on_thread=function(){return(um=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},j9=d._emscripten_tls_init=function(){return(j9=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},dm=d.__emscripten_thread_init=function(){return(dm=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},cu=d.stackSave=function(){return(cu=d.stackSave=d.asm.sb).apply(null,arguments)},qi=d.stackRestore=function(){return(qi=d.stackRestore=d.asm.tb).apply(null,arguments)},Xi=d.stackAlloc=function(){return(Xi=d.stackAlloc=d.asm.ub).apply(null,arguments)},_g=d._emscripten_stack_set_limits=function(){return(_g=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},Pg=d._memalign=function(){return(Pg=d._memalign=d.asm.wb).apply(null,arguments)},Lg=d.__emscripten_allow_main_runtime_queued_calls=9808,Ki=d.__emscripten_main_thread_futex=11432;d.cwrap=$e,d.PThread=we,d.PThread=we,d.wasmMemory=Q,d.ExitStatus=hu;var Sp;function hu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}ns=function S(){Sp||pm(),Sp||(ns=S)};function pm(S){if(S=S||f,Za>0)return;if(v){p(d),au(),postMessage({cmd:"loaded"});return}if(B0(),Za>0)return;function E(){Sp||(Sp=!0,d.calledRun=!0,!oe&&(au(),V0(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),gn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),E()},1)):E()}d.run=pm;function U9(S,E){if(!(E&&ie&&S===0)){if(!E&&v)throw postMessage({cmd:"exitProcess",returnCode:S}),new hu(S);ie||(we.terminateAllThreads(),ye=S,sp(),d.onExit&&d.onExit(S),oe=!0),y(S,new hu(S))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return v&&(ie=!1,we.initWorker()),pm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),dI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,te){i=K,o=te});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],p="./this.program",c=function(K,te){throw te},h=!1,m=!1,f=!1,A=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!h&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,w,b,v,N,T;f?(m?y=fu().dirname(y)+"/":y=__dirname+"/",x=function(K,te){return N||(N=Ji("fs")),T||(T=fu()),K=T.normalize(K),N.readFileSync(K,te?null:"utf8")},b=function(K){var te=x(K,!0);return te.buffer||(te=new Uint8Array(te)),X(te.buffer),te},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof om))throw K}),process.on("unhandledRejection",Ma),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(te=read(K,"binary"),X(typeof te=="object"),te)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.send(null),te.responseText},m&&(b=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),w=function(K,te,Te){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){te(Ke.response);return}Te()},Ke.onerror=Te,Ke.send(null)},v=function(K){document.title=K});var R=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var z;s.wasmBinary&&(z=s.wasmBinary);var P=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ma("no native wasm support detected");var V,j=!1,U;function X(K,te){K||Ma("Assertion failed: "+te)}function G(K){var te=s["_"+K];return X(te,"Cannot call unknown function "+K+", make sure it is exported"),te}function ee(K,te,Te,Ke,It){var ft={string:function(Hn){var br=0;if(Hn!=null&&Hn!==0){var Ip=(Hn.length<<2)+1;br=lu(Ip),de(Hn,br,Ip)}return br},array:function(Hn){var br=lu(Hn.length);return oe(Hn,br),br}};function je(Hn){return te==="string"?ie(Hn):te==="boolean"?Boolean(Hn):Hn}var He=G(K),Zt=[],Ja=0;if(Ke)for(var Qa=0;Qa<Ke.length;Qa++){var kp=ft[Te[Qa]];kp?(Ja===0&&(Ja=vp()),Zt[Qa]=kp(Ke[Qa])):Zt[Qa]=Ke[Qa]}var du=He.apply(null,Zt);return du=je(du),Ja!==0&&wp(Ja),du}function Y(K,te,Te,Ke){Te=Te||[];var It=Te.every(function(je){return je==="number"}),ft=te!=="string";return ft&&It&&!Ke?G(K):function(){return ee(K,te,Te,arguments,Ke)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,te,Te){for(var Ke=te+Te,It=te;K[It]&&!(It>=Ke);)++It;if(It-te>16&&K.subarray&&re)return re.decode(K.subarray(te,It));for(var ft="";te<It;){var je=K[te++];if(!(je&128)){ft+=String.fromCharCode(je);continue}var He=K[te++]&63;if((je&224)==192){ft+=String.fromCharCode((je&31)<<6|He);continue}var Zt=K[te++]&63;if((je&240)==224?je=(je&15)<<12|He<<6|Zt:je=(je&7)<<18|He<<12|Zt<<6|K[te++]&63,je<65536)ft+=String.fromCharCode(je);else{var Ja=je-65536;ft+=String.fromCharCode(55296|Ja>>10,56320|Ja&1023)}}return ft}function ie(K,te){return K?ne(Ne,K,te):""}function Q(K,te,Te,Ke){if(!(Ke>0))return 0;for(var It=Te,ft=Te+Ke-1,je=0;je<K.length;++je){var He=K.charCodeAt(je);if(He>=55296&&He<=57343){var Zt=K.charCodeAt(++je);He=65536+((He&1023)<<10)|Zt&1023}if(He<=127){if(Te>=ft)break;te[Te++]=He}else if(He<=2047){if(Te+1>=ft)break;te[Te++]=192|He>>6,te[Te++]=128|He&63}else if(He<=65535){if(Te+2>=ft)break;te[Te++]=224|He>>12,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}else{if(Te+3>=ft)break;te[Te++]=240|He>>18,te[Te++]=128|He>>12&63,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}}return te[Te]=0,Te-It}function de(K,te,Te){return Q(K,Ne,te,Te)}function oe(K,te){Ie.set(K,te)}function ye(K,te){return K%te>0&&(K+=te-K%te),K}var ce,Ie,Ne,$e,ze,De,Qe,et,st;function Xe(K){ce=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Ne=new Uint8Array(K),s.HEAPU16=ze=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,Ve,An=[],gt=[],jn=[],Xt=[],yn=!1;gt.push({func:function(){pp()}});function Un(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ra(s.preRun.shift());yr(An)}function Mn(){yn=!0,yr(gt)}function rn(){yr(jn)}function Kt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ta(s.postRun.shift());yr(Xt)}function Ra(K){An.unshift(K)}function ta(K){Xt.unshift(K)}var na=0,mr=null,Ka=null;function Ar(K){na++,s.monitorRunDependencies&&s.monitorRunDependencies(na)}function Bi(K){if(na--,s.monitorRunDependencies&&s.monitorRunDependencies(na),na==0&&(mr!==null&&(clearInterval(mr),mr=null),Ka)){var te=Ka;Ka=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ma(K){s.onAbort&&s.onAbort(K),K+="",$(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(K);throw o(te),te}function rp(K,te){return String.prototype.startsWith?K.startsWith(te):K.indexOf(te)===0}var B0="data:application/octet-stream;base64,";function au(K){return rp(K,B0)}var V0="file://";function sp(K){return rp(K,V0)}var gn="tfjs-backend-wasm.wasm";au(gn)||(gn=g(gn));function ip(K){try{if(K==gn&&z)return new Uint8Array(z);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(te){Ma(te)}}function j0(){if(!z&&(h||m)){if(typeof fetch=="function"&&!sp(gn))return fetch(gn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+gn+"'";return K.arrayBuffer()}).catch(function(){return ip(gn)});if(w)return new Promise(function(K,te){w(gn,function(Te){K(new Uint8Array(Te))},te)})}return Promise.resolve().then(function(){return ip(gn)})}function Za(){var K={a:X0};function te(je,He){var Zt=je.exports;s.asm=Zt,V=s.asm.i,Xe(V.buffer),Ve=s.asm.o,Bi("wasm-instantiate")}Ar("wasm-instantiate");function Te(je){te(je.instance)}function Ke(je){return j0().then(function(He){return WebAssembly.instantiate(He,K)}).then(je,function(He){$("failed to asynchronously prepare wasm: "+He),Ma(He)})}function It(){return!z&&typeof WebAssembly.instantiateStreaming=="function"&&!au(gn)&&!sp(gn)&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(je){var He=WebAssembly.instantiateStreaming(je,K);return He.then(Te,function(Zt){return $("wasm streaming compile failed: "+Zt),$("falling back to ArrayBuffer instantiation"),Ke(Te)})}):Ke(Te)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,te);return ft}catch(je){return $("Module.instantiateWasm callback failed with error: "+je),!1}return It().catch(o),{}}function yr(K){for(;K.length>0;){var te=K.shift();if(typeof te=="function"){te(s);continue}var Te=te.func;typeof Te=="number"?te.arg===void 0?Ve.get(Te)():Ve.get(Te)(te.arg):Te(te.arg===void 0?null:te.arg)}}function ns(){Ma()}function U0(K,te,Te){Ne.copyWithin(K,te,te+Te)}function H0(){return Ne.length}function Ya(K){try{return V.grow(K-ce.byteLength+65535>>>16),Xe(V.buffer),1}catch(te){}}function op(K){var te=H0(),Te=2147483648;if(K>Te)return!1;for(var Ke=1;Ke<=4;Ke*=2){var It=te*(1+.2/Ke);It=Math.min(It,K+100663296);var ft=Math.min(Te,ye(Math.max(K,It),65536)),je=Ya(ft);if(je)return!0}return!1}var Vi={mappings:{},buffers:[null,[],[]],printChar:function(K,te){var Te=Vi.buffers[K];te===0||te===10?((K===1?R:$)(ne(Te,0)),Te.length=0):Te.push(te)},varargs:void 0,get:function(){Vi.varargs+=4;var K=De[Vi.varargs-4>>2];return K},getStr:function(K){var te=ie(K);return te},get64:function(K,te){return K}};function lp(K){return 0}function G0(K,te,Te,Ke,It){}function up(K,te,Te,Ke){for(var It=0,ft=0;ft<Te;ft++){for(var je=De[te+ft*8>>2],He=De[te+(ft*8+4)>>2],Zt=0;Zt<He;Zt++)Vi.printChar(K,Ne[je+Zt]);It+=He}return De[Ke>>2]=It,0}function xn(){return 6}function dp(K){return De[bp()>>2]=K,K}function q0(K){switch(K){case 30:return 16384;case 85:var te=2147483648;return te/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return dp(28),-1}var X0={a:ns,d:U0,e:op,f:lp,c:G0,b:up,g:xn,h:q0},K0=Za(),pp=s.___wasm_call_ctors=function(){return(pp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},ji=s._init=function(){return(ji=s._init=s.asm.k).apply(null,arguments)},ru=s._register_tensor=function(){return(ru=s._register_tensor=s.asm.l).apply(null,arguments)},Z0=s._dispose_data=function(){return(Z0=s._dispose_data=s.asm.m).apply(null,arguments)},Y0=s._dispose=function(){return(Y0=s._dispose=s.asm.n).apply(null,arguments)},J0=s._Abs=function(){return(J0=s._Abs=s.asm.p).apply(null,arguments)},we=s._Add=function(){return(we=s._Add=s.asm.q).apply(null,arguments)},Q0=s._AddN=function(){return(Q0=s._AddN=s.asm.r).apply(null,arguments)},ef=s._All=function(){return(ef=s._All=s.asm.s).apply(null,arguments)},tf=s._Any=function(){return(tf=s._Any=s.asm.t).apply(null,arguments)},nf=s._ArgMax=function(){return(nf=s._ArgMax=s.asm.u).apply(null,arguments)},af=s._AvgPool=function(){return(af=s._AvgPool=s.asm.v).apply(null,arguments)},as=s._BatchMatMul=function(){return(as=s._BatchMatMul=s.asm.w).apply(null,arguments)},rf=s._Ceil=function(){return(rf=s._Ceil=s.asm.x).apply(null,arguments)},sf=s._ClipByValue=function(){return(sf=s._ClipByValue=s.asm.y).apply(null,arguments)},of=s._Conv2D=function(){return(of=s._Conv2D=s.asm.z).apply(null,arguments)},lf=s._Conv2DBackpropInput=function(){return(lf=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},uf=s._Cos=function(){return(uf=s._Cos=s.asm.B).apply(null,arguments)},df=s._CropAndResize=function(){return(df=s._CropAndResize=s.asm.C).apply(null,arguments)},pf=s._Cumsum=function(){return(pf=s._Cumsum=s.asm.D).apply(null,arguments)},cf=s._DepthToSpace=function(){return(cf=s._DepthToSpace=s.asm.E).apply(null,arguments)},hf=s._DepthwiseConv2dNative=function(){return(hf=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},gr=s._Equal=function(){return(gr=s._Equal=s.asm.G).apply(null,arguments)},su=s._Exp=function(){return(su=s._Exp=s.asm.H).apply(null,arguments)},iu=s._FlipLeftRight=function(){return(iu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},ff=s._Floor=function(){return(ff=s._Floor=s.asm.J).apply(null,arguments)},mf=s._FloorDiv=function(){return(mf=s._FloorDiv=s.asm.K).apply(null,arguments)},Af=s._FusedBatchNorm=function(){return(Af=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},yf=s._FusedConv2D=function(){return(yf=s._FusedConv2D=s.asm.M).apply(null,arguments)},gf=s._FusedDepthwiseConv2D=function(){return(gf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},xf=s._GatherNd=function(){return(xf=s._GatherNd=s.asm.P).apply(null,arguments)},bf=s._Greater=function(){return(bf=s._Greater=s.asm.Q).apply(null,arguments)},vf=s._GreaterEqual=function(){return(vf=s._GreaterEqual=s.asm.R).apply(null,arguments)},wf=s._LeakyRelu=function(){return(wf=s._LeakyRelu=s.asm.S).apply(null,arguments)},kf=s._Less=function(){return(kf=s._Less=s.asm.T).apply(null,arguments)},If=s._LessEqual=function(){return(If=s._LessEqual=s.asm.U).apply(null,arguments)},ou=s._Log=function(){return(ou=s._Log=s.asm.V).apply(null,arguments)},cp=s._LogicalAnd=function(){return(cp=s._LogicalAnd=s.asm.W).apply(null,arguments)},hp=s._Max=function(){return(hp=s._Max=s.asm.X).apply(null,arguments)},Sf=s._MaxPool=function(){return(Sf=s._MaxPool=s.asm.Y).apply(null,arguments)},Nf=s._Maximum=function(){return(Nf=s._Maximum=s.asm.Z).apply(null,arguments)},Tf=s._Mean=function(){return(Tf=s._Mean=s.asm._).apply(null,arguments)},Ef=s._Min=function(){return(Ef=s._Min=s.asm.$).apply(null,arguments)},Cf=s._Minimum=function(){return(Cf=s._Minimum=s.asm.aa).apply(null,arguments)},Rf=s._MirrorPad=function(){return(Rf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Mf=s._Multiply=function(){return(Mf=s._Multiply=s.asm.ca).apply(null,arguments)},Je=s._Neg=function(){return(Je=s._Neg=s.asm.da).apply(null,arguments)},Ff=s._NonMaxSuppressionV3=function(){return(Ff=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},$f=s._NonMaxSuppressionV4=function(){return($f=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},Df=s._NonMaxSuppressionV5=function(){return(Df=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Ui=s._NotEqual=function(){return(Ui=s._NotEqual=s.asm.ha).apply(null,arguments)},fp=s._OneHot=function(){return(fp=s._OneHot=s.asm.ia).apply(null,arguments)},mp=s._PadV2=function(){return(mp=s._PadV2=s.asm.ja).apply(null,arguments)},Ap=s._Pow=function(){return(Ap=s._Pow=s.asm.ka).apply(null,arguments)},Of=s._Prelu=function(){return(Of=s._Prelu=s.asm.la).apply(null,arguments)},zf=s._Prod=function(){return(zf=s._Prod=s.asm.ma).apply(null,arguments)},yp=s._RealDiv=function(){return(yp=s._RealDiv=s.asm.na).apply(null,arguments)},_f=s._Relu=function(){return(_f=s._Relu=s.asm.oa).apply(null,arguments)},gp=s._Relu6=function(){return(gp=s._Relu6=s.asm.pa).apply(null,arguments)},xr=s._ResizeBilinear=function(){return(xr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Pf=s._Reverse=function(){return(Pf=s._Reverse=s.asm.ra).apply(null,arguments)},Lf=s._RotateWithOffset=function(){return(Lf=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Cg=s._Round=function(){return(Cg=s._Round=s.asm.ta).apply(null,arguments)},xp=s._Rsqrt=function(){return(xp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Wf=s._ScatterNd=function(){return(Wf=s._ScatterNd=s.asm.va).apply(null,arguments)},Bf=s._SelectV2=function(){return(Bf=s._SelectV2=s.asm.wa).apply(null,arguments)},Vf=s._Sigmoid=function(){return(Vf=s._Sigmoid=s.asm.xa).apply(null,arguments)},jf=s._Sin=function(){return(jf=s._Sin=s.asm.ya).apply(null,arguments)},Uf=s._Softmax=function(){return(Uf=s._Softmax=s.asm.za).apply(null,arguments)},Hf=s._Sqrt=function(){return(Hf=s._Sqrt=s.asm.Aa).apply(null,arguments)},Gf=s._Square=function(){return(Gf=s._Square=s.asm.Ba).apply(null,arguments)},qf=s._SquaredDifference=function(){return(qf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Xf=s._Step=function(){return(Xf=s._Step=s.asm.Da).apply(null,arguments)},Kf=s._StridedSlice=function(){return(Kf=s._StridedSlice=s.asm.Ea).apply(null,arguments)},Zf=s._Sub=function(){return(Zf=s._Sub=s.asm.Fa).apply(null,arguments)},Yf=s._Sum=function(){return(Yf=s._Sum=s.asm.Ga).apply(null,arguments)},Jf=s._Tan=function(){return(Jf=s._Tan=s.asm.Ha).apply(null,arguments)},Qf=s._Tanh=function(){return(Qf=s._Tanh=s.asm.Ia).apply(null,arguments)},em=s._Tile=function(){return(em=s._Tile=s.asm.Ja).apply(null,arguments)},tm=s._TopK=function(){return(tm=s._TopK=s.asm.Ka).apply(null,arguments)},nm=s._Transform=function(){return(nm=s._Transform=s.asm.La).apply(null,arguments)},am=s._Transpose=function(){return(am=s._Transpose=s.asm.Ma).apply(null,arguments)},rm=s.__FusedMatMul=function(){return(rm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},sm=s._malloc=function(){return(sm=s._malloc=s.asm.Oa).apply(null,arguments)},im=s._free=function(){return(im=s._free=s.asm.Pa).apply(null,arguments)},bp=s.___errno_location=function(){return(bp=s.___errno_location=s.asm.Qa).apply(null,arguments)},vp=s.stackSave=function(){return(vp=s.stackSave=s.asm.Ra).apply(null,arguments)},wp=s.stackRestore=function(){return(wp=s.stackRestore=s.asm.Sa).apply(null,arguments)},lu=s.stackAlloc=function(){return(lu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=Y;var Hi;function om(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Ka=function K(){Hi||uu(),Hi||(Ka=K)};function uu(K){if(K=K||d,na>0||(Un(),na>0))return;function te(){Hi||(Hi=!0,s.calledRun=!0,!j&&(Mn(),rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Kt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}if(s.run=uu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return uu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),pI=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),cI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),AI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yI=xt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(a)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var P=$.g(i),V=u,j=0;P<d;)P=(P+j)*s,V*=s,j=$.g(1);for(;P>=p;)P/=2,V/=2,j>>>=1;return(P+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(w($.S),a),(v.pass||N||function(P,V,j,U){return U&&(U.S&&A(U,$),P.state=function(){return A($,{})}),j?(r[l]=P,V):P})(z,R,"global"in v?v.global:this==r,v.state)}function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(N||(b=[N++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%N]+(v=z[R])],z[$]=v;(T.g=function(P){for(var V,j=0,U=T.i,X=T.j,G=T.S;P--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=n.navigator,N=v&&v.plugins;return[+new Date,n,N,n.screen,w(a)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Ug()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Gg=xt((e,t)=>{var n=pI(),a=cI(),r=hI(),s=fI(),i=mI(),o=AI(),l=yI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),gI=xt(()=>{}),hm={};Fe(hm,{bin:()=>a5,browser:()=>u5,default:()=>xI,dependencies:()=>l5,description:()=>Kg,devDependencies:()=>i5,jsdelivr:()=>Qg,license:()=>s5,main:()=>Yg,miniprogram:()=>n5,module:()=>Jg,name:()=>qg,private:()=>Zg,repository:()=>r5,scripts:()=>o5,types:()=>t5,unpkg:()=>e5,version:()=>Xg});var qg="@tensorflow/tfjs",Xg="3.6.0",Kg="An open-source machine learning framework.",Zg=!1,Yg="dist/tf.node.js",Jg="dist/index.js",Qg="dist/tf.min.js",e5="dist/tf.min.js",t5="dist/index.d.ts",n5="dist/miniprogram",a5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},r5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},s5="Apache-2.0",i5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},o5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},l5={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},u5={"node-fetch":!1,util:!1,crypto:!1},xI={name:qg,version:Xg,description:Kg,private:Zg,main:Yg,module:Jg,jsdelivr:Qg,unpkg:e5,types:t5,miniprogram:n5,bin:a5,repository:r5,license:s5,devDependencies:i5,scripts:o5,dependencies:l5,browser:u5},fm={};Fe(fm,{browser:()=>T5,default:()=>bI,dependencies:()=>N5,description:()=>c5,devDependencies:()=>I5,engines:()=>v5,jsdelivr:()=>m5,"jsnext:main":()=>g5,license:()=>k5,main:()=>f5,miniprogram:()=>b5,module:()=>x5,name:()=>d5,private:()=>h5,repository:()=>w5,scripts:()=>S5,sideEffects:()=>E5,types:()=>y5,unpkg:()=>A5,version:()=>p5});var d5="@tensorflow/tfjs-core",p5="3.6.0",c5="Hardware-accelerated JavaScript library for machine intelligence",h5=!1,f5="dist/tf-core.node.js",m5="dist/tf-core.min.js",A5="dist/tf-core.min.js",y5="dist/index.d.ts",g5="dist/index.js",x5="dist/index.js",b5="dist/miniprogram",v5={yarn:">= 1.3.2"},w5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},k5="Apache-2.0",I5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},S5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},N5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},T5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},E5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],bI={name:d5,version:p5,description:c5,private:h5,main:f5,jsdelivr:m5,unpkg:A5,types:y5,"jsnext:main":g5,module:x5,miniprogram:b5,engines:v5,repository:w5,license:k5,devDependencies:I5,scripts:S5,dependencies:N5,browser:T5,sideEffects:E5},mm={};Fe(mm,{browser:()=>H5,default:()=>vI,dependencies:()=>U5,description:()=>M5,devDependencies:()=>B5,jsdelivr:()=>D5,"jsnext:main":()=>_5,license:()=>W5,main:()=>$5,miniprogram:()=>L5,module:()=>P5,name:()=>C5,peerDependencies:()=>j5,private:()=>F5,scripts:()=>V5,types:()=>z5,unpkg:()=>O5,version:()=>R5});var C5="@tensorflow/tfjs-data",R5="3.6.0",M5="TensorFlow Data API in JavaScript",F5=!1,$5="dist/tf-data.node.js",D5="dist/tf-data.min.js",O5="dist/tf-data.min.js",z5="dist/index.d.ts",_5="dist/index.js",P5="dist/index.js",L5="dist/miniprogram",W5="Apache-2.0",B5={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},V5={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},j5={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},U5={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},H5={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},vI={name:C5,version:R5,description:M5,private:F5,main:$5,jsdelivr:D5,unpkg:O5,types:z5,"jsnext:main":_5,module:P5,miniprogram:L5,license:W5,devDependencies:B5,scripts:V5,peerDependencies:j5,dependencies:U5,browser:H5},Am={};Fe(Am,{default:()=>wI,description:()=>X5,devDependencies:()=>rx,jsdelivr:()=>tx,"jsnext:main":()=>Q5,license:()=>K5,main:()=>Y5,miniprogram:()=>ax,module:()=>ex,name:()=>G5,peerDependencies:()=>ix,private:()=>Z5,scripts:()=>sx,types:()=>J5,unpkg:()=>nx,version:()=>q5});var G5="@tensorflow/tfjs-layers",q5="3.6.0",X5="TensorFlow layers API in JavaScript",K5="Apache-2.0 AND MIT",Z5=!1,Y5="dist/tf-layers.node.js",J5="dist/index.d.ts",Q5="dist/index.js",ex="dist/index.js",tx="dist/tf-layers.min.js",nx="dist/tf-layers.min.js",ax="dist/miniprogram",rx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},sx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},ix={"@tensorflow/tfjs-core":"3.6.0"},wI={name:G5,version:q5,description:X5,license:K5,private:Z5,main:Y5,types:J5,"jsnext:main":Q5,module:ex,jsdelivr:tx,unpkg:nx,miniprogram:ax,devDependencies:rx,scripts:sx,peerDependencies:ix},ym={};Fe(ym,{default:()=>kI,description:()=>ux,devDependencies:()=>bx,jsdelivr:()=>mx,"jsnext:main":()=>px,license:()=>gx,main:()=>dx,miniprogram:()=>Ax,module:()=>cx,name:()=>ox,peerDependencies:()=>xx,repository:()=>yx,scripts:()=>vx,types:()=>hx,unpkg:()=>fx,version:()=>lx});var ox="@tensorflow/tfjs-converter",lx="3.6.0",ux="Tensorflow model converter for javascript",dx="dist/tf-converter.node.js",px="dist/index.js",cx="dist/index.js",hx="dist/index.d.ts",fx="dist/tf-converter.min.js",mx="dist/tf-converter.min.js",Ax="dist/miniprogram",yx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},gx="Apache-2.0",xx={"@tensorflow/tfjs-core":"3.6.0"},bx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},vx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},kI={name:ox,version:lx,description:ux,main:dx,"jsnext:main":px,module:cx,types:hx,unpkg:fx,jsdelivr:mx,miniprogram:Ax,repository:yx,license:gx,peerDependencies:xx,devDependencies:bx,scripts:vx},II=1e-7,SI=1e-4,Tp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},mu=class{refCount(e){return ra("refCount")}incRef(e){return ra("incRef")}timerAvailable(){return!0}time(e){return ra("time")}read(e){return ra("read")}readSync(e){return ra("readSync")}numDataIds(){return ra("numDataIds")}disposeData(e,t){return ra("disposeData")}write(e,t,n){return ra("write")}move(e,t,n,a,r){return ra("move")}memory(){return ra("memory")}floatPrecision(){return ra("floatPrecision")}epsilon(){return this.floatPrecision()===32?II:SI}dispose(){return ra("dispose")}};function ra(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function wx(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function NI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function Au(e,t,n){return Math.max(e,Math.min(t,n))}function TI(e){return e%2==0?e:e+1}function EI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function CI(e,t){let n=Math.random();return t*n+(1-n)*e}function RI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function sn(e,t,n=""){F(tr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ss(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function is(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let a=0;a<e.length;++a)is(e[a],t,n);else t.push(e);return t}function Nt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function MI(e){return e.length===0}function tr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Vt(e){return e%1==0}function FI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function $I(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function DI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return wx(t),t}function yu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function OI(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function zI(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function sa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Vt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function kx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:sa(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Ix(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Sx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Nx(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Tx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function _I(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function tn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function gm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Ex(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function wr(e){return typeof e=="string"||e instanceof String}function Cx(e){return typeof e=="boolean"}function Rx(e){return typeof e=="number"}function Ep(e){return Array.isArray(e)?Ep(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Rx(e)?"float32":wr(e)?"string":Cx(e)?"bool":"float32"}function kr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Cp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function eo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Mx(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=Mx(e+l*o,i,n,a)}return r}function to(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Mx(0,e,t,n)}function xm(e,t){let n=Rp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Rp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function PI(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return to(e,new Float32Array(n));if(t==="int32")return to(e,new Int32Array(n));if(t==="bool")return to(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function bm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function LI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function WI(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function vm(e){return e&&e.then&&typeof e.then=="function"}var Fx="tfjsflags",$x=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=BI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(vm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Fx in e&&e[Fx].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=jI(n,a)})}};function BI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(VI(t,a[0],a[1]),a.join("="))),t}function VI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function jI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return ma}var ma=null;function UI(e){ma=e}var wm;function Dx(){if(wm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");wm=e}return wm}function HI(){let e=Dx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function km(e,t){let n=HI();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var no="Abs",ao="Acos",ro="Acosh",Ir="Add",os="AddN",so="All",io="Any",ls="ArgMax",gu="ArgMin",oo="Asin",lo="Asinh",uo="Atan",po="Atanh",co="Atan2",us="AvgPool",Mp="AvgPoolGrad",xu="AvgPool3D",Fp="AvgPool3DGrad",ds="BatchMatMul",bu="BatchToSpaceND",$p="Bincount",Ox="BroadcastTo",ps="Cast",cs="Ceil",Sr="ClipByValue",Dp="Complex",vu="ComplexAbs",ho="Concat",hs="Conv2D",Op="Conv2DBackpropFilter",fs="Conv2DBackpropInput",wu="Conv3D",zp="Conv3DBackpropFilterV2",_p="Conv3DBackpropInputV2",ms="Cos",fo="Cosh",As="Cumsum",mo="CropAndResize",Pp="DenseBincount",Ao="DepthToSpace",ys="DepthwiseConv2dNative",Lp="DepthwiseConv2dNativeBackpropFilter",Wp="DepthwiseConv2dNativeBackpropInput",Bp="Diag",ku="Dilation2D",Vp="Dilation2DBackpropInput",jp="Dilation2DBackpropFilter",gs="RealDiv",Up="Einsum",yo="Elu",Hp="EluGrad",go="Erf",xo="Equal",xs="Exp",bo="ExpandDims",vo="Expm1",Gp="FFT",Iu="Fill",wo="FlipLeftRight",bs="Floor",vs="FloorDiv",ws="FusedBatchNorm",ko="GatherV2",Io="GatherNd",So="Greater",ks="GreaterEqual",Is="Identity",qp="IFFT",Xp="Imag",No="IsFinite",To="IsInf",Eo="IsNan",Ss="LeakyRelu",Co="Less",Ro="LessEqual",Kp="LinSpace",Ns="Log",Mo="Log1p",Fo="LogicalAnd",Su="LogicalNot",Nu="LogicalOr",zx="LogSoftmax",Tu="LRN",Zp="LRNGrad",Ts="Max",Es="Maximum",Cs="MaxPool",Yp="MaxPoolGrad",Eu="MaxPool3D",Jp="MaxPool3DGrad",Qp="MaxPoolWithArgmax",Rs="Mean",Ms="Min",Fs="Minimum",$s="MirrorPad",$o="Mod",ec="Multinomial",Ds="Multiply",Do="Neg",Oo="NotEqual",zo="NonMaxSuppressionV3",_o="NonMaxSuppressionV4",Po="NonMaxSuppressionV5",Lo="OnesLike",Os="OneHot",Wo="Pack",zs="PadV2",GI="Pool",_s="Pow",Ps="Prelu",Bo="Prod",Cu="Range",tc="Real",Vo="Reciprocal",Ls="Relu",jo="Reshape",Ru="ResizeNearestNeighbor",nc="ResizeNearestNeighborGrad",Ws="ResizeBilinear",ac="ResizeBilinearGrad",Bs="Relu6",Vs="Reverse",js="Round",Us="Rsqrt",Uo="ScatterNd",Ho="Select",Go="Selu",qo="Slice",Hs="Sin",Xo="Sinh",Ko="Sign",Gs="Sigmoid",Zo="Softplus",qs="Sqrt",Xs="Sum",Mu="SpaceToBatchND",Yo="SplitV",Ks="Softmax",rc="SparseFillEmptyRows",sc="SparseReshape",ic="SparseToDense",Zs="SquaredDifference",Fu="Square",Jo="StridedSlice",Ys="Sub",Js="Tan",Qs="Tanh",Nr="Tile",Qo="TopK",el="Transform",ei="Transpose",oc="Unique",tl="Unpack",$u="UnsortedSegmentSum",nl="ZerosLike",Tr="Step",lc="FromPixels",al="RotateWithOffset",ti="_FusedMatMul",ni="FusedConv2D",ai="FusedDepthwiseConv2D",rl=km("kernelRegistry",()=>new Map),Du=km("gradRegistry",()=>new Map);function uc(e,t){let n=Sm(e,t);return rl.get(n)}function Im(e){return Du.get(e)}function sl(e){let t=rl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function ri(e){let{kernelName:t,backendName:n}=e,a=Sm(t,n);rl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),rl.set(a,e)}function _x(e){let{kernelName:t}=e;Du.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Du.set(t,e)}function qI(e,t){let n=Sm(e,t);if(!rl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);rl.delete(n)}function XI(e){if(!Du.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Du.delete(e)}function KI(e,t){sl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});ri(a)})}function Sm(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>tr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>bm,assertNonNull:()=>ss,assertShapesMatch:()=>sn,bytesFromStringArray:()=>Ex,bytesPerElement:()=>gm,checkConversionForErrors:()=>Nx,clamp:()=>Au,computeStrides:()=>eo,createScalarValue:()=>ZI,createShuffledIndices:()=>DI,decodeString:()=>pc,distSquared:()=>RI,encodeString:()=>zu,fetch:()=>JI,flatten:()=>is,getArrayFromDType:()=>Sx,getTypedArrayFromDType:()=>Ix,hasEncodingLoss:()=>_I,indexToLoc:()=>WI,inferDtype:()=>Ep,inferFromImplicitShape:()=>zI,isBoolean:()=>Cx,isFunction:()=>kr,isInt:()=>Vt,isNumber:()=>Rx,isPromise:()=>vm,isScalarShape:()=>MI,isString:()=>wr,isTypedArray:()=>tn,isValidDtype:()=>Tx,locToIndex:()=>LI,makeOnesTypedArray:()=>xm,makeZerosNestedTypedArray:()=>PI,makeZerosTypedArray:()=>Rp,nearestDivisor:()=>Cp,nearestLargerEven:()=>TI,now:()=>Ou,parseAxisParam:()=>sa,randUniform:()=>CI,repeatedTry:()=>OI,rightPad:()=>yu,shuffle:()=>wx,shuffleCombo:()=>NI,sizeFromShape:()=>Nt,sizeToSquarishShape:()=>$I,squeezeShape:()=>kx,sum:()=>EI,tanh:()=>FI,toNestedArray:()=>to,toTypedArray:()=>dc});function ZI(e,t){return t==="string"?zu(e):dc([e],t)}function YI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function dc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=is(e)),J().getBool("DEBUG")&&Nx(e,t),YI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ou(){return J().platform.now()}function JI(e,t){return J().platform.fetch(e,t)}function zu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function pc(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var QI=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new tS)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Ou();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Ou()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{eS(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function eS(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var tS=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?yu(`${a}ms`,9):a.error,o=yu(e,25),l=t.rank,u=t.size,d=yu(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function nS(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},u);p.inputs=d,p.outputs=u.outputs,o.push(p)}}return o}function aS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!tr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let p=e[d.id];e[d.id]=a(p,u),p.dispose()}}}}var Px=20,_u=3,Nm=7;function rS(e,t,n,a){let r=eo(t),s=sS(e,t,n,r),i=t.length,o=cc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function sS(e,t,n,a){let r=Nt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Lu(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Pu(l[d+p],0,n).length)}return i}function Pu(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Nm))} + ${parseFloat(e[1].toFixed(Nm))}j`:wr(e)?a=`'${e}'`:n==="bool"?a=Lx(e):a=parseFloat(e.toFixed(Nm)).toString(),yu(a,t)}function Lx(e){return e===0?"false":"true"}function cc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Lu(e);return[Pu(f[0],0,n)]}return n==="bool"?[Lx(e[0])]:[e[0].toString()]}if(l===1){if(o>Px){let A=_u*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-_u)*i,o*i));return n==="complex64"&&(y=Lu(y),g=Lu(g)),["["+y.map((x,w)=>Pu(x,r[w],n)).join(", ")+", ..., "+g.map((x,w)=>Pu(x,r[o-_u+w],n)).join(", ")+"]"]}let f=n==="complex64"?Lu(e):Array.from(e);return["["+f.map((A,y)=>Pu(A,r[y],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>Px){for(let f=0;f<_u;f++){let A=f*p,y=A+p;c.push(...cc(e.slice(A,y),u,n,d,r,!1))}c.push("...");for(let f=o-_u;f<o;f++){let A=f*p,y=A+p;c.push(...cc(e.slice(A,y),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let A=f*p,y=A+p;c.push(...cc(e.slice(A,y),u,n,d,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Lu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Dt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Nt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Sx(t,this.size),this.strides=eo(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return $a().makeTensor(this.values,this.shape,this.dtype)}},$a=null,il=null,iS=null;function oS(e){$a=e}function lS(e){il=e}function uS(e){iS=e}var Le=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Nt(e),this.strides=eo(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return il.buffer(this.shape,this.dtype,e)}bufferSync(){return il.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return to(this.shape,e,this.dtype==="complex64")}arraySync(){return to(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=$a().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>pc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$a().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>pc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $a().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($a().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return il.print(this,e)}clone(){return this.throwIfDisposed(),il.clone(this)}toString(e=!1){let t=this.dataSync();return rS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),il.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$a().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return km("Tensor",()=>Le)}Z();var Wu=class extends Le{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!tr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$a().disposeTensor(this),this.dataId=e.dataId,$a().incRef(this,null)}dispose(){$a().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Wu,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var Aa={};Fe(Aa,{assertTypesMatch:()=>Wx,getTensorsInContainer:()=>Fm,isTensorInList:()=>pS,makeTypesMatch:()=>bt});var Tm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Tm||(Tm={}));var Em;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Em||(Em={}));var Cm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Cm||(Cm={}));var Rm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Rm||(Rm={}));var Mm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Mm||(Mm={}));var dS={float32:Rm,int32:Em,bool:Cm,complex64:Mm};function ia(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return dS[e][t]}function hc(e){return ia(e,"int32")}function bt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ia(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Wx(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function pS(e,t){return t.some(n=>n.id===e.id)}function Fm(e){let t=[],n=new Set;return Bx(e,t,n),t}function Bx(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!cS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),Bx(s,t,n))}}function cS(e){return Array.isArray(e)||typeof e=="object"}function $m(e){return e.kernelName!=null}var Vx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Bu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Vx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new QI(this.backendInstance),!0}setupRegisteredKernels(){sl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){sl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof mu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Bu.nextTensorId++}nextVariableId(){return Bu.nextVariableId++}clone(e){let t=D.runKernel(Is,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(ps,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(uc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=$m(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if($m(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=uc(h,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,g);let x=g.map(w=>{if(w.rank!=null)return w;let{dataId:b,shape:v,dtype:N}=w;return this.makeTensorFromDataId(b,v,N)});if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:d}=e,p=$m(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Im(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&wr(e[0])&&(r=e.map(o=>zu(o)));let s=a.write(r,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Ex(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Le(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Wu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*gm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Wu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*gm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Im(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let p=n[d],c=Rp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Fm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=nS(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?hS(r.shape):n,aS(i,s,l=>this.tidy(l),fS);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(kr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(kr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(p=>p instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ou(),n=await this.backend.time(e);return n.wallMs=Ou()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Vx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Bu.nextTensorId=0;Bu.nextVariableId=0;function hS(e){let t=xm(Nt(e),"float32");return D.makeTensor(t,e,"float32")}function jx(){let e=Dx();if(e._tfengine==null){let t=new $x(e);e._tfengine=new Bu(t)}return UI(e._tfengine.ENV),oS(()=>e._tfengine),e._tfengine}var D=jx();function fS(e,t){let n={a:e,b:t};return D.runKernel(Ir,n)}var Vu={};Fe(Vu,{isBrowser:()=>Ux,isMobile:()=>AS});function mS(){return typeof navigator!="undefined"&&navigator!=null}function AS(e){if(e||mS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Ux(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ya=J();ya.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ya.registerFlag("IS_BROWSER",()=>Ux());ya.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ya.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ya.registerFlag("PROD",()=>!1);ya.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ya.getBool("DEBUG"));ya.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ya.registerFlag("IS_TEST",()=>!1);ya.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ya.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Da(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Hx(e,a,[]),a}function Hx(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)Hx(e[r],a,n.concat(r))}function Gx(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Le)return Gx(a,e.dtype,t,n),e;let r=Ep(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Gx(a,r,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Da(e,r);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?dc(e,r):is(e,[],!0);return D.makeTensor(i,s,r)}function ju(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var qx="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+qx;let r=(...s)=>{D.startScope(n);try{let i=a(...s);return vm(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function yS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return D.runKernel(Dp,r)}var Er=O({complex_:yS});function Cr(e,t,n,a){if(a==null&&(a=Ep(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){bm(t);let r=Nt(t),s=Nt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Nt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?dc(e,a):is(e,[],!0),D.makeTensor(e,t,a)}function oa(e,t,n){let a=Da(e,n);return Cr(e,t,a,n)}var Dm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},fc=4;async function gS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((A,y)=>A+y.length,0)+fc*c.length,m=new Uint8Array(h),f=0;for(let A=0;A<c.length;A++){let y=c[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=fc,m.set(y,f),f+=y.length}p(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:xS(s),specs:n}}function Xx(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Nt(l),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Dm[p.dtype],h=e.slice(r,r+u*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];d[f]=A*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=SS()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];d[f]=Math.round(A*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let p=Nt(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+fc))[0];r+=fc;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=Dm[o],c=e.slice(r,r+u*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<h.length;y++)h[y]=d[y*2],m[y]=d[y*2+1];let f=oa(h,l,"float32"),A=oa(m,l,"float32");n[i]=Er(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=oa(d,l,o))}return n}function xS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Om=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Kx(e){return Om?Buffer.byteLength(e):new Blob([e]).size}function bS(e){if(Om)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function vS(e){if(Om){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function zm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Zx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Uu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Kx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Kx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function wS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function kS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function IS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function SS(){let e=wS(),t=kS(),n=IS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},NS=e=>St.registerSaveRouter(e),TS=e=>St.registerLoadRouter(e),ES=e=>St.getSaveHandlers(e),CS=(e,t)=>St.getLoadHandlers(e,t),_m="tensorflowjs",Pm=1,si="models_store",Rr="model_info_store";function Yx(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Lm(e){let t=e.result;t.createObjectStore(si,{keyPath:"modelPath"}),t.createObjectStore(Rr,{keyPath:"modelPath"})}var ii=class{constructor(e){if(this.indexedDB=Yx(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(_m,Pm);r.onupgradeneeded=()=>Lm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(si,"readonly"),o=i.objectStore(si).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Uu(t),o=s.transaction(Rr,"readwrite"),l=o.objectStore(Rr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(si,"readwrite");let p=d.objectStore(si).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(Rr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ii.URL_SCHEME="indexeddb://";var Jx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?RS(e.slice(ii.URL_SCHEME.length)):null;St.registerSaveRouter(Jx);St.registerLoadRouter(Jx);function RS(e){return new ii(e)}function MS(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var FS=class{constructor(){this.indexedDB=Yx()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(_m,Pm);n.onupgradeneeded=()=>Lm(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Rr,"readonly"),s=r.objectStore(Rr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=MS(e),new Promise((t,n)=>{let a=this.indexedDB.open(_m,Pm);a.onupgradeneeded=()=>Lm(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Rr,"readwrite"),i=s.objectStore(Rr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(si,"readwrite");let p=l.objectStore(si).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};u.onsuccess=d,u.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},nr="/",ol="tensorflowjs_models",Qx="info",$S="model_topology",DS="weight_specs",OS="weight_data",zS="model_metadata";function eb(e){return{info:[ol,e,Qx].join(nr),topology:[ol,e,$S].join(nr),weightSpecs:[ol,e,DS].join(nr),weightData:[ol,e,OS].join(nr),modelMetadata:[ol,e,zS].join(nr)}}function _S(e){let t=e.split(nr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(nr)}function PS(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var oi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=eb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Uu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,bS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=vS(s),t}};oi.URL_SCHEME="localstorage://";var tb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?LS(e.slice(oi.URL_SCHEME.length)):null;St.registerSaveRouter(tb);St.registerLoadRouter(tb);function LS(e){return new oi(e)}var WS=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ol+nr,n=nr+Qx;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=_S(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=PS(e);let t=eb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},ll="://",qn=class{constructor(){this.managers={}}static getInstance(){return qn.instance==null&&(qn.instance=new qn),qn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ll)&&(e=e.slice(0,e.indexOf(ll))),F(e.length>0,()=>"scheme must not be an empty string.");let n=qn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function mc(e){if(e.indexOf(ll)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${qn.getSchemes().join(",")}`);return{scheme:e.split(ll)[0],path:e.split(ll)[1]}}async function nb(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=St.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=St.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=mc(e).scheme,l=mc(e).path,u=o===mc(e).scheme,d=await r.load();n&&u&&await qn.getManager(o).removeModel(l);let p=await i.save(d);return n&&!u&&await qn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function BS(){let e=qn.getSchemes(),t={};for(let n of e){let a=await qn.getManager(n).listModels();for(let r in a){let s=n+ll+r;t[s]=a[r]}}return t}async function VS(e){let t=mc(e);return qn.getManager(t.scheme).removeModel(t.path)}async function jS(e,t){return nb(e,t,!1)}async function US(e,t){return nb(e,t,!0)}var HS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new HS);try{qn.registerManager(oi.URL_SCHEME,new WS)}catch(e){}try{qn.registerManager(ii.URL_SCHEME,new FS)}catch(e){}}var GS={importFetch:()=>Q9()},Wm,qS=class{constructor(){this.util=Ji("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Wm==null&&(Wm=GS.importFetch()),Wm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new qS);function We(e,t="float32",n){return t=t||"float32",bm(e),new Dt(e,t,n)}function XS(e,t){let n=M(e,"x","cast");if(!Tx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return D.runKernel(ps,a,r)}var fe=O({cast_:XS});function KS(e){let t={x:M(e,"x","clone","string_or_numeric")};return D.runKernel(Is,t)}var Oa=O({clone_:KS});function ab(e,t=!1){console.log(e.toString(t))}jx();var ZS={buffer:We,cast:fe,clone:Oa,print:ab};lS(ZS);var wn={};Fe(wn,{browserFiles:()=>aN,browserHTTPRequest:()=>lN,concatenateArrayBuffers:()=>zm,copyModel:()=>jS,decodeWeights:()=>Xx,encodeWeights:()=>gS,fromMemory:()=>dN,getLoadHandlers:()=>CS,getModelArtifactsInfoForJSON:()=>Uu,getSaveHandlers:()=>ES,http:()=>jm,isHTTPScheme:()=>Vm,listModels:()=>BS,loadWeights:()=>rN,moveModel:()=>US,registerLoadRouter:()=>TS,registerSaveRouter:()=>NS,removeModel:()=>VS,weightsLoaderFactory:()=>ob,withSaveHandler:()=>pN});var YS="model",JS=".json",QS=".weights.bin";function rb(e){return new Promise(t=>setTimeout(t)).then(e)}var ul=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ul.URL_SCHEME)&&(e=e.slice(ul.URL_SCHEME.length)),(e==null||e.length===0)&&(e=YS),this.modelTopologyFileName=e+JS,this.weightDataFileName=e+QS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await rb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await rb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Uu(e)}}}};ul.URL_SCHEME="downloads://";var eN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let d=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),d.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=p.indexOf(m);if(c[g]=y,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:zm(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>Zx(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=Zx(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},tN=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ul.URL_SCHEME)?nN(e.slice(ul.URL_SCHEME.length)):null;St.registerSaveRouter(tN);function nN(e="model"){return new ul(e)}function aN(e){return new eN(e)}function sb(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function ib(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await sb(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await sb(i,t.onProgress,o,l)}async function rN(e,t="",n,a){return ob(r=>ib(r,{requestInit:a}))(e,t,n)}function ob(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Dm[y]*Nt(A.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((w,b)=>{w===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let x=0;x<m;x++){let w=new Uint8Array(d[c+x]);y.set(w,g),g+=w.byteLength}s[h].forEach(x=>{let w=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=Xx(w,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var sN="application/octet-stream",iN="application/json",Bm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:iN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:sN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Uu(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=oN(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await ib(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,zm(l)]}};Bm.URL_SCHEME_REGEX=/^https?:\/\//;function oN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Vm(e){return e.match(Bm.URL_SCHEME_REGEX)!=null}var lb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Vm(a)):n=Vm(e),n)return jm(e,t)}return null};St.registerSaveRouter(lb);St.registerLoadRouter(lb);function jm(e,t){return new Bm(e,t)}function lN(e,t){return jm(e,t)}var Um=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},uN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function dN(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Um(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function pN(e){return new uN(e)}var ub={};Fe(ub,{confusionMatrix:()=>AN});function cN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=bt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return D.runKernel(ds,i,o)}var Be=O({matMul_:cN});function hN(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return D.runKernel(Os,r,s)}var dl=O({oneHot_:hN});function fN(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return D.runKernel(ei,a,r)}var Ze=O({transpose_:fN});function mN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=dl(fe(a,"int32"),n),i=dl(fe(r,"int32"),n),o=Ze(s),l=Be(o,i);return fe(l,"int32")}var AN=O({confusionMatrix_:mN}),li={};Fe(li,{fromPixels:()=>kN,fromPixelsAsync:()=>vN,toPixels:()=>wN});function Ac(e,t,n){if(ss(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Da(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Cr(e,t,a,n)}var pl;function db(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(uc(lc,D.backendName)!=null){let c={pixels:e},h={numChannels:t};return D.runKernel(lc,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(pl==null&&(pl=document.createElement("canvas").getContext("2d")),pl.canvas.width=l,pl.canvas.height=u,pl.drawImage(e,0,0,l,u),d=pl.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(d);else{let c=l*u;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return Ac(p,[u,l,t],"int32")}function yN(e){return e!=null&&e.data instanceof Uint8Array}function gN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function xN(e){return e!=null&&e.width!==0&&e.height!==0}function bN(e){return gN()&&!(e instanceof ImageBitmap)&&xN(e)&&!yN(e)}async function vN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&bN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return db(n,t)}async function wN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Le)){let u=n;n=fe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=u*4;l[p+0]=Math.round(d[0]),l[p+1]=Math.round(d[1]),l[p+2]=Math.round(d[2]),l[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var kN=O({fromPixels_:db}),Hm={};Fe(Hm,{prepareAndValidate:()=>pb});function pb(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Nt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let d=[...eo(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,d]}var Gm={};Fe(Gm,{calculateShapes:()=>cb,validateInput:()=>Xm,validateUpdateShape:()=>qm});function qm(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Xm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}qm(n,t,e)}function cb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Nt(t.shape)/o,u=[...eo(n.slice(0,r)),1],d=Nt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var on={};Fe(on,{assertParamsValid:()=>IN,computeFlatOffset:()=>NN,computeOutShape:()=>hb,getNormalizedAxes:()=>yb,isSliceContinous:()=>SN,maskToAxes:()=>yc,parseSliceParams:()=>kb,sliceInfo:()=>TN,startForAxis:()=>vb,startIndicesWithElidedDims:()=>gb,stopForAxis:()=>wb,stopIndicesWithElidedDims:()=>xb,stridesForAxis:()=>bb,stridesWithElidedDims:()=>fb});function IN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function yc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function hb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function fb(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function mb(e,t,n){return n<=e?n:n-(t-1)}function Ab(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function yb(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),p=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;d=gb(i,h,m,a,e),p=xb(o,h,m,r,e),c=fb(s,h,m,e)}else for(let h=0;h<u;h++)d[h]=vb(i,a,s,e,h,l),p[h]=wb(o,r,s,e,h,l),c[h]=bb(s,h,l);return{begin:d,end:p,strides:c}}function gb(e,t,n,a,r){let s=[...r],i=Ab(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=mb(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function xb(e,t,n,a,r){let s=[...r],i=Ab(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=mb(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Au(0,s[o],r[o])}return s}function bb(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function vb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Au(0,i,l-1),i}function wb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Au(0,i,l):i=Au(-1,i,l-1),i}function SN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function NN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function kb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function TN(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(u.length));let c=yc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=yc(o),f=e.slice();m.forEach(v=>{u[v]=0,d[v]=1,f.splice(v,0,1)});let{begin:A,end:y,strides:g}=yb(f,c,h,u,d,p,r,s,i);u=A,d=y,p=g;let x=yc(l);x.forEach(v=>{d[v]=u[v]+1,p[v]=1});let w=hb(u,d,p),b=w.filter((v,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(v=>v===1),$begin:u,$end:d,$strides:p,size:w,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>Ib,SerializationMap:()=>ui,registerClass:()=>Mr});var Ib=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ui=class{constructor(){this.classNameMap={}}static getMap(){return ui.instance==null&&(ui.instance=new ui),ui.instance}static register(e){ui.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Mr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ui.register(e)}var Sb={};Fe(Sb,{TEST_EPSILON_FLOAT16:()=>Nb,encodeStrings:()=>Tb,expectArrayBuffersEqual:()=>DN,expectArraysClose:()=>CN,expectArraysEqual:()=>MN,expectNumbersClose:()=>FN,expectPromiseToFail:()=>RN,expectValuesInRange:()=>$N,testEpsilon:()=>Km});var EN=.001,Nb=.1;function CN(e,t,n){return n==null&&(n=Km()),Zm(e,t,(a,r)=>Ym(a,r,n))}function Km(){return D.backend.floatPrecision()===32?EN:Nb}function Zm(e,t,n){let a=!0;if((tn(e)||tn(t))&&(a=!1),tn(e)&&tn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Da(e),o=Da(t);if(!tr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=tn(e)?e:is(e),s=tn(t)?t:is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function RN(e,t){e().then(()=>t.fail(),()=>t())}function MN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return wr(e)||wr(e[0])||wr(t)||wr(t[0])?Zm(e,n,(a,r)=>a==r):Zm(e,t,(a,r)=>Ym(a,r,0))}function FN(e,t,n){if(n==null&&(n=Km()),!Ym(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Ym(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function $N(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function DN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Tb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Tb(n):e[t]=zu(n)}return e}var ON="3.6.0";function zN(){J().set("PROD",!0)}function _N(){J().set("DEBUG",!0)}function PN(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Jm(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}uS(Jm);function LN(){D.disposeVariables()}function ar(){return D}function gc(){return D.memory()}function WN(e){return D.profile(e)}function W(e,t){return D.tidy(e,t)}function Ee(e){Fm(e).forEach(t=>t.dispose())}function jt(e){return D.keep(e)}function BN(e){return D.time(e)}function VN(e){return D.setBackend(e)}function jN(){return D.ready()}function UN(){return D.backendName}function HN(e){D.removeBackend(e)}function Qm(e){return D.findBackend(e)}function GN(e){return D.findBackendFactory(e)}function cl(e,t,n=1){return D.registerBackend(e,t,n)}function Eb(){return D.backend}function qN(e,t){J().setPlatform(e,t)}function XN(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ir,r)}var se=O({add_:XN});function KN(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(vs,r)}var xc=O({floorDiv_:KN});function ZN(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=bt(n,a),n.dtype==="int32"&&a.dtype==="int32")return xc(n,a);let r={a:n,b:a},s={};return D.runKernel(gs,r,s)}var me=O({div_:ZN});function YN(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ds,r)}var _=O({mul_:YN});function JN(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(vu,n)}else{let n={x:t};return D.runKernel(no,n)}}var Ot=O({abs_:JN});function QN(e){let t={x:M(e,"x","acos")};return D.runKernel(ao,t)}var eA=O({acos_:QN});function eT(e){let t={x:M(e,"x","acosh")};return D.runKernel(ro,t)}var tA=O({acosh_:eT});function tT(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!tr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return D.runKernel(os,a)}var bc=O({addN_:tT});function nT(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return D.runKernel(so,a,r)}var vc=O({all_:nT});function aT(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return D.runKernel(io,a,r)}var Hu=O({any_:aT});function rT(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return D.runKernel(ls,n,a)}var Gu=O({argMax_:rT});function sT(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return D.runKernel(gu,n,a)}var nA=O({argMin_:sT});function iT(e){let t={x:M(e,"x","asin")};return D.runKernel(oo,t)}var aA=O({asin_:iT});function oT(e){let t={x:M(e,"x","asinh")};return D.runKernel(lo,t)}var rA=O({asinh_:oT});function lT(e){let t={x:M(e,"x","atan")};return D.runKernel(uo,t)}var sA=O({atan_:lT});function uT(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(co,r)}var iA=O({atan2_:uT});function dT(e){let t={x:M(e,"x","atanh")};return D.runKernel(po,t)}var oA=O({atanh_:dT});function pT(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Mb(r);return qu(e,o,n,s,a,null,null,l)}function Cb(e,t,n,a,r,s,i="channelsLast"){let[o,l]=wc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qu(e,u,n,a,r,s,!1,i)}function cT(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=uA(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Rb(e,d,n,a,r,!1,p,s)}function qu(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,p]=e;else if(o==="channelsFirst")[l,p,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,A]=wc(n),[y,g]=wc(a),x=hl(c,y),w=hl(h,g),{padInfo:b,outHeight:v,outWidth:N}=mT(r,u,d,f,A,x,w,s,o),T=i?m*p:m,R;return o==="channelsFirst"?R=[l,T,v,N]:o==="channelsLast"&&(R=[l,v,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:p,outHeight:v,outWidth:N,outChannels:T,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:g,inShape:e,outShape:R,filterShape:t}}function Rb(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,p,c]=e;else if(i==="channelsFirst")[l,c,u,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,A]=t,[y,g,x]=uA(n),[w,b,v]=uA(a),N=hl(h,w),T=hl(m,b),R=hl(f,v),{padInfo:$,outDepth:z,outHeight:P,outWidth:V}=AT(r,u,d,p,y,g,x,N,T,R,o),j=s?A*c:A,U;return i==="channelsFirst"?U=[l,j,z,P,V]:i==="channelsLast"&&(U=[l,z,P,V,j]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:p,inChannels:c,outDepth:z,outHeight:P,outWidth:V,outChannels:j,padInfo:$,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:R,dilationDepth:w,dilationHeight:b,dilationWidth:v,inShape:e,outShape:U,filterShape:t}}function hT(e,t,n,a,r){a==null&&(a=lA(e,t,n));let s=e[0],i=e[1],o=di((s-t+2*a)/n+1,r),l=di((i-t+2*a)/n+1,r);return[o,l]}function fT(e,t,n,a,r,s){r==null&&(r=lA(e,t,a));let i=e[0],o=e[1],l=e[2],u=di((i-t+2*r)/a+1,s),d=di((o-t+2*r)/a+1,s),p=di((l-t+2*r)/a+1,s);return[u,d,p,n]}function lA(e,t,n,a=1){let r=hl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function wc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function uA(e){return typeof e=="number"?[e,e,e]:e}function hl(e,t){return t<=1?e:e+(e-1)*(t-1)}function mT(e,t,n,a,r,s,i,o,l){let u,d,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=hT([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,A=Math.floor(h/2),y=h-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=di((t-s+c+h)/a+1,o),p=di((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:p}}function AT(e,t,n,a,r,s,i,o,l,u,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=fT([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,A=(h-1)*s+l-n,y=(m-1)*i+u-a,g=Math.floor(f/2),x=f-g,w=Math.floor(A/2),b=A-w,v=Math.floor(y/2),N=y-v;p={top:w,bottom:b,left:v,right:N,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function di(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Fr(e){let[t,n,a]=wc(e);return t===1&&n===1&&a===1}function za(e,t){return Fr(e)||Fr(t)}function Mb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function yT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return D.runKernel(jo,n,a)}var H=O({reshape_:yT});function gT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(za(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Vt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(us,u,d);return p=fe(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Xu=O({avgPool_:gT});function xT(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(xu,u,d);return p=fe(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var dA=O({avgPool3d_:xT});function bT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=ju(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Oa(n[0]);let a=n,r={axis:t};return D.runKernel(ho,a,r)}var ot=O({concat_:bT});function vT(e){let t={x:M(e,"x","sigmoid")};return D.runKernel(Gs,t)}var kn=O({sigmoid_:vT});function wT(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return D.runKernel(qo,r,s)}var Re=O({slice_:wT});function kT(e){let t={x:M(e,"x","tanh")};return D.runKernel(Qs,t)}var pi=O({tanh_:kT});function IT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=ot([u,p],1),h=Be(c,o),m=se(h,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),w=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),v=se(_(kn(g),pi(x)),_(d,kn(se(i,w)))),N=_(pi(v),kn(b));return[v,N]}var ST=O({basicLSTMCell_:IT});function NT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return D.runKernel(bu,s,i)}var Ku=O({batchToSpaceND_:NT});function TT(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ET(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:TT(i),scale:u,offset:d,mean:o,variance:l},c={varianceEpsilon:s},h=D.runKernel(ws,p,c);return H(h,i.shape)}var ci=O({batchNorm_:ET});function CT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),ci(i,o,l,d,u,s)}var Fb=O({batchNorm2d_:CT});function RT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),ci(i,o,l,d,u,s)}var $b=O({batchNorm3d_:RT});function MT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),ci(i,o,l,d,u,s)}var Db=O({batchNorm4d_:MT});function FT(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return D.runKernel($p,s,i)}var pA=O({bincount_:FT});function $T(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Oa(n);let i={x:n},o={reps:s};return D.runKernel(Nr,i,o)}var fl=O({broadcastTo_:$T});function DT(e){let t={x:M(e,"x","ceil")};return D.runKernel(cs,t)}var cA=O({ceil_:DT});function OT(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return D.runKernel(Sr,r,s)}var In=O({clipByValue_:OT});function zT(e){return ot(e,0)}var Ob=O({concat1d_:zT});function _T(e,t){return ot(e,t)}var ml=O({concat2d_:_T});function PT(e,t){return ot(e,t)}var zb=O({concat3d_:PT});function LT(e,t){return ot(e,t)}var _b=O({concat4d_:LT});function WT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=D.runKernel(hs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var rr=O({conv2d_:WT});function BT(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(za(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=rr(c,p,[1,n],a,"NHWC",[1,s],i);return d?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var kc=O({conv1d_:BT});function VT(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Vt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=D.runKernel(fs,c,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var hA=O({conv2DBackpropInput_:VT});function jT(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return hA(n,i,o,a,r,"NHWC",s)}var Ic=O({conv2dTranspose_:jT});function UT(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(za(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=D.runKernel(wu,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var fA=O({conv3d_:UT});function HT(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=D.runKernel(_p,d,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Pb=O({conv3DBackpropInput_:HT});function GT(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return Pb(n,s,i,a,r)}var Lb=O({conv3dTranspose_:GT});function qT(e){let t={x:M(e,"x","cos")};return D.runKernel(ms,t)}var Zu=O({cos_:qT});function XT(e){let t={x:M(e,"x","cosh")};return D.runKernel(fo,t)}var Sc=O({cosh_:XT});function KT(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return D.runKernel(As,r,s)}var Nc=O({cumsum_:KT});function ZT(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return D.runKernel(Pp,i,o)}var Wb=O({denseBincount_:ZT});function YT(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return D.runKernel(Ao,o,l)}var mA=O({depthToSpace_:YT});function JT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Vt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=D.runKernel(ys,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Al=O({depthwiseConv2d_:JT});function QT(e){let t={x:M(e,"x","diag")};return D.runKernel(Bp,t)}var eE=O({diag_:QT});function tE(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=D.runKernel(ku,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var AA=O({dilation2d_:tE});function nE(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function aE(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(xo,r)}var $r=O({equal_:aE});function rE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=fl(s,i),l=fl(a,i),u=fl(r,i),d={condition:o,t:l,e:u};return D.runKernel(Ho,d)}var nn=O({where_:rE});function sE(e){let t={x:M(e,"x","zerosLike")};return D.runKernel(nl,t)}var Ue=O({zerosLike_:sE});function iE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=bt(n,a);let r=me(n,a),s=Ue(r),i=$r(a,s);return nn(i,s,r)}var yA=O({divNoNan_:iE});function oE(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Be(n,i)}}var Bb=O({dot_:oE});function lE(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return D.runKernel(Up,n,a)}var Vb=O({einsum_:lE});function uE(e){let t={x:M(e,"x","elu")};return D.runKernel(yo,t)}var yl=O({elu_:uE});function dE(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return D.runKernel(go,n)}var gA=O({erf_:dE});function pE(e){let t={x:M(e,"x","exp")};return D.runKernel(xs,t)}var Xn=O({exp_:pE});function cE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return D.runKernel(bo,a,r)}var ln=O({expandDims_:cE});function hE(e){let t={x:M(e,"x","expm1")};return D.runKernel(vo,t)}var xA=O({expm1_:hE});function fE(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return D.runKernel(Nr,a,r)}var Dr=O({tile_:fE});function mE(e,t,n,a="float32"){t==null&&(t=e);let r=We([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Dr(ln(i,0),[n[0],1,1]);if(n.length===2)return Dr(ln(ln(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Dr(ln(ln(ln(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var bA=O({eye_:mE});function gl(e,t,n){let a={shape:e,value:t,dtype:n};return D.runKernel(Iu,{},a)}function AE(e){let t={x:M(e,"x","floor")};return D.runKernel(bs,t)}var xl=O({floor_:AE});function yE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return D.runKernel(ko,i,o)}var hi=O({gather_:yE});function gE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(So,r)}var Fn=O({greater_:gE});function xE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(ks,r)}var Or=O({greaterEqual_:xE});function bE(e){let t={input:M(e,"input","imag")};return D.runKernel(Xp,t)}var Tc=O({imag_:bE});function vE(e){let t={x:M(e,"x","isFinite")};return D.runKernel(No,t)}var jb=O({isFinite_:vE});function wE(e){let t={x:M(e,"x","isInf")};return D.runKernel(To,t)}var Ub=O({isInf_:wE});function kE(e){let t={x:M(e,"x","isNaN")};return D.runKernel(Eo,t)}var vA=O({isNaN_:kE});function IE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return D.runKernel(Ss,n,a)}var Yu=O({leakyRelu_:IE});function SE(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Co,r)}var Ec=O({less_:SE});function NE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Ro,r)}var zr=O({lessEqual_:NE});function Hb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return D.runKernel(Kp,{},a)}function TE(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Vt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=D.runKernel(Tu,l,u);return o?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var wA=O({localResponseNormalization_:TE});function EE(e){let t={x:M(e,"x","log")};return D.runKernel(Ns,t)}var $n=O({log_:EE});function CE(e){let t={x:M(e,"x","log1p")};return D.runKernel(Mo,t)}var Cc=O({log1p_:CE});function RE(e){return F(kr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(a),[a],r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Rc(i),i[0]})}}function ME(e){return F(kr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=ju(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...a),a,r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Rc(i),i})}}function FE(e){return F(kr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=D.gradients(()=>e(t),[t],n);return Rc(a),{grad:a[0],value:r}}}function $E(e){return F(kr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=D.gradients(()=>e(...t),t,n);return n!=null&&sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Rc(a.grads),a}}function Gb(e,t){F(kr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Wu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in D.registeredVariables)t.push(D.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function _a(e){return D.customGrad(e)}function Rc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function DE(e){let t={x:M(e,"x","neg")};return D.runKernel(Do,t)}var vt=O({neg_:DE});function OE(e){let t={x:M(e,"x","softplus")};return D.runKernel(Zo,t)}var fi=O({softplus_:OE});function zE(e){let t=M(e,"x","logSigmoid");return _a(n=>({value:vt(fi(vt(n))),gradFunc:a=>_(a,kn(vt(n)))}))(t)}var qb=O({logSigmoid_:zE});function _E(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return D.runKernel(Ts,a,r)}var Kn=O({max_:_E});function PE(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ys,r)}var ge=O({sub_:PE});function LE(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Xs,r,s)}var ke=O({sum_:LE});function WE(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return _a((a,r)=>{let s=!0,i=Kn(a,t,!0),o=ge(a,i),l=ge(fe(o,"float32"),$n(ke(Xn(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[p]=d,c=!0,h=Xn(p);return ge(u,_(ke(u,t,c),h))}}})(n)}var Mc=O({logSoftmax_:WE});function kA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Xb(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function Kb(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function mi(e,t){let n=t.map(a=>1);return Xb(e,n,t)}function BE(e,t,n){F(kA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Zb(e,t){if(kA(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function IA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function VE(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function jE(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=sa(t,a.shape),s=Kn(a,r,!0),i=ge(a,s),o=Xn(i),l=ke(o,r),u=$n(l),d=se(H(s,u.shape),u);if(n){let p=mi(d.shape,r);return H(d,p)}return d}var SA=O({logSumExp_:jE});function UE(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Fo,r)}var la=O({logicalAnd_:UE});function HE(e){let t={x:M(e,"x","logicalNot","bool")};return D.runKernel(Su,t)}var Ju=O({logicalNot_:HE});function GE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Nu,r)}var Fc=O({logicalOr_:GE});function qE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return pt(n.shape,a.shape),la(Fc(e,t),Ju(la(e,t)))}var Yb=O({logicalXor_:qE});function XE(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(za(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Vt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(Cs,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Qu=O({maxPool_:XE});function KE(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(Eu,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var NA=O({maxPool3d_:KE});function ZE(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=D.runKernel(Qp,s,i);return{result:o[0],indexes:o[1]}}var Jb=O({maxPoolWithArgmax_:ZE});function YE(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Es,r)}var Pa=O({maximum_:YE});function JE(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return D.runKernel(Rs,a,r)}var wt=O({mean_:JE});function Ct(e,t="float32"){if(t==="complex64"){let a=Ct(e,"float32"),r=Ct(e,"float32");return Er(a,r)}let n=Rp(Nt(e),t);return D.makeTensor(n,e,t)}function Dn(e,t="float32"){if(t==="complex64"){let a=Dn(e,"float32"),r=Ct(e,"float32");return Er(a,r)}let n=xm(Nt(e),t);return D.makeTensor(n,e,t)}function QE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Nt(a.shape),i=Nt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Be(Dn([i,1],a.dtype),a),Be(r,Dn([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Be(a,Dn([1,i],a.dtype)),Be(Dn([s,1],r.dtype),r)])}function eC(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return D.runKernel(Ms,a,r)}var bl=O({min_:eC});function tC(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Fs,r)}var vl=O({minimum_:tC});function nC(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return D.runKernel($s,i,s)}var TA=O({mirrorPad_:nC});function aC(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel($o,r)}var EA=O({mod_:aC});function rC(e){let t=M(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var it=O({square_:rC});function sC(e,t=null,n=!1){e=M(e,"x","moments");let a=sa(t,e.shape),r=wt(e,a,n),s=r.shape;n||(s=mi(r.shape,a));let i=it(ge(fe(e,"float32"),H(r,s))),o=wt(i,a,n);return{mean:r,variance:o}}var $c=O({moments_:sC});function iC(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=ju(n,"c","multiRNNCell"),i=ju(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],d=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),d.push(l[p+1]);return[u,d]}var oC=O({multiRNNCell_:iC});function lC(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=D.runKernel(ec,o,l);return i===1?H(u,[u.size]):u}var Qb=O({multinomial_:lC});function uC(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Oo,r)}var Ai=O({notEqual_:uC});function dC(e){let t={x:M(e,"x","onesLike")};return D.runKernel(Lo,t)}var On=O({onesLike_:dC});function pC(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Be(r,s)}var cC=O({outerProduct_:pC});function hC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return D.runKernel(zs,s,r)}var sr=O({pad_:hC});function fC(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),sr(e,[t],n)}var mC=O({pad1d_:fC});function AC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var yC=O({pad2d_:AC});function gC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var xC=O({pad3d_:gC});function bC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var vC=O({pad4d_:bC});function wC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return D.runKernel(Mu,r,s)}var ed=O({spaceToBatchND_:wC});function kC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(za(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=Cb(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=SC([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=IC([u.inHeight,u.inWidth],d,p),f=c?a:"valid",A=c?o:ed(o,d,h),y=(n==="avg"?()=>Xu(A,t,s,f):()=>Qu(A,t,s,f))(),g=c?y:Ku(y,d,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function IC(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),l=t.map((d,p)=>[a[p],o[p]]),u=t.map((d,p)=>[0,i[p]]);return[l,u]}function SC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var e3=O({pool_:kC});function NC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(_s,r)}var ir=O({pow_:NC});function TC(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return D.runKernel(Ps,r)}var td=O({prelu_:TC});function EC(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Bo,r,s)}var Dc=O({prod_:EC});function CC(e,t,n){let a=Nt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return D.makeTensor(r,e,n)}var RC=O({rand_:CC}),CA=Qi(Hg()),RA=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=CA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},MC=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=CA.alea(r.toString()),this.randn=new RA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},FC=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=CA.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function $C(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new MC(t,n,a,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var DC=O({randomGamma_:$C});function OC(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new RA(t,n,a,!1,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var t3=O({randomNormal_:OC});function zC(e,t=0,n=1,a="float32",r){let s=We(e,a),i=new FC(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var wl=O({randomUniform_:zC});function kl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return D.runKernel(Cu,{},r)}function _C(e){let t={input:M(e,"input","real")};return D.runKernel(tc,t)}var nd=O({real_:_C});function PC(e){let t={x:M(e,"x","reciprocal")};return D.runKernel(Vo,t)}var MA=O({reciprocal_:PC});function LC(e){let t={x:M(e,"x","relu")};return D.runKernel(Ls,t)}var La=O({relu_:LC});function WC(e){let t={x:M(e,"x","relu6")};return D.runKernel(Bs,t)}var Oc=O({relu6_:WC});function BC(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return D.runKernel(Vs,n,a)}var zn=O({reverse_:BC});function VC(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),zn(t,0)}var jC=O({reverse1d_:VC});function UC(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),zn(n,t)}var HC=O({reverse2d_:UC});function GC(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),zn(n,t)}var qC=O({reverse3d_:GC});function XC(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),zn(n,t)}var KC=O({reverse4d_:XC});function ZC(e){let t={x:M(e,"x","round")};return D.runKernel(js,t)}var zc=O({round_:ZC});function YC(e){let t={x:M(e,"x","rsqrt")};return D.runKernel(Us,t)}var _c=O({rsqrt_:YC});function Se(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Cr(e,[],[],t)}function JC(e){let t={x:M(e,"x","selu")};return D.runKernel(Go,t)}var Pc=O({selu_:JC});function QC(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];F(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Al(d,l,a,r,i,s),f=rr(m,u,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var FA=O({separableConv2d_:QC});async function eR(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new Dt([o],n.dtype),u=new Dt([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(l.values[p]=r[d],u.values[p]=d,p++);return[l.toTensor(),u.toTensor()]}var n3=eR;function tR(e){let t={x:M(e,"x","sign")};return D.runKernel(Ko,t)}var $A=O({sign_:tR});function nR(e){let t={x:M(e,"x","sin")};return D.runKernel(Hs,t)}var Lc=O({sin_:nR});function aR(e){let t={x:M(e,"x","sinh")};return D.runKernel(Xo,t)}var Wc=O({sinh_:aR});function rR(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var Bc=O({slice1d_:rR});function sR(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var DA=O({slice2d_:sR});function iR(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Vc=O({slice3d_:iR});function oR(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var ad=O({slice4d_:oR});function lR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return D.runKernel(Ks,a,r)}var rd=O({softmax_:lR});function uR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Gp,t)}var sd=O({fft_:uR});function dR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(qp,t)}var Il=O({ifft_:dR});function pR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=Il(r)}else{let r=[n,2*(t-1)],s=H(nd(e),[n,t]),i=H(Tc(e),[n,t]),o=zn(Re(s,[0,1],[n,t-2]),1),l=_(zn(Re(i,[0,1],[n,t-2]),1),Se(-1)),u=ot([s,o],1),d=ot([i,l],1),p=H(Er(u,d),[r[0],r[1]]);a=Il(p)}if(a=nd(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var jc=O({irfft_:pR});function cR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return D.runKernel(Yo,a,r)}var an=O({split_:cR});function hR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=ot([e,Ct(m)],e.shape.length-1),n=t}else r=e;let s=Ue(r),i=H(Er(r,s),[a,n]),o=sd(i),l=Math.floor(n/2)+1,u=nd(o),d=Tc(o),p=an(u,[l,n-l],u.shape.length-1),c=an(d,[l,n-l],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Er(p[0],c[0]),h)}var id=O({rfft_:hR});function fR(e){let t={x:M(e,"x","sqrt")};return D.runKernel(qs,t)}var Jt=O({sqrt_:fR});function mR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return D.runKernel(Zs,r,s)}var Uc=O({squaredDifference_:mR});function AR(e,t){let n=M(e,"x","squeeze");return H(n,kx(n.shape,t).newShape)}var _r=O({squeeze_:AR});function yR(e,t=0){let n=ju(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return D.runKernel(Wo,a,r)}var _n=O({stack_:yR});function gR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return D.runKernel(Tr,n,a)}var Sl=O({step_:gR});function xR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel(Jo,u,d)}var OA=O({stridedSlice_:xR});function bR(e){let t={x:M(e,"x","tan")};return D.runKernel(Js,t)}var zA=O({tan_:bR});function Tt(e,t){ss(e);let n=Da(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Cr(e,null,n,t)}function ga(e,t,n){if(ss(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Da(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Cr(e,t,a,n)}function vR(e,t,n){if(ss(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Da(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Cr(e,t,a,n)}function wR(e,t,n){if(ss(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Da(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Cr(e,t,a,n)}function kR(e,t,n){if(ss(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Da(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Cr(e,t,a,n)}function IR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=D.runKernel(Qo,s,i);return{values:o,indices:l}}var _A=O({topk_:IR});function SR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new RA(t,n,a,!0,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Hc=O({truncatedNormal_:SR});function NR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=D.runKernel(oc,a,r);return{values:s,indices:i}}var Gc=O({unique_:NR});function TR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Vt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return D.runKernel($u,s,i)}var PA=O({unsortedSegmentSum_:TR});function ER(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return D.runKernel(tl,a,r)}var ua=O({unstack_:ER});function a3(e,t=!0,n,a){return D.makeVariable(e,t,n,a)}function r3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=We(e,"int32"),r=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function CR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=r3(t.shape,n);return e!==t&&t.dispose(),a}var LA=CR;async function RR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=H(a,u),p=H(r,[-1]),c=await LA(p),h=_r(c,[1]),m=hi(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var MR=RR;function FR(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=s3(e,t,n),s=r.shape;if(a){let i=sa(n,e.shape);s=mi(r.shape,i)}return H(r,s)}function s3(e,t,n=null){if(e.rank===0)return Ot(e);if(e.rank!==1&&n===null)return s3(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(Ot(e),n);if(t===Infinity)return Kn(Ot(e),n);if(t===-Infinity)return bl(Ot(e),n);if(t==="euclidean"||t===2)return Jt(ke(ir(Ot(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Kn(ke(Ot(e),n[0]),n[1]-1);if(t===Infinity)return Kn(ke(Ot(e),n[1]),n[0]);if(t===-Infinity)return bl(ke(Ot(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Jt(ke(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var qc=O({norm_:FR});function $R(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");Wx(s,i),F(tr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ge(l,o),d=_(ge(i,s),u);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=me(d,ge(l,ir(o,p)))}return se(s,d)}var DR=O({movingAverage_:$R});function OR(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");Xm(r,a,n);let s={indices:a,updates:r},i={shape:n};return D.runKernel(Uo,s,i)}var i3=O({scatterND_:OR});function zR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function _R(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);zR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(ic,o,l)}var WA=O({sparseToDense_:_R});function PR(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return D.runKernel(Io,a)}var o3=O({gatherND_:PR});function LR(e,t){if(t==null)return e.shape.slice();if(tr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function WR(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?r.clone():r;let s=LR(r,n),i=1-t,o=me(xl(se(wl(s,0,1,"float32",a),i)),i);return _(r,o)}var l3=O({dropout_:WR});function u3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function BA(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Tt(r,"float32")}async function BR(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=Ix("bool",l);for(let p=0;p<l;p++){let c=p*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,A)=>A.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),oa(d,r.shape,"bool")}var VR=BR,Pr={};Fe(Pr,{conv2d:()=>HR,depthwiseConv2d:()=>KR,matMul:()=>YR});function jR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&F(Vt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(Op,p,c)}var VA=O({conv2DBackpropFilter_:jR});function Xc(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return _(e,Sl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Kc(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=ke(n,a)),H(n,e.shape)}function Zc(e,t,n,a){if(t==="linear")return e;if(t==="relu")return La(e);if(t==="elu")return yl(e);if(t==="relu6")return Oc(e);if(t==="prelu")return td(e,n);if(t==="leakyrelu")return Yu(e,a);if(t==="sigmoid")return kn(e);throw new Error(`Unknown fused activation ${t}.`)}var Yc=(e,t)=>!(e>0)||t==="linear";function UR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Yc(D.state.gradientDepth,l)===!1){let b=rr(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Zc(b,l,u,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Vt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=qu(h.shape,c.shape,n,s,a,i),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;u!=null&&(y=M(u,"prelu weights","fused conv2d"));let g=(b,v)=>{let[N,T,R,$]=v,z=Xc(b,R,l);F(Fr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=hA(T.shape,z,N,n,a),V=VA(T,z,N.shape,n,a),j=[P,V];if($!=null){let U=Kc($,z);j.push(U)}return j},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?_a((b,v,N)=>{let T=D.runKernel(ni,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,N,T)=>{let R=D.runKernel(ni,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var HR=O({fusedConv2d_:UR});function GR(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(Lp,u,d)}var d3=O({depthwiseConv2dNativeBackpropFilter_:GR});function qR(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=D.runKernel(Wp,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var p3=O({depthwiseConv2dNativeBackpropInput_:qR});function XR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Yc(D.state.gradientDepth,l)===!1){let b=Al(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Zc(b,l,u,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(za(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Vt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=qu(h.shape,c.shape,n,s,a,i,!0),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;u!=null&&(y=M(u,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(Fr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,R,$]=v,z=Xc(b,R,l),P=p3(T.shape,z,N,n,a,s,i),V=d3(T,z,N.shape,n,a,s,i);if($!=null){let j=Kc(A,z);return[P,V,j]}return[P,V]},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?_a((b,v,N)=>{let T=D.runKernel(ai,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,N,T)=>{let R=D.runKernel(ai,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var KR=O({fusedDepthwiseConv2d_:XR});function ZR({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Yc(D.state.gradientDepth,s)===!1){let $=Be(e,t,n,a);return r!=null&&($=se($,r)),Zc($,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=bt(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Nt(m),y=Nt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(tr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=l.shape.slice(0,-2).concat([c,h]),x=n?H(l,[A,d,c]):H(l,[A,c,d]),w=a?H(u,[y,h,p]):H(u,[y,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=bt(b,l),pt(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let N=($,z)=>{let[P,V,j,U]=z,X=Xc(H($,j.shape),j,s),G,ee;if(!n&&!a?(G=Be(X,V,!1,!0),ee=Be(P,X,!0,!1)):!n&&a?(G=Be(X,V,!1,!1),ee=Be(X,P,!0,!1)):n&&!a?(G=Be(V,X,!1,!0),ee=Be(P,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,P,!0,!0)),r!=null){let Y=Kc(U,X);return[G,ee,Y]}else return[G,ee]},T={a:x,b:w,bias:b,preluActivationWeights:v},R={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?_a(($,z,P)=>{let V=D.runKernel(ti,T,R);return P([$,z,V]),{value:H(V,g),gradFunc:N}})(x,w):_a(($,z,P,V)=>{let j=D.runKernel(ti,T,R);return V([$,z,j,P]),{value:H(j,g),gradFunc:N}})(x,w,b)}var YR=O({fusedMatMul_:ZR});function JR(e){return BA(e,.54,.46)}var QR=O({hammingWindow_:JR});function eM(e){return BA(e,.5,.5)}var c3=O({hannWindow_:eM});function tM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=ot([Re(e,s,t-o),gl([o],r)]);i.push(l),s+=n}return i.length===0?ga([],[0,t]):H(ot(i),[i.length,t])}var h3=O({frame_:tM});function nM(e,t,n,a,r=c3){a==null&&(a=u3(t));let s=h3(e,t,n),i=_(s,r(t));return id(i,a)}var aM=O({stft_:nM});function rM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return D.runKernel(mo,d,p)}var sM=O({cropAndResize_:rM});function iM(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(wo,n,{})}var oM=O({flipLeftRight_:iM});function lM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return D.runKernel(al,s,i)}var uM=O({rotateWithOffset_:lM});function Nl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function dM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Nl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return D.runKernel(zo,{boxes:s,scores:i},l)}var pM=O({nonMaxSuppression_:dM});function cM(e,t,n){let a=hM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function hM(e,t,n){return mM(e,t,n||fM)}function fM(e,t){return e>t?1:e<t?-1:0}function mM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function f3(e,t,n,a,r){return jA(e,t,n,a,r,0)}function m3(e,t,n,a,r,s){return jA(e,t,n,a,r,0,!1,s,!0)}function A3(e,t,n,a,r,s){return jA(e,t,n,a,r,s,!0)}function jA(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>r&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(y3);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y<r)break;let w=!1;for(let b=p.length-1;b>=x;--b){let v=AM(e,g,p[b]);if(v>=a){w=!0;break}if(A.score=A.score*yM(a,d,v),A.score<=r)break}A.suppressBeginIndex=p.length,w||(A.score===y?(p.push(g),c.push(A.score)):A.score>r&&cM(u,A,y3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function AM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,d),y=Math.min(o,p),g=Math.min(l,c),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(h+m-x)}function yM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function y3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function gM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Nl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p}=f3(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Tt(p,"int32")}var xM=gM;function bM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Nl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=D.runKernel(Po,u,d);return{selectedIndices:p[0],selectedScores:p[1]}}var vM=O({nonMaxSuppressionWithScore_:bM});async function wM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Nl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],p=u[1],{selectedIndices:c,selectedScores:h}=A3(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Tt(c,"int32"),selectedScores:Tt(h)}}var kM=wM;function IM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Nl(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=D.runKernel(_o,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var SM=O({nonMaxSuppressionPadded_:IM});async function NM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Nl(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=m3(c,h,u,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Tt(m,"int32"),validOutputs:Se(f,"int32")}}var TM=NM;function EM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=D.runKernel(Ws,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var g3=O({resizeBilinear_:EM});function CM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=D.runKernel(Ru,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var x3=O({resizeNearestNeighbor_:CM});function RM(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=_(Tt([a]),255),d,p,c,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=an(r,[1,1,1],-1);let f=_(d,s),A=_(p,i),y=_(c,o);h=se(se(f,A),y)}else h=e;if(t==="otsu"){let f=pA(fe(zc(h),"int32"),oa([]),256);u=MM(f,l)}let m=n?zr(h,u):Fn(h,u);return fe(_(m,255),"int32")}function MM(e,t){let n=Tt([-1]),a=Tt([0]),r=Tt([0]),s,i,o,l,u,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),u=me(ke(s),t),d=me(ke(i),t);let c=ke(_(s,kl(0,s.size)));o=me(c,ke(s));let h=gl(i.shape,s.size),m=se(kl(0,i.size),h),f=_(i,m);l=me(ke(f),ke(i));let A=ge(o,l),y=ge(o,l),g=_(u,d);r=_(_(g,A),y);let x=Fn(r,a);a=nn(x,r,a),n=nn(x,Tt([p]),n)}return n}var FM=O({threshold_:RM});function $M(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return D.runKernel(el,l,u)}var DM=O({transform_:$M});function OM(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(kl(0,s,1,"int32"),[-1,1]),l=kl(0,i,1,"int32"),u=ge(o,l),d=la(zr(u,Se(+t,"int32")),Or(u,Se(-n,"int32"))),p=Ct([s,i],a.dtype);return H(_n(ua(H(a,[-1,s,i])).map(c=>nn(d,c,p))),r)}var zM=O({bandPart_:OM});function _M(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=an(e,e.shape[0],0).map(r=>_r(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(D.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=_(ke(_(n[i],s)),n[i]);s=ge(s,o)}return me(s,qc(s,"euclidean"))}));return t?_n(n,0):n}var PM=O({gramSchmidt_:_M});function LM(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return b3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ua(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=b3(l,t);r.push(u),s.push(d)});let i=H(_n(r,0),e.shape),o=H(_n(s,0),e.shape);return[i,o]}}function b3(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=bA(n),s=Oa(e),i=ga([[1]],[1,1]),o=Oa(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,p=o,c=r;[o,s,r]=D.tidy(()=>{let h=Re(s,[u,u],[n-u,1]),m=qc(h),f=Re(s,[u,u],[1,1]),A=nn(Fn(f,0),ga([[-1]]),ga([[1]])),y=ge(f,_(A,m)),g=me(h,y);g.shape[0]===1?o=Oa(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=vt(me(Be(A,y),m)),w=Re(s,[u,0],[n-u,a]),b=_(x,o),v=Ze(o);if(u===0)s=ge(w,Be(b,Be(v,w)));else{let R=ge(w,Be(b,Be(v,w)));s=ot([Re(s,[0,0],[u,a]),R],0)}let N=Ze(b),T=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(T,Be(Be(T,o),N));else{let R=ge(T,Be(Be(T,o),N));r=ot([Re(r,[0,0],[n,u]),R],1)}return[o,s,r]}),Ee([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var WM=O({qr_:LM}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function BM(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:_(a,r);if(n===un.NONE)return s;if(n===un.SUM)return ke(s);if(n===un.MEAN){if(r==null)return wt(s);{let i=a.size/r.size,o=me(ke(s),ke(r));return i>1?me(o,Se(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(ke(s),Se(a.size));{let i=_(r,Dn(a.shape)),o=fe(ke(Ai(i,Se(0))),"float32");return me(ke(s),o)}}throw Error(`Unknown reduction: ${n}`)}var or=O({computeWeightedLoss_:BM});function VM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Ot(ge(r,s));return or(o,i,a)}var jM=O({absoluteDifference_:VM});function UM(e,t,n,a,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),sn(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=ge(l,ke(_(s,i),n,!0));return or(u,o,r)}var HM=O({cosineDistance_:UM});function GM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),sn(r.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);r=ge(_(Se(2),r),o);let l=La(ge(o,_(r,s)));return or(l,i,a)}var qM=O({hingeLoss_:GM});function XM(e,t,n,a=1,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),sn(s.shape,i.shape,"Error in huberLoss: ");let l=Se(a),u=Ot(ge(i,s)),d=vl(u,l),p=ge(u,d),c=se(_(Se(.5),it(d)),_(l,p));return or(c,o,r)}var KM=O({huberLoss_:XM});function ZM(e,t,n,a=1e-7,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),sn(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(a),d=vt(_(s,$n(se(i,u)))),p=_(ge(l,s),$n(se(ge(l,i),u))),c=ge(d,p);return or(c,o,r)}var YM=O({logLoss_:ZM});function JM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Uc(r,s);return or(o,i,a)}var QM=O({meanSquaredError_:JM});function eF(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=La(a),s=_(a,n),i=Cc(Xn(vt(Ot(a))));return se(ge(r,s),i)}function tF(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=Se(a),d=Se(1),p=Se(.5);s=se(_(s,ge(d,u)),_(p,u))}let l=eF(s,i);return or(l,o,r)}var nF=O({sigmoidCrossEntropy_:tF});function aF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return _a((a,r,s)=>{let i=SA(r,[n],!0),o=ge(fe(r,"float32"),i);s([a,o]);let l=vt(_(o,a));return{value:ke(l,[n]),gradFunc:(u,d)=>{let[p,c]=d,h=mi(u.shape,[n]);return[_(H(u,h),ge(fe(p,"float32"),Xn(c))),_(H(u,h),ge(Xn(c),fe(p,"float32")))]}}})(e,t)}function rF(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=Se(a),d=Se(1),p=Se(s.shape[1]);s=se(_(s,ge(d,u)),me(u,p))}let l=aF(s,i);return or(l,o,r)}var sF=O({softmaxCrossEntropy_:rF});function iF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=D.runKernel(rc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var oF=O({sparseFillEmptyRows_:iF});function lF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=D.runKernel(sc,i);return{outputIndices:o[0],outputShape:o[1]}}var uF=O({sparseReshape_:lF}),dF={fft:sd,ifft:Il,rfft:id,irfft:jc},pF={hammingWindow:QR,hannWindow:c3,frame:h3,stft:aM},Ye={flipLeftRight:oM,resizeNearestNeighbor:x3,resizeBilinear:g3,rotateWithOffset:uM,cropAndResize:sM,nonMaxSuppression:pM,nonMaxSuppressionAsync:xM,nonMaxSuppressionWithScore:vM,nonMaxSuppressionWithScoreAsync:kM,nonMaxSuppressionPadded:SM,nonMaxSuppressionPaddedAsync:TM,threshold:FM,transform:DM},v3={bandPart:zM,gramSchmidt:PM,qr:WM},cF={absoluteDifference:jM,computeWeightedLoss:or,cosineDistance:HM,hingeLoss:qM,huberLoss:KM,logLoss:YM,meanSquaredError:QM,sigmoidCrossEntropy:nF,softmaxCrossEntropy:sF},w3={sparseFillEmptyRows:oF,sparseReshape:uF},lr=class extends Ib{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Gb(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(lr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Jc=class extends lr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=se(_(i,this.rho),_(it(s),1-this.rho)),u=_(me(Jt(se(o,this.epsilon)),Jt(se(i,this.epsilon))),s),d=se(_(o,this.rho),_(it(u),1-this.rho));i.assign(l),o.assign(d);let p=se(_(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Jc.className="Adadelta";Mr(Jc);var Qc=class extends lr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>gl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=se(s,it(r));s.assign(i);let o=se(_(me(r,Jt(se(i,D.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Qc.className="Adagrad";Mr(Qc);var eh=class extends lr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=ge(1,this.accBeta2);t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:W(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:W(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=se(_(u,this.beta1),_(l,1-this.beta1)),c=se(_(d,this.beta2),_(it(l),1-this.beta2)),h=me(p,n),m=me(c,a);u.assign(p),d.assign(c);let f=se(_(me(h,se(Jt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(_(this.accBeta1,this.beta1)),this.accBeta2.assign(_(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign(ir(this.beta1,this.iterations_+1)),this.accBeta2.assign(ir(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};eh.className="Adam";Mr(eh);var th=class extends lr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=me(-this.learningRate,se(_(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=se(_(u,this.beta1),_(l,1-this.beta1)),c=_(d,this.beta2),h=Ot(l),m=Pa(c,h);u.assign(p),d.assign(m);let f=se(_(me(a,n),me(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(_(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};th.className="Adamax";Mr(th);var od=class extends lr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=D.registeredVariables[t];W(()=>{let s=se(_(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};od.className="SGD";Mr(od);var nh=class extends od{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=se(_(this.m,r),s);this.useNesterov?i=se(_(this.c,se(s,_(o,this.m))),a):i=se(_(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};nh.className="Momentum";Mr(nh);var ah=class extends lr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=se(_(i,this.decay),_(it(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=se(_(u,this.decay),_(s,1-this.decay)),p=me(_(s,this.learningRate),Jt(ge(l,se(it(d),this.epsilon)))),c=se(_(o,this.momentum),p);i.assign(l),u.assign(d),o.assign(c);let h=ge(a,c);a.assign(h)}else{let u=se(_(i,this.decay),_(it(s),1-this.decay)),d=se(_(o,this.momentum),me(_(s,this.learningRate),Jt(se(u,this.epsilon))));i.assign(u),o.assign(d);let p=ge(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ah.className="RMSProp";Mr(ah);var yi=class{static sgd(e){return new od(e)}static momentum(e,t,n=!1){return new nh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new ah(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new eh(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Jc(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new th(e,t,n,a,r)}static adagrad(e,t=.1){return new Qc(e,t)}},gi={sgd:yi.sgd,momentum:yi.momentum,adadelta:yi.adadelta,adagrad:yi.adagrad,rmsprop:yi.rmsprop,adamax:yi.adamax,adam:yi.adam},hF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function rh(){return new Promise(e=>hF(()=>e()))}var C={};Fe(C,{ERF_A1:()=>IF,ERF_A2:()=>SF,ERF_A3:()=>NF,ERF_A4:()=>TF,ERF_A5:()=>EF,ERF_P:()=>kF,PARALLELIZE_THRESHOLD:()=>UA,SELU_SCALE:()=>I3,SELU_SCALEALPHA:()=>k3,applyActivation:()=>Zc,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>BE,assertParamsConsistent:()=>fF,assignToTypedArray:()=>zF,axesAreInnerMostDims:()=>kA,calculateShapes:()=>cb,checkEinsumDimSizes:()=>VF,combineLocations:()=>Xb,complexWithEvenIndex:()=>$F,complexWithOddIndex:()=>DF,computeConv2DInfo:()=>qu,computeConv3DInfo:()=>Rb,computeDefaultPad:()=>lA,computeDilation2DInfo:()=>pT,computeOptimalWindowSize:()=>AF,computeOutAndReduceShapes:()=>Kb,computeOutShape:()=>mF,computePool2DInfo:()=>Cb,computePool3DInfo:()=>cT,convertConv2DDataFormat:()=>Mb,decodeEinsumEquation:()=>WF,eitherStridesOrDilationsAreOne:()=>za,expandShapeToKeepDim:()=>mi,exponent:()=>PF,exponents:()=>_F,fromStringArrayToUint8:()=>YF,fromUint8ToStringArray:()=>ZF,getAxesPermutation:()=>Zb,getBroadcastDims:()=>nE,getComplexWithIndex:()=>OF,getEinsumComputePath:()=>jF,getEinsumPermutation:()=>BF,getFusedBiasGradient:()=>Kc,getFusedDyActivation:()=>Xc,getImageCenter:()=>yF,getInnerMostAxes:()=>VE,getPermuted:()=>xF,getReductionAxes:()=>zt,getReshaped:()=>gF,getReshapedPermuted:()=>bF,getSliceBeginCoords:()=>vF,getSliceSize:()=>wF,getUndoAxesPermutation:()=>IA,isIdentityPermutation:()=>UF,log:()=>RF,mergeRealAndImagArrays:()=>MF,prepareAndValidate:()=>pb,prepareSplitSize:()=>GF,segment_util:()=>T3,shouldFuse:()=>Yc,slice_util:()=>on,splitRealAndImagArrays:()=>FF,tupleValuesAreOne:()=>Fr,upcastType:()=>ia,validateInput:()=>Xm,validateUpdateShape:()=>qm,warn:()=>CF});function fF(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function mF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var UA=30;function AF(e){return e<=UA?e:Cp(e,Math.floor(Math.sqrt(e)))}function yF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function gF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function xF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function bF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function vF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function wF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var k3=1.7580993408473768,I3=1.0507009873554805,kF=.3275911,IF=.254829592,SF=-.284496736,NF=1.421413741,TF=-1.453152027,EF=1.061405429;function CF(...e){J().getBool("IS_TEST")||console.warn(...e)}function RF(...e){J().getBool("IS_TEST")||console.log(...e)}function MF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function FF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function $F(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function DF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function OF(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function zF(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function _F(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function PF(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var HA="->",LF=/->/g,S3=",",N3="...";function WF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(LF,"").length)/HA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${HA}").`);let[a,r]=e.split(HA);F(a.indexOf(N3)===-1,()=>`The ellipsis notation ("${N3}") is not supported yet.`);let s=a.split(S3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==S3&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,d=r.length,p=[];for(let c=d;c<u;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function BF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function VF(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function jF(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=HF(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function UF(e){return e.every((t,n)=>t===n)}function HF(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function GF(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var T3={};Fe(T3,{collectGatherOpShapeInfo:()=>KF,computeOutShape:()=>XF,segOpComputeOptimalWindowSize:()=>qF});function qF(e,t){let n=!1,a;for(e<=UA?(a=e,n=!0):a=Cp(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Cp(e,a+1);return a}function XF(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function KF(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function ZF(e){try{return e.map(t=>pc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function YF(e){return e.map(t=>zu(t))}var Wa={};Fe(Wa,{nonMaxSuppressionV3Impl:()=>f3,nonMaxSuppressionV4Impl:()=>m3,nonMaxSuppressionV5Impl:()=>A3,whereImpl:()=>r3});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var JF=Wa.whereImpl,sh=class extends mu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Tp(this,ar())}nextDataId(){return sh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return ar().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return JF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};sh.nextDataId=0;var GA={};Fe(GA,{addImpl:()=>C3,bincountImpl:()=>XA,bincountReduceImpl:()=>R3,ceilImpl:()=>M3,concatImpl:()=>KA,expImpl:()=>F3,expm1Impl:()=>D3,floorImpl:()=>O3,gatherV2Impl:()=>z3,greaterImpl:()=>_3,lessImpl:()=>P3,linSpaceImpl:()=>L3,logImpl:()=>W3,maxImpl:()=>B3,maximumImpl:()=>V3,minimumImpl:()=>j3,multiplyImpl:()=>ZA,negImpl:()=>U3,notEqualImpl:()=>H3,prodImpl:()=>G3,rangeImpl:()=>JA,rsqrtImpl:()=>q3,simpleAbsImpl:()=>E3,sliceImpl:()=>lh,sparseFillEmptyRowsImpl:()=>X3,sparseReshapeImpl:()=>K3,squaredDifferenceImpl:()=>Z3,stridedSliceImpl:()=>Y3,subImpl:()=>J3,tileImpl:()=>Q3,topKImpl:()=>e7,transposeImpl:()=>YA,uniqueImpl:()=>t7});function E3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var QF=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=E3(r),n.makeOutput(a,t.shape,"float32")},e$={kernelName:no,backendName:"cpu",kernelFunc:QF};function Rt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<d.length;++y)d[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<d.length;++y){let g=k.indexToLoc(y,o,l),x=g.slice(-p);f.forEach(N=>x[N]=0);let w=k.locToIndex(x,p,h),b=g.slice(-c);A.forEach(N=>b[N]=0);let v=k.locToIndex(b,c,m);d[y]=e(a[w],r[v])}return[d,i]}}function Pn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var t$={kernelName:Dp,backendName:"cpu",kernelFunc:Pn};function ih(e,t,n="float32"){if(n==="complex64"){let r=ih(e,t,"float32"),s=ih(e,t,"float32");return Pn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function Ba(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var n$={kernelName:Is,backendName:"cpu",kernelFunc:Ba};function xi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var a$={kernelName:tc,backendName:"cpu",kernelFunc:xi};function Lr(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ba({inputs:{x:r},backend:n});let i=ih(n,r.shape,r.dtype),o=Lr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Pn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=xi({inputs:{input:r},backend:n}),o=Lr({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Ba({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Rt((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var r$={kernelName:ps,backendName:"cpu",kernelFunc:Lr};function Ut(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Lr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=Lr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,w=l.data.get(g.dataId).values,[b,v,N]=n(i.shape,o.shape,h,m,x,w),T=l.makeTensorInfo(N,"float32",b),R=l.makeTensorInfo(N,"float32",v),$=Pn({inputs:{real:T,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(R),$}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}}}function qA(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),x=n.length,w=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,N=b%A.length,T=e(f[v*2],f[v*2+1],A[N*2],A[N*2+1]);p[b]=T.real,c[b]=T.imag}else for(let b=0;b<p.length;b++){let v=k.indexToLoc(b,u,d),N=v.slice(-y);h.forEach(P=>N[P]=0);let T=k.locToIndex(N,y,g),R=v.slice(-x);m.forEach(P=>R[P]=0);let $=k.locToIndex(R,x,w),z=e(f[T*2],f[T*2+1],A[$*2],A[$*2+1]);p[b]=z.real,c[b]=z.imag}return[p,c,o]}}var C3=Rt((e,t)=>e+t),s$=qA((e,t,n,a)=>({real:e+n,imag:t+a})),ld=Ut(Ir,C3,s$),i$={kernelName:Ir,backendName:"cpu",kernelFunc:ld};function XA(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function R3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=We([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Tl(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function at(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),d=n||i.dtype,p=k.getArrayFromDType(d,u);for(let c=0;c<u;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,d,p)}}function El(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var M3=Tl(e=>Math.ceil(e)),o$=El(cs,M3),l$={kernelName:cs,backendName:"cpu",kernelFunc:o$};function KA(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[l++]}s+=i.shape[1]})}return r}var F3=Tl(e=>Math.exp(e)),$3=El(xs,F3),u$={kernelName:xs,backendName:"cpu",kernelFunc:$3},D3=Tl(e=>Math.expm1(e)),d$=El(vo,D3),p$={kernelName:vo,backendName:"cpu",kernelFunc:d$},O3=Tl(e=>Math.floor(e)),c$=El(bs,O3),h$={kernelName:bs,backendName:"cpu",kernelFunc:c$};function z3(e,t,n){let a=We(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var _3=Rt((e,t)=>e>t?1:0),f$=Ut(So,_3,null,"bool"),m$={kernelName:So,backendName:"cpu",kernelFunc:f$},P3=Rt((e,t)=>e<t?1:0),A$=Ut(Co,P3,null,"bool"),y$={kernelName:Co,backendName:"cpu",kernelFunc:A$};function L3(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var W3=Tl(e=>Math.log(e)),g$=El(Ns,W3),x$={kernelName:Ns,backendName:"cpu",kernelFunc:g$};function B3(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}r[s]=o}return r}var V3=Rt((e,t)=>Math.max(e,t)),b$=Ut(Es,V3),v$={kernelName:Es,backendName:"cpu",kernelFunc:b$},j3=Rt((e,t)=>Math.min(e,t)),w$=Ut(Fs,j3),k$={kernelName:Fs,backendName:"cpu",kernelFunc:w$},ZA=Rt((e,t)=>e*t),I$=qA((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),oh=Ut(Ds,ZA,I$),S$={kernelName:Ds,backendName:"cpu",kernelFunc:oh};function U3(e,t,n){let a=k.createScalarValue(-1,n);return ZA([],t,a,e,n)}function N$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=U3(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var T$={kernelName:Do,backendName:"cpu",kernelFunc:N$},H3=Rt((e,t)=>e!==t?1:0),E$=Ut(Oo,H3,null,"bool"),C$={kernelName:Oo,backendName:"cpu",kernelFunc:E$};function YA(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let p=k.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[d]}return u}function Zn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=YA(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var R$={kernelName:ei,backendName:"cpu",kernelFunc:Zn};function G3(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=ia(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,p=1;for(let c=0;c<l;++c)p*=n[d+c];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function M$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=C.getAxesPermutation(l,o),d=l,p=r,c=[];u!=null&&(p=Zn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(p),d=C.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:A}=G3(p.shape,p.dtype,h,d),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var F$={kernelName:Bo,backendName:"cpu",kernelFunc:M$};function JA(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var q3=Tl(e=>1/Math.sqrt(e)),$$=El(Us,q3),D$={kernelName:Us,backendName:"cpu",kernelFunc:$$};function lh(e,t,n,a,r){let s=on.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=on.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=We(a,r,l),d=We(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(u.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(d.values):d.values}function bi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=on.parseSliceParams(r,s,i);on.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=lh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var O$={kernelName:qo,backendName:"cpu",kernelFunc:bi};function X3(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let A=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[A,[0,p],y,u,d]}let c=!0,h=0,m=new Array(l).fill(0);for(let A=0;A<o;++A){let y=e[A*p];if(y<0)throw new Error(`indices(${A}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${A}, 0) is invalid: ${y} >= ${l}`);++m[y],c=c&&y>=h,h=y}let f=!0;for(let A=0;A<l;++A){let y=m[A]===0;u[A]=y,f=f&&!y,m[A]=Math.max(m[A],1),A>0&&(m[A]+=m[A-1])}if(f&&c){let A=e,y=a;for(let g=0;g<o;++g)d[g]=g;return[A,[o,p],y,u,d]}else{let A=m[l-1],y=k.getArrayFromDType(n,A*p),g=k.getArrayFromDType(r,A),x=new Array(l).fill(0);for(let w=0;w<o;++w){let b=e[w*p],v=x[b],N=(b===0?0:m[b-1])+v;x[b]++;for(let T=0;T<p;++T)y[N*p+T]=e[w*p+T];g[N]=a[w],d[w]=N}for(let w=0;w<l;++w)if(x[w]===0){let b=w===0?0:m[w-1];y[b*p+0]=w;for(let v=1;v<p;++v)y[b*p+v]=0;g[b]=i}return[y,[o,p],g,u,d]}}function K3(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let A=0;A<o;++A){let y=r[A];if(y===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${A}`);d=A,l.push(1)}else{if(y<0)throw new Error(`size ${A} must be non-negative, not ${y}`);u*=y,l.push(y)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(s/u);if(u*A!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=A}let p=k.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let A=c-2;A>=0;--A)h[A]=h[A+1]*a[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=k.getArrayFromDType(n,i*o);for(let A=0;A<i;++A){let y=0;for(let g=0;g<c;++g)y+=e[A*c+g]*h[g];for(let g=0;g<o;++g)f[A*o+g]=Math.trunc(y/m[g]),y%=m[g]}return[f,[i,o],l]}var Z3=Rt((e,t)=>{let n=e-t;return n*n}),z$=Ut(Zs,Z3),_$={kernelName:Zs,backendName:"cpu",kernelFunc:z$};function Y3(e,t,n,a){let r=We(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var J3=Rt((e,t)=>e-t),P$=qA((e,t,n,a)=>({real:e-n,imag:t-a})),QA=Ut(Ys,J3,P$),L$={kernelName:Ys,backendName:"cpu",kernelFunc:QA};function Q3(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=We(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function e7(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,A=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let g=0;g<a;g++)A[g]=m[g].value,y[g]=m[g].index}let d=t.slice();return d[d.length-1]=a,[We(d,n,l),We(d,"int32",u)]}function t7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Dt(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Dt(p,a);u.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)c.set(l.get(A,m,y),A,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var n7="3.6.0";cl("cpu",()=>new sh,1);var a7=at(yo,e=>e>=0?e:Math.exp(e)-1),W$={kernelName:yo,backendName:"cpu",kernelFunc:a7};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var B$={kernelName:Ss,backendName:"cpu",kernelFunc:r7},V$=Rt((e,t)=>e<0?t*e:e);function s7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=V$(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var j$={kernelName:Ps,backendName:"cpu",kernelFunc:s7},i7=at(Ls,e=>Math.max(0,e)),U$={kernelName:Ls,backendName:"cpu",kernelFunc:i7},o7=at(Bs,e=>Math.min(Math.max(0,e),6)),H$={kernelName:Bs,backendName:"cpu",kernelFunc:o7},l7=at(Gs,e=>1/(1+Math.exp(-e))),G$={kernelName:Gs,backendName:"cpu",kernelFunc:l7};function e1(e,t,n,a,r){if(n==="linear")return Ba({inputs:{x:t},backend:e});if(n==="relu")return i7({inputs:{x:t},backend:e});if(n==="elu")return a7({inputs:{x:t},backend:e});if(n==="relu6")return o7({inputs:{x:t},backend:e});if(n==="prelu")return s7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return r7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return l7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ct(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var q$={kernelName:jo,backendName:"cpu",kernelFunc:ct};function u7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,d,c]:[A,c,d],b=o?[y,h,p]:[y,p,h],v=ct({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ct({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],R=i?v.shape[2]:v.shape[1],$=o?N.shape[1]:N.shape[2],z=Math.max(A,y),P=n.data.get(v.dataId).values,V=n.data.get(N.dataId).values,j=k.computeStrides(v.shape),U=k.computeStrides(N.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,re,ne]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=R*$,Q=We([z,R,$],v.dtype),de=Q.values,oe=n.blockSize;for(let ye=0;ye<z;ye++)for(let ce=0;ce<R;ce+=oe)for(let Ie=0;Ie<$;Ie+=oe)for(let Ne=0;Ne<T;Ne+=oe){let $e=Math.min(ce+oe,R),ze=Math.min(Ie+oe,$),De=Math.min(Ne+oe,T);for(let Qe=ce;Qe<$e;Qe++)for(let et=Ie;et<ze;et++){let st=0;for(let Xe=Ne;Xe<De;Xe++){let dt=Math.min(ye,A-1)*X,Ve=Math.min(ye,y-1)*ne,An=P[dt+Qe*G+Xe*ee],gt=V[Xe*Y+et*re+Ve];st+=An*gt}de[ye*ie+(Qe*$+et)]+=st}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Q.dtype,Q.values)}var X$={kernelName:ds,backendName:"cpu",kernelFunc:u7};function K$(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=u7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=ld({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=e1(n,c,d,o,p),f.push(c),c=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return c}var Z$={kernelName:ti,backendName:"cpu",kernelFunc:K$},Y$=at(ao,e=>Math.acos(e)),J$={kernelName:ao,backendName:"cpu",kernelFunc:Y$},Q$=at(ro,e=>Math.acosh(e)),eD={kernelName:ro,backendName:"cpu",kernelFunc:Q$};function tD(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=We(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var nD={kernelName:os,backendName:"cpu",kernelFunc:tD};function aD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Zn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x&&b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var rD={kernelName:so,backendName:"cpu",kernelFunc:aD};function sD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Zn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x||b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var iD={kernelName:io,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Zn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b>g&&(g=b,x=w)}h[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(d,"int32",h)}var lD={kernelName:ls,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Zn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b<g&&(g=b,x=w)}h[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(d,"int32",h)}var dD={kernelName:gu,backendName:"cpu",kernelFunc:uD},pD=at(oo,e=>Math.asin(e)),cD={kernelName:oo,backendName:"cpu",kernelFunc:pD},hD=at(lo,e=>Math.asinh(e)),fD={kernelName:lo,backendName:"cpu",kernelFunc:hD},mD=at(uo,e=>Math.atan(e)),AD={kernelName:uo,backendName:"cpu",kernelFunc:mD},yD=Rt((e,t)=>Math.atan2(e,t)),gD=Ut(co,yD),xD={kernelName:co,backendName:"cpu",kernelFunc:gD},bD=at(po,e=>Math.atanh(e)),vD={kernelName:po,backendName:"cpu",kernelFunc:bD};function t1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(r.outShape,n),A=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let b=w*y,v=w*a[0];for(let N=0;N<r.inChannels;++N)for(let T=0;T<r.outHeight;++T){let R=T*i-c,$=Math.max(0,R),z=Math.min(r.inHeight,d+R),P=b+T*g;for(let V=0;V<r.outWidth;++V){let j=V*o-h,U=Math.max(0,j),X=Math.min(r.inWidth,p+j),G=m,ee=0,Y=0;for(let ne=$;ne<z;ne+=l){let ie=v+ne*a[1];for(let Q=U;Q<X;Q+=u){let de=ie+Q*a[2],oe=e[de+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=P+V*x+N;A[re]=s==="avg"?ee/Y:G}}}return f}function d7(e,t,n,a,r=!1,s=!1){let i=We(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=We(t,n,e);for(let A=0;A<a.batchSize;++A)for(let y=0;y<a.inChannels;++y)for(let g=0;g<a.outHeight;++g){let x=g*o-h,w=x;for(;w<0;)w+=u;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let N=v*l-m,T=N;for(;T<0;)T+=d;let R=Math.min(a.inWidth,c+N),$=Number.NEGATIVE_INFINITY,z=-1;for(let P=w;P<b;P+=u){let V=P-x;for(let j=T;j<R;j+=d){let U=j-N,X=f.get(A,P,j,y);X>$&&($=X,r?z=s?((A*a.inHeight+P)*a.inWidth+j)*a.inChannels+y:(P*a.inWidth+j)*a.inChannels+y:z=V*c+U)}}i.set(z,A,g,v,y)}}return i}function p7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,A=r.padInfo.top,y=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),w=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let R=0;R<r.batchSize;++R){let $=R*b,z=R*a[0];for(let P=0;P<r.inChannels;++P)for(let V=0;V<r.outDepth;++V){let j=V*i-f,U=j;for(;U<0;)U+=u;let X=Math.min(r.inDepth,c+j),G=$+V*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-A,re=Y;for(;re<0;)re+=d;let ne=Math.min(r.inHeight,h+Y),ie=G+ee*N;for(let Q=0;Q<r.outWidth;++Q){let de=Q*l-y,oe=de;for(;oe<0;)oe+=p;let ye=Math.min(r.inWidth,m+de),ce=ie+Q*T,Ie=g,Ne=0,$e=0;for(let De=U;De<X;De+=u){let Qe=z+De*a[1];for(let et=re;et<ne;et+=d){let st=Qe+et*a[2];for(let Xe=oe;Xe<ye;Xe+=p){let dt=st+Xe*a[3],Ve=e[dt+P];if(s==="max"&&Ve>Ie?Ie=Ve:s==="avg"&&(Ne+=Ve,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let ze=ce+P;w[ze]=s==="avg"?Ne/$e:Ie}}}}return x}function wD(e,t){let n=We(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*a-c,x=g;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,N=v;for(;N<0;)N+=o;let T=Math.min(t.inHeight,d+v);for(let R=0;R<t.outWidth;++R){let $=R*s-m,z=$;for(;z<0;)z+=l;let P=Math.min(t.inWidth,p+$),V=Number.NEGATIVE_INFINITY,j=-1;for(let U=x;U<w;U+=i){let X=U-g;for(let G=N;G<T;G+=o){let ee=G-v;for(let Y=z;Y<P;Y+=l){let re=Y-$,ne=e.get(f,U,G,Y,A);ne>=V&&(V=ne,j=X*d*p+ee*d+re)}}}n.set(j,f,y,b,R,A)}}}return n}function kD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=t1(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var ID={kernelName:us,backendName:"cpu",kernelFunc:kD};function SD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"avgPool3d");let d=C.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=p7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var ND={kernelName:xu,backendName:"cpu",kernelFunc:SD};function TD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"avgPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,A=d.filterWidth,y=d.dilationDepth,g=d.dilationHeight,x=d.dilationWidth,w=d.effectiveFilterDepth,b=d.effectiveFilterHeight,v=d.effectiveFilterWidth,N=w-1-d.padInfo.front,T=v-1-d.padInfo.left,R=b-1-d.padInfo.top,$=We(s.shape,"float32"),z=1/(m*f*A),P=n.bufferSync(r);for(let V=0;V<d.batchSize;++V)for(let j=0;j<d.inChannels;++j)for(let U=0;U<d.inDepth;++U)for(let X=0;X<d.inHeight;++X)for(let G=0;G<d.inWidth;++G){let ee=U-N,Y=X-R,re=G-T,ne=0;for(let ie=0;ie<w;ie+=y){let Q=(ee+ie)/p;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(Y+de)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye<v;ye+=x){let ce=(re+ye)/h;ce<0||ce>=d.outWidth||Math.floor(ce)!==ce||(ne+=P.get(V,Q,oe,ce,j))}}}$.set(ne*z,V,U,X,G,j)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var ED={kernelName:Fp,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=C.computePool2DInfo(i.shape,o,l,1,u),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.effectiveFilterHeight,g=d.effectiveFilterWidth,x=g-1-d.padInfo.left,w=y-1-d.padInfo.top,b=We(i.shape,"float32"),v=1/(h*m),N=n.data.get(r.dataId).values,T=We(r.shape,"float32",N);for(let R=0;R<d.batchSize;++R)for(let $=0;$<d.inChannels;++$)for(let z=0;z<d.inHeight;++z)for(let P=0;P<d.inWidth;++P){let V=z-w,j=P-x,U=0;for(let X=0;X<y;X+=f){let G=(V+X)/p;if(!(G<0||G>=d.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(j+ee)/c;Y<0||Y>=d.outWidth||Math.floor(Y)!==Y||(U+=T.get(R,G,Y,$))}}b.set(U*v,R,z,P,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var RD={kernelName:Mp,backendName:"cpu",kernelFunc:CD};function MD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),A=m.length,y=h.length,g=c.length,x=p.length,w=0,b=0,v=0,N=0;for(let T=0;T<d.length;++T)f[T]=m[w++]+(d[T]-p[b++])*h[v++]/Math.sqrt(c[N++]+u),w>=A&&(w=0),b>=x&&(b=0),v>=y&&(v=0),N>=g&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var FD={kernelName:ws,backendName:"cpu",kernelFunc:MD};function $D(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(d,i,s.length),h=ct({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Zn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:d}}),A=bi({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var DD={kernelName:bu,backendName:"cpu",kernelFunc:$D};function OD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=XA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var zD={kernelName:$p,backendName:"cpu",kernelFunc:OD},_D=at(Sr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),PD={kernelName:Sr,backendName:"cpu",kernelFunc:_D},LD=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],p=l[u];a[u]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},WD={kernelName:vu,backendName:"cpu",kernelFunc:LD};function Cl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var BD={kernelName:Xp,backendName:"cpu",kernelFunc:Cl};function Rl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return Ba({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(w=>xi({inputs:{input:w},backend:n})),A=o.map(w=>Cl({inputs:{input:w},backend:n})),y=Rl({inputs:f,backend:n,attrs:{axis:s}}),g=Rl({inputs:A,backend:n,attrs:{axis:s}}),x=Pn({inputs:{real:y,imag:g},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),A.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let u=o.map(f=>{let A=k.sizeFromShape(f.shape.slice(s));return ct({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,c=KA(d,i,t[0].dtype,p),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var VD={kernelName:ho,backendName:"cpu",kernelFunc:Rl};function c7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;ve([r,s],"conv2d");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Dt(c.outShape,r.dtype),b=k.computeStrides(r.shape),v=k.computeStrides(s.shape),N=b[0],T=x?b[1]:b[2],R=x?b[2]:1,$=x?1:b[1],z=w.strides[0],P=x?w.strides[1]:w.strides[2],V=x?w.strides[2]:1,j=x?1:w.strides[1],U=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*N,re=ee*z;for(let ne=0;ne<c.outHeight;++ne){let ie=re+ne*P,Q=ne*c.strideHeight-g;for(let de=0;de<h;++de){let oe=Q+de*f;if(oe<0||oe>=c.inHeight)continue;let ye=de*v[0],ce=Y+oe*T;for(let Ie=0;Ie<c.outWidth;++Ie){let Ne=ie+Ie*V,$e=Ie*c.strideWidth-y;for(let ze=0;ze<m;++ze){let De=$e+ze*A;if(De<0||De>=c.inWidth)continue;let Qe=ye+ze*v[1],et=ce+De*R,st=Qe;for(let Xe=0;Xe<c.inChannels;++Xe){let dt=U[et+Xe*$];for(let Ve=0;Ve<c.outChannels;++Ve)G[Ne+Ve*j]+=dt*X[st+Ve];st+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var jD={kernelName:hs,backendName:"cpu",kernelFunc:c7};function UD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:A}=c,y=c.dataFormat==="channelsLast",g=new Dt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=new Dt(r.shape,r.dtype,b),T=new Dt(s.shape,s.dtype,v);for(let R=0;R<f;++R){let $=Math.max(0,Math.ceil((w-R)/h)),z=Math.min(c.outHeight,(c.inHeight+w-R)/h);for(let P=0;P<A;++P){let V=Math.max(0,Math.ceil((x-P)/m)),j=Math.min(c.outWidth,(c.inWidth+x-P)/m);for(let U=0;U<c.inChannels;++U)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<z;++Y){let re=R+Y*h-w;for(let ne=V;ne<j;++ne){let ie=P+ne*m-x;y?G+=N.get(ee,re,ie,U)*T.get(ee,Y,ne,X):G+=N.get(ee,U,re,ie)*T.get(ee,X,Y,ne)}}g.set(G,R,P,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var HD={kernelName:Op,backendName:"cpu",kernelFunc:UD};function GD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;ve([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),f=new Dt(m.inShape,"float32"),A=f.values,y=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,w,b]=p,{batchSize:v,filterHeight:N,filterWidth:T,inChannels:R,inHeight:$,inWidth:z,outChannels:P,outHeight:V,outWidth:j,strideHeight:U,strideWidth:X}=m;h=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],ne=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],de=c[0],oe=Y?c[1]:c[2],ye=Y?c[2]:1,ce=Y?1:c[1];for(let Ie=0;Ie<v;++Ie)for(let Ne=0;Ne<R;++Ne)for(let $e=0;$e<$;++$e){let ze=$e-G,De=Math.max(0,Math.ceil(ze/U)),Qe=Math.min(V,(N+ze)/U);for(let et=0;et<z;++et){let st=et-ee,Xe=Math.max(0,Math.ceil(st/X)),dt=Math.min(j,(T+st)/X),Ve=0;for(let gt=De;gt<Qe;++gt){let jn=gt*U-ze;for(let Xt=Xe;Xt<dt;++Xt){let yn=Xt*X-st,Un=de*Ie+oe*gt+ye*Xt,Mn=x*(N-1-jn)+w*(T-1-yn)+b*Ne;for(let rn=0;rn<P;++rn){let Kt=y[Un+ce*rn],Ra=g[Mn+rn];Ve+=Kt*Ra}}}let An=re*Ie+ne*$e+ie*et+Q*Ne;A[An]=Ve}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var qD={kernelName:fs,backendName:"cpu",kernelFunc:GD};function XD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:A}=u,y=A.front,g=A.left,x=A.top,w=new Dt(u.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=w.values,T=k.computeStrides(r.shape),R=k.computeStrides(s.shape);for(let $=0;$<u.batchSize;++$){let z=$*T[0],P=$*w.strides[0];for(let V=0;V<u.outDepth;++V){let j=P+V*w.strides[1],U=V*u.strideDepth-y;for(let X=0;X<d;++X){let G=U+X*h;if(G<0||G>=u.inDepth)continue;let ee=X*R[0],Y=z+G*T[1];for(let re=0;re<u.outHeight;++re){let ne=j+re*w.strides[2],ie=re*u.strideHeight-x;for(let Q=0;Q<p;++Q){let de=ie+Q*m;if(de<0||de>=u.inHeight)continue;let oe=ee+Q*R[1],ye=Y+de*T[2];for(let ce=0;ce<u.outWidth;++ce){let Ie=ne+ce*u.outChannels,Ne=ce*u.strideWidth-g;for(let $e=0;$e<c;++$e){let ze=Ne+$e*f;if(ze<0||ze>=u.inWidth)continue;let De=oe+$e*R[2],Qe=ye+ze*u.inChannels,et=De;for(let st=0;st<u.inChannels;++st){let Xe=b[Qe+st];for(let dt=0;dt<u.outChannels;++dt)N[Ie+dt]+=Xe*v[et+dt];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var KD={kernelName:wu,backendName:"cpu",kernelFunc:XD};function ZD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=C.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,A=p.filterHeight,y=p.filterWidth,g=new Dt(p.filterShape,"float32"),x=g.values,[w,b,v,N]=g.strides,T=n.data.get(s.dataId).values,[R,$,z,P]=d,V=n.data.get(r.dataId).values,[j,U,X,G]=u,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((ee-ne)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-ne)/c),de=ne*w;for(let oe=0;oe<A;++oe){let ye=Math.max(0,Math.ceil((re-oe)/h)),ce=Math.min(p.outHeight,(p.inHeight+re-oe)/h),Ie=oe*b+de;for(let Ne=0;Ne<y;++Ne){let $e=Math.max(0,Math.ceil((Y-Ne)/m)),ze=Math.min(p.outWidth,(p.inWidth+Y-Ne)/m),De=Ne*v+Ie;for(let Qe=0;Qe<p.inChannels;++Qe){let et=Qe*N+De;for(let st=0;st<p.outChannels;++st){let Xe=0;for(let dt=0;dt<p.batchSize;++dt){let Ve=dt*j,An=dt*R;for(let gt=ie;gt<Q;++gt){let jn=(ne+gt*c-ee)*U+Ve,Xt=gt*$+An;for(let yn=ye;yn<ce;++yn){let Un=(oe+yn*h-re)*X+jn,Mn=yn*z+Xt;for(let rn=$e;rn<ze;++rn){let Kt=(Ne+rn*m-Y)*G+Un,Ra=rn*P+Mn;Xe+=V[Kt+Qe]*T[Ra+st]}}}}x[et+st]=Xe}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var YD={kernelName:zp,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,o,1,i),c=new Dt(p.inShape,"float32"),h=c.values,[m,f,A,y]=c.strides,g=n.data.get(r.dataId).values,[x,w,b,v]=u,N=n.data.get(s.dataId).values,[T,R,$,z]=d,{batchSize:P,filterDepth:V,filterHeight:j,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:ne,outHeight:ie,outWidth:Q,strideDepth:de,strideHeight:oe,strideWidth:ye}=p,ce=V-1-p.padInfo.front,Ie=j-1-p.padInfo.top,Ne=U-1-p.padInfo.left;for(let $e=0;$e<P;++$e)for(let ze=0;ze<X;++ze)for(let De=0;De<G;++De){let Qe=De-ce,et=Math.max(0,Math.ceil(Qe/de)),st=Math.min(ne,(V+Qe)/de);for(let Xe=0;Xe<ee;++Xe){let dt=Xe-Ie,Ve=Math.max(0,Math.ceil(dt/oe)),An=Math.min(ie,(j+dt)/oe);for(let gt=0;gt<Y;++gt){let jn=gt-Ne,Xt=Math.max(0,Math.ceil(jn/ye)),yn=Math.min(Q,(U+jn)/ye),Un=0;for(let Mn=et;Mn<st;++Mn){let rn=Mn*de-Qe;for(let Kt=Ve;Kt<An;++Kt){let Ra=Kt*oe-dt;for(let ta=Xt;ta<yn;++ta){let na=ta*ye-jn,mr=x*$e+w*Mn+b*Kt+v*ta,Ka=T*(V-1-rn)+R*(j-1-Ra)+$*(U-1-na)+z*ze;for(let Ar=0;Ar<re;++Ar){let Bi=g[mr+Ar],Ma=N[Ka+Ar];Un+=Bi*Ma}}}}h[m*$e+f*De+A*Xe+y*gt+ze]=Un}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var QD={kernelName:_p,backendName:"cpu",kernelFunc:JD},eO=at(ms,e=>Math.cos(e)),tO={kernelName:ms,backendName:"cpu",kernelFunc:eO},nO=at(fo,e=>Math.cosh(e)),aO={kernelName:fo,backendName:"cpu",kernelFunc:nO};function rO(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),v=k.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,R=g[T],$=g[T+1],z=g[T+2],P=g[T+3],V=x[N];if(V>=d)continue;let j=f>1?(z-R)*(p-1)/(f-1):0,U=A>1?(P-$)*(c-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?R*(p-1)+X*j:.5*(R+z)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+N*v[0];y.values[re]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let ne=0;ne<A;ne++){let ie=A>1?$*(c-1)+ne*U:.5*($+P)*(c-1);if(ie<0||ie>c-1){for(let ye=0;ye<h;ye++){let ce=ye+ne*v[2]+X*v[1]+N*v[0];y.values[ce]=u}continue}let Q=Math.floor(ie),de=Math.ceil(ie),oe=ie-Q;for(let ye=0;ye<h;ye++){let ce=ye+Q*b[2]+ee*b[1]+V*b[0],Ie=w[ce];ce=ye+de*b[2]+ee*b[1]+V*b[0];let Ne=w[ce];ce=ye+Q*b[2]+Y*b[1]+V*b[0];let $e=w[ce];ce=ye+de*b[2]+Y*b[1]+V*b[0];let ze=w[ce],De=Ie+(Ne-Ie)*oe,Qe=$e+(ze-$e)*oe;ce=ye+ne*v[2]+X*v[1]+N*v[0],y.values[ce]=De+(Qe-De)*re}}}else for(let ee=0;ee<A;++ee){let Y=A>1?$*(c-1)+ee*U:.5*($+P)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+N*v[0];y.values[Q]=u}continue}let re=Math.round(Y),ne=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+ne*b[1]+V*b[0],de=ie+ee*v[2]+X*v[1]+N*v[0];y.values[de]=w[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var sO={kernelName:mo,backendName:"cpu",kernelFunc:rO};function iO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Zn({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let p=ia(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<h.length;y+=m)for(let g=0;g<m;g++){let x=f(y,g);if(g===0)c[x]=i?0:h[x];else{let w=f(y,g-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let A=n.makeTensorInfo(u.shape,p,c);if(l!=null){let y=C.getUndoAxesPermutation(l),g=Zn({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var oO={kernelName:As,backendName:"cpu",kernelFunc:iO};function lO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=XA(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=R3(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var uO={kernelName:Pp,backendName:"cpu",kernelFunc:lO};function dO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],p=l*s,c=u*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),A=0;for(let y=0;y<o;++y)for(let g=0;g<p;++g){let x=Math.floor(g/s),w=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),N=b%s,T=(w*s+N)*h;for(let R=0;R<h;++R){let $=R+T+d*(v+u*(x+l*y));f[A++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var pO={kernelName:Ao,backendName:"cpu",kernelFunc:dO};function h7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ve([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=h,x=g.left,w=g.top,b=h.outChannels/h.inChannels,v=new Dt(h.outShape,r.dtype),N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,R=v.values;for(let $=0;$<h.batchSize;++$){let z=$*d[0],P=$*v.strides[0];for(let V=0;V<h.outHeight;++V){let j=P+V*v.strides[1],U=V*h.strideHeight-w;for(let X=0;X<m;++X){let G=U+X*A;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=z+G*d[1];for(let re=0;re<h.outWidth;++re){let ne=j+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let de=ie+Q*y;if(de<0||de>=h.inWidth)continue;let oe=ee+Q*p[1],ye=Y+de*h.inChannels,ce=ne,Ie=oe;for(let Ne=0;Ne<h.inChannels;++Ne){let $e=N[ye+Ne];for(let ze=0;ze<b;++ze)R[ce+ze]+=$e*T[Ie+ze];ce+=b,Ie+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var cO={kernelName:ys,backendName:"cpu",kernelFunc:h7};function hO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,A=new Dt(p.filterShape,"float32"),y=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,w=n.data.get(r.dataId).values,b=new Dt(r.shape,r.dtype,w),v=n.data.get(s.dataId).values,N=new Dt(s.shape,s.dtype,v);for(let T=0;T<m;++T){let R=Math.max(0,Math.ceil((g-T)/c)),$=Math.min(p.outHeight,(p.inHeight+g-T)/c);for(let z=0;z<f;++z){let P=Math.max(0,Math.ceil((y-z)/h)),V=Math.min(p.outWidth,(p.inWidth+y-z)/h);for(let j=0;j<p.outChannels;++j){let U=Math.trunc(j/x),X=j%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=R;Y<$;++Y){let re=T+Y*c-g;for(let ne=P;ne<V;++ne){let ie=z+ne*h-y;G+=b.get(ee,re,ie,U)*N.get(ee,Y,ne,j)}}A.set(G,T,z,U,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var fO={kernelName:Lp,backendName:"cpu",kernelFunc:hO};function mO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new Dt(h.inShape,"float32"),f=m.values,[A,y,g]=m.strides,x=n.data.get(r.dataId).values,[w,b,v]=p,N=n.data.get(s.dataId).values,[T,R,$]=c,{batchSize:z,filterHeight:P,filterWidth:V,inChannels:j,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:ne}=h,ie=P-1-h.padInfo.top,Q=V-1-h.padInfo.left,de=G/j;for(let oe=0;oe<z;++oe)for(let ye=0;ye<j;++ye)for(let ce=0;ce<U;++ce){let Ie=ce-ie,Ne=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(ee,(P+Ie)/re);for(let ze=0;ze<X;++ze){let De=ze-Q,Qe=Math.max(0,Math.ceil(De/ne)),et=Math.min(Y,(V+De)/ne),st=0;for(let Xe=Ne;Xe<$e;++Xe){let dt=Xe*re-Ie;for(let Ve=Qe;Ve<et;++Ve){let An=Ve*ne-De,gt=w*oe+b*Xe+v*Ve,jn=T*(P-1-dt)+R*(V-1-An)+$*ye;for(let Xt=0;Xt<de;++Xt){let yn=ye*de+Xt,Un=x[gt+yn],Mn=N[jn+Xt];st+=Un*Mn}}}f[A*oe+y*ce+g*ze+ye]=st}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var AO={kernelName:Wp,backendName:"cpu",kernelFunc:mO};function yO(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=We([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var gO={kernelName:Bp,backendName:"cpu",kernelFunc:yO},xO={kernelName:ku,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:w,strideWidth:b,filterHeight:v,filterWidth:N,dilationHeight:T,dilationWidth:R,outShape:$}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),z=k.sizeFromShape($),P=$.length,V=k.getArrayFromDType(a.dtype,z);for(let j=0;j<h;++j)for(let U=0;U<y;++U){let X=U*w-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<A;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let de=0;de<N;++de){let oe=ee+de*R;if(oe>=0&&oe<f){let ye=k.locToIndex([j,Q,oe,Y],d,k.computeStrides(a.shape)),ce=k.locToIndex([ie,de,Y],c,k.computeStrides(r.shape)),Ie=u[ye]+p[ce];Ie>re&&(re=Ie)}}}let ne=k.locToIndex([j,U,G,Y],P,k.computeStrides($));V[ne]=re}}}return{dataId:l.write(k.toTypedArray(V,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},bO={kernelName:jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${jp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<c;++P)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let ne=0;ne<b;++ne){let ie=j+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=d[P][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ne,re=Q)}}}z[Y][re][G]+=$[P][V][U][G]}}}return{dataId:u.write(k.toTypedArray(z,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},vO={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${Vp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<c;++P)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=j<0?0:j,re=X<0?0:X;for(let ne=0;ne<b;++ne){let ie=j+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=d[P][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ie,re=de)}}}z[P][Y][re][G]+=$[P][V][U][G]}}}return{dataId:u.write(k.toTypedArray(z,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ud(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=Lr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Ba({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),d=C.getAxesPermutation(u,l),p=u,c=o;d!=null&&(c=Zn({inputs:{x:o},backend:n,attrs:{perm:d}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,p),f=C.upcastType(c.dtype,"int32"),A=ih(n,h,f),y=k.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<g.length;++w){let b=w*y,v=0;for(let N=0;N<y;++N)v+=x[b+N];g[w]=v}if(i){let w=C.expandShapeToKeepDim(A.shape,u),b=A;A=ct({inputs:{x:A},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),A}var wO={kernelName:Xs,backendName:"cpu",kernelFunc:ud};function kO(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of d[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=Zn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=ct({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=oh({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=ud({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var IO={kernelName:Up,backendName:"cpu",kernelFunc:kO};function SO(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var NO={kernelName:Hp,backendName:"cpu",kernelFunc:SO},TO=Rt((e,t)=>e===t?1:0),f7=Ut(xo,TO,null,"bool"),EO={kernelName:xo,backendName:"cpu",kernelFunc:f7},CO=C.ERF_P,RO=C.ERF_A1,MO=C.ERF_A2,FO=C.ERF_A3,$O=C.ERF_A4,DO=C.ERF_A5,OO=at(go,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+CO*n);return t*(1-((((DO*a+$O)*a+FO)*a+MO)*a+RO)*a*Math.exp(-n*n))}),zO={kernelName:go,backendName:"cpu",kernelFunc:OO};function uh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ct({inputs:{x:r},backend:n,attrs:{shape:o}})}var _O={kernelName:bo,backendName:"cpu",kernelFunc:uh},PO=Rt((e,t)=>e/t),n1=Ut(gs,PO),a1={kernelName:gs,backendName:"cpu",kernelFunc:n1};function m7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=k.sizeFromShape(u),p=k.getTypedArrayFromDType("float32",d),c=k.getTypedArrayFromDType("float32",d);for(let A=0;A<r;A++){let y=bi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=bi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),x=Pn({inputs:{real:y,imag:g},backend:n}),{real:w,imag:b}=LO(x,t,n),v=C.mergeRealAndImagArrays(w,b);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(v,N);p[A*s+N]=T.real,c[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",c),f=Pn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function LO(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(WO(a)){let o=r1(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=Ba({inputs:{x:p},backend:n}),h=a1.kernelFunc({inputs:{a:u,b:p},backend:n}),m=a1.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=BO(o,a,t);return C.splitRealAndImagArrays(l)}}function WO(e){return(e&e-1)==0}function r1(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],p=r.makeTensorInfo(d,"float32",l),c=r.makeTensorInfo(d,"float32",u),h=Pn({inputs:{real:p,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",A),w=Pn({inputs:{real:g,imag:x},backend:r}),b=r1(l,u,i,a,r),v=b.real,N=b.imag,T=[v.length],R=r.makeTensorInfo(T,"float32",v),$=r.makeTensorInfo(T,"float32",N),z=Pn({inputs:{real:R,imag:$},backend:r}),P=r1(f,A,i,a,r),V=P.real,j=P.imag,U=[V.length],X=r.makeTensorInfo(U,"float32",V),G=r.makeTensorInfo(U,"float32",j),ee=Pn({inputs:{real:X,imag:G},backend:r}),Y=C.exponents(n,a),re=[Y.real.length],ne=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=Pn({inputs:{real:ne,imag:ie},backend:r}),de=oh({inputs:{a:Q,b:ee},backend:r}),oe=ld({inputs:{a:z,b:de},backend:r}),ye=QA({inputs:{a:z,b:de},backend:r}),ce=xi({inputs:{input:oe},backend:r}),Ie=xi({inputs:{input:ye},backend:r}),Ne=Cl({inputs:{input:oe},backend:r}),$e=Cl({inputs:{input:ye},backend:r}),ze=Rl({inputs:[ce,Ie],backend:r,attrs:{axis:0}}),De=Rl({inputs:[Ne,$e],backend:r,attrs:{axis:0}}),Qe=r.data.get(ze.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(De),{real:Qe,imag:et}}function BO(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function VO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=m7(o,!1,n),u=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var jO={kernelName:Gp,backendName:"cpu",kernelFunc:VO};function s1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return HO(o,r,i),t.makeTensorInfo(a,i,o)}var UO={kernelName:Iu,backendName:"cpu",kernelFunc:s1};function HO(e,t,n){e.fill(t)}var GO={kernelName:wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let A=f*u;for(let y=0;y<u;y++){let g=[i,h,f,y][2],x=Math.round(l-g),w=c+m+A+y,b=d[w];if(x>=0&&x<l){let v=x*u,N=c+m+v+y;b=d[N]}s[w]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},qO=Rt((e,t)=>Math.floor(e/t)),XO=Ut(vs,qO,null,"int32"),KO={kernelName:vs,backendName:"cpu",kernelFunc:XO};function ZO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=c7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=ld({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=e1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var YO={kernelName:ni,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=h7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=ld({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=e1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var QO={kernelName:ai,backendName:"cpu",kernelFunc:JO};function ez(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,p]=C.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=We([u,d],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<u;f++){let A=[],y=0;for(let g=0;g<o;g++){let x=h[f*o+g];y+=x*p[g],A.push(x)}if(y<0||y>=s/d)throw new Error(`Invalid indices: ${A} does not index into ${a.shape}`);for(let g=0;g<d;g++)c.values[f*d+g]=m[y*d+g]}return n.makeTensorInfo(l,c.dtype,c.values)}var tz={kernelName:Io,backendName:"cpu",kernelFunc:ez};function nz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(r,s,d,l),c=ct({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ct({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),A=n.bufferSync(c),y=z3(A,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var az={kernelName:ko,backendName:"cpu",kernelFunc:nz},rz=Rt((e,t)=>e>=t?1:0),sz=Ut(ks,rz,null,"bool"),iz={kernelName:ks,backendName:"cpu",kernelFunc:sz};function oz(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=m7(o,!0,n),u=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var lz={kernelName:qp,backendName:"cpu",kernelFunc:oz},uz=at(No,e=>Number.isFinite(e)?1:0,"bool"),dz={kernelName:No,backendName:"cpu",kernelFunc:uz},pz=at(To,e=>Math.abs(e)===Infinity?1:0,"bool"),cz={kernelName:To,backendName:"cpu",kernelFunc:pz},hz=at(Eo,e=>Number.isNaN(e)?1:0,"bool"),fz={kernelName:Eo,backendName:"cpu",kernelFunc:hz},mz=Rt((e,t)=>e<=t?1:0),Az=Ut(Ro,mz,null,"bool"),yz={kernelName:Ro,backendName:"cpu",kernelFunc:Az};function gz(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=L3(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var xz={kernelName:Kp,backendName:"cpu",kernelFunc:gz},bz=at(Mo,e=>Math.log1p(e)),vz={kernelName:Mo,backendName:"cpu",kernelFunc:bz},wz=Rt((e,t)=>e&&t),kz=Ut(Fo,wz,null,"bool"),Iz={kernelName:Fo,backendName:"cpu",kernelFunc:kz},Sz=at(Su,e=>e?0:1,"bool"),Nz={kernelName:Su,backendName:"cpu",kernelFunc:Sz},Tz=Rt((e,t)=>e||t),Ez=Ut(Nu,Tz,null,"bool"),Cz={kernelName:Nu,backendName:"cpu",kernelFunc:Ez};function Rz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let u=r.shape[3],d=u-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,d),x=0;for(;y<=g;y++){let w=p[y];x+=w*w}return x}for(let f=0;f<c;f++){let A=m(f),y=p[f]*Math.pow(i+o*A,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var Mz={kernelName:Tu,backendName:"cpu",kernelFunc:Rz};function Fz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;ve(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(p),y=p;for(let g=0;g<y;g++){let x=g%c,w=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let N=w;N<b;N++)v+=Math.pow(m[N],2);v=u*v+l;for(let N=w;N<b;N++){let T=-2*u*d*m[N]*f[g]/v;g===N&&(T+=Math.pow(v,-d)),T*=h[g],A[N]+=T}}return n.makeTensorInfo(i.shape,r.dtype,A)}var $z={kernelName:Zp,backendName:"cpu",kernelFunc:Fz};function A7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=k.parseAxisParam(s,l),p=d,c=C.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let b=0;b<w.length;b++)w[b]=l[c[b]];h=YA(h,l,r.dtype,c,w),p=C.getInnerMostAxes(p.length,u),l=w}ve(r,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[m,f]=C.computeOutAndReduceShapes(l,p),A=k.sizeFromShape(f),y=B3(h,A,m,r.dtype),g=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,d)),{dataId:g,shape:x,dtype:r.dtype}}var Dz={kernelName:Ts,backendName:"cpu",kernelFunc:A7};function Oz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=t1(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var zz={kernelName:Cs,backendName:"cpu",kernelFunc:Oz};function _z(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"maxPool3d");let d=C.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=p7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var Pz={kernelName:Eu,backendName:"cpu",kernelFunc:_z};function Lz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"maxPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),c=wD(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,A=d.dilationDepth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterDepth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,v=x-1-d.padInfo.front,N=b-1-d.padInfo.left,T=w-1-d.padInfo.top,R=We(s.shape,"float32"),$=n.bufferSync(r);for(let z=0;z<d.batchSize;++z)for(let P=0;P<d.inChannels;++P)for(let V=0;V<d.inDepth;++V)for(let j=0;j<d.inHeight;++j)for(let U=0;U<d.inWidth;++U){let X=V-v,G=j-T,ee=U-N,Y=0;for(let re=0;re<x;re+=A){let ne=(X+re)/h;if(!(ne<0||ne>=d.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<w;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=d.outHeight||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(ee+de)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let ye=x*w*b-1-c.get(z,ne,Q,oe,P),ce=re*w*b+ie*b+de,Ie=ye===ce?1:0;Ie!==0&&(Y+=$.get(z,ne,Q,oe,P)*Ie)}}}R.set(Y,z,V,j,U,P)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var Wz={kernelName:Jp,backendName:"cpu",kernelFunc:Lz};function Bz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,u,1,d,p),h=n.data.get(o.dataId).values,m=We(c.outShape,o.dtype,d7(h,o.shape,o.dtype,c).values),f=c.strideHeight,A=c.strideWidth,y=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,v=x-1-c.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(r.dataId).values,R=We(r.shape,"float32",T);for(let $=0;$<c.batchSize;++$)for(let z=0;z<c.inChannels;++z)for(let P=0;P<c.inHeight;++P)for(let V=0;V<c.inWidth;++V){let j=P-v,U=V-b,X=0;for(let G=0;G<x;G+=y){let ee=(j+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<w;Y+=g){let re=(U+Y)/A;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let ne=x*w-1-m.get($,ee,re,z),ie=G*w+Y,Q=ne===ie?1:0;Q!==0&&(X+=R.get($,ee,re,z)*Q)}}N.set(X,$,P,V,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var Vz={kernelName:Yp,backendName:"cpu",kernelFunc:Bz};function jz(e,t,n,a,r){let s=k.computeStrides(t),i=t1(e,t,n,s,r,"max"),o=d7(e,t,n,r,!0,a);return[i.values,o.values]}var Uz={kernelName:Qp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=C.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=jz(u,a.shape,a.dtype,o,d),h=l.write(p,d.outShape,a.dtype),m=l.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function Hz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let c=Lr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=n1({inputs:{a:c,b:p},backend:n});d.push(h);let m=ud({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Gz={kernelName:Rs,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Zn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];b<x&&(x=b)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var Xz={kernelName:Ms,backendName:"cpu",kernelFunc:qz};function Kz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),l=s.map(g=>g[0]),u=s.map((g,x)=>g[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=k.indexToLoc(g,f,A);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,v)=>b-l[v]);let w=k.locToIndex(x,c,h);y[g]=p[w]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Zz={kernelName:$s,backendName:"cpu",kernelFunc:Kz},Yz=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Jz=Ut($o,Yz),Qz={kernelName:$o,backendName:"cpu",kernelFunc:Jz},e_=Qi(Hg());function y7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=A7({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=C.expandShapeToKeepDim(u.shape,l),p=ct({inputs:{x:u},backend:n,attrs:{shape:d}}),c=QA({inputs:{a:r,b:p},backend:n}),h=$3({inputs:{x:c},backend:n}),m=ud({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:d}}),A=n1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var t_={kernelName:Ks,backendName:"cpu",kernelFunc:y7};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:y7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],p=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*d,A=new Float32Array(d-1);A[0]=p[f];for(let x=1;x<A.length;++x)A[x]=A[x-1]+p[f+x];let y=e_.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let w=y();h[g+x]=A.length;for(let b=0;b<A.length;b++)if(w<A[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var a_={kernelName:ec,backendName:"cpu",kernelFunc:n_},r_=Wa.nonMaxSuppressionV3Impl;function s_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=r_(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var i_={kernelName:zo,backendName:"cpu",kernelFunc:s_},o_=Wa.nonMaxSuppressionV4Impl;function l_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ve(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=o_(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var u_={kernelName:_o,backendName:"cpu",kernelFunc:l_},d_=Wa.nonMaxSuppressionV5Impl;function p_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ve(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=d_(d,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var c_={kernelName:Po,backendName:"cpu",kernelFunc:p_};function h_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<l;++p)d[p]>=0&&d[p]<s&&(u[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var f_={kernelName:Os,backendName:"cpu",kernelFunc:h_};function dh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=dh({inputs:{x:r},backend:n}),i=Cl({inputs:{input:a},backend:n}),o=dh({inputs:{x:i},backend:n}),l=Pn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return s1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var m_={kernelName:nl,backendName:"cpu",kernelFunc:dh};function g7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=g7({inputs:{x:r},backend:n}),i=Cl({inputs:{input:a},backend:n}),o=dh({inputs:{x:i},backend:n}),l=Pn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return s1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var A_={kernelName:Lo,backendName:"cpu",kernelFunc:g7};function x7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return uh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=uh({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Rl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var y_={kernelName:Wo,backendName:"cpu",kernelFunc:x7};function g_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,g)=>y[0]+r.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),A=k.getTypedArrayFromDType(r.dtype,h);i!==0&&A.fill(i);for(let y=0;y<d;y++){let g=k.indexToLoc(y,p,c).map((w,b)=>w+l[b]),x=k.locToIndex(g,m,f);A[x]=u[y]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var b7={kernelName:zs,backendName:"cpu",kernelFunc:g_},x_=Rt((e,t)=>Math.pow(e,t)),b_=Ut(_s,x_),v_={kernelName:_s,backendName:"cpu",kernelFunc:b_};function w_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=JA(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var k_={kernelName:Cu,backendName:"cpu",kernelFunc:w_},I_=at(Vo,e=>1/e),S_={kernelName:Vo,backendName:"cpu",kernelFunc:I_};function N_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(k.sizeFromShape([p,u,d,m])),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,w=y[0]/g[0],b=y[1]/g[1];for(let v=0;v<p;v++)for(let N=0;N<u;N++){let T;i?T=w*(N+.5)-.5:T=w*N;let R=Math.max(0,Math.floor(T)),$=T-R,z=Math.min(c-1,Math.ceil(T)),P=v*l[0]+R*l[1],V=v*l[0]+z*l[1];for(let j=0;j<d;j++){let U;i?U=b*(j+.5)-.5:U=b*j;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(h-1,Math.ceil(U)),Y=P+X*l[2],re=V+X*l[2],ne=P+ee*l[2],ie=V+ee*l[2];for(let Q=0;Q<m;Q++){let de=f[Y+Q],oe=f[re+Q],ye=f[ne+Q],ce=f[ie+Q],Ie=de+(ye-de)*G,Ne=oe+(ce-oe)*G,$e=Ie+(Ne-Ie)*$;A[x++]=$e}}}return n.makeTensorInfo([p,u,d,m],"float32",A)}var T_={kernelName:Ws,backendName:"cpu",kernelFunc:N_};function E_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*d*p),f=[i&&c>1?u-1:u,i&&h>1?d-1:d],A=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,w=0;for(let b=0;b<l;b++){let v=b*o[0];for(let N=0;N<c;N++){let T=N*y,R=Math.floor(T),$=Math.min(Math.ceil(T),u-1),z=v+R*o[1],P=v+$*o[1],V=T-R,j=1-V;for(let U=0;U<h;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),d-1),Y=X-G,re=1-Y,ne=z+G*o[2],ie=z+ee*o[2],Q=P+G*o[2],de=P+ee*o[2],oe=j*re,ye=j*Y,ce=V*re,Ie=V*Y;for(let Ne=0;Ne<p;Ne++){let $e=x[w++];m[ne+Ne]+=$e*oe,m[ie+Ne]+=$e*ye,m[Q+Ne]+=$e*ce,m[de+Ne]+=$e*Ie}}}}return n.makeTensorInfo([l,d,u,p],"float32",m)}var C_={kernelName:ac,backendName:"cpu",kernelFunc:E_};function R_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(p*u*d*m),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/g[0],w=y[1]/g[1],b=0;for(let v=0;v<p;v++){let N=v*l[0];for(let T=0;T<u;T++){let R=i?x*(T+.5):x*T,$=Math.min(c-1,s?Math.round(R):Math.floor(R));i&&($=Math.max(0,$));let z=N+$*l[1];for(let P=0;P<d;P++){let V=i?w*(P+.5):w*P,j=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(j=Math.max(0,j));let U=z+j*l[2];for(let X=0;X<m;X++){let G=f[U+X];A[b++]=G}}}}return n.makeTensorInfo([p,u,d,m],r.dtype,A)}var M_={kernelName:Ru,backendName:"cpu",kernelFunc:R_};function F_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*d*p*c),A=n.data.get(s.dataId).values,y=[i&&h>1?d-1:d,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/g[0],w=y[1]/g[1],b=1/x,v=1/w,N=Math.ceil(b)*2+2,T=Math.ceil(v)*2+2;for(let R=0;R<u;R++){let $=R*o[0];for(let z=0;z<d;z++){let P=$+z*o[1],V=Math.floor(z*b),j=Math.floor(V-N/2);for(let U=0;U<p;U++){let X=P+U*o[2],G=Math.floor(U*v),ee=Math.floor(G-T/2);for(let Y=0;Y<c;Y++){let re=0;for(let ne=0;ne<N;ne++){let ie=ne+j;if(ie<0||ie>=h)continue;let Q=$+ie*l[1],de=ie*x,oe=Math.min(d-1,i?Math.round(de):Math.floor(de));if(z===oe)for(let ye=0;ye<T;ye++){let ce=ye+ee;if(ce<0||ce>=m)continue;let Ie=Q+ce*l[2],Ne=ce*w,$e=Math.min(p-1,i?Math.round(Ne):Math.floor(Ne));U===$e&&(re+=A[Ie+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var $_={kernelName:nc,backendName:"cpu",kernelFunc:F_};function D_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Ba({inputs:{x:r},backend:n});let l=new Dt(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let p=l.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var O_={kernelName:Vs,backendName:"cpu",kernelFunc:D_},z_={kernelName:al,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,d,p,c]=a.shape,[h,m]=C.getImageCenter(i,d,p),f=255,A=Math.sin(r),y=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*p*d*c;for(let b=0;b<d;b++){let v=b*(p*c);for(let N=0;N<p;N++){let T=N*c;for(let R=0;R<c;R++){let $=[u,b,N,R],z=$[2],P=$[1],V=(z-h)*y-(P-m)*A,j=(z-h)*A+(P-m)*y;V=Math.round(V+h),j=Math.round(j+m);let U=s;if(typeof s!="number"&&(R===3?U=f:U=s[R]),V>=0&&V<p&&j>=0&&j<d){let G=j*(p*c),ee=V*c,Y=w+G+ee+R;U=g[Y]}let X=w+v+T+R;l[X]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},__=at(js,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),P_={kernelName:js,backendName:"cpu",kernelFunc:__};function v7(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return We(n,t.dtype);let h=We(d,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=p[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[A*r+y]+=c[m*r+y]:h.values[A*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function L_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=v7(h,m,i,p,u,l,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var W_={kernelName:Uo,backendName:"cpu",kernelFunc:L_};function B_(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=ia(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=u[m];return n.makeTensorInfo(r.shape,d,p)}var V_={kernelName:Ho,backendName:"cpu",kernelFunc:B_},j_=C.SELU_SCALEALPHA,U_=C.SELU_SCALE,H_=at(Go,e=>e>=0?U_*e:j_*(Math.exp(e)-1)),G_={kernelName:Go,backendName:"cpu",kernelFunc:H_},q_=at(Ko,e=>e<0?-1:e>0?1:0),X_={kernelName:Ko,backendName:"cpu",kernelFunc:q_},K_=at(Hs,e=>Math.sin(e)),Z_={kernelName:Hs,backendName:"cpu",kernelFunc:K_},Y_=at(Xo,e=>Math.sinh(e)),J_={kernelName:Xo,backendName:"cpu",kernelFunc:Y_},Q_=11920928955078125e-23,w7=Math.log(Q_)+2,eP=at(Zo,e=>{let t=e>-w7,n=e<w7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),tP={kernelName:Zo,backendName:"cpu",kernelFunc:eP};function nP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let u=b7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),p=C.getPermuted(d.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=ct({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Zn({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var aP={kernelName:Mu,backendName:"cpu",kernelFunc:nP};function rP(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=X3(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var sP={kernelName:rc,backendName:"cpu",kernelFunc:rP};function iP(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,p]=K3(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var oP={kernelName:sc,backendName:"cpu",kernelFunc:iP};function lP(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=v7(m,f,o,c,d,u,l,p,A,h);return n.makeTensorInfo(o,y.dtype,y.values)}var uP={kernelName:ic,backendName:"cpu",kernelFunc:lP};function dP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=bi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=p,h})}var pP={kernelName:Yo,backendName:"cpu",kernelFunc:dP},cP=at(qs,e=>Math.sqrt(e)),hP={kernelName:qs,backendName:"cpu",kernelFunc:cP},fP={kernelName:Fu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},mP=at(Tr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),AP={kernelName:Tr,backendName:"cpu",kernelFunc:mP};function yP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=ct({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=bi({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=ct({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),N=Y3(g,v,f,m);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=ct({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var gP={kernelName:Jo,backendName:"cpu",kernelFunc:yP},xP=at(Js,e=>Math.tan(e)),bP={kernelName:Js,backendName:"cpu",kernelFunc:xP},vP=at(Qs,e=>Math.tanh(e)),wP={kernelName:Qs,backendName:"cpu",kernelFunc:vP};function kP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=Q3(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var IP={kernelName:Nr,backendName:"cpu",kernelFunc:kP};function SP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=e7(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var NP={kernelName:Qo,backendName:"cpu",kernelFunc:SP};function TP(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=k.computeStrides(r.shape),g=y[0],x=y[1],w=y[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(A));b.fill(l);let v=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let T=0;T<d;++T){let R=s.shape[0]===1?N:N.subarray(T*8,T*8+8);for(let $=0;$<m;++$)for(let z=0;z<f;++z)for(let P=0;P<h;++P){let V,j=R[6]*z+R[7]*$+1;if(j===0)continue;let U=(R[0]*z+R[1]*$+R[2])/j,X=(R[3]*z+R[4]*$+R[5])/j,G=k7(U,c,o),ee=k7(X,p,o);switch(i){case"nearest":V=$P(v,p,c,g,x,w,T,ee,G,P,l);break;case"bilinear":V=DP(v,p,c,g,x,w,T,ee,G,P,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*g+$*x+z*w+P;b[Y]=V}return a.makeTensorInfo(A,r.dtype,b)}return{dataId:a.write(b,A,r.dtype),shape:r.shape,dtype:r.dtype}}var EP={kernelName:el,backendName:"cpu",kernelFunc:TP};function k7(e,t,n){switch(n){case"reflect":return CP(e,t);case"wrap":return RP(e,t);case"nearest":return FP(e,t);case"constant":default:return MP(e,t)}}function CP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function RP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function MP(e,t){return e}function FP(e,t){return k.clamp(0,e,t-1)}function dd(e,t,n,a,r,s,i,o,l,u,d){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:d}function $P(e,t,n,a,r,s,i,o,l,u,d){let p=Math.round(o),c=Math.round(l);return dd(e,t,n,a,r,s,i,p,c,u,d)}function DP(e,t,n,a,r,s,i,o,l,u,d){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*dd(e,t,n,a,r,s,i,p,c,u,d)+(l-c)*dd(e,t,n,a,r,s,i,p,m,u,d),A=(m-l)*dd(e,t,n,a,r,s,i,h,c,u,d)+(l-c)*dd(e,t,n,a,r,s,i,h,m,u,d);return(h-o)*f+(o-p)*A}function OP(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=t7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var zP={kernelName:oc,backendName:"cpu",kernelFunc:OP};function _P(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=bi({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=ct({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var PP={kernelName:tl,backendName:"cpu",kernelFunc:_P};function LP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=uh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=f7({inputs:{a:A,b:c},backend:n}),g=Lr({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=oh({inputs:{a:g,b:r},backend:n}),w=ud({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),d.push(A),d.push(y),d.push(g),d.push(x),d.push(w)}let h=x7({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var WP={kernelName:$u,backendName:"cpu",kernelFunc:LP},BP=[Z$,e$,J$,eD,i$,nD,rD,iD,lD,dD,cD,fD,AD,xD,vD,ID,ND,ED,RD,X$,FD,DD,zD,r$,l$,PD,t$,WD,VD,HD,qD,jD,YD,QD,KD,tO,aO,sO,oO,uO,pO,cO,fO,AO,gO,xO,vO,bO,a1,IO,W$,NO,EO,zO,u$,_O,p$,jO,UO,GO,h$,KO,YO,QO,tz,az,m$,iz,n$,lz,BD,dz,cz,fz,B$,y$,yz,xz,x$,vz,Iz,Nz,Cz,Mz,$z,v$,zz,Pz,Wz,Vz,Uz,Dz,Gz,Xz,k$,Zz,Qz,a_,S$,T$,i_,u_,c_,C$,f_,A_,y_,b7,v_,j$,F$,k_,a$,S_,U$,H$,q$,T_,C_,M_,$_,O_,z_,P_,D$,W_,V_,G_,G$,X_,Z_,J_,O$,t_,tP,aP,sP,oP,uP,pP,hP,fP,_$,AP,gP,L$,wO,bP,wP,IP,NP,R$,EP,zP,PP,WP,m_];for(let e of BP)ri(e);var I7={};Fe(I7,{assertNotComplex:()=>Fl,bindCanvasToFramebuffer:()=>QP,bindColorTextureToFramebuffer:()=>hh,bindTextureToProgramUniformSampler:()=>L7,bindTextureUnit:()=>z7,bindVertexBufferToProgramAttribute:()=>l1,callAndCheck:()=>xe,canBeRepresented:()=>S7,createFragmentShader:()=>E7,createFramebuffer:()=>O7,createProgram:()=>C7,createStaticIndexBuffer:()=>F7,createStaticVertexBuffer:()=>M7,createTexture:()=>$7,createVertexShader:()=>T7,getBatchDim:()=>wi,getExtensionOrThrow:()=>fd,getFramebufferErrorMessage:()=>W7,getMaxTexturesInShader:()=>U7,getNumChannels:()=>YP,getProgramUniformLocation:()=>P7,getProgramUniformLocationOrThrow:()=>_7,getRowsCols:()=>ki,getShapeAs3D:()=>fh,getTextureShapeFromLogicalShape:()=>V7,getWebGLDisjointQueryTimerVersion:()=>H7,getWebGLErrorMessage:()=>N7,getWebGLMaxTextureSize:()=>j7,hasExtension:()=>Jn,isCapableOfRenderingToFloatTexture:()=>G7,isDownloadFloatTextureEnabled:()=>q7,isReshapeFree:()=>Ad,isWebGLFenceEnabled:()=>X7,isWebGLVersionEnabled:()=>d1,linkProgram:()=>R7,resetMaxTextureSize:()=>eL,resetMaxTexturesInShader:()=>tL,unbindColorTextureFromFramebuffer:()=>u1,unbindTextureUnit:()=>JP,validateFramebuffer:()=>md,validateProgram:()=>ch,validateTextureSize:()=>D7});var vi={},i1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function ph(e,t){vi[e]=t}function Va(e){if(!(e in vi)){let n=jP(e);if(n!==null)vi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=vi[e];return t.isContextLost()?(delete vi[e],Va(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),vi[e])}function VP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function jP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=VP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete vi[e]},!1),e===1?t.getContext("webgl",i1)||t.getContext("experimental-webgl",i1):t.getContext("webgl2",i1)}var pd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(pd||(pd={}));var Yn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Yn||(Yn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function cd(e,t){return[t,e]}function UP(e,t){return e*t}function hd(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Ml(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function HP(e,t){let[n,a]=Ml(e,t);return n*a*4}function o1(e,t){let n=e,a,r,s,i,o,l,u,d,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&GP(e),n}function GP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+N7(e,t))}var qP=596e-10,XP=65504;function S7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||qP<Math.abs(e)&&Math.abs(e)<XP)}function N7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function fd(e,t){return ur(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function T7(e,t){let n=ur(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function E7(e,t){let n=ur(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw ZP(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var KP=/ERROR: [0-9]+:([0-9]+):/g;function ZP(e,t){let n=KP.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function C7(e){return ur(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function R7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ch(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function M7(e,t){let n=ur(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function F7(e,t){let n=ur(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function YP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function $7(e){return ur(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function D7(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function O7(e){return ur(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function l1(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function z7(e,t,n){B7(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function JP(e,t){B7(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _7(e,t,n){return ur(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function P7(e,t,n){return e.getUniformLocation(t,n)}function L7(e,t,n,a){xe(e,()=>z7(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function QP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function hh(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function u1(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function md(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+W7(e,t))}function W7(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ur(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function B7(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function wi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ki(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function fh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[wi(e),...ki(e)]),t}function V7(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=wi(e),s=2,i=2;return e.length&&([s,i]=ki(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function mh(e){return e%2==0}function Ad(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||mh(n)&&mh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&mh(e[0])&&mh(t[0])}var Ah,yh;function j7(e){if(Ah==null){let t=Va(e);Ah=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ah}function eL(){Ah=null}function tL(){yh=null}function U7(e){if(yh==null){let t=Va(e);yh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,yh)}function H7(e){if(e===0)return 0;let t,n=Va(e);return Jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Jn(e,t){return e.getExtension(t)!=null}function d1(e){try{if(Va(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function G7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Jn(t,"OES_texture_float"))return!1}else if(!Jn(t,"EXT_color_buffer_float"))return!1;return p1(t)}function q7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Jn(t,"OES_texture_float")||!Jn(t,"WEBGL_color_buffer_float"))return!1}else{if(Jn(t,"EXT_color_buffer_float"))return p1(t);let n="EXT_color_buffer_half_float";if(Jn(t,n)){let a=t.getExtension(n);return nL(t,a)}return!1}return p1(t)}function p1(e){let t=o1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function nL(e,t){let n=o1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function X7(e){return e!==2?!1:Va(e).fenceSync!=null}function Fl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=J();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>d1(2)?2:d1(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>j7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>U7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:H7(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Vu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>G7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>q7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>X7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Vu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,a,r,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Ii(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function c1(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var K7=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,aL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=pd.DENSE;let t=hd(e),n=dn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},rL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=pd.DENSE;let t=hd(e),n=dn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},sL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Yn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
|
|
${K7}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},iL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Yn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
|
|
${K7}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},oL=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=dn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${c1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},lL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=dn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let d=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${c1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},Z7={};Fe(Z7,{bindVertexProgramAttributeStreams:()=>sv,createBufferFromOutputTexture:()=>lv,createFloat16MatrixTexture:()=>tv,createFloat16PackedMatrixTexture:()=>rv,createFloat32MatrixTexture:()=>ev,createIndexBuffer:()=>Q7,createPackedMatrixTexture:()=>av,createUnsignedBytesMatrixTexture:()=>nv,createVertexBuffer:()=>J7,createVertexShader:()=>Y7,downloadByteEncodedFloatMatrixFromOutputTexture:()=>dv,downloadFloat32MatrixFromBuffer:()=>uv,downloadMatrixFromPackedOutputTexture:()=>cv,downloadPackedMatrixFromBuffer:()=>pv,getInternalFormatForFloat16MatrixTexture:()=>f1,getInternalFormatForFloat16PackedMatrixTexture:()=>y1,getInternalFormatForFloat32MatrixTexture:()=>h1,getInternalFormatForPackedMatrixTexture:()=>A1,getInternalFormatForUnsignedBytesMatrixTexture:()=>m1,uploadDenseMatrixToTexture:()=>iv,uploadPixelDataToTexture:()=>ov});function Y7(e){let t=dn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return T7(e,n)}function J7(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return M7(e,t)}function Q7(e){let t=new Uint16Array([0,1,2,2,1,3]);return F7(e,t)}function yd(e,t,n,a,r,s){D7(t,n);let i=$7(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function h1(e){return e.internalFormatFloat}function ev(e,t,n,a){let[r,s]=cd(t,n);return yd(e,r,s,h1(a),a.textureFormatFloat,e.FLOAT)}function f1(e){return e.internalFormatHalfFloat}function tv(e,t,n,a){let[r,s]=cd(t,n);return yd(e,r,s,f1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function m1(e){return e.downloadTextureFormat}function nv(e,t,n,a){let[r,s]=cd(t,n);return yd(e,r,s,m1(a),e.RGBA,e.UNSIGNED_BYTE)}function A1(e){return e.internalFormatPackedFloat}function av(e,t,n,a){let[r,s]=Ml(t,n);return yd(e,r,s,A1(a),e.RGBA,e.FLOAT)}function y1(e){return e.internalFormatPackedHalfFloat}function rv(e,t,n,a){let[r,s]=Ml(t,n);return yd(e,r,s,y1(a),e.RGBA,a.textureTypeHalfFloat)}function sv(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),l1(e,t,"clipSpacePos",n,3,s,a)&&l1(e,t,"uv",n,2,s,r)}function iv(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ov(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lv(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function uv(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function dv(e,t,n,a){let[r,s]=cd(t,n),i=4,o=new Uint8Array(UP(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function pv(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(HP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function cv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var gh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,ph(t,e)):this.gl=Va(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fd(this.gl,r),Jn(this.gl,s))this.textureHalfFloatExtension=fd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Jn(this.gl,a))this.colorBufferHalfFloatExtension=fd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Jn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Jn(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=J7(this.gl),this.indexBuffer=Q7(this.gl),this.framebuffer=O7(this.gl),this.textureConfig=o1(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),ev(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),tv(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),nv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),ov(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),iv(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),rv(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),av(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(u1(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>dv(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return pv(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return uv(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=lv(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>cv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=E7(t,e);this.vertexShader==null&&(this.vertexShader=Y7(t));let a=C7(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),R7(t,a),this.debug&&ch(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=sv(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ch(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?_7(this.gl,e,t):P7(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),L7(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Ml(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ch(this.gl,this.program),md(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=uL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),hh(this.gl,e,this.framebuffer),this.debug&&md(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(hh(this.gl,this.outputTexture,this.framebuffer),this.debug&&md(this.gl)):u1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;hh(a,e,this.framebuffer),this.debug&&md(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function uL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:hv}=C;function dL(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>pL(h,t,a)).join(`
|
|
`),o=t.texShape,l=dn(),u=fL(l),d,p,c=yL(l);return t.isPacked?(d=cL(t.logicalShape,o),p=AL(l)):(d=hL(t.logicalShape,o),p=mL(l)),a&&(c+=vL),[c,u,p,s,d,i,n].join(`
|
|
`)}function $l(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return $L(e);case 1:return OL(e);case 2:return _L(e);case 3:return LL(e);case 4:return BL(e);case 5:return VL(e);case 6:return jL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function fv(e){switch(e.shapeInfo.logicalShape.length){case 0:return FL(e);case 1:return DL(e);case 2:return zL(e);case 3:return PL(e);default:return WL(e)}}function pL(e,t,n=!1){let a="";n?a+=fv(e):a+=$l(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=UL(e,t):a+=HL(e,t)),a}function cL(e,t){switch(e.length){case 0:return mv();case 1:return wL(e,t);case 2:return RL(e,t);case 3:return IL(e,t);default:return NL(e,t)}}function hL(e,t){switch(e.length){case 0:return mv();case 1:return kL(e,t);case 2:return ML(e,t);case 3:return SL(e,t);case 4:return TL(e,t);case 5:return EL(e,t);case 6:return CL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function fL(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function mL(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function AL(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function yL(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${gL}
|
|
${xL}
|
|
${bL}
|
|
`}var gL=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,xL=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,bL=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,vL=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function mv(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function wL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function kL(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function IL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function SL(e,t){let n=Ii(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function NL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function TL(e,t){let n=Ii(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function EL(e,t){let n=Ii(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function CL(e,t){let n=Ii(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function RL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ML(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Si(e){return`offset${e}`}function FL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=dn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function $L(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Si(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function DL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=dn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function OL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Dl(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Si(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function zL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=dn();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function _L(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Ol(e,o),c=["row","col"];return`
|
|
${$l(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${zl(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Dl(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],d=Si(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function PL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Ol(e,p),m=["b","row","col"];return`
|
|
${fv(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${zl(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),d=dn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function LL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Ol(e,l),f=["row","col","depth"];return`
|
|
${$l(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${zl(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${Dl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Si(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function WL(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),d=u*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${d} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,d*=t[n-m-1],c=`b${m} * ${d} + `+c;let h=dn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function BL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Ol(e,o),f=["row","col","depth","depth2"];return`
|
|
${$l(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${zl(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${Dl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],c=d[1];if(c===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Si(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function VL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Ol(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${$l(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${zl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Dl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Si(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function jL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let A=Ol(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${$l(A)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${zl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Dl(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Si(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Dl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function UL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=hv(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),u=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(A=>`coords.${p[A+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((A,y)=>`coords.${p[y+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function HL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=lt(l),d=hv(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${h[A+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ol(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function zl(e,t){return t.map(n=>e[n]).join(", ")}function GL(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=dL(s,o,r,t.packedInputs),u=e.createProgram(l),d=null,p=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(u,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(u,m,f),c[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:p}}function Av(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function qL(e,t,n,a,r){Av(t.inShapeInfos,n),Av([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(d,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function XL(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:KL,bincountImpl:yv,bincountReduceImpl:ZL,ceilImpl:YL,concatImpl:JL,expImpl:QL,expm1Impl:eW,floorImpl:tW,gatherV2Impl:nW,greaterImpl:aW,lessImpl:rW,linSpaceImpl:sW,logImpl:iW,maxImpl:oW,maximumImpl:lW,minimumImpl:uW,multiplyImpl:dW,negImpl:pW,prodImpl:cW,rangeImpl:hW,rsqrtImpl:fW,simpleAbsImpl:gv,sliceImpl:mW,sparseFillEmptyRowsImpl:AW,sparseReshapeImpl:yW,stridedSliceImpl:gW,subImpl:xW,tileImpl:bW,topKImpl:vW,transposeImpl:g1,uniqueImpl:wW}=GA;function xv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:xv(e,t)}function kW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var IW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=pn("rc",t),a=lt(t),r=NW(t,e,n),s=TW(t,e[e.length-1],e[e.length-2],n),i=EW(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function SW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function NW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function TW(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function EW(e,t){let n=e.length,a=SW(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var bv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${CW(t)}
|
|
${c1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function CW(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var RW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=wv(t,n),r=kv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=vv(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=wv(n,a),s=kv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=vv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function MW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function vv(e,t,n,a,r){let s=FW(t,a),i;if(r){let[l,u]=Ml(e[0],e[1]);i=l*u}else{let[l,u]=cd(e[0],e[1]);i=l*u}let o=MW(n,s);return i*o}function FW(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return A1(t);case Qt.PACKED_2X2_FLOAT16:return y1(t);case Qt.UNPACKED_FLOAT32:return h1(t);case Qt.UNPACKED_FLOAT16:return f1(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return m1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function $W(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function wv(e,t){if(e===Yn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Yn.RENDER||e==null)return $W(t);if(e===Yn.DOWNLOAD||e===Yn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function kv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Wr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},xa="if (isnan(x)) return x;",DW="return x;",Iv="return abs(x);",OW="return (x >= 0.0) ? x : (exp(x) - 1.0);",zW=xa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,_W=xa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,xh="return x;",PW="return 1.0 / (1.0 + exp(-1.0 * x));",LW="return x;",WW=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,BW=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,VW=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,jW="return 1.0 / (1.0 + exp(-1.0 * x));",_l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},UW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),a=lt(t),r=kW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},HW=Wa.whereImpl,GW=1e-7,qW=1e-4,x1={};function XW(e){return e in x1||(x1[e]={}),x1[e]}var KW=128,ZW=600;function YW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*ZW/1024/1024}var Pl=class extends mu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Va(J().getNumber("WEBGL_VERSION"));this.binaryCache=XW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new gh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new RW(this.gpgpu),this.numMBBeforeWarning=YW(),this.texData=new Tp(this,ar())}nextDataId(){return Pl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:Yn.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:Yn.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new _l(i,xh):p=new Wr(i,xh);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=C.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new _l(a,xh):h=new Wr(a,xh);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...hd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=C.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}u!=null&&this.disposeIntermediateTensorInfo(u);let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ar().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!S7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...hd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?fh(t):t,o=s?new iL(i):new sL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=KW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return HW(e.shape,t)}packedUnaryOp(e,t,n){let a=new _l(e.shape,t),r=this.compileAndRun(a,[e],n);return ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=gv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Iv,e.dtype);let t=new Wr(e.shape,Iv),n=this.compileAndRun(t,[e]);return ar().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return ar().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new UW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new IW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[wi(e.shape),...ki(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[wi(t),...ki(t)],s=new bv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=fh(a),i;n?i=new rL(s):i=new aL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===pd.DENSE){let f=hd(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Ad(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=XL(e,l,u),p=this.getAndSaveBinary(d,()=>GL(this.gpgpu,e,l,u)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),qL(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?GW:qW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let d=t.texShape;if(d==null&&(d=V7(n,o),t.texShape=d),r!=null){let p=fh(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=Ml(d[0],d[1]),c=new lL(p,[m,h],f)):c=new oL(p,[m,h],f);let A=this.makeTensorInfo([m,h],a);f?this.texData.get(A.dataId).usage=Yn.PIXELS:this.texData.get(A.dataId).usage=Yn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),h,m,r);let y=!0,g=this.runWebGLProgram(c,[A],a,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=JW(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};Pl.nextDataId=0;function JW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var Sv="3.6.0";function Nv(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Vu.isBrowser()&&cl("webgl",()=>new Pl,2);var QW={forceHalfFloat:Nv},Tv=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ll=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},bh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,gd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${lt(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=pn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Ln(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var eB={kernelName:Is,backendName:"webgl",kernelFunc:Ln};function Br(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Ln({inputs:{x:a},backend:n}),l=Ln({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var tB={kernelName:Dp,backendName:"webgl",kernelFunc:Br},Ev="return (a < 0.) ? b * a : a;",Cv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function nB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(Cv,r.shape,i.shape):new Ll(Ev,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var aB={kernelName:Ss,backendName:"webgl",kernelFunc:nB},Rv="return (a < 0.) ? b * a : a;",Mv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function rB(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(Mv,a.shape,r.shape):new Ll(Rv,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var sB={kernelName:Ps,backendName:"webgl",kernelFunc:rB},Fv="if (isnan(x)) return x;",iB=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,oB=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new _l(i.shape,t):d=new Wr(i.shape,e),o.runWebGLProgram(d,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,b]=x,v={dataId:w.dataId,dtype:w.dtype,shape:l.shape},N={dataId:b.dataId,dtype:b.dtype,shape:u.shape},T=new Ll(e,l.shape,u.shape);return d.runWebGLProgram(T,[v,N],ia(w.dtype,b.dtype))}),g=Br({inputs:{real:A,imag:y},backend:d});return d.disposeIntermediateTensorInfo(A),d.disposeIntermediateTensorInfo(y),g}let p=s||ia(l.dtype,u.dtype);if(d.shouldExecuteOnCPU([l,u])&&r!=null){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[A,y]=r(l.shape,u.shape,m.values,f.values,p),g=d.makeTensorInfo(y,p),x=d.texData.get(g.dataId);return x.values=A,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new gd(t,l.shape,u.shape,n):h=new Ll(e,l.shape,u.shape),d.runWebGLProgram(h,[l,u],p)}}function vh(e,t=!1){if(e==="linear")return t?LW:DW;if(e==="relu")return t?BW:zW;if(e==="elu")return t?WW:OW;if(e==="relu6")return t?VW:_W;if(e==="prelu")return t?Mv:Rv;if(e==="leakyrelu")return t?Cv:Ev;if(e==="sigmoid")return t?jW:PW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var $v=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],d=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Dv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Ov=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},zv="return a * b;";function b1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Ov(Dv.REAL,a.shape,r.shape),d=new Ov(Dv.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=Br({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=dW(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=u,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new gd(zv,a.shape,r.shape):i=new Ll(zv,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var lB={kernelName:Ds,backendName:"webgl",kernelFunc:b1};function uB(e,t,n){let a=[wi(e.shape),...ki(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[wi(t),...ki(t)],i=new bv(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!Ad(r.shape,l)&&!(d.texture!==null&&Ad(d.shape,l))?uB(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var dB={kernelName:jo,backendName:"webgl",kernelFunc:Ae},_v=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},pB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function cB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ni(e,t,n,a){let r=cB(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,p;n==="mean"?d=i===0?new _v({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new _v({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new pB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var hB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=fB(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function fB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var mB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=lt(this.rank),r=xv("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function wh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mB(e.shape,t):new hB(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function AB(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=wh(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=C.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,A=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),y=hc(e.dtype),g=Ni(A,y,"sum",a),x=Ae({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(g),u&&a.disposeIntermediateTensorInfo(d),x}function kh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return AB(r,s,i,n)}var yB={kernelName:Xs,backendName:"webgl",kernelFunc:kh};function cn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=g1(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=p}else u=wh(r,s,i);return u}var gB={kernelName:ei,backendName:"webgl",kernelFunc:cn},Pv=1e3;function Ih({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(f),g=k.sizeFromShape(A),x=y===g||y===1||g===1;k.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let w=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,p,h]:[y,h,p],v=a?[g,m,c]:[g,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),T=Ae({inputs:{x:t},backend:r,attrs:{shape:v}}),R=[N,T],$=Math.max(y,g),z=n?N.shape[1]:N.shape[2],P=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?vh(l,!0):null,X=P||V||j||U!=null,G;if((h===1||m===1)&&z>Pv&&X===!1){let Y=N,re=T;n&&(Y=cn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),R.push(Y)),a&&(re=cn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),R.push(re));let ne=m!==1,ie=m===1,Q=Y;ne&&(Q=Ae({inputs:{x:Y},backend:r,attrs:{shape:[$,z,1]}}),R.push(Q));let de=m===1?2:1,oe=re;ie&&(oe=Ae({inputs:{x:re},backend:r,attrs:{shape:[$,1,z]}}),R.push(oe));let ye=b1({inputs:{a:Q,b:oe},backend:r});G=kh({inputs:{x:ye},backend:r,attrs:{axis:de,keepDims:!0}}),R.push(ye)}else{let Y=ia(e.dtype,t.dtype),re=new $v(b,v,[$,h,m],n,a,P,U,V,j),ne=[N,T];if(s!=null&&ne.push(s),V&&ne.push(i),j){let ie=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ne.push(ie),R.push(ie)}G=r.runWebGLProgram(re,ne,Y)}let ee=Ae({inputs:{x:G},backend:r,attrs:{shape:w}});R.push(G);for(let Y of R)r.disposeIntermediateTensorInfo(Y);return ee}function xB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a;return Ih({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var bB={kernelName:ti,backendName:"webgl",kernelFunc:xB},Lv="return abs(x);";function vB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=gv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new _l(a.shape,Lv):r=new Wr(a.shape,Lv),n.runWebGLProgram(r,[a],a.dtype)}var wB={kernelName:no,backendName:"webgl",kernelFunc:vB},kB=xa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,IB=qe({opSnippet:kB}),SB={kernelName:ao,backendName:"webgl",kernelFunc:IB},NB=xa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,TB=qe({opSnippet:NB}),EB={kernelName:ro,backendName:"webgl",kernelFunc:TB},Wv="return a + b;",CB=en({opSnippet:Wv,packedOpSnippet:Wv,supportsComplex:!0,cpuKernelImpl:KL}),RB={kernelName:Ir,backendName:"webgl",kernelFunc:CB},MB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},FB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Sh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Ln({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Sh({inputs:a.slice(0,o),backend:n}),u=Sh({inputs:a.slice(o),backend:n});return Sh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ia(o,l)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new FB(a[0].shape,s):new MB(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var $B={kernelName:os,backendName:"webgl",kernelFunc:Sh};function DB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var OB={kernelName:so,backendName:"webgl",kernelFunc:DB};function zB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var _B={kernelName:io,backendName:"webgl",kernelFunc:zB},PB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},LB=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),u=pn("coords",o),d,p;if(s===1){p=o+1;let N=lt(p);d=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=pn("sourceLocR",p-1).concat("inIdx.r"),A=pn("sourceLocG",p-1).concat("inIdx.g"),y=pn("sourceLocB",p-1).concat("inIdx.b"),g=pn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${v}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function Bv(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new PB(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let p=Bv(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function Vv(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new LB(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=Vv(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function jv(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),u=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let d=Bv(e,u,a);s.push(d);let p=Ae({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return Vv(e,t,a)}function WB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=jv(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var BB={kernelName:ls,backendName:"webgl",kernelFunc:WB};function VB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=jv(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var jB={kernelName:gu,backendName:"webgl",kernelFunc:VB},UB=xa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,HB=qe({opSnippet:UB}),GB={kernelName:oo,backendName:"webgl",kernelFunc:HB},qB=xa+"return log(x + sqrt(x * x + 1.0));",XB=qe({opSnippet:qB}),KB={kernelName:lo,backendName:"webgl",kernelFunc:XB},ZB=xa+`
|
|
return atan(x);
|
|
`,YB=qe({opSnippet:ZB}),JB={kernelName:uo,backendName:"webgl",kernelFunc:YB},QB=iB+`
|
|
return atan(a, b);
|
|
`,eV=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+oB+`
|
|
return result;
|
|
`,tV=en({opSnippet:QB,packedOpSnippet:eV}),nV={kernelName:co,backendName:"webgl",kernelFunc:tV},aV=xa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,rV=qe({opSnippet:aV}),sV={kernelName:po,backendName:"webgl",kernelFunc:rV},xd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:A:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,b=s%4,v=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${v}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},v1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function iV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Fl(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Ln({inputs:{x:r},backend:n});let p=new xd(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var oV={kernelName:us,backendName:"webgl",kernelFunc:iV};function lV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new v1(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var uV={kernelName:xu,backendName:"webgl",kernelFunc:lV},dV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},pV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,A=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function cV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,u,d),h=new pV(c);return n.runWebGLProgram(h,[r],i.dtype)}var hV={kernelName:Fp,backendName:"webgl",kernelFunc:cV};function fV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Fl([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=C.computePool2DInfo(i.shape,o,l,1,u),p=new dV(d);return n.runWebGLProgram(p,[r],i.dtype)}var mV={kernelName:Mp,backendName:"webgl",kernelFunc:fV};function AV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Ih({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var yV={kernelName:ds,backendName:"webgl",kernelFunc:AV},gV=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},xV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},bV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new xV(a.shape,r.shape,s.shape,d,p,l):new gV(a.shape,r.shape,s.shape,d,p,l);return t.runWebGLProgram(c,u,u[0].dtype)},vV={kernelName:ws,backendName:"webgl",kernelFunc:bV},wV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,a=kV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${w1[o]} = start[${o}] + coords.${w1[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},w1=["x","y","z","w","u","v"];function kV(e){if(e===1)return"sourceLoc";if(e<=6)return w1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var IV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),a=pn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function SV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=on.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function bd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=on.parseSliceParams(r,s,i);if(on.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=mW(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),d=on.isSliceContinous(r.shape,o,l);if(u||!d){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IV(l):new wV(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),SV(r,o,l,n)}var NV={kernelName:qo,backendName:"webgl",kernelFunc:bd},TV=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:u}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),y=bd({inputs:{x:A},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(A),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},EV={kernelName:bu,backendName:"webgl",kernelFunc:TV};function CV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=yv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var RV={kernelName:$p,backendName:"webgl",kernelFunc:CV},MV="return float(a != b);",Uv=en({opSnippet:MV,dtype:"bool"}),FV={kernelName:Oo,backendName:"webgl",kernelFunc:Uv};function vd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Ln({inputs:{x:r.complexTensorInfos.real},backend:n})}var $V={kernelName:tc,backendName:"webgl",kernelFunc:vd},DV="return float(int(x));";function OV(e,t){let n=new Wr(e.shape,DV),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function k1(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ln({inputs:{x:r},backend:n});let i=Ct(r.shape),o=k1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Br({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=vd({inputs:{input:r},backend:n}),o=k1({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Ln({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return OV(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=Uv({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var zV={kernelName:ps,backendName:"webgl",kernelFunc:k1},Hv="return ceil(x);",_V=qe({opSnippet:Hv,packedOpSnippet:Hv,cpuKernelImpl:YL}),PV={kernelName:cs,backendName:"webgl",kernelFunc:_V},LV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},WV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function BV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new WV(r.shape):o=new LV(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var VV={kernelName:Sr,backendName:"webgl",kernelFunc:BV},jV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Gv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function UV(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new jV(a.shape),i=[Gv(a,r.complexTensorInfos.real),Gv(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var HV={kernelName:vu,backendName:"webgl",kernelFunc:UV},GV=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},qV=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=lt(a),s=pn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Nh(i,l,f)}),
|
|
vec2(${Nh(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${Nh(i,l,h)}),
|
|
vec2(${Nh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Nh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Th(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Ln({inputs:{x:r.complexTensorInfos.imag},backend:n})}var XV={kernelName:Xp,backendName:"webgl",kernelFunc:Th};function Wl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>vd({inputs:{input:f},backend:n})),p=e.map(f=>Th({inputs:{input:f},backend:n})),c=Wl(d,t,n),h=Wl(p,t,n),m=Br({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let g=k.sizeFromShape(y.shape.slice(t));return Ae({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),p=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=C.computeOutShape(d.map(y=>y.shape),1),h=d[0].shape[0]===1,m=JL(p,c,a,h),f=C.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,a,m);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=Wl(e.slice(0,d),t,n),c=Wl(e.slice(d),t,n),h=Wl([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new qV(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=KV(e,t,n),o=new GV(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function KV(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function qv(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Ln({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),Wl(o,s,n)}var ZV={kernelName:ho,backendName:"webgl",kernelFunc:qv},Xv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},YV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},JV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:d,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=dn(),A=p==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let w=0;w<=1;w++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${w};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function Kv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(p===1||c===1)&&d>Pv,x=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let w=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,w,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Ih({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=Ae({inputs:{x:N},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(v),y.push(N)}else{let w=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(Ad(u.shape,b.shape),()=>`packed reshape ${u.shape} to ${b.shape} isn't free`);let N=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=Ih({a:b,b:N,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),R=a.texData.get(T.dataId);k.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,R.shape=n.outShape,A=Ln({inputs:{x:T},backend:a}),A.shape=n.outShape,y.push(T)}for(let w of y)a.disposeIntermediateTensorInfo(w);return A}function Zv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*d,A=c*p,y=[f,A],g=!0,x=!1,w=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});w.push(b),w.push(v);let N=new JV(y,b.shape,n),T=a.runWebGLProgram(N,[b],"float32"),R=Ae({inputs:{x:T},backend:a,attrs:{shape:[1,y[0],y[1]]}});w.push(T),w.push(R);let $=r!=null,z=s!=null,P=o==="leakyrelu",V=o?vh(o,!0):null,j=new $v(R.shape,v.shape,[1,A,n.outChannels],g,x,$,V,z,P),U=[R,v];if(r&&U.push(r),z&&U.push(s),P){let Y=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(Y),w.push(Y)}let X=a.runWebGLProgram(j,U,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=Ae({inputs:{x:X},backend:a,attrs:{shape:G}});w.push(X);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return ee}function QV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=Kv({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=Zv({x:r,filter:s,convInfo:c,backend:n});else{let f=new Xv(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var ej={kernelName:hs,backendName:"webgl",kernelFunc:QV},tj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),h=new tj(c);return n.runWebGLProgram(h,[r,s],"float32")}var ij={kernelName:Op,backendName:"webgl",kernelFunc:sj};function oj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,p=C.convertConv2DDataFormat(u),c=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,p),h=new nj(c);return n.runWebGLProgram(h,[r,s],"float32")}var lj={kernelName:fs,backendName:"webgl",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new YV(u);return n.runWebGLProgram(d,[r,s],"float32")}var dj={kernelName:wu,backendName:"webgl",kernelFunc:uj};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=C.computeConv3DInfo(r.shape,l,i,1,o),d=new aj(u);return n.runWebGLProgram(d,[r,s],"float32")}var cj={kernelName:zp,backendName:"webgl",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=C.computeConv3DInfo(l,s.shape,o,1,i),d=new rj(u);return n.runWebGLProgram(d,[r,s],"float32")}var fj={kernelName:_p,backendName:"webgl",kernelFunc:hj},mj=Fv+`
|
|
return cos(x);
|
|
`,Aj=qe({opSnippet:mj}),yj={kernelName:ms,backendName:"webgl",kernelFunc:Aj},gj=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,xj=qe({opSnippet:gj}),bj={kernelName:fo,backendName:"webgl",kernelFunc:xj},vj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,p]=n;this.outputShape=[u,d,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,w]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},wj=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new vj(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},kj={kernelName:mo,backendName:"webgl",kernelFunc:wj},Yv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${Jv(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${lt(a)} coords = getOutputCoords();
|
|
int end = ${Qv(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Qv(a,"coords")} = idx;
|
|
val += getX(${Jv(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Jv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Qv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ij(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=C.getAxesPermutation([s],l),d=r;u!=null&&(d=cn({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Ln({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Yv(d.shape,!1,o),A=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new Yv(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=C.getUndoAxesPermutation(u),f=cn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var Sj={kernelName:As,backendName:"webgl",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=yv(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=ZL(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Tj={kernelName:Pp,backendName:"webgl",kernelFunc:Nj},Ej=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Cj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new Ej(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Rj={kernelName:Ao,backendName:"webgl",kernelFunc:Cj},ew=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,d=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(a?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},tw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,d=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)y+=`
|
|
xTexelC${v*2} = vec4(0.0);
|
|
xTexelC${v*2}Ready = 0;
|
|
xC${v} = vec4(0.0);`;y+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let v=0;v<(A+1)/2;v++){let N=v*2,T=N*h;if(y+=`
|
|
xC = xCCorner + ${T};
|
|
`,p===1){if(N<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`,h===1&&T>0?y+=`
|
|
xC${N} = vec4(xTexelC${T-2}.zw, xTexelC${T}.xy);
|
|
`:y+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${N} = vec4(previous.zw, xTexelC${T}.xy);
|
|
} else {
|
|
xC${N} = vec4(0.0, 0.0, xTexelC${T}.xy);
|
|
}
|
|
`):y+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xC${N} = xTexelC${T};
|
|
`,T+1<f)){let R=u%2==0?k.nearestLargerEven(h):h;h%2==0&&u%2==1||h%2!=0&&u%2!=1?(y+=`
|
|
xCOffset = xC + ${u%2} + ${R};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
`,h>1&&(y+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`),y+=`
|
|
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.xy);
|
|
`):R===1?y+=`
|
|
xC${N+1} = xTexelC${T};
|
|
`:y+=`
|
|
xCOffset = xC + ${R};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N+1} = xTexelC${T+2};
|
|
`}}else T<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`,T+1<f&&(y+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${N+1} = vec4(xTexelC${T+2}.xy, final.xy);
|
|
`)):(y+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(
|
|
xTexelC${T}.xy, xTexelC${T+2}.xy);
|
|
`,T+1<f&&(y+=`
|
|
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`)));N<f&&(y+=`
|
|
wTexel = getW(${b}, ${T}, d1, q);
|
|
dotProd += xC${N} * vec4(wTexel.xz, wTexel.xz);
|
|
`,T+1<f&&(y+=`
|
|
wTexel = getW(${b}, ${T+1}, d1, q);
|
|
dotProd += xC${N+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}y+=`
|
|
}
|
|
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${y}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function Mj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new tw(p):c=new ew(p),n.runWebGLProgram(c,[r,s],"float32")}var Fj={kernelName:ys,backendName:"webgl",kernelFunc:Mj},$j=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Oj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,p=C.computeConv2DInfo(r.shape,d,i,o,l,u,!0),c=new $j(p);return n.runWebGLProgram(c,[r,s],"float32")}var zj={kernelName:Lp,backendName:"webgl",kernelFunc:Oj};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,p=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),c=new Dj(p);return n.runWebGLProgram(c,[r,s],"float32")}var Pj={kernelName:Wp,backendName:"webgl",kernelFunc:_j},Lj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Wj(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new Lj(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Bj={kernelName:Bp,backendName:"webgl",kernelFunc:Wj},Vj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function jj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,p=new Vj(u);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),c}var Uj={kernelName:ku,backendName:"webgl",kernelFunc:jj};function Hj(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of d[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=cn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=Ae({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=b1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=kh({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Gj={kernelName:Up,backendName:"webgl",kernelFunc:Hj},qj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Xj=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Kj=qe({opSnippet:qj,packedOpSnippet:Xj}),Zj={kernelName:yo,backendName:"webgl",kernelFunc:Kj},Yj="return (b >= 1.0) ? a : a * (b + 1.0);",Jj=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Qj=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(Jj,a.shape,r.shape):new Ll(Yj,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},eU={kernelName:Hp,backendName:"webgl",kernelFunc:Qj},tU=`
|
|
return vec4(equal(a, b));
|
|
`,nU="return float(a == b);",aU=en({opSnippet:nU,packedOpSnippet:tU,dtype:"bool"}),rU={kernelName:xo,backendName:"webgl",kernelFunc:aU},sU=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,iU=qe({opSnippet:sU}),oU={kernelName:go,backendName:"webgl",kernelFunc:iU},nw="return exp(x);",aw=qe({opSnippet:nw,packedOpSnippet:nw,cpuKernelImpl:QL}),lU={kernelName:xs,backendName:"webgl",kernelFunc:aw};function I1(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var uU={kernelName:bo,backendName:"webgl",kernelFunc:I1},rw="return exp(x) - 1.0;",dU=qe({opSnippet:rw,packedOpSnippet:rw,cpuKernelImpl:eW}),pU={kernelName:vo,backendName:"webgl",kernelFunc:dU},sw=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function iw(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new sw("real",l,t),d=new sw("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=Br({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function cU(e){let{inputs:t,backend:n}=e,{input:a}=t;return iw(a,!1,n)}var hU={kernelName:Gp,backendName:"webgl",kernelFunc:cU},fU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function S1(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new fU(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var mU={kernelName:Iu,backendName:"webgl",kernelFunc:S1},AU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},yU={kernelName:wo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new AU(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},ow="return floor(x);",gU=qe({opSnippet:ow,packedOpSnippet:ow,cpuKernelImpl:tW}),xU={kernelName:bs,backendName:"webgl",kernelFunc:gU},bU=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,vU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,wU=en({opSnippet:bU,packedOpSnippet:vU,dtype:"int32"}),kU={kernelName:vs,backendName:"webgl",kernelFunc:wU},IU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},SU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},NU={kernelName:lc,backendName:"webgl",kernelFunc:TU},Bl;function TU(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],p=[u,l,s];(o||i)&&(Bl==null&&(Bl=document.createElement("canvas").getContext("2d")),Bl.canvas.width=l,Bl.canvas.height=u,Bl.drawImage(r,0,0,l,u),r=Bl.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=Yn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new SU(p):new IU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function EU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(d),A=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Kv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=Zv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let w=i!=null,b=o!=null,v=h==="leakyrelu",N=h?vh(h,!1):null,T=new Xv(A,w,N,b,v),R=[r,s];if(i&&R.push(i),o&&R.push(o),v){let $=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));R.push($),g.push($)}y=n.runWebGLProgram(T,R,"float32")}let x=Ae({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var CU={kernelName:ni,backendName:"webgl",kernelFunc:EU};function RU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=c?vh(c,y):null,x=[r,s],w=i!=null,b=o!=null,v=c==="leakyrelu";if(w&&x.push(i),b&&x.push(o),v){let R=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(R),m.push(R)}let N;y?N=new tw(A,w,g,b,v):N=new ew(A,w,g,b,v);let T=n.runWebGLProgram(N,x,"float32");return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),T}var MU={kernelName:ai,backendName:"webgl",kernelFunc:RU},FU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=lt(t.length),r=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function $U(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,u,d]=C.prepareAndValidate(a,r),p=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/u,u]}}),h=new FU(i,d,[l,u]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var DU={kernelName:Io,backendName:"webgl",kernelFunc:$U},OU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),a=zU(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function zU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function _U(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});p.push(c),p.push(h);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),w=nW(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new OU(c.shape,m),A=n.runWebGLProgram(f,[c,h],c.dtype);p.push(A);let y=Ae({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var PU={kernelName:ko,backendName:"webgl",kernelFunc:_U},LU="return float(a > b);",WU=`
|
|
return vec4(greaterThan(a, b));
|
|
`,BU=en({opSnippet:LU,packedOpSnippet:WU,cpuKernelImpl:aW,dtype:"bool"}),VU={kernelName:So,backendName:"webgl",kernelFunc:BU},jU="return float(a >= b);",UU=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,HU=en({opSnippet:jU,packedOpSnippet:UU,dtype:"bool"}),GU={kernelName:ks,backendName:"webgl",kernelFunc:HU};function qU(e){let{inputs:t,backend:n}=e,{input:a}=t;return iw(a,!0,n)}var XU={kernelName:qp,backendName:"webgl",kernelFunc:qU},KU="return float(!isnan(x) && !isinf(x));",ZU=qe({opSnippet:KU,dtype:"bool"}),YU={kernelName:No,backendName:"webgl",kernelFunc:ZU},JU="return float(isinf(x));",QU=qe({opSnippet:JU,dtype:"bool"}),eH={kernelName:To,backendName:"webgl",kernelFunc:QU},tH="return float(isnan(x));",nH=qe({opSnippet:tH,dtype:"bool"}),aH={kernelName:Eo,backendName:"webgl",kernelFunc:nH},rH="return float(a < b);",sH=`
|
|
return vec4(lessThan(a, b));
|
|
`,iH=en({opSnippet:rH,packedOpSnippet:sH,cpuKernelImpl:rW,dtype:"bool"}),oH={kernelName:Co,backendName:"webgl",kernelFunc:iH},lH="return float(a <= b);",uH=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,dH=en({opSnippet:lH,packedOpSnippet:uH,dtype:"bool"}),pH={kernelName:Ro,backendName:"webgl",kernelFunc:dH};function cH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=sW(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var hH={kernelName:Kp,backendName:"webgl",kernelFunc:cH},fH=`if (x < 0.0) return NAN;
|
|
return log(x);`,mH=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,AH=qe({opSnippet:fH,packedOpSnippet:mH,cpuKernelImpl:iW}),yH={kernelName:Ns,backendName:"webgl",kernelFunc:AH},gH="return log(1.0 + x);",xH=qe({opSnippet:gH}),bH={kernelName:Mo,backendName:"webgl",kernelFunc:xH},vH="return float(a >= 1.0 && b >= 1.0);",wH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,kH=en({opSnippet:vH,packedOpSnippet:wH,dtype:"bool"}),IH={kernelName:Fo,backendName:"webgl",kernelFunc:kH},SH="return float(!(x >= 1.0));",NH=qe({opSnippet:SH}),TH={kernelName:Su,backendName:"webgl",kernelFunc:NH},EH="return float(a >= 1.0 || b >= 1.0);",CH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,RH=en({opSnippet:EH,packedOpSnippet:CH,dtype:"bool"}),MH={kernelName:Nu,backendName:"webgl",kernelFunc:RH},FH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},$H=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},DH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new $H(r.shape,s,i,o,l):new FH(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},OH={kernelName:Tu,backendName:"webgl",kernelFunc:DH},zH=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},_H=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,p=new zH(r.shape,o,l,u,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},PH={kernelName:Zp,backendName:"webgl",kernelFunc:_H};function LH(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function lw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[d[v]];let w=g1(g,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=w}else h=wh(r,d,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,u),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(c){let g=n.texData.get(h.dataId).values,x=oW(g,k.sizeFromShape(f),A,r.dtype);y=n.makeTensorInfo(A,r.dtype);let w=n.texData.get(y.dataId);w.values=x}else y=LH(h,f,A,n);return p&&n.disposeIntermediateTensorInfo(h),y}var WH={kernelName:Ts,backendName:"webgl",kernelFunc:lw},BH=Tv+`
|
|
return max(a, b);
|
|
`,VH=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+bh+`
|
|
return result;
|
|
`,jH=en({opSnippet:BH,packedOpSnippet:VH,cpuKernelImpl:lW}),UH={kernelName:Es,backendName:"webgl",kernelFunc:jH};function HH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Fl(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Ln({inputs:{x:r},backend:n});let p=new xd(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var GH={kernelName:Cs,backendName:"webgl",kernelFunc:HH};function qH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new v1(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var XH={kernelName:Eu,backendName:"webgl",kernelFunc:qH},KH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function YH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,u,d),h=new v1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new ZH(c),A=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var JH={kernelName:Jp,backendName:"webgl",kernelFunc:YH};function QH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Fl([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,u,1,d,p),h=!0,m=new xd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),A=new KH(c),y=n.runWebGLProgram(A,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var eG={kernelName:Yp,backendName:"webgl",kernelFunc:QH};function tG(e,t,n,a){let r=new xd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new xd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var nG={kernelName:Qp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,r,s,u,i),[p,c]=tG(a,o,d,l);return[p,c]}};function aG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var rG={kernelName:Rs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=a.shape[d[N]];let b=g1(x,a.shape,a.dtype,d,w);m=i.makeTensorInfo(w,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=wh(a,d,i);h.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let g=aG(m,A,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function sG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var iG={kernelName:Ms,backendName:"webgl",kernelFunc:sG},oG=Tv+`
|
|
return min(a, b);
|
|
`,lG=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+bh+`
|
|
return result;
|
|
`,uG=en({opSnippet:oG,packedOpSnippet:lG,cpuKernelImpl:uW}),dG={kernelName:Fs,backendName:"webgl",kernelFunc:uG},pG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=lt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},cG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=lt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=pn("rc",a),l=pn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},hG=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cG(a.shape,r,s):new pG(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},fG={kernelName:$s,backendName:"webgl",kernelFunc:hG},mG=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,AG=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+bh+`
|
|
return result;
|
|
`,yG=en({opSnippet:mG,packedOpSnippet:AG}),gG={kernelName:$o,backendName:"webgl",kernelFunc:yG},xG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},bG=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,vG=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,uw=en({opSnippet:bG,packedOpSnippet:vG,checkOutOfBounds:!0}),wG={kernelName:gs,backendName:"webgl",kernelFunc:uw},dw="return a - b;",pw=en({opSnippet:dw,packedOpSnippet:dw,supportsComplex:!0,cpuKernelImpl:xW}),kG={kernelName:Ys,backendName:"webgl",kernelFunc:pw};function cw(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=lw({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),d=pw({inputs:{a:r,b:u},backend:n}),p=aw({inputs:{x:d},backend:n}),c=kh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=uw({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var IG={kernelName:Ks,backendName:"webgl",kernelFunc:cw};function SG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:cw({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],p=new xG(u,d,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var NG={kernelName:ec,backendName:"webgl",kernelFunc:SG},hw="return -x;";function TG(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=pW(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new _l(a.shape,hw):r=new Wr(a.shape,hw),n.runWebGLProgram(r,[a],a.dtype)}var EG={kernelName:Do,backendName:"webgl",kernelFunc:TG},CG=Wa.nonMaxSuppressionV3Impl;function RG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=CG(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var MG={kernelName:zo,backendName:"webgl",kernelFunc:RG},FG=Wa.nonMaxSuppressionV4Impl;function $G(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=FG(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var DG={kernelName:_o,backendName:"webgl",kernelFunc:$G},OG=Wa.nonMaxSuppressionV5Impl;function zG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=OG(d,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var _G={kernelName:Po,backendName:"webgl",kernelFunc:zG},PG=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},LG=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new PG(l,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},WG={kernelName:Os,backendName:"webgl",kernelFunc:LG};function Eh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=vd({inputs:{input:a},backend:n}),s=Eh({inputs:{x:r},backend:n}),i=Th({inputs:{input:a},backend:n}),o=Eh({inputs:{x:i},backend:n}),l=Br({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return S1({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var BG={kernelName:nl,backendName:"webgl",kernelFunc:Eh};function fw(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=vd({inputs:{input:a},backend:n}),s=fw({inputs:{x:r},backend:n}),i=Th({inputs:{input:a},backend:n}),o=Eh({inputs:{x:i},backend:n}),l=Br({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return S1({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var VG={kernelName:Lo,backendName:"webgl",kernelFunc:fw};function jG(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return I1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=I1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=qv({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var UG={kernelName:Wo,backendName:"webgl",kernelFunc:jG},HG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=lt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},GG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=lt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",a),l=pn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},mw=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new GG(r.shape,s,i):new HG(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},qG={kernelName:zs,backendName:"webgl",kernelFunc:mw},XG=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,KG=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+bh+`
|
|
return result;
|
|
`,ZG=en({opSnippet:XG,packedOpSnippet:KG}),YG={kernelName:_s,backendName:"webgl",kernelFunc:ZG};function JG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),d=u,p=C.getAxesPermutation(d,o),c=r;p!=null&&(c=cn({inputs:{x:r},backend:n,attrs:{perm:p}}),d=C.getInnerMostAxes(d.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:A,outDtype:y}=cW(c.shape,c.dtype,m,d);h=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,d),A=k.sizeFromShape(f),y=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,A]}}),g=hc(r.dtype),x=Ni(y,g,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,u);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var QG={kernelName:Bo,backendName:"webgl",kernelFunc:JG},Aw=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=hW(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},eq={kernelName:Cu,backendName:"webgl",kernelFunc:Aw},tq="return 1.0 / x;",nq=qe({opSnippet:tq}),aq={kernelName:Vo,backendName:"webgl",kernelFunc:nq},rq=xa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,sq=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,iq=qe({opSnippet:rq,packedOpSnippet:sq}),oq={kernelName:Ls,backendName:"webgl",kernelFunc:iq},lq=xa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,uq=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,dq=qe({opSnippet:lq,packedOpSnippet:uq}),pq={kernelName:Bs,backendName:"webgl",kernelFunc:dq},cq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},hq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function fq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new hq(r.shape,l,u,s,i):new cq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var mq={kernelName:Ws,backendName:"webgl",kernelFunc:fq},Aq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function yq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Aq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var gq={kernelName:ac,backendName:"webgl",kernelFunc:yq},xq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},bq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function vq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new bq(r.shape,l,u,s,i):new xq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var wq={kernelName:Ru,backendName:"webgl",kernelFunc:vq},kq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Iq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new kq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Sq={kernelName:nc,backendName:"webgl",kernelFunc:Iq},Nq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Tq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=pn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,g)=>c(g,h)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Eq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Ln({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tq(r.shape,o):new Nq(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Cq={kernelName:Vs,backendName:"webgl",kernelFunc:Eq},Rq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},Mq={kernelName:al,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Rq(a.shape,s),[u,d]=C.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(u,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},Fq=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,$q=qe({opSnippet:Fq}),Dq={kernelName:js,backendName:"webgl",kernelFunc:$q},Oq="return inversesqrt(x);",zq=qe({opSnippet:Oq,cpuKernelImpl:fW}),_q={kernelName:Us,backendName:"webgl",kernelFunc:zq},yw=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(r.length),l=lt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Pq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=C.calculateShapes(s,r,i),c=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new yw(l,o,h.shape.length,m.shape.length,d,c),y=n.runWebGLProgram(A,[m,h,f],m.dtype),g=Ae({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var Lq={kernelName:Uo,backendName:"webgl",kernelFunc:Pq},Wq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Bq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Wq(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ia(r.dtype,s.dtype))}var Vq={kernelName:Ho,backendName:"webgl",kernelFunc:Bq},jq=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Uq=qe({opSnippet:jq}),Hq={kernelName:Go,backendName:"webgl",kernelFunc:Uq},Gq="return 1.0 / (1.0 + exp(-1.0 * x));",qq=qe({opSnippet:Gq}),Xq={kernelName:Gs,backendName:"webgl",kernelFunc:qq},Kq=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Zq=qe({opSnippet:Kq}),Yq={kernelName:Ko,backendName:"webgl",kernelFunc:Zq},Jq=Fv+`
|
|
return sin(x);
|
|
`,Qq=qe({opSnippet:Jq}),eX={kernelName:Hs,backendName:"webgl",kernelFunc:Qq},tX=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,nX=qe({opSnippet:tX}),aX={kernelName:Xo,backendName:"webgl",kernelFunc:nX},rX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,sX=qe({opSnippet:rX}),iX={kernelName:Zo,backendName:"webgl",kernelFunc:sX},oX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],d=mw({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(d.shape,s,o,!1),c=C.getPermuted(p.length,s.length,!1),h=C.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},lX={kernelName:Mu,backendName:"webgl",kernelFunc:oX};function uX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=AW(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var dX={kernelName:rc,backendName:"webgl",kernelFunc:uX};function pX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,p]=yW(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var cX={kernelName:sc,backendName:"webgl",kernelFunc:pX};function hX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:p}=C.calculateShapes(s,r,o),c=!1,h=new yw(u,l,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var fX={kernelName:ic,backendName:"webgl",kernelFunc:hX};function mX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=bd({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var AX={kernelName:Yo,backendName:"webgl",kernelFunc:mX},yX="return sqrt(x);",gX=qe({opSnippet:yX}),xX={kernelName:qs,backendName:"webgl",kernelFunc:gX},bX="return x * x;",vX=qe({opSnippet:bX}),wX={kernelName:Fu,backendName:"webgl",kernelFunc:vX},gw="return (a - b) * (a - b);",kX=en({opSnippet:gw,packedOpSnippet:gw}),IX={kernelName:Zs,backendName:"webgl",kernelFunc:kX};function SX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=xa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Wr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var NX={kernelName:Tr,backendName:"webgl",kernelFunc:SX},TX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=lt(n.length),s=lt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function EX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=bd({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=Ae({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,N=We(x.shape,x.dtype,v),T=gW(g,N,f,m);w=n.makeTensorInfo(g,x.dtype,T.values)}else{let v=new TX(m,f,g);w=n.runWebGLProgram(v,[x],x.dtype)}let b=Ae({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var CX={kernelName:Jo,backendName:"webgl",kernelFunc:EX},RX="return tan(x);",MX=qe({opSnippet:RX}),FX={kernelName:Js,backendName:"webgl",kernelFunc:MX},$X=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,DX=qe({opSnippet:$X}),OX={kernelName:Qs,backendName:"webgl",kernelFunc:DX},zX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=_X(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function _X(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function xw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,u=We(r.shape,r.dtype,l),d=bW(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new zX(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var PX={kernelName:Nr,backendName:"webgl",kernelFunc:xw};function LX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=vW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var WX={kernelName:Qo,backendName:"webgl",kernelFunc:LX},BX=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function VX(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=new BX(p,c,i,o,l,A);return n.runWebGLProgram(y,[r,s],"float32")}var jX={kernelName:el,backendName:"webgl",kernelFunc:VX};function UX(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Fl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=wW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var HX={kernelName:oc,backendName:"webgl",kernelFunc:UX};function GX(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let A=bd({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=Ae({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=y,p.push(A)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var qX={kernelName:tl,backendName:"webgl",kernelFunc:GX},XX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function KX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=C.getAxesPermutation([u],o),p=r;d!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(p),u=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(p.shape,u,i),h=k.sizeFromShape([p.shape[u]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=hc(r.dtype),A=(w,b,v,N,T)=>{let R=w.shape[0],$=w.shape[1],z=C.segment_util.segOpComputeOptimalWindowSize($,T),P={windowSize:z,inSize:$,batchSize:R,numSegments:T},V=new XX(P,b),j=n.compileAndRun(V,[w,v],N);if(l.push(j),j.shape[1]===T)return j;let U=Aw({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=xw({inputs:{x:U},backend:n,attrs:{reps:[$/z]}});return l.push(U),l.push(X),A(j,b,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:y},backend:n,attrs:{shape:c}}),x=g;if(d!=null){l.push(g);let w=C.getUndoAxesPermutation(d);x=cn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var ZX={kernelName:$u,backendName:"webgl",kernelFunc:KX},YX=[OH,PH,bB,wB,SB,EB,RB,$B,OB,_B,BB,jB,GB,KB,nV,JB,sV,uV,oV,hV,mV,yV,vV,EV,RV,zV,PV,VV,HV,tB,ZV,ij,lj,ej,cj,fj,dj,yj,bj,kj,Sj,Tj,Rj,zj,Pj,Fj,Bj,Uj,Gj,Zj,eU,rU,oU,lU,uU,pU,hU,mU,yU,xU,kU,NU,CU,MU,DU,PU,VU,GU,eB,XU,XV,YU,eH,aH,aB,oH,pH,hH,bH,yH,IH,TH,MH,WH,XH,GH,JH,eG,nG,UH,rG,iG,dG,fG,gG,NG,lB,EG,MG,DG,_G,FV,WG,VG,UG,qG,YG,sB,QG,eq,$V,wG,aq,pq,oq,dB,mq,gq,wq,Sq,Cq,Mq,Dq,_q,Lq,Vq,Hq,Xq,Yq,eX,aX,NV,IG,iX,lX,dX,cX,fX,AX,xX,wX,IX,NX,CX,kG,yB,FX,OX,PX,WX,jX,gB,HX,qX,ZX,BG];for(let e of YX)ri(e);var Sn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Sn||(Sn={}));var wd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(wd||(wd={}));var bw;function JX(e){bw=e.wasm.cwrap(ti,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function QX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=wd[d];if(A==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],g=u?s.shape[1]:s.shape[2],x=r.shape[0],w=n.makeOutput([x,y,g],r.dtype),b=n.dataIdMap.get(w.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return bw(c,v,r.shape.length,h,N,s.shape.length,l,u,A,m,f,p||0,b),w}var eK={kernelName:ti,backendName:"wasm",setupFunc:JX,kernelFunc:QX};function hn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var tK=hn(no);function fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,p=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,A,u.shape.length,c,y,d.shape.length,Sn[u.dtype],g);if(t&&u.dtype==="float32")return x(),f;let w=C.getBroadcastDims(u.shape,m),b=C.getBroadcastDims(d.shape,m),v=w.every((T,R)=>T===R),N=b.every((T,R)=>T===R);if(v&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var nK=!0,aK=fn(Ir,nK),vw;function rK(e){vw=e.wasm.cwrap(os,null,["array","number","number","number"])}function sK(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return vw(s,r.length,Sn[a.dtype],i),a}var iK={kernelName:os,backendName:"wasm",setupFunc:rK,kernelFunc:sK};function Ch(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var oK={kernelName:Is,backendName:"wasm",kernelFunc:Ch},ww;function lK(e){ww=e.wasm.cwrap(ei,null,["number","array","number","number","number","array","number"])}function Rh(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=dK(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=uK(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Ch({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return ww(d,h,l.shape.length,Sn[l.dtype],p,c,s.length),u}function uK(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function dK(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var pK={kernelName:ei,backendName:"wasm",kernelFunc:Rh,setupFunc:lK};function Vr(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=Rh({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var kw;function cK(e){kw=e.wasm.cwrap(so,null,["number, number, number"])}function hK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Vr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;kw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var fK={kernelName:so,backendName:"wasm",setupFunc:cK,kernelFunc:hK},Iw;function mK(e){Iw=e.wasm.cwrap(io,null,["number, number, number"])}function AK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Vr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Iw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var yK={kernelName:io,backendName:"wasm",setupFunc:mK,kernelFunc:AK},Sw;function gK(e){Sw=e.wasm.cwrap(ls,null,["number","number","number","number","number"])}function xK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:p}=Vr(s,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),A=l.shape[d[0]];return Sw(o,Sn[l.dtype],f,A,m),p&&t.disposeData(u.dataId),h}var bK={kernelName:ls,backendName:"wasm",kernelFunc:xK,setupFunc:gK},Nw;function vK(e){Nw=e.wasm.cwrap(us,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=C.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,A=d.padInfo.left,y=d.strideHeight,g=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let w=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(w.dataId).id;return Nw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,b),w}var kK={kernelName:us,backendName:"wasm",setupFunc:vK,kernelFunc:wK};function ba(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var IK={kernelName:jo,backendName:"wasm",kernelFunc:ba},Tw;function SK(e){Tw=e.wasm.cwrap(ds,null,["number","array","number","number","array","number","number","number","number"])}function NK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,d,c]:[A,c,d],b=o?[y,h,p]:[y,p,h],v=ba({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ba({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(v.dataId).id,R=n.dataIdMap.get(N.dataId).id,$=i?v.shape[2]:v.shape[1],z=o?N.shape[1]:N.shape[2],P=Math.max(A,y),V=n.makeOutput([P,$,z],v.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return Tw(T,U,v.shape.length,R,X,N.shape.length,i,o,j),n.disposeData(v.dataId),n.disposeData(N.dataId),V.shape=x,V}var TK={kernelName:ds,backendName:"wasm",setupFunc:SK,kernelFunc:NK};function Mh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var EK={kernelName:ps,backendName:"wasm",kernelFunc:Mh},CK=hn(cs),Ew;function RK(e){Ew=e.wasm.cwrap(Sr,null,["number","number","number","number"])}function MK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return Ew(o,s,i,u),l}var FK={kernelName:Sr,backendName:"wasm",setupFunc:RK,kernelFunc:MK};function Cw(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Ch({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=k.sizeFromShape(x.shape.slice(a));return ba({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,A=KA(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let A=d[f],y=h*A,g=p[f].subarray(y,y+A);c.set(g,m),m+=A}}return i}var $K={kernelName:ho,backendName:"wasm",kernelFunc:Cw},Rw;function DK(e){Rw=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,u,d,p,!1,h),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,R=m.inChannels,$=m.outChannels,z=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(P.dataId).id;return Rw(i,r.shape[0],r.shape[1],r.shape[2],o,f,A,y,g,x,w,z,b,v,N,T,R,$,V),P}var zK={kernelName:hs,backendName:"wasm",setupFunc:DK,kernelFunc:OK},Mw;function _K(e){Mw=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PK(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,p=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(d,s.shape,i,p,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:x,outChannels:w,outHeight:b,outWidth:v,strideHeight:N,strideWidth:T}=h,R=f-1-h.padInfo.top,$=A-1-h.padInfo.left,z=h.dataFormat==="channelsLast",P=k.computeStrides(h.inShape),V=k.computeStrides(r.shape),[j,U,X]=k.computeStrides(s.shape),G=P[0],ee=z?P[1]:P[2],Y=z?P[2]:1,re=z?1:P[1],ne=V[0],ie=z?V[1]:V[2],Q=z?V[2]:1,de=z?1:V[1],oe=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(oe.dataId).id,ce=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return Mw(ce,Ie,m,f,A,g,x,y,b,v,w,N,T,R,$,j,U,X,G,ee,Y,re,ne,ie,Q,de,ye),oe}var LK={kernelName:fs,backendName:"wasm",setupFunc:_K,kernelFunc:PK},WK=hn(ms),N1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(N1||(N1={}));var Fw;function BK(e){Fw=e.wasm.cwrap(mo,null,["number","number","number","number","array","number","number","number","number","number"])}function VK(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Mh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return Fw(A,y,g,d,b,p,c,N1[r],s,w),f!=null&&t.disposeData(f.dataId),x}var jK={kernelName:mo,backendName:"wasm",setupFunc:BK,kernelFunc:VK},$w;function UK(e){$w=e.wasm.cwrap(As,null,["number","number","number","number","number","number"])}function HK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=r;u!==null&&(d=Rh({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;$w(m,i?1:0,o?1:0,h,f,Sn[r.dtype]);let A=c;if(u!==null){let y=C.getUndoAxesPermutation(u);A=Rh({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return A}var GK={kernelName:As,backendName:"wasm",setupFunc:UK,kernelFunc:HK},Dw;function qK(e){Dw=e.wasm.cwrap(Ao,null,["number","number","number","array","number","array","array","number","number"])}function XK(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return Dw(A,s,i==="NHWC"?1:0,y,r.shape.length-1,g,x,m.length,w),f}var KK={kernelName:Ao,backendName:"wasm",setupFunc:qK,kernelFunc:XK},Ow;function ZK(e){Ow=e.wasm.cwrap(ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function YK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p}=n,c=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,s.shape,l,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,A=h.padInfo.top,y=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,N=h.strideWidth,T=h.inChannels,R=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(h.outShape,"float32"),P=a.dataIdMap.get(z.dataId).id;return Ow(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,A,y,g,x,$,w,b,v,N,T,R,P),z}var JK={kernelName:ys,backendName:"wasm",setupFunc:ZK,kernelFunc:YK},QK=!1,eZ=fn(xo,QK,"bool"),tZ=hn(xs);function T1(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ba({inputs:{x:r},backend:a,attrs:{shape:o}})}var nZ={kernelName:bo,backendName:"wasm",kernelFunc:T1};function aZ(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var rZ={kernelName:Iu,backendName:"wasm",kernelFunc:aZ},zw;function sZ(e){zw=e.wasm.cwrap(wo,null,["number","number","number","number","number","number"])}function iZ(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return zw(s,o,l,u,d,i),r}var oZ={kernelName:wo,backendName:"wasm",kernelFunc:iZ,setupFunc:sZ},lZ=hn(bs),uZ=!1,dZ=fn(vs,uZ),_w;function pZ(e){_w=e.wasm.cwrap(ws,null,["number","number","number","number","number","number","number"])}function cZ(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return _w(d,p,c,h,m,r,A),f}var hZ={kernelName:ws,backendName:"wasm",setupFunc:pZ,kernelFunc:cZ},Pw;function fZ(e){Pw=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c),A=wd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,P=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return Pw(y,G,ee,Y,g,b,v,w,N,T,R,$,X,z,P,V,j,U,x,A,ie,m||0,ne),re}var AZ={kernelName:ni,backendName:"wasm",setupFunc:fZ,kernelFunc:mZ},Lw;function yZ(e){Lw=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!0),A=wd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,P=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return Lw(y,G,ee,Y,g,b,v,w,N,T,R,$,X,z,P,V,j,U,x,A,ie,m||0,ne),re}var xZ={kernelName:ai,backendName:"wasm",setupFunc:yZ,kernelFunc:gZ},Ww;function bZ(e){Ww=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","array","number"])}function vZ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Hm.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return Ww(c,Sn[a.dtype],h,i,p,o,m,f),u}var wZ={kernelName:Io,backendName:"wasm",setupFunc:bZ,kernelFunc:vZ},Bw;function kZ(e){Bw=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function IZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=ba({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=ba({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return Bw(A,Sn[r.dtype],x,f,y,u.batchSize,w,g),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=u.outputShape,m}var SZ={kernelName:ko,backendName:"wasm",setupFunc:kZ,kernelFunc:IZ},NZ=!1,TZ=fn(So,NZ,"bool"),EZ=!1,CZ=fn(ks,EZ,"bool"),Vw;function RZ(e){Vw=e.wasm.cwrap(Ss,null,["number","number","number"])}function MZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;Vw(r,n,i)}return s}var FZ={kernelName:Ss,backendName:"wasm",setupFunc:RZ,kernelFunc:MZ},$Z=!1,DZ=fn(Co,$Z,"bool"),OZ=!1,zZ=fn(Ro,OZ,"bool"),_Z=hn(Ns),PZ=!1,LZ=fn(Fo,PZ,"bool"),jw;function WZ(e){jw=e.wasm.cwrap(Ts,null,["number, number, number"])}function BZ(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Vr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;jw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var VZ={kernelName:Ts,backendName:"wasm",setupFunc:WZ,kernelFunc:BZ},jZ=!1,UZ=fn(Es,jZ),Uw;function HZ(e){Uw=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function GZ(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=C.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,A=d.padInfo.left,y=d.dilationHeight,g=d.dilationWidth,x=d.strideHeight,w=d.strideWidth,b=d.inChannels,v=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(d.outShape,"float32"),T=a.dataIdMap.get(N.dataId).id;return Uw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,w,b,v,T),N}var qZ={kernelName:Cs,backendName:"wasm",setupFunc:HZ,kernelFunc:GZ},Hw;function XZ(e){Hw=e.wasm.cwrap(Rs,null,["number, number, number"])}function KZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Vr(i,r,t),m=p;if(h){let w=t.dataIdMap.get(d.dataId).id;w!==o&&(u=d,l=w,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=Mh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;Hw(l,y,w)}if(h&&t.disposeData(d.dataId),s){let w=C.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(g.dataId),x}var ZZ={kernelName:Rs,backendName:"wasm",setupFunc:XZ,kernelFunc:KZ},Gw;function YZ(e){Gw=e.wasm.cwrap(Ms,null,["number, number, number"])}function JZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Vr(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",p,m);let[f,A]=C.computeOutAndReduceShapes(u.shape,p),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Gw(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var QZ={kernelName:Ms,backendName:"wasm",setupFunc:YZ,kernelFunc:JZ},eY=!1,tY=fn(Fs,eY),E1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(E1||(E1={}));var qw;function nY(e){qw=e.wasm.cwrap($s,null,["number","array","number","number","array","array","number","number"])}function aY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return qw(i,u,t.shape.length,Sn[t.dtype],c,h,E1[r],l),o}var rY={kernelName:$s,backendName:"wasm",kernelFunc:aY,setupFunc:nY},sY=!0,iY=fn(Ds,sY),oY=hn(Do);function C1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var Xw;function lY(e){Xw=e.wasm.cwrap(zo,"number",["number","number","number","number","number"])}function uY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=Xw(u,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=C1(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var dY={kernelName:zo,backendName:"wasm",setupFunc:lY,kernelFunc:uY},Kw;function pY(e){Kw=e.wasm.cwrap(_o,"number",["number","number","number","number","number","bool"])}function cY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=Kw(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=C1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",A);return[y,g]}var hY={kernelName:_o,backendName:"wasm",setupFunc:pY,kernelFunc:cY},Zw;function fY(e){Zw=e.wasm.cwrap(Po,"number",["number","number","number","number","number","number"])}function mY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=Zw(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=C1(t,c);t.wasm._free(A);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[y,g]}var AY={kernelName:Po,backendName:"wasm",setupFunc:fY,kernelFunc:mY},yY=!1,gY=fn(Oo,yY,"bool"),Yw;function xY(e){Yw=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function bY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return Yw(d,s,i,o,u),l}var vY={kernelName:Os,backendName:"wasm",setupFunc:xY,kernelFunc:bY};function wY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var kY={kernelName:Lo,backendName:"wasm",kernelFunc:wY};function IY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return T1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=T1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Cw({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var SY={kernelName:Wo,backendName:"wasm",kernelFunc:IY},Jw;function NY(e){Jw=e.wasm.cwrap(zs,null,["number","array","number","number","array","array","number","number"])}function TY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return Jw(i,u,t.shape.length,Sn[t.dtype],c,h,r,l),o}var EY={kernelName:zs,backendName:"wasm",kernelFunc:TY,setupFunc:NY},CY=!1,RY=fn(_s,CY),Qw;function MY(e){Qw=e.wasm.cwrap(Ps,null,["number","number","number"])}function FY(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Qw(s,i,l),o}var $Y={kernelName:Ps,backendName:"wasm",setupFunc:MY,kernelFunc:FY},e6;function DY(e){e6=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function OY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Vr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;e6(l,y,Sn[g.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var zY={kernelName:Bo,backendName:"wasm",setupFunc:DY,kernelFunc:OY},_Y=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=JA(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},PY={kernelName:Cu,backendName:"wasm",kernelFunc:_Y},LY=!0,WY=fn(gs,LY),BY=hn(Ls),VY=hn(Bs),t6;function jY(e){t6=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number"])}function UY(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,p,c,h]=r.shape,m=[d,l,u,h],f=t.dataIdMap.get(r.dataId),A;f.dtype!=="float32"&&(A=Mh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return t6(y,d,p,c,h,l,u,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var HY={kernelName:Ws,backendName:"wasm",setupFunc:jY,kernelFunc:UY},n6;function GY(e){n6=e.wasm.cwrap(Vs,null,["number","array","number","array","number","number"])}function qY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Ch({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);n6(l,d,i.length,p,r.shape.length,u);let c=ba({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var XY={kernelName:Vs,backendName:"wasm",kernelFunc:qY,setupFunc:GY},a6;function KY(e){a6=e.wasm.cwrap(al,null,["number","number","number","number","number","number","number","number","array","number","number"])}function ZY(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,A]=C.getImageCenter(o,c,h),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],w=new Uint8Array(new Int32Array(x).buffer);return a6(u,p,c,h,m,s,f,A,w,x.length,d),l}var YY={kernelName:al,backendName:"wasm",kernelFunc:ZY,setupFunc:KY},JY=hn(js),QY=hn(Us),r6;function eJ(e){r6=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number","array","number","number"])}function tJ(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=Gm.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),A=t.dataIdMap.get(o.dataId).id;return r6(h,m,Sn[s.dtype],l,u,d,f,c,A),o}var nJ={kernelName:Uo,backendName:"wasm",setupFunc:eJ,kernelFunc:tJ},s6;function aJ(e){s6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function rJ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return s6(i,o,l,h,d),u}var sJ={kernelName:Ho,backendName:"wasm",kernelFunc:rJ,setupFunc:aJ},i6;function iJ(e){i6=e.wasm.cwrap(Gs,null,["number","number"])}function oJ(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||i6(a,s),r}var lJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:iJ,kernelFunc:oJ},uJ=hn(Hs);function Fh(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=on.parseSliceParams(t,n,a),o=on.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=on.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=lh(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)dJ(l,d[0],c,s,i);else if(h===3)pJ(l,d[0],d[1],c,s,i);else if(h===4)cJ(l,d[0],d[1],d[2],c,s,i);else{let m=lh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function dJ(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function pJ(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],p=l+s[1];for(let c=o;c<d;c++)for(let h=l;h<p;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function cJ(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],p=l+i[0],c=u+i[1],h=d+i[2],m=s[3];for(let f=l;f<p;f++)for(let A=u;A<c;A++)for(let y=d;y<h;y++){let g=f*t+A*n+y*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var hJ={kernelName:qo,backendName:"wasm",kernelFunc:Fh},o6;function fJ(e){o6=e.wasm.cwrap(Ks,null,["number","number","number","number"])}function mJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||o6(r,i,o,l),s}var AJ={kernelName:Ks,backendName:"wasm",setupFunc:fJ,kernelFunc:mJ};function yJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=Fh({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=p,h})}var gJ={kernelName:Yo,backendName:"wasm",kernelFunc:yJ},xJ=hn(qs),bJ=hn(Fu),vJ=!0,wJ=fn(Zs,vJ),l6;function kJ(e){l6=e.wasm.cwrap(Tr,null,["number","number","number"])}function IJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return l6(i,r,l),o}var SJ={kernelName:Tr,backendName:"wasm",setupFunc:kJ,kernelFunc:IJ},u6;function NJ(e){u6=e.wasm.cwrap(Jo,null,["number","array","number","array","array","array","array","array","number","number"])}function TJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=C.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=C.slice_util.maskToAxes(p),A=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,A.splice($,0,1)});let y=ba({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:w}=C.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,u,d);s=g,i=x,o=w;let b=C.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=C.slice_util.computeOutShape(s,i,o),N=v.filter(($,z)=>b.indexOf(z)===-1);if(o.every($=>$===1)){let $=Fh({inputs:{x:y},attrs:{begin:s,size:v},backend:t});t.disposeData(y.dataId);let z=ba({inputs:{x:$},attrs:{shape:N},backend:t});return t.disposeData($.dataId),z}let T=t.makeOutput(N,"float32");if(!N.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,z=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),P=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;u6($,z,y.shape.length,P,V,j,U,X,N.length,G)}t.disposeData(y.dataId);let R=ba({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),R}var EJ={kernelName:Jo,backendName:"wasm",setupFunc:NJ,kernelFunc:TJ},CJ=!0,RJ=fn(Ys,CJ),d6;function MJ(e){d6=e.wasm.cwrap(Xs,null,["number, number, number"])}function FJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Vr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;d6(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var $J={kernelName:Xs,backendName:"wasm",setupFunc:MJ,kernelFunc:FJ},DJ=hn(Js),OJ=hn(Qs),p6;function zJ(e){p6=e.wasm.cwrap(Nr,null,["number","array","number","array","number","number"])}function _J(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return p6(s,l,r.shape.length,u,o.length,Sn[d.dtype],p),d}var PJ={kernelName:Nr,backendName:"wasm",setupFunc:zJ,kernelFunc:_J},c6;function LJ(e){c6=e.wasm.cwrap(Qo,null,["number","array","number","number","number","bool","number","number"])}var WJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return c6(i,o,a.shape.length,Sn[a.dtype],r,s,d,c),[u,p]},BJ={kernelName:Qo,backendName:"wasm",setupFunc:LJ,kernelFunc:WJ},h6;function VJ(e){h6=e.wasm.cwrap(el,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function jJ(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(g.dataId).id,w=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,v=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return h6(w,b,s.shape[0]>1,d,m,f,h,c,p,y,r.shape.length-1,v,N,l,x),g}var UJ={kernelName:el,backendName:"wasm",setupFunc:VJ,kernelFunc:jJ};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=Fh({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var GJ={kernelName:tl,backendName:"wasm",kernelFunc:HJ};function qJ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var XJ={kernelName:nl,backendName:"wasm",kernelFunc:qJ},KJ=[tK,aK,iK,fK,yK,bK,kK,TK,EK,CK,FK,$K,zK,LK,WK,jK,GK,KK,JK,eZ,tZ,nZ,rZ,oZ,lZ,dZ,eK,hZ,AZ,xZ,wZ,SZ,TZ,CZ,oK,FZ,DZ,zZ,_Z,LZ,VZ,UZ,qZ,ZZ,QZ,tY,rY,iY,oY,dY,hY,AY,gY,vY,kY,SY,EY,RY,$Y,zY,PY,WY,BY,VY,IK,HY,XY,YY,QY,JY,nJ,sJ,lJ,uJ,hJ,AJ,gJ,xJ,bJ,wJ,SJ,EJ,RJ,$J,DJ,OJ,PJ,BJ,UJ,pK,GJ,XJ];for(let e of KJ)ri(e);var R1=J();R1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));R1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(R1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var f6=Qi(uI()),ZJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',YJ=Qi(dI()),m6=class extends mu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Tp(this,ar())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return eQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function JJ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function A6(e,t,n){if($h!=null)return $h;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Id!=null&&Id[a]!=null?Id[a]:n+a}async function QJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=ZJ,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?A6(e,t,kd!=null?kd:l):l+o},M1&&(r.instantiateWasm=JJ(A6(e,t,kd!=null?kd:"")));let s=!1;r.onAbort=()=>{s||Sd||(Sd=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&$h==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+f6.default.toString()],{type:"text/javascript"}),i=(0,f6.default)(r)):i=(0,YJ.default)(r),i.then(o=>{s=!0,Sd=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function eQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var tQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],$h=null,kd=null,Id={},Sd=!1,M1=!1;function nQ(e,t=!1){if(Jm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");$h=e,M1=t}function aQ(e,t=!1){if(Sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")kd=e;else{Id=e;let n=tQ.filter(a=>Id[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}M1=t}var y6="3.6.0",rQ=2;cl("wasm",async()=>{let{wasm:e}=await QJ();return new m6(e)},rQ);Z().prototype.abs=function(){return this.throwIfDisposed(),Ot(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),eA(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),tA(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),vc(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Hu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Gu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),nA(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),aA(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),rA(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),sA(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),iA(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),oA(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Xu(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ku(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ci(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),fl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),cA(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),In(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),kc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Ic(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),rr(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Zu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Sc(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Nc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),mA(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Al(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),AA(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),yA(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Bb(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),yl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),$r(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),gA(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Xn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),ln(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),xA(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),xl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),xc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),hi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Or(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),Fn(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Il(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),jc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),jb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),Ub(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),vA(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Yu(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),zr(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Ec(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),wA(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),qb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Mc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),SA(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),$n(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Cc(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),la(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Fc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Yb(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Qu(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Kn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Pa(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),wt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),bl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),vl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),TA(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),EA(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),_(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),qc(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),dl(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),sr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),e3(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),ir(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),td(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Dc(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),MA(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),La(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Oc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),g3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),x3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),zn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),id(this)};Z().prototype.round=function(){return this.throwIfDisposed(),zc(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),_c(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Pc(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),FA(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),kn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),$A(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Lc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Wc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),rd(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),fi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),an(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Uc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),_r(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return _n(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Sl(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),OA(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),zA(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),pi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Dr(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),fe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),fe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),fe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Gc(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),PA(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),ua(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),nn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var g6={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,Sl(fe(n,"float32"),-1))}}},sQ={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=it(fe(n,"float32")),r=Jt(ge(Se(1),a));return vt(me(e,r))}}}},iQ={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(ge(it(fe(n,"float32")),1));return me(e,a)}}}},oQ={kernelName:Ir,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},lQ={kernelName:os,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},uQ={kernelName:ls,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},dQ={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},pQ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Jt(ge(Se(1),it(fe(n,"float32")))))}}},cQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(se(Se(1),it(fe(n,"float32"))));return me(e,a)}}}},hQ={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=se(it(n),it(a)),i=_(e,me(a,s)),o=zt(n.shape,r);return o.length>0&&(i=ke(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(a)),i=vt(_(e,me(n,s))),o=zt(a.shape,r);return o.length>0&&(i=ke(i,o)),H(i,a.shape)}}}},fQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(it(fe(n,"float32")),1))}}},mQ={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ge(Se(1),it(fe(n,"float32"))))}}};function AQ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Vt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=D.runKernel(Fp,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var yQ=O({avgPool3dGrad_:AQ}),gQ={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>yQ(e,a,r,s,i,o)}}};function xQ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=D.runKernel(Mp,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var bQ=O({avgPoolGrad_:xQ}),vQ={kernelName:us,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>bQ(e,a,r,s,i)}}},wQ={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,r,!1,!0),b:()=>Be(a,e,!0,!1)}:!s&&i?{a:()=>Be(e,r,!1,!1),b:()=>Be(e,a,!0,!1)}:s&&!i?{a:()=>Be(r,e,!1,!0),b:()=>Be(a,e,!1,!1)}:{a:()=>Be(r,e,!0,!0),b:()=>Be(e,a,!0,!0)}}},kQ={kernelName:bu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>ed(e,a,r)}}},IQ={kernelName:Ox,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},SQ={kernelName:ps,gradFunc:e=>({x:()=>e.clone()})},NQ={kernelName:cs,gradFunc:e=>({x:()=>Ue(e)})},TQ={kernelName:Sr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>nn(la(Or(a,r),zr(a,s)),e,Ue(e))}}},EQ={kernelName:vu,inputsToSave:["x"],gradFunc:g6.gradFunc},CQ={kernelName:ho,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=sa(r,t[0].shape)[0],i=a.map(o=>o[s]);return an(e,i,s).map(o=>()=>o)}},RQ={kernelName:hs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Fr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>hA(a.shape,e,r,i,o,l),filter:()=>VA(a,e,r.shape,i,o,l)}}},MQ={kernelName:fs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>rr(e,r,s,i,o,1,l),filter:()=>VA(e,a,r.shape,s,i,o,l)}}};function FQ(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return D.runKernel(zp,o,l)}var $Q=O({conv3DBackpropFilter_:FQ}),DQ={kernelName:wu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Fr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>Pb(i.shape,e,o,r,s),filter:()=>$Q(i,e,o.shape,r,s)}}},OQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(vt(Lc(fe(n,"float32"))),e)}}},zQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Wc(fe(n,"float32")),e)}}},_Q={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=Zb([r],a.rank),l=Nc(e,r,s,!i);return o!=null&&(l=Ze(l,o)),l}}}},PQ={kernelName:ys,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Fr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(za(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Vt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>p3(l.shape,e,u,r,s,a,i),filter:()=>d3(l,e,u.shape,r,s,a,i)}}},LQ={kernelName:ku,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>D.runKernel(Vp,s,n),filter:()=>D.runKernel(jp,i,n)}}},WQ={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>D.runKernel(Hp,a)}}},BQ={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=_(Xn(vt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>_(e,a)}}},VQ={kernelName:xs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,n)}}},jQ={kernelName:bo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},UQ={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,Xn(n))}}},HQ={kernelName:bs,gradFunc:e=>({x:()=>Ue(e)})},GQ={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=it(a);return vt(me(s,fe(o,"float32")))}}}},qQ={kernelName:ws,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?Se(1):o,u=zt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=ge(r,s),c=_(e,l),h=_c(se(i,Se(a))),m=_(_(_(h,h),h),Se(-.5));return{x:()=>s.rank===1?H(_(_(e,Dr(H(h,[1,1,1,s.shape[0]]),d)),l),r.shape):H(_(_(e,h),l),r.shape),mean:()=>{let f=_(_(h,Se(-1)),c);return s.rank===1&&(f=ke(f,u)),H(f,s.shape)},variance:()=>{let f=_(_(m,p),c);return s.rank===1&&(f=ke(f,u)),H(f,s.shape)},scale:()=>{let f=_(p,h),A=_(e,f);return s.rank===1&&(A=ke(A,u)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ke(f,u)),H(f,s.shape)}}}},XQ={kernelName:ko,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=sa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,p=o.slice(s,o.length).slice(1),c=p.length,h=x6(0,d),m=x6(d+1,d+1+c),f=b6([u,[l],p]),A=H(e,f),y=H(r,[l]),g=b6([[d],h,m]),x=Ze(A,g),w=PA(x,y,a.shape[i]),b=IA(g);return w=Ze(w,b),w},indices:()=>r}}};function x6(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function b6(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var KQ={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ue(n),b:()=>Ue(a)}}},ZQ={kernelName:Is,gradFunc:e=>({x:()=>fe(e,"float32")})},YQ={kernelName:No,gradFunc:e=>({x:()=>Ue(e)})},JQ={kernelName:To,gradFunc:e=>({x:()=>Ue(e)})},QQ={kernelName:Eo,gradFunc:e=>({x:()=>Ue(e)})},eee={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Fn(a,0);return{x:()=>nn(s,e,_(e,r))}}},tee={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(n,1))}}},nee={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,fe(n,"float32"))}}},aee={kernelName:zx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=Xn(a);return ge(e,_(ke(e,r,s),i))}}}};function ree(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return D.runKernel(Zp,o,l)}var see=O({localResponseNormalizationBackprop_:ree}),iee={kernelName:Tu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>see(a,r,e,s,i,o,l)}}};function v6(e,t,n,a){return t.rank<n.rank&&(t=H(t,mi(t.shape,a))),e.rank<n.rank&&(e=H(e,mi(e.shape,a))),{x:()=>_(e,fe($r(n,t),e.dtype))}}var w6={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=sa(r,s.shape),l=v6(e,i,s,o);return{x:()=>l.x()}}},oee={kernelName:Es,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>_(e,fe(Or(n,a),"float32")),b:()=>_(e,fe(Ec(n,a),"float32"))}}};function lee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),d=o,p=l,c=u,h=!1;l.rank===4&&(h=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},A=D.runKernel(Jp,m,f);return h?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var uee=O({maxPool3dGrad_:lee}),dee={kernelName:Eu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>uee(e,a,r,s,i,o,l)}}};function pee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return D.runKernel(Yp,d,p)}var cee=O({maxPoolGrad_:pee}),hee={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>cee(e,a,r,s,i,o)}}},fee={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=sa(r,a.shape),i=Kb(a.shape,s)[1],o=Nt(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=H(e,l);return me(_(u,Dn(a.shape,"float32")),o)}}}},mee={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=sa(r,s.shape),l=v6(e,i,s,o);return{x:()=>l.x()}}},Aee={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>_(e,fe(zr(n,a),"float32")),b:()=>_(e,fe(Fn(n,a),"float32"))}}},yee={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},gee={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?H(ke(e,s),n.shape):e},b:()=>{let s=_(e,vt(xl(me(n,a)))),i=zt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},xee={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=_(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},bee={kernelName:Do,gradFunc:e=>({x:()=>vt(e)})},vee={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},wee={kernelName:Lo,gradFunc:e=>({x:()=>Ue(e)})},kee={kernelName:Wo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ua(e,a).map(r=>()=>r)}},k6={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Iee={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=fe(i,"float32"),u=_(e,_(l,ir(s,ge(l,Se(1))))),d=zt(s.shape,o);return d.length>0&&(u=ke(u,d)),H(u,s.shape)},b:()=>{let l=Fn(s,0),u=nn(l,$n(s),Ue(s)),d=_(e,_(r,u)),p=zt(i.shape,o);return p.length>0&&(d=ke(d,p)),H(d,i.shape)}}}},See={kernelName:Ps,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Fn(n,0);return{x:()=>nn(r,e,_(e,a)),alpha:()=>{let s=nn(r,Ue(e),_(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},Nee={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=it(a);return vt(me(s,fe(o,"float32")))}}}},Tee={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,vt(it(n)))}}},Eee={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=_(zr(n,6),Sl(n));return{x:()=>_(e,fe(a,"float32"))}}},Cee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,fe(Sl(n),"float32"))}}},Ree={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Mee={kernelName:Ws,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(ac,r,n)}}},Fee={kernelName:Ru,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(nc,r,n)}}},$ee={kernelName:Vs,gradFunc:(e,t,n)=>{let{dims:a}=n,r=sa(a,e.shape);return{x:()=>zn(e,r)}}},Dee={kernelName:js,gradFunc:e=>({x:()=>Ue(e)})},Oee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(me(e,_(ir(n,1.5),2)))}}},zee={kernelName:Ho,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>fe(Ue(n),"float32"),t:()=>_(e,fe(n,e.dtype)),e:()=>_(e,fe(Ju(n),e.dtype))}}},_ee={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Fn(n,Se(0)),r=Se(k3),s=Se(I3),i=_(e,s),o=_(_(e,r),Xn(fe(n,"float32")));return nn(a,i,o)}}}},Pee={kernelName:Gs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,_(n,ge(Se(1),n)))}}},Lee={kernelName:Ko,gradFunc:e=>({x:()=>Ue(e)})},Wee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Zu(fe(n,"float32")),e)}}},Bee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Sc(fe(n,"float32")),e)}}},Vee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=kb(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>sr(e,u)}}},jee={kernelName:Ks,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=_(e,a);return{logits:()=>ge(i,_(ke(i,[r],s),a))}}},Uee={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,kn(n))}}},I6={kernelName:Mu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Ku(e,a,r)}}},S6={kernelName:Yo,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>ot(e,a)}}},Hee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,_(Jt(fe(n,"float32")),2))}}},Gee={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,_(fe(n,"float32"),2))}}},qee={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Se(2);return{a:()=>_(e,_(r,ge(n,a))),b:()=>_(e,_(r,ge(a,n)))}}},Xee={kernelName:Tr,gradFunc:e=>({x:()=>Ue(e)})},Kee={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(vt(s),a.shape)}}}},Zee={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;sa(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=_(i,Dn(a.shape,"float32"));return{x:()=>o}}},Yee={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,it(Zu(n)))}}},Jee={kernelName:Qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(ge(Se(1),it(n)),e)}}},Qee={kernelName:Nr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ue(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},ete={kernelName:ei,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=IA(r);return{x:()=>Ze(e,s)}}},tte={kernelName:tl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>_n(e,r)}}},nte={kernelName:$u,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ate(e,n)}}};function ate(e,t){let n=Pa(t,Ue(t)),a=hi(e,n),r=Or(t,Se(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=ln(r,o+1);r=la(r,Dn(a.shape,"bool"));let i=Ue(a);return nn(r,a,i)}var rte={kernelName:nl,gradFunc:e=>({x:()=>Ue(e)})},ste=[g6,sQ,iQ,oQ,lQ,uQ,dQ,pQ,cQ,hQ,fQ,mQ,gQ,vQ,wQ,kQ,IQ,SQ,NQ,TQ,EQ,CQ,MQ,RQ,DQ,OQ,zQ,_Q,PQ,LQ,Nee,WQ,BQ,VQ,jQ,UQ,GQ,HQ,qQ,XQ,KQ,ZQ,YQ,JQ,QQ,eee,tee,nee,aee,iee,w6,w6,oee,dee,hee,fee,mee,Aee,yee,gee,xee,bee,vee,wee,kee,k6,k6,Iee,See,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,_ee,Pee,Lee,Wee,Bee,Vee,jee,Uee,I6,I6,S6,S6,Hee,qee,Gee,Xee,Kee,Zee,Yee,Jee,Qee,ete,tte,nte,rte];for(let e of ste)_x(e);var N6={};Fe(N6,{maxNorm:()=>ute,minMaxNorm:()=>cte,nonNeg:()=>pte,unitNorm:()=>dte});var F1;function _t(){return F1==null&&(F1=Eb().epsilon()),F1}function va(){return"channelsLast"}var dr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dr.prototype)}},wa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wa.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},T6=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,T6.prototype)}};function Ti(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ja(e,t){if(!e)throw new T6(t)}function E6(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Nn(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function pr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ei(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var da={};function $1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function D1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>D1(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:D1(a))}}}function Nd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in da)i=da[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in da?[o,l]=da.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(da))u[h]=da[h];for(let h of Object.keys(n))u[h]=n[h];let d=s.config;d.customObjects=u;let p=Object.assign({},da);for(let h of Object.keys(n))da[h]=n[h];D1(s.config);let c=l(o,s.config,n,r);return da=Object.assign({},p),c}else{let u=Object.assign({},da);for(let p of Object.keys(n))da[p]=n[p];let d=new o(s.config);return da=Object.assign({},u),d}}}function ite(e,t){return e<t?-1:e>t?1:0}function Dh(e,t){return-1*ite(e,t)}function jr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ote(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ci(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function O1(e,t,n=0,a=Infinity){return ja(n>=0),ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Ht(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Ht(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${C6(e)}.`)}function C6(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>C6(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function lte(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function R6(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function z1(e,t){return W(()=>Jt(ke(_(e,e),t,!0)))}var Td=class extends ae.Serializable{getConfig(){return{}}},_1=class extends Td{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=z1(e,this.axis),n=In(t,0,this.maxValue);return _(e,me(n,se(_t(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_1.className="MaxNorm";ae.registerClass(_1);var P1=class extends Td{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>me(e,se(_t(),z1(e,this.axis))))}getConfig(){return{axis:this.axis}}};P1.className="UnitNorm";ae.registerClass(P1);var L1=class extends Td{apply(e){return La(e)}};L1.className="NonNeg";ae.registerClass(L1);var W1=class extends Td{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=z1(e,this.axis),n=se(_(this.rate,In(t,this.minValue,this.maxValue)),_(1-this.rate,t));return _(e,me(n,se(_t(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};W1.className="MinMaxNorm";ae.registerClass(W1);var M6={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return $1(e)}function F6(e,t={}){return Nd(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in M6?M6[e]:e,config:{}};return F6(t)}else return e instanceof Td?e:F6(e)}function ute(e){return new _1(e)}function dte(e){return new P1(e)}function pte(){return new L1}function cte(e){return new W1(e)}var $6={};Fe($6,{constant:()=>Ote,glorotNormal:()=>Vte,glorotUniform:()=>Bte,heNormal:()=>jte,heUniform:()=>Ute,identity:()=>Lte,leCunNormal:()=>Hte,leCunUniform:()=>Gte,ones:()=>Dte,orthogonal:()=>qte,randomNormal:()=>_te,randomUniform:()=>zte,truncatedNormal:()=>Pte,varianceScaling:()=>Wte,zeros:()=>$te});var hte=["channelsFirst","channelsLast"],fte=["nearest","bilinear"],mte=["valid","same","causal"],Ate=["max","avg"],yte=["sum","mul","concat","ave"],Vl=new Map;function Et(e){Ci(hte,"DataFormat",e)}function gte(e){Ci(fte,"InterpolationFormat",e)}function Qn(e){Ci(mte,"PaddingMode",e)}function D6(e){Ci(Ate,"PoolMode",e)}var Ed=[],O6="/";function Ri(e,t){Ed.push(e);try{let n=t();return Ed.pop(),n}catch(n){throw Ed.pop(),n}}function xte(){return Ed.length===0?"":Ed.join(O6)+O6}function z6(e){if(!P6(e))throw new Error("Not a valid tensor name: '"+e+"'");return xte()+e}function _6(e){if(!P6(e))throw new Error("Not a valid tensor name: '"+e+"'");Vl.has(e)||Vl.set(e,0);let t=Vl.get(e);if(Vl.set(e,Vl.get(e)+1),t>0){let n=`${e}_${t}`;return Vl.set(n,1),n}else return e}var bte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function P6(e){return!!e.match(bte)}function vte(e){return e===parseInt(e.toString(),10)}function Ur(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function L6(e){return e=Array.isArray(e)?new Float32Array(e):e,Tt(e)}function jl(e){return bl(L6(e)).dataSync()[0]}function Hr(e){return Kn(L6(e)).dataSync()[0]}function ka(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Cd(e,t){return e.asType(t)}function Rd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function wte(e,t){return W(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Rd(e,1);return j1(n,[1,t,1])})}function kte(e){let t=[Ur(e.shape)];return e.reshape(t)}function Ite(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ur(e.shape,1)];return e.reshape(t)}function Mi(e,t,n){return W(()=>{switch(e.rank){case 1:return Bc(e,t,n);case 2:return DA(e,[t,0],[n,e.shape[1]]);case 3:return Vc(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ad(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function B1(e,t,n){return W(()=>{switch(e.rank){case 1:return Bc(e,t,n);case 2:return DA(e,[0,t],[e.shape[0],n]);case 3:return Vc(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ad(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Oh(e,t,n,a){return W(()=>{switch(e.rank){case 1:return Bc(e,t,n);case 2:switch(a){case 1:return Mi(e,t,n);case 2:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Mi(e,t,n);case 2:return Vc(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Mi(e,t,n);case 2:return ad(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ad(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function V1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function W6(e,t){switch(e.rank){case 1:return Ob([e,t]);case 2:return ml([e,t],0);case 3:return zb([e,t],0);case 4:return _b([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function j1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Dr(e,t)}function zh(e,t=0,n=1,a,r){return t3(e,t,n,a,r)}function Ua(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Pr.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?U1(e.rank,a,va()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([l,-1]);let p=[...r,...u],c=!1,h=!1;return Pr.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?U1(e.rank,a,va()):null,activation:n}).reshape(p)}}function B6(e,t,n){return W(()=>(Array.isArray(t)?t=Tt(t,"int32"):t=t.toInt(),hi(e,t,n)))}function Md(e){return _(e,e)}function U1(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ia(e,t,n){return W(()=>(n==null&&(n=va()),Et(n),e.add(U1(e.rank,t,n))))}function Ste(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return yl(e)}function Nte(e){return W(()=>me(e,Ot(e).add(1)))}function V6(e,t,n,a){return W(()=>l3(e,t,n,a))}function Tte(e){return W(()=>{let t=se(.5,_(.2,e));return In(t,0,1)})}function Fd(e,t,n=!1){return n?e():t()}var Ete=["fanIn","fanOut","fanAvg"],Cte=["normal","uniform","truncatedNormal"];function Rte(e){Ci(Ete,"FanMode",e)}function Mte(e){Ci(Cte,"Distribution",e)}var pa=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},H1=class extends pa{apply(e,t){return Ct(e,t)}};H1.className="Zeros";ae.registerClass(H1);var _h=class extends pa{apply(e,t){return Dn(e,t)}};_h.className="Ones";ae.registerClass(_h);var G1=class extends pa{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>_(Se(this.value),Dn(e,t)))}getConfig(){return{value:this.value}}};G1.className="Constant";ae.registerClass(G1);var q1=class extends pa{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};q1.className="RandomUniform";ae.registerClass(q1);var X1=class extends pa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return zh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};X1.className="RandomNormal";ae.registerClass(X1);var K1=class extends pa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Hc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};K1.className="TruncatedNormal";ae.registerClass(K1);var Z1=class extends pa{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return _(this.gain,bA(e[0]))})}getConfig(){return{gain:this.gain}}};Z1.className="Identity";ae.registerClass(Z1);function Fte(e,t="channelsLast"){let n,a;if(Et(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ur(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Ur(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Ur(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Tn=class extends pa{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Rte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Mte(this.distribution),this.seed=e.seed}apply(e,t){let n=Fte(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Hc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return wl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Tn.className="VarianceScaling";ae.registerClass(Tn);var Ph=class extends Tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Ph.className="GlorotUniform";ae.registerClass(Ph);var Lh=class extends Tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Lh.className="GlorotNormal";ae.registerClass(Lh);var Wh=class extends Tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Wh.className="HeNormal";ae.registerClass(Wh);var Bh=class extends Tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Bh.className="HeUniform";ae.registerClass(Bh);var Vh=class extends Tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Vh.className="LeCunNormal";ae.registerClass(Vh);var jh=class extends Tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};jh.className="LeCunNormal";ae.registerClass(jh);var Y1=class extends pa{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=zh(n,0,1,"float32"),r=v3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),_(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Y1.className="Orthogonal";ae.registerClass(Y1);var j6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function U6(e,t={}){return Nd(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return $1(e)}function mt(e){if(typeof e=="string"){let t=e in j6?j6[e]:e;if(t==="GlorotNormal")return new Lh;if(t==="GlorotUniform")return new Ph;if(t==="HeNormal")return new Wh;if(t==="HeUniform")return new Bh;if(t==="LeCunNormal")return new Vh;if(t==="LeCunUniform")return new jh;{let n={};return n.className=t,n.config={},U6(n)}}else return e instanceof pa?e:U6(e)}function $te(){return new H1}function Dte(){return new _h}function Ote(e){return new G1(e)}function zte(e){return new q1(e)}function _te(e){return new X1(e)}function Pte(e){return new K1(e)}function Lte(e){return new Z1(e)}function Wte(e){return new Tn(e)}function Bte(e){return new Ph(e)}function Vte(e){return new Lh(e)}function jte(e){return new Wh(e)}function Ute(e){return new Bh(e)}function Hte(e){return new Vh(e)}function Gte(e){return new jh(e)}function qte(e){return new Y1(e)}var H6={};Fe(H6,{Layer:()=>Ge,RNN:()=>qa,RNNCell:()=>Bd,activation:()=>Cae,add:()=>Pae,alphaDropout:()=>vre,average:()=>Lae,averagePooling1d:()=>m2,averagePooling2d:()=>A2,averagePooling3d:()=>y2,avgPool1d:()=>Xae,avgPool2d:()=>Zae,avgPool3d:()=>Jae,avgPooling1d:()=>Kae,avgPooling2d:()=>Yae,avgPooling3d:()=>Qae,batchNormalization:()=>Hae,bidirectional:()=>hre,concatenate:()=>Wae,conv1d:()=>bae,conv2d:()=>vae,conv2dTranspose:()=>wae,conv3d:()=>kae,conv3dTranspose:()=>Iae,convLstm2d:()=>ure,convLstm2dCell:()=>dre,cropping2D:()=>Nae,dense:()=>Rae,depthwiseConv2d:()=>Eae,dot:()=>Uae,dropout:()=>Mae,elu:()=>fae,embedding:()=>_ae,flatten:()=>$ae,gaussianDropout:()=>bre,gaussianNoise:()=>xre,globalAveragePooling1d:()=>ere,globalAveragePooling2d:()=>tre,globalMaxPool1d:()=>mre,globalMaxPool2d:()=>Are,globalMaxPooling1d:()=>e8,globalMaxPooling2d:()=>t8,gru:()=>are,gruCell:()=>rre,input:()=>I4,inputLayer:()=>hae,layerNormalization:()=>Gae,leakyReLU:()=>Aae,lstm:()=>sre,lstmCell:()=>ire,masking:()=>wre,maxPool1d:()=>yre,maxPool2d:()=>gre,maxPooling1d:()=>n8,maxPooling2d:()=>a8,maxPooling3d:()=>nre,maximum:()=>Bae,minimum:()=>Vae,multiply:()=>jae,permute:()=>zae,prelu:()=>yae,reLU:()=>mae,repeatVector:()=>Dae,reshape:()=>Oae,rnn:()=>pre,separableConv2d:()=>Sae,simpleRNN:()=>ore,simpleRNNCell:()=>lre,softmax:()=>gae,spatialDropout1d:()=>Fae,stackedRNNCells:()=>cre,thresholdedReLU:()=>xae,timeDistributed:()=>fre,upSampling2d:()=>Tae,zeroPadding2d:()=>qae});var Xte=0;function G6(){return Xte++}var Uh={};function Hh(e=""){return e in Uh||(Uh[e]=0),Uh[e]+=1,e+Uh[e].toString()}function J1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Gh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function _e(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function rt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function qh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var q6="Variable",X6=class{constructor(e,t="float32",n=q6,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=G6(),n=n==null?q6:n,this.originalName=z6(n),this.name=_6(this.originalName),this.trainable_=a,this.constraint=r,this.val=a3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Kte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Kte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Q1(e){return e.map(t=>t.read())}function ey(e){e.forEach(t=>{t[0].write(t[1])})}var Mt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Sa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=G6(),s!=null&&(this.originalName=z6(s),this.name=_6(this.originalName)),this.rank=t.length}},Zte=0,Xh=class{constructor(e,t){this.callArgs=t,this.id=Zte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Yte=0,Ge=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Yte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=pr(n)+"_"+Hh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new wa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Nn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Nn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new dr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new dr(`Layer ${this.name} is not connected, no input to return.`);return Nn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new dr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new dr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Nn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),a=!0;for(let s of n)if(!(s instanceof Sa)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Sa){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ht(e))s.push(i.shape);this.build(Nn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ht(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Nn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Jte(e),i=this.computeOutputShape(s),o,l=Qte(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new Sa(l,u,this,ht(e),t,this.name,d)):o=new Sa(l,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new dr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new dr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new wa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return qh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Q1(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Q1(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}ey(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=mt("zeros"));let o=a.apply(t,n),l=new X6(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ht(e);t=ht(t),n=ht(n),a=ht(a),r=Gh(r),s=Gh(s);let l=[],u=[],d=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),d.push(p.tensorIndex);new Xh({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Jte(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return Nn(t)}function Qte(e){return"float32"}function K6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=K6(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var Ul=class extends Ge{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Hh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Sa(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Xh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Ul.className="InputLayer";ae.registerClass(Ul);function Z6(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Ul({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Gr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ee(a)}}function Y6(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var J6;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(J6||(J6={}));var ene=125,Hl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Q6=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},tne=class extends Hl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=W(()=>se(this.totals[a],_(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let a=_(me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},e4=class extends Hl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},t4=class extends Hl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=ene),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=lte(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Gr(n),a.push(this.yield(e,t,n))),a.push(rh()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Gr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Gr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(rh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Gr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Gr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(rh()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Gr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Gr(e),await this.trainEnd(e))}};function n4(e,t){return e==null&&(e={}),e instanceof Hl?[e]:Array.isArray(e)&&e[0]instanceof Hl?e:ht(e).map(n=>new t4(n,t))}var ca=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ca.checkForDuplicate(t),ca.constructors[e]==null&&(ca.constructors[e]=[]),ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ca.constructors)ca.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){ca.constructors={}}static createCallbacks(e){let t=[];for(let n in ca.constructors){let a=+n;e>=a&&t.push(...ca.constructors[a])}return t.map(n=>new n)}};ca.constructors={};function a4(e,t,n,a,r,s,i,o,l){let u=new e4,d=[new tne,...ca.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let p=new Q6(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function Na(e,t={},n=!1){return Nd(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Kh(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=ke(Md(e),t,!0),a=gl(n.shape,_t()),r=Jt(Pa(n,a));return me(e,r)})}function Fi(e,t){return W(()=>wt(Md(ge(t,e)),-1))}function Zh(e,t){return W(()=>wt(Ot(ge(t,e)),-1))}function Gl(e,t){return W(()=>{let n=ge(e,t),a=In(Ot(e),_t(),Number.MAX_VALUE),r=Ot(me(n,a));return _(100,wt(r,-1))})}function nne(e,t){return W(()=>{let n=In(t,_t(),Number.MAX_VALUE),a=$n(se(1,n)),r=In(e,_t(),Number.MAX_VALUE),s=$n(se(1,r));return wt(Md(ge(a,s)),-1)})}function ane(e,t){return W(()=>{let n=Pa(0,ge(1,_(e,t)));return wt(Md(n),-1)})}function rne(e,t){return W(()=>{let n=Pa(0,ge(1,_(e,t)));return wt(n,-1)})}function sne(e,t){return W(()=>{let n=ke(_(e,t),-1),a=Kn(_(ge(1,e),t),-1);return Pa(0,se(1,ge(a,n)))})}function ine(e,t){return W(()=>{let n=Math.log(2),a=ge(t,e),r=ge(se(a,fi(_(-2,a))),n);return wt(r,-1)})}function $d(e,t,n=!1){return W(()=>{if(n)t=rd(t);else{let a=ke(t,t.shape.length-1,!0);t=me(t,a)}return t=In(t,_t(),1-_t()),vt(ke(_(e.toFloat(),$n(t)),t.shape.length-1))})}function Yh(e,t,n=!1){return W(()=>{let a=xl(kte(e)).toInt();t=In(t,_t(),1-_t());let r=t.shape,s=dl(a,r[r.length-1]).reshape(r);return $d(s,t,n)})}function one(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function Jh(e,t){return W(()=>{let n;return n=In(t,_t(),1-_t()),n=$n(me(n,ge(1,n))),wt(one(e,n),-1)})}function lne(e,t){return W(()=>{let n=In(e,_t(),1),a=In(t,_t(),1);return ke(_(e,$n(me(n,a))),-1)})}function une(e,t){return W(()=>{let n=$n(se(_t(),t));return wt(ge(t,_(e,n)),-1)})}function ty(e,t){return W(()=>{let n=Kh(e,-1),a=Kh(t,-1),r=_(n,a);return vt(ke(r,-1))})}var Qh={meanSquaredError:Fi,meanAbsoluteError:Zh,meanAbsolutePercentageError:Gl,meanSquaredLogarithmicError:nne,squaredHinge:ane,hinge:rne,categoricalHinge:sne,logcosh:ine,categoricalCrossentropy:$d,sparseCategoricalCrossentropy:Yh,binaryCrossentropy:Jh,kullbackLeiblerDivergence:lne,poisson:une,cosineProximity:ty};function ny(e){if(typeof e=="string"){if(e in Qh)return Qh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function ay(e,t){return W(()=>{let n=_(.5,On(t)),a=Cd(Fn(t,n),e.dtype);return wt($r(e,a),-1)})}function ry(e,t){return W(()=>Cd($r(Gu(e,-1),Gu(t,-1)),"float32"))}function r4(e,t){return W(()=>la(e.equal(1),t.equal(1)).sum().cast("float32"))}function dne(e,t){return W(()=>la(e.equal(1),t.equal(0)).sum().cast("float32"))}function pne(e,t){return W(()=>la(e.equal(0),t.equal(1)).sum().cast("float32"))}function s4(e,t){return W(()=>{let n=r4(e,t),a=pne(e,t),r=n.add(a);return nn(Fn(r,0),n.div(r),0).cast("float32")})}function cne(e,t){return W(()=>{let n=r4(e,t),a=dne(e,t),r=n.add(a);return nn(Fn(r,0),n.div(r),0).cast("float32")})}function i4(e,t){return Jh(e,t)}function o4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),$r(e,t).asType("float32")}var hne=Fi,fne=Fi,mne=Zh,Ane=Zh,yne=Gl,gne=Gl,sy=$d,xne=ty,l4=Yh,e0={binaryAccuracy:ay,categoricalAccuracy:ry,precision:s4,categoricalCrossentropy:sy,sparseCategoricalCrossentropy:l4,mse:hne,MSE:fne,mae:mne,MAE:Ane,mape:yne,MAPE:gne,cosine:xne};function bne(e){if(typeof e=="string"&&e in e0)return e0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function t0(e){if(ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Qh))if(Qh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(e0))if(e0[n]===e){t=n;break}return t!==void 0?t:e.name}}function vne(e){let t={Adagrad:()=>gi.adagrad(.01),Adadelta:()=>gi.adadelta(1,.95,_t()),Adam:()=>gi.adam(.001,.9,.999,_t()),Adamax:()=>gi.adamax(.002,.9,.999,_t(),0),RMSProp:()=>gi.rmsprop(.001,.9,0,_t()),SGD:()=>gi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var u4=1*1024*1024;function d4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!iy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>u4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${u4}.`)}}function iy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!iy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!iy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function wne(e,t,n,a=console.log){let r=Ine(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),n0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?Sne(o[d],n,a):Nne(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=kne(e),u=qh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function kne(e){let t;return e.collectedTrainableWeights!=null?t=qh(e.collectedTrainableWeights):t=qh(e.trainableWeights),t}function Ine(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function n0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function Sne(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];n0(i,t,n)}function Nne(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];n0(u,t,a);for(let d=1;d<s.length;++d)n0(["","","",s[d]],t,a)}function p4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Dd(e,t){if(e===null)return null;if(typeof e=="string")return Ei(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];p4(t,r,s)?n.push(s):n.push(Dd(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ei(a);n[s]=Dd(r,s)}}return n}}function oy(e,t){if(e==null)return null;if(typeof e=="string")return pr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];p4(t,r,s)?n.push(s):n.push(oy(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=pr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=oy(r,a)}return n}}var ly="3.6.0";function Tne(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return fe(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var $i=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof $i)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Tne(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},uy={},c4={};function Od(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),p,c;if(uy[d]==null){let m=Ene(i,t);p=m.sorted,c=m.recipientCounts,uy[d]=p,c4[d]=c}p=uy[d],c={},r||Object.assign(c,c4[d]);let h=new $i(t);for(let m=0;m<p.length;++m){if(a!=null){let R=gc().numTensors;R>a.maxNumTensors&&(a.maxNumTensors=R),R<a.minNumTensors&&(a.minNumTensors=R)}let f=p[m],A=f.sourceLayer;if(A instanceof Ul)continue;let y=[],g=[],x=[],w=!1;for(let R of f.inputs){let $=h.getValue(R),z=h.getMask(R);y.push($),g.push(z),z!=null&&(w=!0),r||(c[R.name]--,c[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!$.isDisposed&&R.sourceLayer.stateful!==!0&&x.push($))}w&&(n=n||{},n.mask=g[0]);let b=ht(A.apply(y,n)),v=null;A.supportsMasking&&(v=A.computeMask(y,g));let N=Rne(f),T=Array.isArray(N)?N:[N];for(let R=0;R<T.length;++R){h.hasKey(T[R])||h.add(T[R],b[R],Array.isArray(v)?v[0]:v);let $=o.indexOf(T[R].name);$!==-1&&(l[$]=b[R])}r||Ee(x)}return h.disposeMasks(),s?l:l[0]}function Ene(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=h4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=h4(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:Cne(a)}}function Cne(e){let t={};for(let n in e)t[n]=e[n].size;return t}function h4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function Rne(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ha=class extends Ge{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Hh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],jr(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);jr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;ja(x===0,"input layer has >1 nodes"),ja(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Ul))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,g,x,w,b,v)=>{(w==null||b==null||v==null)&&(w=y.sourceLayer,b=y.nodeIndex,v=y.tensorIndex);let N=w.inboundNodes[b];if(x.indexOf(N)!==-1)throw new wa(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Ha.nodeKey(w,b)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let T=N.inboundLayers.length;for(let R=0;R<T;R++){let $=N.inputTensors[R],z=N.inboundLayers[R],P=N.nodeIndices[R],V=N.tensorIndices[R];o($,g,x,z,P,V)}for(g.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];g=Math.max(g,x),a[y.outboundLayer.id]=g,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let w=0;w<y.inboundLayers.length;w++){let b=y.inboundLayers[w],v=y.nodeIndices[w],N=b.inboundNodes[v],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let p={};for(let y in t){let g=t[y];g in p||(p[g]=[]),p[g].push(n[y])}let c={};for(let y in a){let g=a[y];g in c||(c[g]=[]),c[g].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(Dh);this.layers=[];for(let y of h){let g=c[y];g.sort((x,w)=>{let b=s[x.id],v=s[w.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Ha&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Dh);let m=this.inputs.slice(),f=[];for(let y of h)for(let g of p[y]){let x=g.outboundLayer;if(x!=null){for(let w of g.inputTensors)if(m.indexOf(w)===-1)throw new wa(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of g.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=p;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new wa(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Xh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}ey(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ly}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=oy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=ht(e);let n=new $i;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Od(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=ht(e);let n;return t==null?n=Ti(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Gh(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Dh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,x=n[g];d.push(x)}let p=u.computeOutputShape(Nn(d)),c=Gh(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];ja(o in n),r.push(n[o])}return Nn(r)}runInternalGraph(e,t){t==null&&(t=Ti(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Dh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,p=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,A,y,g;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),y=ht(d.call(x,m)),g=ht(d.computeMask(x,w)),f=[x],A=[w]}else f=h.map(x=>x[0]),A=h.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ht(d.call(f,m)),g=ht(d.computeMask(f,A));if(d.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],b=y[x],v=g[x];n[w.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Ha?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Ha.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Ha.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=Ha.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let A=p.inboundLayers[f],y=p.nodeIndices[f],g=p.tensorIndices[f],x=Ha.nodeKey(A,y),w=t[x];w==null&&(w=0),m.push([A.name,w,g,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ha.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ha.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let x of A){let w=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(w in r)){i(f,A);return}let N=r[w];if(N.inboundNodes.length<=b){i(f,A);return}let T=N.inboundNodes[b];y.push(T.outputTensors[v])}y.length>0&&f.apply(Nn(y),g)}function l(f){let A=f.name,y=Na(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!ote(s);)for(let f of d){let A=r[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:u})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Mne(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function f4(e,t){return Mne(e,t,"classWeight")}async function m4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Tt(i,"float32")}else return null}function Fne(e,t){return _(e,t)}var $ne=32;function A4(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=y4("input",e.inputNames,n),i=y4("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function y4(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function Dne(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function One(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(g4(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Dne(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let d=n4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=a4(d,p,n.epochs,null,null,zne(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await c.onEpochBegin(m);let y=0,g=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:b}=A4(e,x.value),v={};v.batch=g,v.size=w[0].shape[0],await c.onBatchBegin(g,v);let N=[];if(n.classWeight!=null){let $=f4(n.classWeight,e.outputNames);for(let z=0;z<$.length;++z)N.push(await m4(b[z],null,$[z]))}let T=w.concat(b).concat(N),R=o(T);Ee(T);for(let $=0;$<l.length;++$){let z=l[$],P=R[$];v[z]=P,jt(P)}await c.onBatchEnd(g,v),Y6(v),g++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let w;g4(n.validationData)?w=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ht(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?$ne:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)A[`val_${e.metricsNames[b]}`]=w[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,A),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function zne(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function g4(e){return typeof e.iterator=="function"}function _ne(e){return typeof e.next=="function"}async function Pne(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=_ne(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=W(()=>{if(u.value){let{xs:d,ys:p}=A4(e,u.value),c=d.concat(p),h=W(()=>r(c));if(Ee(c),l===0)for(let f=0;f<h.length;++f)s.push(Se(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let A=h[f],y=s[f];s[f]=W(()=>se(s[f],_(m,A))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=me(s[u],o),Ee(d)}return Nn(s)}function dy(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function zd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Mi(a,t,n-t)):Mi(e,t,n-t)}function py(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>py(n,t)):B6(e,t.dtype==="int32"?t:t.toInt()))}function cy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function Lne(e,t,n,a,r,s,i,o,l,u,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;A!=null&&(y=ka(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=a4(o,i,s,c,A,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await g.onEpochBegin(w);let b={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Oe("batch shuffling is not implemneted yet");d&&k.shuffle(y);let v=Tt(y),N=cy(A,r);for(let T=0;T<N.length;++T){let R={};if(await g.onBatchBegin(T,R),W(()=>{let $=N[T][0],z=N[T][1],P=Mi(v,$,z-$);R.batch=T,R.size=z-$;let V=py(n,P),j=t(V);for(let U=0;U<a.length;++U){let X=a[U],G=j[U];R[X]=G,jt(G)}if(T===N.length-1&&f){let U=e.testLoop(l,u,r);for(let X=0;X<a.length;++X){let G=a[X],ee=U[X];jt(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(T,R),Y6(R),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(w,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Wne(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let p=a.batchSize==null?32:a.batchSize;dy(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,N=await e.standardizeUserData(i,o,null,null,v,p);l=N[0],u=N[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];l=zd(r,v,N),r=zd(r,0,v),u=zd(s,v,N),s=zd(s,0,v),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let A=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,w;m?(e.makeTestFunction(),x=e.testFunction,w=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],w=g.slice());let b=n4(a.callbacks,a.yieldEvery);return await Lne(e,y,A,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,w,a.initialEpoch,null,null)}finally{e.isTraining=!1,Di(r,t),Di(s,n),Di(l,i),Di(u,o),d!=null&&Ee(d)}}function x4(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Rd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Di(e,t){if(e==null)return;let n=[];if(t instanceof Le)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Le)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function Bne(e){return e instanceof Le}function hy(e){return Array.isArray(e)}function b4(e){return!Bne(e)&&!hy(e)}function v4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(hy(e)&&e.length>0)i=!0;else if(b4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(b4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(hy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=x4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Vne(e,t,n){let a=jr(e.map(s=>s.shape[0]));a.sort();let r=jr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function jne(e,t,n){let a=[Fi,Jh,$d];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===$d&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let p=l[d],c=u[d];if(c!=null&&p!==c)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function w4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Une(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Hne="layers-model",cr=class extends Ha{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");wne(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=vne(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof lr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ny(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ny(s))}else{let s=ny(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Une(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Jh?["accuracy","acc"].indexOf(c)!==-1?d=ay:["crossentropy","ce"].indexOf(c)!==-1&&(d=i4):this.lossFunctions[s]===Yh?["accuracy","acc"].indexOf(c)!==-1?d=o4:["crossentropy","ce"].indexOf(c)!==-1&&(d=l4):["accuracy","acc"].indexOf(c)!==-1?d=ry:["crossentropy","ce"].indexOf(c)!==-1&&(d=sy);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,u=l+f}else p=bne(c),u=l+t0(c);let h;Ri(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;dy(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Nn(l)}finally{Di(s[0],e),Di(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Pne(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new $i;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Od(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ti(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=cy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)W(()=>{let o=r[i][0],l=r[i][1],u=zd(e,o,l),d=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)d.push({key:this.inputs[c],value:u[c]});else d.push({key:this.inputs[0],value:u});let p=new $i(d);return Od(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Nn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=x4(e);w4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return dy(a),this.predictLoop(n,a)}finally{Di(n,e)}}predictOnBatch(e){w4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new wa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Yh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=v4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=v4(t,this.feedOutputNames,r,!1,"target"),Vne(e,t,null),jne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=f4(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await m4(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return W(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=cy(s,n),l=Tt(ka(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],p=o[u][1],c=Mi(l,d,p-d),h=py(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(Se(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],_(p-d,A))}}for(let u=0;u<i.length;++u)i[u]=me(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;E6(e,a)>1&&(r+=`_${E6(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let d=new $i(u),p=Od(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=Fne(m,r[h]));let f=wt(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],A=this.metricsTensors[h][1];m=wt(f(a[A],p[A]))}jt(m),s.push(m)}return c=wt(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new $i(s),o=Od(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=wt(u(r[l],o[l]));l===0?n=d:n=se(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],p=wt(u(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return Wne(this,e,t,n)}async fitDataset(e,t){return One(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),Nn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=gc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-gc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=pr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>pr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=pr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[pr(t0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>pr(t0(e)));{let e={};for(let t in this.metrics)e[t]=pr(t0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Dd(e.optimizer_config),n=Na(t),a;if(typeof e.loss=="string")a=Ei(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ei(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ei(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ei(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ei(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=wn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await wn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Hne,generatedBy:`TensorFlow.js tfjs-layers v${ly}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await wn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=wn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;d4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){d4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};cr.className="Model";ae.registerClass(cr);var k4=class extends cr{};k4.className="Functional";ae.registerClass(k4);async function Gne(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Dd(n),r=Na(a,t);if(e.weightsManifest!=null){let s=await wn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function qne(e,t){if(t==null&&(t={}),typeof e=="string"){let n=wn.getLoadHandlers(e,t);if(n.length===0)n.push(wn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Xne(e,void 0,t)}async function Xne(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Na(Dd(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=Kne(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),Ee(u),Ee(d.map(p=>p.tensor))}return o}function Kne(e,t){let n=wn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var ql=class extends cr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Hh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ql||e instanceof cr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=Z6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=K6(this.outputs[0])}this.inboundNodes=[],new Xh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ti(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(rt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new cr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof ql))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Na(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ql.className="Sequential";ae.registerClass(ql);function Zne(e){return new cr(e)}function Yne(e){return new ql(e)}function Jne(e,t){return t==null&&(t={}),qne(e,t)}function I4(e){return Z6(e)}function Qne(e,t){ca.registerCallbackConstructor(e,t)}var En=class extends ae.Serializable{getConfig(){return{}}},S4=class extends En{apply(e,t=1){return Ste(e,t)}};S4.className="elu";ae.registerClass(S4);var N4=class extends En{apply(e){return Pc(e)}};N4.className="selu";ae.registerClass(N4);var T4=class extends En{apply(e){return La(e)}};T4.className="relu";ae.registerClass(T4);var E4=class extends En{apply(e){return W(()=>vl(6,La(e)))}};E4.className="relu6";ae.registerClass(E4);var C4=class extends En{apply(e){return e}};C4.className="linear";ae.registerClass(C4);var R4=class extends En{apply(e){return kn(e)}};R4.className="sigmoid";ae.registerClass(R4);var M4=class extends En{apply(e){return Tte(e)}};M4.className="hardSigmoid";ae.registerClass(M4);var F4=class extends En{apply(e){return fi(e)}};F4.className="softplus";ae.registerClass(F4);var $4=class extends En{apply(e){return Nte(e)}};$4.className="softsign";ae.registerClass($4);var D4=class extends En{apply(e){return pi(e)}};D4.className="tanh";ae.registerClass(D4);var fy=class extends En{apply(e,t=-1){return rd(e,t)}};fy.className="softmax";ae.registerClass(fy);var O4=class extends En{apply(e,t=-1){return Mc(e,t)}};O4.className="logSoftmax";ae.registerClass(O4);var z4=class extends En{apply(e,t=1){return W(()=>kn(e.mul(t)).mul(e))}};z4.className="swish";ae.registerClass(z4);var _4=class extends En{apply(e){return W(()=>_(e,pi(fi(e))))}};_4.className="mish";ae.registerClass(_4);function qr(e){return e.getClassName()}function my(e,t={}){return Nd(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Xr(e){if(e==null){let t={};return t.className="linear",t.config={},my(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},my(t)}else return e instanceof En?e:my(e)}function Ay(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var P4=class extends ae.Serializable{},_d=class extends P4{constructor(e){super();Ay(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=Ct([1]);return this.hasL1&&(t=se(t,ke(_(this.l1,Ot(e))))),this.hasL2&&(t=se(t,ke(_(this.l2,Md(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};_d.className="L1L2";ae.registerClass(_d);function eae(e){return Ay(e),new _d({l1:e!=null?e.l1:null,l2:0})}function tae(e){return Ay(e),new _d({l2:e!=null?e.l2:null,l1:0})}var L4={l1l2:"L1L2"};function ut(e){return $1(e)}function W4(e,t={}){return Nd(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in L4?L4[e]:e,config:{}};return W4(t)}else return e instanceof P4?e:W4(e)}var yy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=_e(e);let n=La(e);return this.maxValue!=null&&(n=In(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ReLU";ae.registerClass(yy);var gy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return Yu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gy.className="LeakyReLU";ae.registerClass(gy);var xy=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=mt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=rt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Mt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=_e(e),td(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};xy.className="PReLU";ae.registerClass(xy);var by=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return yl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};by.className="ELU";ae.registerClass(by);var vy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=_e(e);return n.mul(Cd(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};vy.className="ThresholdedReLU";ae.registerClass(vy);var wy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new fy().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=_e(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};wy.className="Softmax";ae.registerClass(wy);function Xl(e,t,n){if(typeof e=="number")return Ti(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!vte(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ta(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Ga(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+Hr([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function ky(e,t){return W(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function B4(e,t){return W(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function nae(e,t,n,a=1,r="valid",s,i=1){return W(()=>{if(s==null&&(s=va()),Et(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ze(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=kc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ia(o,n)),o})}function V4(e,t,n,a=[1,1],r="valid",s,i,o=null){return W(()=>{if(s==null&&(s=va()),Et(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ky(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Pr.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function aae(e,t,n,a=[1,1,1],r="valid",s,i){return W(()=>{if(s==null&&(s=va()),Et(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=B4(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=fA(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ia(o,n)),s==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var Iy=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Iy.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Xl(t.kernelSize,e,"kernelSize"),this.strides=Xl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Et(this.dataFormat),this.activation=Xr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=mt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=Xl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:qr(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Pd=class extends Iy{constructor(e,t){super(e,t);this.kernel=null,Pd.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=mt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n,a=this.bias==null?null:this.bias.read(),r=R6(this.activation.getClassName());if(r!=null&&this.rank===2)n=V4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=nae(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=V4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=aae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=rt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ta(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Ld=class extends Pd{constructor(e){super(2,e);Ld.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Ld.className="Conv2D";ae.registerClass(Ld);var Wd=class extends Pd{constructor(e){super(3,e);Wd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Wd.className="Conv3D";ae.registerClass(Wd);var Sy=class extends Ld{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=Ga(o,p,u,this.padding),m=Ga(l,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let A=Ic(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ze(A,[0,3,1,2])),this.bias!=null&&(A=Ia(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Ga(t[a],o,s,this.padding),t[r]=Ga(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sy.className="Conv2DTranspose";ae.registerClass(Sy);var Ny=class extends Wd{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Ga(l,m,p,this.padding),g=Ga(u,f,c,this.padding),x=Ga(d,A,h,this.padding),w=[r,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let b=Lb(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Ze(b,[0,4,1,2,3])),this.bias!==null&&(b=Ia(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=Ga(t[a],u,i,this.padding),t[r]=Ga(t[r],d,o,this.padding),t[s]=Ga(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ny.className="Conv3DTranspose";ae.registerClass(Ny);var j4=class extends Pd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=rt(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Mt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=FA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};j4.className="SeparableConv";var Ty=class extends j4{constructor(e){super(2,e)}};Ty.className="SeparableConv2D";ae.registerClass(Ty);var a0=class extends Pd{constructor(e){super(1,e);a0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};a0.className="Conv1D";ae.registerClass(a0);var Ey=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=_e(e),this.dataFormat==="channelsLast"){let n=Oh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Oh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Oh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Oh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="Cropping2D";ae.registerClass(Ey);var Cy=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,gte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=_e(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ze(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="UpSampling2D";ae.registerClass(Cy);function rae(e,t,n=[1,1],a="valid",r,s){return W(()=>{r==null&&(r=va()),Et(r);let i=ky(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Al(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}var Ry=class extends Iy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=mt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=rt(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=_e(e);let n=rae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ta(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ta(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Ry.className="DepthwiseConv2D";ae.registerClass(Ry);function U4(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function H4(e,t,n,a=!1,r,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ka(2,l));if(t=Ze(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=ln(r,-1)),r=Ze(r,u)),a&&(t=zn(t,0),r!=null&&(r=zn(r,0)));let d=[],p,c=n,h=t.shape[0],m=ua(t),f;r!=null&&(f=ua(r));for(let y=0;y<h;++y){let g=m[y],x=W(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let w=W(()=>{let b=f[y],v=On(b).sub(b),N=x[0].mul(b).add(c[0].mul(v)),T=c.map((R,$)=>x[1][$].mul(b).add(R.mul(v)));return{output:N,newStates:T}});p=w.output,c=w.newStates}o&&d.push(p)}let A;return o&&(A=_n(d,1)),[p,A,c]})}var qa=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new i0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Mt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){J1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");J1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Mt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Mt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new dr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=U4(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Mt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Sa){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=_e(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=H4((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return W(()=>{let t=Ct(e.shape);return t=ke(t,[1,2]),t=Rd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?j1(t,[1,n]):t):this.cell.stateSize>1?[j1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===qa.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Na(a,n);return new e(Object.assign(t,{cell:r}))}};qa.className="RNN";ae.registerClass(qa);var Bd=class extends Ge{},r0=class extends Bd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Xr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=jl([1,Hr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,Hr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Kr({ones:()=>On(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Kr({ones:()=>On(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Ua(_(e,s),this.kernel.read()):r=Ua(e,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),i!=null&&(n=_(n,i));let o=se(r,Ua(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:qr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};r0.className="SimpleRNNCell";ae.registerClass(r0);var My=class extends qa{constructor(e){e.cell=new r0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};My.className="SimpleRNN";ae.registerClass(My);var s0=class extends Bd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=Xr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Xr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=jl([1,Hr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,Hr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Kr({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Kr({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=_(e,r[0]));let u=Ua(e,this.kernel.read());this.useBias&&(u=Ia(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=_(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=an(d,[2*this.units,this.units],d.rank-1),h=Ua(a,p),[m,f,A]=an(u,3,u.rank-1),[y,g]=an(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let x=Ua(_(o,a),c);l=this.activation.apply(se(A,x));let w=se(_(i,a),_(se(1,vt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:qr(this.activation),recurrentActivation:qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};s0.className="GRUCell";ae.registerClass(s0);var Fy=class extends qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new s0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fy.className="GRU";ae.registerClass(Fy);var Vd=class extends Bd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Xr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Xr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=jl([1,Hr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,Hr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=rt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends pa{apply(i,o){let l=r.apply([s]),u=new _h().apply([s]),d=r.apply([s*2]);return W6(W6(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Kr({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Kr({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=_(e,s[0]));let p=Ua(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=_(a,i[0])),p=se(p,Ua(a,this.recurrentKernel.read())),this.useBias&&(p=Ia(p,this.bias.read()));let[c,h,m,f]=an(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=se(_(l,r),_(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let A=_(d,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:qr(this.activation),recurrentActivation:qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Vd.className="LSTMCell";ae.registerClass(Vd);var $y=class extends qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Vd(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$y.className="LSTM";ae.registerClass($y);var i0=class extends Bd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){J1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Na(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Q1(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}ey(t)}};i0.className="StackedRNNCells";ae.registerClass(i0);function Kr(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>V6(t(),n),i=()=>Fd(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var sae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},G4=class extends qa{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Mt({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Ct(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new dr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_=[Ct(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_[0]=Ct(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=Ta(l,a[0],r,s[0],i[0]),p=Ta(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};G4.className="ConvRNN2D";var o0=class extends Vd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=Xl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ht(o,"kernelSize")),this.strides=Xl(a||1,2,"strides"),this.strides.forEach(o=>Ht(o,"strides")),this.padding=r||"valid",Qn(this.padding),this.dataFormat=s||"channelsLast",Et(this.dataFormat),this.dilationRate=Xl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ht(o,"dilationRate"))}build(e){var t;e=rt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends pa{apply(d,p){let c=l.apply([u]),h=Dn([u]),m=l.apply([u*2]);return V1([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Kr({ones:()=>On(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,re,ne)=>!re||!re[ne]?Y:_(re[ne],Y),u=l(a,o,0),d=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Kr({ones:()=>On(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),A=l(r,h,2),y=l(r,h,3),g=3,[x,w,b,v]=an(this.kernel.read(),i,g),[N,T,R,$]=this.useBias?an(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,N,this.padding),d=this.inputConv(d,w,T,this.padding),p=this.inputConv(p,b,R,this.padding),c=this.inputConv(c,v,$,this.padding);let[z,P,V,j]=an(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,z),f=this.recurrentConv(f,P),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(d,f)),G=se(_(X,s),_(U,this.activation.apply(se(p,A)))),ee=_(this.recurrentActivation.apply(se(c,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=sae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=rr(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ia(r,n,this.dataFormat):r}recurrentConv(e,t){return rr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};o0.className="ConvLSTM2DCell";ae.registerClass(o0);var Dy=class extends G4{constructor(e){let t=new o0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Dy.className="ConvLSTM2D";ae.registerClass(Dy);var l0=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Fd(()=>V6(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};l0.className="Dropout";ae.registerClass(l0);var Oy=class extends l0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Oy.className="SpatialDropout1D";ae.registerClass(Oy);var zy=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=Xr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=rt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=rt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=R6(this.activation.getClassName()),r;return a!=null?r=Ua(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Ua(n,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:qr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};zy.className="Dense";ae.registerClass(zy);var _y=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=rt(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ur(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return Ite(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};_y.className="Flatten";ae.registerClass(_y);var Py=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.activation=Xr(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.activation.apply(n)})}getConfig(){let e={activation:qr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Activation";ae.registerClass(Py);var Ly=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=_e(e),wte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="RepeatVector";ae.registerClass(Ly);var Wy=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=Ur(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Reshape";ae.registerClass(Wy);var By=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ka(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Mt({ndim:this.dims.length+1})]}computeOutputShape(e){e=rt(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ze(_e(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};By.className="Permute";ae.registerClass(By);var Vy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=_e(e),a=-1;return Hu(Ai(n,this.maskValue),a)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=-1,r=!0,s=Hu(Ai(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Vy.className="Masking";ae.registerClass(Vy);var jy=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=mt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=_e(e),Ai(e,Ue(e))):null)}computeOutputShape(e){if(e=rt(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return n.dtype!=="int32"&&(n=Cd(n,"int32")),B6(this.embeddings.read(),n.as1D()).reshape(rt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";ae.registerClass(jy);var Oi=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[rt(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=jr(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&jr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=Hr(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Rd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],p=u.slice(1).concat([d]),c=o.reshape([d].concat(Ur(u.slice(1))));c=Ze(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let u=ka(1,l).concat([0]);n.push(Ze(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=Ze(s.reshape([-1,u]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(ka(0,i-1));s=Ze(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=jr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:ln(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=la(n,t[a]);return n})}},Uy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};Uy.className="Add";ae.registerClass(Uy);var Hy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=_(t,e[n]);return t})}};Hy.className="Multiply";ae.registerClass(Hy);var Gy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return _(1/e.length,t)})}};Gy.className="Average";ae.registerClass(Gy);var qy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Pa(t,e[n]);return t})}};qy.className="Maximum";ae.registerClass(qy);var Xy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=vl(t,e[n]);return t})}};Xy.className="Minimum";ae.registerClass(Xy);var Ky=class extends Oi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>V1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(On(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(ln(t[s],-1)):a.push(t[s]);let r=ot(a,this.axis);return vc(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Concatenate";ae.registerClass(Ky);function jd(e,t){for(;e<0;)e+=t;return e}function iae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return W(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Zy=class extends Oi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>jd(r,e[s].shape.length)):a=[jd(this.axes,t.shape.length),jd(this.axes,n.shape.length)],this.normalize&&(t=Kh(t,a[0]),n=Kh(n,a[1])),iae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[jd(this.axes,e.length),jd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Dot";ae.registerClass(Zy);var Yy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return Fd(()=>zh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yy.className="GaussianNoise";ae.registerClass(Yy);var Jy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.rate>0&&this.rate<1?Fd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(zh(n.shape,1,a))},()=>n,t.training||!1):n})}};Jy.className="GaussianDropout";ae.registerClass(Jy);var Qy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||_e(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Fd(()=>{let a=_e(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Or(wl(n),this.rate);o=Cd(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>_e(e),t.training||!1)}return e})}};Qy.className="AlphaDropout";ae.registerClass(Qy);function Ud(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Fb(e,t,n,a,r,s);else if(e.rank===3)i=$b(e,t,n,a,r,s);else if(e.rank===4)i=Db(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function oae(e,t,n,a,r=.001){return W(()=>{let s=$c(e,a),i=s.mean,o=s.variance;return[Ud(e,i,o,n,t,r),i,o]})}function lae(e,t,n,a,r=.001){return W(()=>{let s=$c(e,a),i=s.mean,o=s.variance,l=[];for(let h of ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=i.reshape(l),d=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[Ud(e,u,d,c,p,r),i,o]})}function uae(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),ka(0,e.rank-1))?oae(e,t,n,a,r):lae(e,t,n,a,r)}var e2=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.movingMeanInitializer=mt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=mt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=rt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Mt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,a=_e(e),r=a.shape,s=r.length,i=ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ti(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!k.arraysEqual(u,ka(0,s).slice(0,s-1)),p=()=>{if(d){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Ud(a,A,y,g,x,this.epsilon)}else return Ud(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=uae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{W(()=>{let x=1-g,w=A.read(),b=w.sub(y).mul(x);A.write(w.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};e2.className="BatchNormalization";ae.registerClass(e2);var t2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=rt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==jr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=_e(e),a=n.shape,r=a.length;return W(()=>{let s=!0,{mean:i,variance:o}=$c(n,this.axis,s),l=Ti(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,d=u(this.gamma.read()),p=u(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),d=d.tile(h),p=p.tile(h),Ud(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};t2.className="LayerNormalization";ae.registerClass(t2);function dae(e,t,n){return W(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=va()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],sr(e,a)})}var n2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?va():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=rt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>dae(_e(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};n2.className="ZeroPadding2D";ae.registerClass(n2);function u0(e,t,n,a,r,s){return W(()=>{Et(r),D6(s),Qn(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=ky(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Qu(e,t,n,o):i=Xu(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}function q4(e,t,n,a,r,s){return W(()=>{Et(r),D6(s),Qn(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=B4(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=NA(e,t,n,o):i=dA(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var X4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qn(this.padding),this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){e=rt(e);let t=Ta(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=Rd(_e(e),2);let n=this.poolingFunction(_e(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return _r(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},a2=class extends X4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),u0(e,t,n,a,r,"max")}};a2.className="MaxPooling1D";ae.registerClass(a2);var r2=class extends X4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),u0(e,t,n,a,r,"avg")}};r2.className="AveragePooling1D";ae.registerClass(r2);var K4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Qn(this.padding),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends K4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),u0(e,t,n,a,r,"max")}};s2.className="MaxPooling2D";ae.registerClass(s2);var i2=class extends K4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),u0(e,t,n,a,r,"avg")}};i2.className="AveragePooling2D";ae.registerClass(i2);var Z4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Qn(this.padding),this.inputSpec=[new Mt({ndim:5})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),a=Ta(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends Z4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),q4(e,t,n,a,r,"max")}};o2.className="MaxPooling3D";ae.registerClass(o2);var l2=class extends Z4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),q4(e,t,n,a,r,"avg")}};l2.className="AveragePooling3D";ae.registerClass(l2);var Y4=class extends Ge{constructor(e){super(e);this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},u2=class extends Y4{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return wt(n,1)})}};u2.className="GlobalAveragePooling1D";ae.registerClass(u2);var d2=class extends Y4{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return Kn(n,1)})}};d2.className="GlobalMaxPooling1D";ae.registerClass(d2);var J4=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p2=class extends J4{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?wt(n,[1,2]):wt(n,[2,3])})}};p2.className="GlobalAveragePooling2D";ae.registerClass(p2);var c2=class extends J4{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?Kn(n,[1,2]):Kn(n,[2,3])})}};c2.className="GlobalMaxPooling2D";ae.registerClass(c2);var Q4=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Na(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},h2=class extends Q4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=rt(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=rt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return W(()=>(e=_e(e),H4((n,a)=>[_e(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};h2.className="TimeDistributed";ae.registerClass(h2);function pae(e){Ci(yte,"BidirectionalMergeMode",e)}var cae="concat",f2=class extends Q4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Na(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Na(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?cae:e.mergeMode,pae(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Nn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=U4(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new Mt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Sa;for(let l of s)if(l instanceof Sa!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=zn(r,1));let i;return this.mergeMode==="concat"?i=V1([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=_(.5,se(a,r)):this.mergeMode==="mul"?i=_(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Na(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};f2.className="Bidirectional";ae.registerClass(f2);function hae(e){return new Ul(e)}function fae(e){return new by(e)}function mae(e){return new yy(e)}function Aae(e){return new gy(e)}function yae(e){return new xy(e)}function gae(e){return new wy(e)}function xae(e){return new vy(e)}function bae(e){return new a0(e)}function vae(e){return new Ld(e)}function wae(e){return new Sy(e)}function kae(e){return new Wd(e)}function Iae(e){return new Ny(e)}function Sae(e){return new Ty(e)}function Nae(e){return new Ey(e)}function Tae(e){return new Cy(e)}function Eae(e){return new Ry(e)}function Cae(e){return new Py(e)}function Rae(e){return new zy(e)}function Mae(e){return new l0(e)}function Fae(e){return new Oy(e)}function $ae(e){return new _y(e)}function Dae(e){return new Ly(e)}function Oae(e){return new Wy(e)}function zae(e){return new By(e)}function _ae(e){return new jy(e)}function Pae(e){return new Uy(e)}function Lae(e){return new Gy(e)}function Wae(e){return new Ky(e)}function Bae(e){return new qy(e)}function Vae(e){return new Xy(e)}function jae(e){return new Hy(e)}function Uae(e){return new Zy(e)}function Hae(e){return new e2(e)}function Gae(e){return new t2(e)}function qae(e){return new n2(e)}function m2(e){return new r2(e)}function Xae(e){return m2(e)}function Kae(e){return m2(e)}function A2(e){return new i2(e)}function Zae(e){return A2(e)}function Yae(e){return A2(e)}function y2(e){return new l2(e)}function Jae(e){return y2(e)}function Qae(e){return y2(e)}function ere(e){return new u2(e)}function tre(e){return new p2(e)}function e8(e){return new d2(e)}function t8(e){return new c2(e)}function n8(e){return new a2(e)}function a8(e){return new s2(e)}function nre(e){return new o2(e)}function are(e){return new Fy(e)}function rre(e){return new s0(e)}function sre(e){return new $y(e)}function ire(e){return new Vd(e)}function ore(e){return new My(e)}function lre(e){return new r0(e)}function ure(e){return new Dy(e)}function dre(e){return new o0(e)}function pre(e){return new qa(e)}function cre(e){return new i0(e)}function hre(e){return new f2(e)}function fre(e){return new h2(e)}var mre=e8,Are=t8,yre=n8,gre=a8;function xre(e){return new Yy(e)}function bre(e){return new Jy(e)}function vre(e){return new Qy(e)}function wre(e){return new Vy(e)}var r8={};Fe(r8,{MAPE:()=>$re,MSE:()=>zre,binaryAccuracy:()=>kre,binaryCrossentropy:()=>Ire,categoricalAccuracy:()=>Nre,categoricalCrossentropy:()=>Tre,cosineProximity:()=>Rre,mape:()=>Dre,meanAbsoluteError:()=>Mre,meanAbsolutePercentageError:()=>Fre,meanSquaredError:()=>Ore,mse:()=>_re,precision:()=>Ere,recall:()=>Cre,sparseCategoricalAccuracy:()=>Sre});function kre(e,t){return ay(e,t)}function Ire(e,t){return i4(e,t)}function Sre(e,t){return o4(e,t)}function Nre(e,t){return ry(e,t)}function Tre(e,t){return sy(e,t)}function Ere(e,t){return s4(e,t)}function Cre(e,t){return cne(e,t)}function Rre(e,t){return ty(e,t)}function Mre(e,t){return Zh(e,t)}function Fre(e,t){return Gl(e,t)}function $re(e,t){return Gl(e,t)}function Dre(e,t){return Gl(e,t)}function Ore(e,t){return Fi(e,t)}function zre(e,t){return Fi(e,t)}function _re(e,t){return Fi(e,t)}var s8={};Fe(s8,{modelFromJSON:()=>Gne});var i8={};Fe(i8,{l1:()=>Lre,l1l2:()=>Pre,l2:()=>Wre});function Pre(e){return new _d(e)}function Lre(e){return eae(e)}function Wre(e){return tae(e)}var o8=class extends Hl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof cr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function d0(e,t){return e<t}function l8(e,t){return e>t}var u8=class extends o8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=d0:this.mode==="max"?this.monitorFunc=l8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=l8:this.monitorFunc=d0,this.monitorFunc===d0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===d0?Infinity:-Infinity}async onEpochEnd(e,t){await Gr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Bre(e){return new u8(e)}var Vre={earlyStopping:Bre},Ea;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ea||(Ea={}));var d8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(d8||(d8={}));var g2={};function jre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};g2[e]=n}function p8(e){return g2[e]}function Ure(e){delete g2[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return mn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>mn(p,n,a,r));let u=mn(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:k.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function mn(e,t,n,a){let[r,s]=Wn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[p0(r,o)]);return i!==void 0?t[p0(r,i)][s]:void 0}function Hre(e,t,n){return t[p0(e,n.currentContextId)]}function hr(e,t){let[n,a]=Wn(e);return[p0(n,t&&t.currentContextId),a]}function p0(e,t){return t?`${e}-${t}`:e}function Wn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function c0(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function fr(e){return e.kept?e:Oa(e)}var c8={};Fe(c8,{json:()=>Gre});var Gre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h8={};Fe(h8,{json:()=>qre});var qre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],f8={};Fe(f8,{json:()=>Xre});var Xre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],m8={};Fe(m8,{json:()=>Kre});var Kre=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],A8={};Fe(A8,{json:()=>Zre});var Zre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],y8={};Fe(y8,{json:()=>Yre});var Yre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],g8={};Fe(g8,{json:()=>Jre});var Jre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],x8={};Fe(x8,{json:()=>Qre});var Qre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],b8={};Fe(b8,{json:()=>ese});var ese=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],v8={};Fe(v8,{json:()=>tse});var tse=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],w8={};Fe(w8,{json:()=>nse});var nse=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],k8={};Fe(k8,{json:()=>ase});var ase=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],I8={};Fe(I8,{json:()=>rse});var rse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],S8={};Fe(S8,{json:()=>sse});var sse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],N8={};Fe(N8,{json:()=>ise});var ise=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],T8={};Fe(T8,{json:()=>ose});var ose=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],E8={};Fe(E8,{json:()=>lse});var lse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],C8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[c8,h8,f8,m8,A8,y8,g8,w8,v8,x8,k8,I8,S8,N8,T8,E8,b8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=hr(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=hr(m),A=i[f];A!=null&&(A.signatureKey=d[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=hr(m),A=i[f];A&&(A.signatureKey=u[m],o.push(A))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=p8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=x2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=x2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=T2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=T2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=v2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=v2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=N2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=N2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=b2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=C2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=C2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=S2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=S2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=E2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=k2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=k2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=I2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=I2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=M8(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=M8(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=hr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:w2(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach(p=>{let[c]=hr(p);d.inputs.push(r[c]),r[c].children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=hr(o[u.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function use(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function R8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):use(e);return t?n:n.toLowerCase()}function x2(e,t,n,a=!1){let r=e[t];return r!=null?R8(r.s,a):n}function b2(e,t,n){let a=e[t];return a?a.b:n}function v2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function w2(e){switch(typeof e=="string"&&(e=Ea[e]),e){case Ea.DT_FLOAT:return"float32";case Ea.DT_INT32:case Ea.DT_INT64:case Ea.DT_INT8:case Ea.DT_UINT8:return"int32";case Ea.DT_BOOL:return"bool";case Ea.DT_DOUBLE:return"float32";case Ea.DT_STRING:return"string";default:return null}}function M8(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function k2(e,t,n){let a=e[t];return a&&a.type?w2(a.type):n}function I2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>w2(r)):n}function F8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function S2(e,t,n){let a=e[t];return a&&a.shape?F8(a.shape):n}function N2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function T2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>R8(s,a)):n}function E2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>F8(r)):n}function C2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var dse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return v2(this.node.rawAttrs,e,t);if(n.s!=null)return x2(this.node.rawAttrs,e,t);if(n.b!=null)return b2(this.node.rawAttrs,e,t);if(n.shape!=null)return S2(this.node.rawAttrs,e,t);if(n.type!=null)return k2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return N2(this.node.rawAttrs,e,t);if(n.list.s!=null)return T2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return E2(this.node.rawAttrs,e,t);if(n.list.b!=null)return C2(this.node.rawAttrs,e,t);if(n.list.type!=null)return I2(this.node.rawAttrs,e,t)}return t}},pse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[bc(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[EA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[_(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[yA(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[xc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[vl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Pa(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ir(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Uc(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ot(I("x",e,t,n))];case"Acos":return[eA(I("x",e,t,n))];case"Acosh":return[tA(I("x",e,t,n))];case"Asin":return[aA(I("x",e,t,n))];case"Asinh":return[rA(I("x",e,t,n))];case"Atan":return[sA(I("x",e,t,n))];case"Atan2":return[iA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[oA(I("x",e,t,n))];case"Ceil":return[cA(I("x",e,t,n))];case"Complex":return[Er(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Zu(I("x",e,t,n))];case"Cosh":return[Sc(I("x",e,t,n))];case"Elu":return[yl(I("x",e,t,n))];case"Erf":return[gA(I("x",e,t,n))];case"Exp":return[Xn(I("x",e,t,n))];case"Expm1":return[xA(I("x",e,t,n))];case"Floor":return[xl(I("x",e,t,n))];case"Log":return[$n(I("x",e,t,n))];case"Log1p":return[Cc(I("x",e,t,n))];case"Imag":return[Tc(I("x",e,t,n))];case"Neg":return[vt(I("x",e,t,n))];case"Reciprocal":return[MA(I("x",e,t,n))];case"Real":return[nd(I("x",e,t,n))];case"Relu":return[La(I("x",e,t,n))];case"Round":return[zc(I("x",e,t,n))];case"Selu":return[Pc(I("x",e,t,n))];case"Sigmoid":return[kn(I("x",e,t,n))];case"Sin":return[Lc(I("x",e,t,n))];case"Sign":return[$A(I("x",e,t,n))];case"Sinh":return[Wc(I("x",e,t,n))];case"Softplus":return[fi(I("x",e,t,n))];case"Sqrt":return[Jt(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[pi(I("x",e,t,n))];case"Tan":return[zA(I("x",e,t,n))];case"ClipByValue":return[In(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Oc(I("x",e,t,n))];case"Rsqrt":return[_c(mn(e.inputNames[0],t,n))];case"Prod":return[Dc(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Yu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[td(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[vA(mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ha(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function $8(e){return!(typeof e=="number"||e.some(t=>t<0))}function Hd(e,t,n){let a=R2(e,n),r=!$8(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=R2(s.shape,a)}),!$8(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function R2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var hse=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ha(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return oa([],[0].concat(this.elementShape));let n=this.readMany(e);return ha(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),_n(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return oa([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ha(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ua(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];W(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=H(Re(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Gd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ha(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=Se(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Gd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ha(e,this.elementShape,"TensorList shape mismatch: ");let a=Hd(this.elementShape,this.tensors,e);return W(()=>{let r=this.tensors.map(s=>H(s,a));return _n(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Hd(this.elementShape,this.tensors,e),a=this.tensors.pop();return ha(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ha(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ha(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Hd(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ha(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ha(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Hd(this.elementShape,this.tensors,n);return e.length===0?oa([],[0].concat(a)):W(()=>{let r=e.map(s=>H(this.tensors[s],a));return _n(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ha(this.elementShape,t,"TensorList shape mismatch: ");let n=Hd(this.elementShape,this.tensors,t);return this.size()===0?oa([],[0].concat(n)):W(()=>{let a=this.tensors.map(r=>H(r,n));return ot(a,0)})}};function fse(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ha(r,t,"TensorList shape mismatch: ");let s=ua(e);return new Gd(s,t,a)}function mse(e,t,n){return new Gd([],e,t,n)}function Ase(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Gd([],n,e.dtype,a),i=ua(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function yse(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=R2(s,n),o=a===0?0:e.size/a,l=W(()=>{let d=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=H(Re(e,h,m),i)}return e.dispose(),d}),u=new Gd([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var gse=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[fr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=fr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>mn(r,t,n)!==void 0);if(a){let r=mn(a,t,n);return[fr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[fr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[fr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[fr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),d=new hse(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=Ase(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=mse(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=fse(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=yse(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function D8(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=c0(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),c=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var xse=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[kc(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=c0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[rr(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=D8(e,t,n);return[Pr.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=D8(e,t,n);return[Pr.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=c0(e,t,n);return[Ic(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=c0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Al(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[fA(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Xu(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Qu(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Jb(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[dA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[NA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[AA(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bse=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[gl(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[Hb(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Qb(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[dl(a,r,s,i)]}case"Ones":return[Dn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[On(I("x",e,t,n))];case"RandomUniform":return[wl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[kl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Hc(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[Ct(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function M2(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var vse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=M2(e,t,n),u=await Ye.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=M2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ye.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=M2(e,t,n);return[await Ye.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=fe(I("condition",e,t,n),"bool"),r=[await LA(a)];return a.dispose(),r}case"ListDiff":return n3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},wse=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=_A(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Gc(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Gc(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[mn(e.name,t,n)||a];case"Placeholder":return[mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[fr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>fr(u));case"Snapshot":let r=I("x",e,t,n);return[fr(r)];case"Shape":return[Tt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Tt(u.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),W(()=>{let a=ua(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return _n(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Sse=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Ise(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ye.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"Equal":return[$r(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ai(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Fn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Or(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Ec(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[zr(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[la(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Ju(I("a",e,t,n))];case"LogicalOr":return[Fc(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[nn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Vb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=I("args",e,t,n);return[Pr.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ci(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[ci(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[wA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[rd(I("x",e,t,n))];case"LogSoftmax":return[Mc(I("x",e,t,n))];case"SparseToDense":return[WA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Kn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[bl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ke(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vc(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Hu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Gu(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[nA(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Dc(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Nc(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[pA(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[Wb(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[ot(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[hi(a,fe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[hi(s,fe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[zn(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[zn(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),d=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[OA(p,a,r,s,i,o,l,u,d)]}case"Pack":return W(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=_r(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(_r(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[_n(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ua(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Dr(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return an(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[i3(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[o3(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[WA(a,s,r,s.dtype===i.dtype?i:fe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=w3.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"FFT":return[sd(I("x",e,t,n))];case"IFFT":return[Il(I("x",e,t,n))];case"RFFT":return[id(I("x",e,t,n))];case"IRFFT":return[jc(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"Cast":return[fe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[ln(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[_r(I("x",e,t,n),a)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[TA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[sr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[ed(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Ku(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[mA(I("x",e,t,n),a,r)]}case"BroadcastTo":return[fl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function O8(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>pse(s,i,o));case"basic_math":return W(()=>cse(s,i,o));case"control":return gse(s,i,o);case"convolution":return W(()=>xse(s,i,o));case"creation":return W(()=>bse(s,i,o));case"dynamic":return vse(s,i,o);case"evaluation":return W(()=>wse(s,i,o));case"image":return W(()=>Nse(s,i,o));case"graph":return W(()=>kse(s,i,o));case"logical":return W(()=>Tse(s,i,o));case"matrices":return W(()=>Ese(s,i,o));case"normalization":return W(()=>Cse(s,i,o));case"reduction":return W(()=>Rse(s,i,o));case"slice_join":return W(()=>Mse(s,i,o));case"sparse":return W(()=>Fse(s,i,o));case"spectral":return W(()=>$se(s,i,o));case"transformation":return W(()=>Dse(s,i,o));case"hash_table":return Sse(s,i,o,a);case"custom":let l=p8(s.op);if(l&&l.customExecutor)return l.customExecutor(new dse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var z8=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function _8(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Wn(c)[0]),d=[];a!=null&&(d=a.map(c=>Wn(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((P8(c)||Lse(c)||Wse(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Ose(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>Wn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return u}var zse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],_se=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Pse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function P8(e){return zse.indexOf(e.op)>=0}function Lse(e){return _se.indexOf(e.op)>=0}function Wse(e){return Pse.indexOf(e.op)>=0}var F2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new F2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=_8(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return Ose(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Wn(d)[0]]),r=t.map(d=>Wn(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return W(()=>{let d=new z8(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Wn(m),y=[];y[A]=e[m],p[f]=y});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let A=O8(f,p,d,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=A,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>mn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Hre(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new z8(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>mn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[Wn(g)[0]]),i=n.map(g=>Wn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:p}=_8(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,w]=Wn(g),b=[];b[w]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),A={};for(;c.length>0;){let g=this.processStack(s,c,t,h,A,f,i,m,l);await Promise.all(g)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!P8(g)&&!mn(g.name,h,t)).map(g=>g.name);if(y.length>0){let g="";throw d!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&I("isConstant",d.node,a,n)&&([p]=hr(d.node.name,n)),a[d.node.name]==null){let c=O8(d.node,a,n,this._resourceManager);p||([p]=hr(d.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=hr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Wn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Wn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Wn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Bse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Vse="?tfjs-format=file",jse="model.json",L8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Bse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=wn.browserHTTPRequest(e,this.loadOptions);else{let t=wn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(wn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=wn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new F2(C8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=C8.Instance.transformGraph(e.modelInitializer);this.initializer=new F2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=wn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${jse}${Vse}`);let n=new L8(e,t);return await n.load(),n}var Use="3.6.0",W8={};Fe(W8,{CSVDataset:()=>J8,Dataset:()=>Zl,FileDataSource:()=>sk,TextLineDataset:()=>K8,URLDataSource:()=>ik,array:()=>hie,csv:()=>Iie,func:()=>Sie,generator:()=>Nie,microphone:()=>Eie,version_data:()=>Cie,webcam:()=>Tie,zip:()=>fie});var Hse=Qi(Gg()),Gse=Qi(Gg());function qse(e,t){return h0(e,t)}function h0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Kl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=h0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Xse(e,t=V8){return B8(e,t)}function B8(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Kl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=B8(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function V8(e){return e===null?null:Kl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function j8(e,t){let n=new Map;h0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return h0(e,t,n)}function Kl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function Kse(e){return e==null||Zse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||k.isTypedArray(e)}function Zse(e){return e===null||typeof e!="object"&&typeof e!="function"}function Yse(e){return qse(e,Jse)}function Jse(e){return e instanceof Le?{value:e.clone(),recurse:!1}:Kl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var U8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$2=class extends U8{constructor(){super($2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$2.INITIAL_CAPACITY=32;function H8(e){return new tie(e)}function D2(e){return new nie(e)}function Qse(e,t){return new q8(e,t)}function eie(e,t=Zr.FAIL){return new pie(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new uie(this,e)}filter(e){return new oie(this,e)}map(e){return new lie(this,e)}mapAsync(e){return new G8(this,e)}serialMapAsync(e){return new G8(this,e).serial()}flatmap(e){return new die(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new iie(this,e,t)}columnMajorBatch(e,t=!0,n=V8){return this.rowMajorBatch(e,t).map(a=>Xse(a,n))}concatenate(e,t){return new q8(H8([this,e]),t)}take(e){return e<0||e==null?this:new sie(this,e)}skip(e){return e<0||e==null?this:new rie(this,e)}prefetch(e){return new X8(this,e)}shuffle(e,t){return new cie(this,e,t)}serial(){return new aie(this)}},tie=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Yse(e),done:!1}}},nie=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},aie=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},rie=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},sie=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},iie=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},oie=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},lie=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},uie=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},G8=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},O2=class extends qt{constructor(){super();this.outputQueue=new $2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},die=class extends O2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return!0}},q8=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Zr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Zr||(Zr={}));var pie=class extends qt{constructor(e,t=Zr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await j8(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Zr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Zr.SHORTEST:return{value:null,done:!0};case Zr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},X8=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new U8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},cie=class extends X8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Gse.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Zl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Bn(async()=>(await n.iterator()).columnMajorBatch(e,t,mie),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Bn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Bn(async()=>(await t.iterator()).filter(a=>W(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Bn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Bn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Bn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Bn(async()=>{let a=D2(async()=>({value:await t.iterator(),done:!1}));return Qse(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Bn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Hse.alea(t||k.now().toString());return Bn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Bn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Zl.MAX_BUFFER_SIZE=1e4;function Bn(e,t=null){return new class extends Zl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function hie(e){return Bn(async()=>H8(e),e.length)}function fie(e){if(!Kl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Bn(async()=>{let n=await j8(e,a=>{if(a instanceof Zl)return{value:a.iterator(),recurse:!1};if(Kl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return eie(n,Zr.SHORTEST)},t)}function mie(e){if(e===null)return null;let t=e[0];return Kse(t)?{value:Aie(e),recurse:!1}:{value:null,recurse:!0}}function Aie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?_n(e):oa(e)}var K8=class extends Zl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},f0='"',qd=Symbol("out"),Z8=Symbol("field"),m0=Symbol("quote"),z2=Symbol("quoteafterquote"),Y8=Symbol("quoteinquote"),J8=class extends Zl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new K8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=qd;for(let i=0;i<r;i++)switch(s){case qd:switch(e.charAt(i)){case f0:a=i+1,s=m0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=qd;break;default:s=Z8,a=i;break}break;case Z8:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=qd,a=i+1;break;default:}break;case m0:switch(e.charAt(i)){case f0:s=z2;break;default:}break;case z2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=qd,a=i+1;break;case f0:s=m0;break;default:s=Y8;break}break;case Y8:switch(e.charAt(i)){case f0:s=m0;break;default:}break;default:}if(s===z2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Q8=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Q8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),oa(n,t)}},ek=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Tt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=ga([s,r,o,i],[1,4])}else this.cropBox=ga([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new ek(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=li.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=ln(fe(e,"float32"),0),n;n=Ye.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},tk=class{},nk=class extends qt{split(e){return new yie(this,e)}},yie=class extends nk{constructor(e,t){super();this.upstream=e,this.impl=new gie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gie=class extends O2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},xie=class extends qt{decodeUTF8(){return new bie(this)}},bie=class extends nk{constructor(e){super();this.upstream=e,this.impl=new vie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vie=class extends O2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=gI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},ak=class extends xie{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function wie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=kie(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new ak(s,t)}else throw new Error(r.statusText)}var kie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function rk(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var sk=class extends tk{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(rk(this.input)&&J().get("IS_NODE")){let e=Ji("fs");this.input=e.readFileSync(this.input.substr(7))}return new ak(this.input,this.options)}},ik=class extends tk{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return rk(this.url)?new sk(this.url,this.fileOptions).iterator():wie(this.url,this.fileOptions)}};function Iie(e,t={}){return new J8(new ik(e),t)}function Sie(e){let t=D2(e);return Bn(async()=>t)}function Nie(e){return Bn(async()=>{let t=await e();return D2(()=>t.next())})}async function Tie(e,t){return ek.create(e,t)}async function Eie(e){return Q8.create(e)}var Cie="3.6.0",Rie={tfjs:(hm==null?void 0:hm.version)||void 0,"tfjs-core":(fm==null?void 0:fm.version)||void 0,"tfjs-data":(mm==null?void 0:mm.version)||void 0,"tfjs-layers":(Am==null?void 0:Am.version)||void 0,"tfjs-converter":(ym==null?void 0:ym.version)||void 0,"tfjs-backend-cpu":n7||void 0,"tfjs-backend-webgl":Sv||void 0,"tfjs-backend-wasm":y6||void 0};var Vn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function ok(){if(!Qm(Vn.name)){he("backend registration:",Vn.name);try{Vn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Vn.width,Vn.height):document.createElement("canvas")}catch(e){he("error: cannot create canvas:",e);return}try{Vn.gl=Vn.canvas.getContext("webgl2",Vn.webGLattr)}catch(e){he("error: cannot get WebGL2 context:",e);return}try{ph(2,Vn.gl)}catch(e){he("error: cannot set WebGL2 context:",e);return}try{let e=new gh(Vn.gl);cl(Vn.name,()=>new Pl(e),Vn.priority)}catch(e){he("error: cannot register WebGL backend:",e);return}try{sl("webgl").forEach(t=>{let n={...t,backendName:Vn.name};ri(n)})}catch(e){he("error: cannot update WebGL backend registration:",e);return}try{ma.set("WEBGL_VERSION",2)}catch(e){he("error: cannot set WebGL backend flags:",e);return}he("backend registered:",Vn.name)}}var G2={};Fa(G2,{load:()=>H2,predict:()=>U2,triangulation:()=>xk,uvmap:()=>bk});function lk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function Kd(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Yl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Jl(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function A0(e,t=1.5){let n=Yl(e),a=Kd(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function y0(e){let t=Yl(e),n=Kd(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function _2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var uk=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var g0=[[1,0,0],[0,1,0],[0,0,1]];function Mie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function P2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Mie(n)}function dk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Yr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Fie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function pk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Yr(e[r],Fie(t,s)))}return n}function x0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=dk(t[0],t[1]),i=pk(s,r),o=dk(-t[0],-t[1]);return pk(i,o)}function ck(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Yr(t[0],n),-Yr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function hk(e,t){return[Yr(e,t[0]),Yr(e,t[1])]}function fk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,u])}}}return n}var mk=6;function $ie(e,t,n){let a=Re(e,[0,1],[-1,2]),r=se(a,t),s=Re(e,[0,3],[-1,2]),i=me(s,n),o=me(r,n),l=me(i,2),u=ge(o,l),d=se(o,l),p=_(u,n),c=_(d,n);return ml([p,c],1)}var Ak=class{constructor(t,n){this.model=t,this.anchorsData=fk(t.inputs[0].shape[1]),this.anchors=ga(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=W(()=>{let u=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(u),p;if(Array.isArray(d)){let f=d.sort((x,w)=>x.size-w.size),A=ot([f[0],f[2]],2),y=ot([f[1],f[3]],2);p=ot([y,A],1).squeeze(0)}else p=d.squeeze();let c=$ie(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=kn(h).squeeze().dataSync();return[p,c,m]}),s=await Ye.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let u=r[i[l]];if(u>this.config.face.detector.minConfidence){let d=Re(a,[i[l],0],[1,-1]),p=uk(d);d.dispose();let c=this.anchorsData[i[l]],h=W(()=>Re(n,[i[l],mk-1],[1,-1]).squeeze().reshape([mk,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:u})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function yk(e){let t=await Gt(Yt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Ak(t,e);return!t||!t.modelUrl?he("load model failed:",e.face.detector.modelPath):e.debug&&he("load model:",t.modelUrl),n}var Xa={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},L2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Zd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],zi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Die=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Oie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],zie=[33,133,362,263,1,78,308],xoe=Die.map(e=>Zd[e]),boe=Oie.map(e=>Zd[e]),voe=zie.map(e=>Zd[e]);var W2=Xa.leftEyeLower0,B2=Xa.rightEyeLower0,Ql={leftBounds:[W2[0],W2[W2.length-1]],rightBounds:[B2[0],B2[B2.length-1]]},b0={count:468,mouth:13,symmetryLine:[13,Xa.midwayBetweenEyes[0]]},gk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},eu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function v0(e,t,n,a){for(let r=0;r<L2.length;r++){let{key:s,indices:i}=L2[r],o=Xa[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var V2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=Kd({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?x0(a,[0,0]):g0,l=a!==0?i.map(p=>[...hk(p,o),p[2]]):i,u=a!==0?ck(r):g0,d=[...Yl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+Yr(d,u[0])),Math.round(p[1]+Yr(d,u[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Ql.leftBounds[0]][2],a=t[Ql.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=y0(A0(_2([t[a],t[r]]),this.irisEnlarge)),o=Kd(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&ma.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<eu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(eu.index)}}getAdjustedIrisCoords(t,n,a){let r=t[Xa[`${a}EyeUpper0`][eu.upperCenter]][2],s=t[Xa[`${a}EyeLower0`][eu.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=lk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=A0(o),u=y0(l),d=this.storedBoxes[i].landmarks.arraySync(),p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&ma.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=b0.count?b0.symmetryLine:gk.symmetryLine;u=P2(i.landmarks[w],i.landmarks[b]);let v=Yl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[v[0]/t.shape[2],v[1]/t.shape[1]],T=Ye.rotateWithOffset(t,u,0,N);d=x0(-u,v),n.face.mesh.enabled?l=Jl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.meshSize,this.meshSize]).div(255):l=Jl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.boxSize,this.boxSize]).div(255)}else{d=g0;let w=t.clone();n.face.mesh.enabled?l=Jl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):l=Jl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,p,c]=this.meshDetector.execute(l),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=H(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:b,crop:v}=this.getEyeBox(f,l,Ql.leftBounds[0],Ql.leftBounds[1],!0),{box:N,boxSize:T,crop:R}=this.getEyeBox(f,l,Ql.rightBounds[0],Ql.rightBounds[1]),z=this.irisModel.predict(ot([v,R])).dataSync(),P=z.slice(0,eu.numCoordinates*3),{rawCoords:V,iris:j}=this.getEyeCoords(P,w,b,!0),U=z.slice(eu.numCoordinates*3),{rawCoords:X,iris:G}=this.getEyeCoords(U,N,T),ee=this.getLeftToRightEyeDepthDifference(f);Math.abs(ee)<30?(v0(f,V,"left",null),v0(f,X,"right",null)):ee<1?v0(f,V,"left",["EyeUpper0","EyeLower0"]):v0(f,X,"right",["EyeUpper0","EyeLower0"]);let Y=this.getAdjustedIrisCoords(f,j,"left"),re=this.getAdjustedIrisCoords(f,G,"right");f=f.concat(Y).concat(re)}let A=this.transformRawCoords(f,i,u,d),y=i.confidence;if(i=A0(_2(A),1.5),i.confidence=y,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ma.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=b0.count?b0.symmetryLine:gk.symmetryLine;u=P2(i.landmarks[w],i.landmarks[b]);let v=Yl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[v[0]/t.shape[2],v[1]/t.shape[1]],T=Ye.rotateWithOffset(t.toFloat(),u,0,N);d=x0(-u,v),l=Jl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.meshSize,this.meshSize]).div(255)}let g={mesh:A,box:i,faceConfidence:h,boxConfidence:i.confidence,image:l},x=y0(i);return x.confidence=i.confidence,x.faceConfidence=h,this.storedBoxes[o]=x,g}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Wt=[null,null,null],j2;async function U2(e,t){let n=await j2.predict(e,t),a=[];for(let r of n||[]){if(!r||r.isDisposedInternal)continue;let s=r.mesh.map(u=>[u[0]/e.shape[2],u[1]/e.shape[1],u[2]/j2.meshSize]),i={};if(r.mesh&&r.mesh.length>0)for(let u of Object.keys(Xa))i[u]=Xa[u].map(d=>r.mesh[d]);let o=r.box?[Math.max(0,r.box.startPoint[0]),Math.max(0,r.box.startPoint[1]),Math.min(e.shape[2],r.box.endPoint[0])-Math.max(0,r.box.startPoint[0]),Math.min(e.shape[1],r.box.endPoint[1])-Math.max(0,r.box.startPoint[1])]:0,l=r.box?[r.box.startPoint[0]/e.shape[2],r.box.startPoint[1]/e.shape[1],(r.box.endPoint[0]-r.box.startPoint[0])/e.shape[2],(r.box.endPoint[1]-r.box.startPoint[1])/e.shape[1]]:[];a.push({confidence:Math.round(100*r.faceConfidence||100*r.boxConfidence||0)/100,boxConfidence:Math.round(100*r.boxConfidence)/100,faceConfidence:Math.round(100*r.faceConfidence)/100,box:o,boxRaw:l,mesh:r.mesh,meshRaw:s,annotations:i,image:r.image}),r.coords&&r.coords.dispose()}return a}async function H2(e){return!Wt[0]&&e.face.enabled||!Wt[1]&&e.face.mesh.enabled||!Wt[2]&&e.face.iris.enabled?(Wt=await Promise.all([!Wt[0]&&e.face.enabled?yk(e):null,!Wt[1]&&e.face.mesh.enabled?Gt(Yt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Wt[2]&&e.face.iris.enabled?Gt(Yt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Wt[1]||!Wt[1].modelUrl?he("load model failed:",e.face.mesh.modelPath):e.debug&&he("load model:",Wt[1].modelUrl)),e.face.iris.enabled&&(!Wt[2]||!Wt[1].modelUrl?he("load model failed:",e.face.iris.modelPath):e.debug&&he("load model:",Wt[2].modelUrl))):e.debug&&(he("cached model:",Wt[0].model.modelUrl),he("cached model:",Wt[1].modelUrl),he("cached model:",Wt[2].modelUrl)),j2=new V2(Wt[0],Wt[1],Wt[2]),Wt}var xk=zi,bk=Zd;var Z2={};Fa(Z2,{load:()=>K2,predict:()=>k0});var _ie=["angry","disgust","fear","happy","sad","surprise","neutral"],Ca,w0=[],vk=0,q2=Number.MAX_SAFE_INTEGER,X2=[.2989,.587,.114];async function K2(e){return Ca?e.debug&&he("cached model:",Ca.modelUrl):(Ca=await Gt(Yt(e.modelBasePath,e.face.emotion.modelPath)),!Ca||!Ca.modelUrl?he("load model failed:",e.face.emotion.modelPath):e.debug&&he("load model:",Ca.modelUrl)),Ca}async function k0(e,t,n,a){return Ca?q2<t.face.emotion.skipFrames&&t.skipFrame&&vk===a&&w0[n]&&w0[n].length>0?(q2++,w0[n]):(q2=0,new Promise(async r=>{let s=Ye.resizeBilinear(e,[Ca.inputs[0].shape[2],Ca.inputs[0].shape[1]],!1),[i,o,l]=an(s,3,3);s.dispose();let u=_(i,X2[0]),d=_(o,X2[1]),p=_(l,X2[2]);i.dispose(),o.dispose(),l.dispose();let c=bc([u,d,p]);u.dispose(),d.dispose(),p.dispose();let h=W(()=>c.sub(.5).mul(2));c.dispose();let m=[];if(t.face.emotion.enabled){let f=await Ca.predict(h),A=f.dataSync();Ee(f);for(let y=0;y<A.length;y++)A[y]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*A[y])/100),emotion:_ie[y]});m.sort((y,g)=>g.score-y.score)}h.dispose(),w0[n]=m,vk=a,r(m)})):null}var tg={};Fa(tg,{enhance:()=>eg,load:()=>J2,match:()=>kk,predict:()=>S0,similarity:()=>Q2});var ea,I0=[],wk=0,Y2=Number.MAX_SAFE_INTEGER;async function J2(e){return ea?e.debug&&he("cached model:",ea.modelUrl):(ea=await Gt(Yt(e.modelBasePath,e.face.description.modelPath)),!ea||!ea.modelUrl?he("load model failed:",e.face.description.modelPath):e.debug&&he("load model:",ea.modelUrl)),ea}function Q2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function kk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=Q2(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function eg(e){return W(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let a=[[.05,.15,.85,.85]];return(n.shape.length===3?Ye.cropAndResize(ln(n,0),a,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]]):Ye.cropAndResize(n,a,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]])).mul(255)})}async function S0(e,t,n,a){var r,s;return ea?Y2<t.face.description.skipFrames&&t.skipFrame&&wk===a&&((r=I0[n])==null?void 0:r.age)&&((s=I0[n])==null?void 0:s.age)>0?(Y2++,I0):(Y2=0,new Promise(async i=>{let o=eg(e),l,u={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};t.face.description.enabled&&(l=await ea.predict(o)),Ee(o),l&&(W(()=>{let d=l.find(f=>f.shape[1]===1).dataSync(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderConfidence=Math.min(.99,p));let c=l.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],h=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(h[c-1]>h[c+1]?10*c-100*h[c-1]:10*c+100*h[c+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(d=>Ee(d))),I0[n]=u,wk=a,i(u)})):null}var Pie=(e,t)=>{let n=A=>A*180/Math.PI,a=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},r=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],w=A[2]-y[2];return[g,x,w]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],w=A[0]*y[1]-A[1]*y[0];return[g,x,w]},i=A=>{let[y,g,x,w,b,v,N,T,R]=A,$,z,P;return w<1?w>-1?(P=Math.asin(w),z=Math.atan2(-N,y),$=Math.atan2(-v,b)):(P=-Math.PI/2,z=-Math.atan2(T,R),$=0):(P=Math.PI/2,z=Math.atan2(T,R),$=0),{pitch:2*-$,yaw:2*-z,roll:2*-P}},o=A=>{let y=(x,w,b,v)=>Math.atan2(v-w,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let u=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,d=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/u,A[1]*t[1]/u,A[2]]),p=a(r(d[1],d[0])),c=a(r(d[3],d[2])),h=a(s(c,p));c=s(p,h);let m=[c[0],c[1],c[2],p[0],p[1],p[2],h[0],h[1],h[2]];return{angle:i(m),matrix:m}},ng=async(e,t)=>{var d,p,c,h,m,f,A,y;let n,a,r,s,i,o,l=[];e.state="run:face",n=nt();let u=await U2(t,e.config);if(e.perf.face=Math.trunc(nt()-n),!u)return[];for(let g=0;g<u.length;g++){if(e.analyze("Get Face"),!u[g].image||u[g].image.isDisposedInternal){he("Face object is disposed:",u[g].image);continue}let x=Pie(u[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?k0(u[g].image,e.config,g,u.length):{}:(e.state="run:emotion",n=nt(),s=e.config.face.emotion.enabled?await k0(u[g].image,e.config,g,u.length):{},e.perf.emotion=Math.trunc(nt()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?S0(u[g],e.config,g,u.length):[]:(e.state="run:description",n=nt(),o=e.config.face.description.enabled?await S0(u[g].image,e.config,g,u.length):[],e.perf.embedding=Math.trunc(nt()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=u[g])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((h=(c=u[g])==null?void 0:c.annotations)==null?void 0:h.rightEyeIris)&&(delete u[g].annotations.leftEyeIris,delete u[g].annotations.rightEyeIris);let w=((m=u[g].annotations)==null?void 0:m.leftEyeIris)&&((f=u[g].annotations)==null?void 0:f.rightEyeIris)?11.7*Math.max(Math.abs(u[g].annotations.leftEyeIris[3][0]-u[g].annotations.leftEyeIris[1][0]),Math.abs(u[g].annotations.rightEyeIris[4][1]-u[g].annotations.rightEyeIris[2][1])):0;l.push({...u[g],age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:w!==0?Math.trunc(w)/100:0,rotation:x,tensor:e.config.face.detector.return?(A=u[g].image)==null?void 0:A.squeeze():null}),(y=u[g].image)==null||y.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var dg={};Fa(dg,{load:()=>ug,predict:()=>lg});var Yd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Ik=Yd.length,Jd=Yd.reduce((e,t,n)=>(e[t]=n,e),{}),Lie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Wie=Lie.map(([e,t])=>[Jd[e],Jd[t]]),Sk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Nk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Tk(e,[t,n],[a,r]){let s=(o,l,u)=>({score:o.score,box:[Math.trunc(o.box[0]*u),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*u),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:d,part:p,position:c})=>({score:d,part:p,position:{x:Math.trunc(c.x*u),y:Math.trunc(c.y*l)}}))});return e.map(o=>s(o,t/a,n/r))}var ag=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function rg(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+Ik)}}function sg(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=rg(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function ig(e,t,n){return e<t?t:e>n?n:e}function Ek(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function og(e,t){return{x:e.x+t.x,y:e.y+t.y}}var N0=1,tu=16,Bie=50**2;function Ck(e,t,n,a,r,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,g,x)=>({y:ig(Math.round(y.y/tu),0,g-1),x:ig(Math.round(y.x/tu),0,x-1)}),[u,d]=a.shape,p=l(t.position,u,d),c=o(p),m=og(t.position,c);for(let y=0;y<i;y++){let g=l(m,u,d),x=rg(g.y,g.x,n,r);m=og({x:g.x*tu,y:g.y*tu},{x:x.x,y:x.y})}let f=l(m,u,d),A=a.get(f.y,f.x,n);return{position:m,part:Yd[n],score:A}}function Vie(e,t,n,a,r){let s=Sk.map(([c,h])=>[Jd[c],Jd[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],u=i.length,d=new Array(l),p=sg(e.part,tu,n);d[e.part.id]={score:e.score,part:Yd[e.part.id],position:p};for(let c=u-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=Ck(c,d[h],m,t,n,r))}for(let c=0;c<u;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=Ck(c,d[h],m,t,n,a))}return d}function jie(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-N0,0),u=Math.min(n+N0+1,s);for(let d=l;d<u;++d){let p=Math.max(a-N0,0),c=Math.min(a+N0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function Uie(e,t){let[n,a,r]=t.shape,s=new ag(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||jie(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function Rk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?Ek(n,t,s.y,s.x)<=Bie:!1})}function Hie(e,t){return t.reduce((a,{position:r,score:s},i)=>(Rk(e,r,i)||(a+=s),a),0)/t.length}function Mk(e,t,n,a,r,s){let i=[],o=Uie(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=sg(l.part,tu,e);if(Rk(i,u,l.part.id))continue;let d=Vie(l,t,e,n,a);d=d.filter(h=>h.score>s);let p=Hie(i,d),c=Nk(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var fa,Gie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function lg(e,t){let n=W(()=>{let o=e.resizeBilinear([fa.inputs[0].shape[2],fa.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=fa.execute(o,Gie).map(d=>d.squeeze([0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await Mk(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Tk(r,[e.shape[1],e.shape[2]],[fa.inputs[0].shape[2],fa.inputs[0].shape[1]])}async function ug(e){return fa?e.debug&&he("cached model:",fa.modelUrl):(fa=await Gt(Yt(e.modelBasePath,e.body.modelPath)),!fa||!fa.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",fa.modelUrl)),fa}var yg={};Fa(yg,{load:()=>Ag,predict:()=>mg});function T0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Qd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Fk(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function $k(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function E0(e,t=1.5){let n=Qd(e),a=T0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function C0(e){let t=Qd(e),n=T0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Dk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var pg=class{constructor(t){var n;this.model=t,this.anchors=Dk.map(a=>[a.x,a.y]),this.anchorsTensor=ga(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Tt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Tt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return W(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=se(me(n,this.inputSizeTensor),this.anchorsTensor),s=me(a,this.doubleInputSizeTensor),i=_(ge(r,s),this.inputSizeTensor),o=_(se(r,s),this.inputSizeTensor);return ml([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let a=se(me(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return _(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=W(()=>kn(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=u.arraySync();s.dispose(),u.dispose();let p=[];for(let c of d)if(i[c]>=n.hand.minConfidence){let h=Re(l,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=W(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=W(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),d=u.slice(0,2),p=u.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push($k({startPoint:d,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function qie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Ok(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return qie(n)}var zk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Jr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Xie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function _k(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Jr(e[r],Xie(t,s)))}return n}function cg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=zk(t[0],t[1]),i=_k(s,r),o=zk(-t[0],-t[1]);return _k(i,o)}function Pk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Jr(t[0],n),-Jr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function hg(e,t){return[Jr(e,t[0]),Jr(e,t[1])]}var Kie=5,Lk=1.65,Wk=[0,5,9,13,17,1,2],Zie=0,Yie=2,fg=class{constructor(t,n){var a;this.handDetector=t,this.landmarkDetector=n,this.inputSize=(a=this.landmarkDetector)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>hg([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return E0(C0(r),Kie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=E0(C0(n),Lk);a.palmLandmarks=[];for(let r=0;r<Wk.length;r++)a.palmLandmarks.push(t[Wk[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=T0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=cg(a,[0,0]),u=o.map(h=>[...hg(h,l),h[2]]),d=Pk(r),p=[...Qd(n),1],c=[Jr(p,d[0]),Jr(p,d[1])];return u.map(h=>[h[0]+c[0],h[1]+c[1],h[2]])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?Ok(o.palmLandmarks[Zie],o.palmLandmarks[Yie]):0,u=Qd(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],p=n.hand.rotation?Ye.rotateWithOffset(t,l,0,d):t.clone(),c=cg(-l,u),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=Fk(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let x=H(y,[-1,3]),w=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(w,h,l,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=v;let N={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=E0(C0(o),Lk),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var Bk={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Qr,es,Vk;async function mg(e,t){let n=await Vk.estimateHands(e,t);if(!n)return[];let a=[];for(let r of n){let s={};if(r.landmarks)for(let l of Object.keys(Bk))s[l]=Bk[l].map(u=>r.landmarks[u]);let i=r.box?[Math.max(0,r.box.topLeft[0]),Math.max(0,r.box.topLeft[1]),Math.min(e.shape[2],r.box.bottomRight[0])-Math.max(0,r.box.topLeft[0]),Math.min(e.shape[1],r.box.bottomRight[1])-Math.max(0,r.box.topLeft[1])]:[],o=[r.box.topLeft[0]/e.shape[2],r.box.topLeft[1]/e.shape[1],(r.box.bottomRight[0]-r.box.topLeft[0])/e.shape[2],(r.box.bottomRight[1]-r.box.topLeft[1])/e.shape[1]];a.push({confidence:Math.round(100*r.confidence)/100,box:i,boxRaw:o,landmarks:r.landmarks,annotations:s})}return a}async function Ag(e){!Qr||!es?([Qr,es]=await Promise.all([e.hand.enabled?Gt(Yt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Gt(Yt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Qr||!Qr.modelUrl?he("load model failed:",e.hand.detector.modelPath):e.debug&&he("load model:",Qr.modelUrl),!es||!es.modelUrl?he("load model failed:",e.hand.skeleton.modelPath):e.debug&&he("load model:",es.modelUrl))):(e.debug&&he("cached model:",Qr.modelUrl),e.debug&&he("cached model:",es.modelUrl));let t=new pg(Qr);return Vk=new fg(t,es),[Qr,es]}var bg={};Fa(bg,{load:()=>gg,predict:()=>xg});var jk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Uk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Cn;async function gg(e){return Cn?e.debug&&he("cached model:",Cn.modelUrl):(Cn=await Gt(Yt(e.modelBasePath,e.body.modelPath)),Cn.width=parseInt(Cn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Cn.height=parseInt(Cn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Cn||!Cn.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",Cn.modelUrl)),Cn}async function xg(e,t){if(!Cn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},a=Ye.resizeBilinear(e,[Cn.width,Cn.height],!1),r=me(a,[255]);a.dispose();let s=await Cn.predict(r),i=s.find(p=>p.size===195||p.size===155).dataSync();s.forEach(p=>p.dispose()),r.dispose();let o=[],l=i.length===195?jk:Uk,u=5;for(let p=0;p<i.length/u;p++)o.push({id:p,part:l[p],position:{x:Math.trunc(n.width*i[u*p+0]/255),y:Math.trunc(n.height*i[u*p+1]/255),z:Math.trunc(i[u*p+2])+0},score:(100-Math.trunc(100/(1+Math.exp(i[u*p+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[u*p+4]))))/100});return[{score:o.reduce((p,c)=>c.score>p?c.score:p,0),keypoints:o}]}var Sg={};Fa(Sg,{load:()=>kg,predict:()=>Ig});var R0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Rn,vg=[],wg=Number.MAX_SAFE_INTEGER,M0=2.5;async function kg(e){if(Rn)e.debug&&he("cached model:",Rn.modelUrl);else{Rn=await Gt(Yt(e.modelBasePath,e.object.modelPath));let t=Object.values(Rn.modelSignature.inputs);if(Rn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Rn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Rn||!Rn.modelUrl?he("load model failed:",e.object.modelPath):e.debug&&he("load model:",Rn.modelUrl)}return Rn}async function Jie(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])W(()=>{var A,y;let d=u*13,p=(A=e.find(g=>g.shape[1]===d**2&&g.shape[2]===R0.length))==null?void 0:A.squeeze(),c=(y=e.find(g=>g.shape[1]===d**2&&g.shape[2]<R0.length))==null?void 0:y.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let w=f[g][x];if(w>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%d))/d,v=(.5+Math.trunc(g/d))/d,N=m[g].map(U=>U*(d/u/t)),[T,R]=[b-M0/u*N[0],v-M0/u*N[1]],[$,z]=[b+M0/u*N[2]-T,v+M0/u*N[3]-R],P=[T,R,$,z];P=P.map(U=>Math.max(0,Math.min(U,1)));let V=[P[0]*n[0],P[1]*n[1],P[2]*n[0],P[3]*n[1]],j={id:r++,strideSize:u,score:Math.round(100*w)/100,class:x+1,label:R0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*v)],centerRaw:[b,v],box:V.map(U=>Math.trunc(U)),boxRaw:P};s.push(j)}}});e.forEach(u=>Ee(u));let i=s.map(u=>u.boxRaw),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await Ye.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=u.dataSync(),Ee(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function Ig(e,t){return Rn?wg<t.object.skipFrames&&t.skipFrame&&vg.length>0?(wg++,vg):(wg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ye.resizeBilinear(e,[Rn.inputSize,Rn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await Rn.predict(i)),i.dispose();let l=await Jie(o,Rn.inputSize,a,t);vg=l,n(l)})):null}var Hk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},Gk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},qk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].annotations.rightEyeIris[0][0],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].annotations.leftEyeIris[0][0];(c>.033||p>.033)&&(u=!1),c>.033&&t.push({iris:n,gesture:"looking right"}),p>.033&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||h<.015||m>.03||h>.03)&&(u=!1),(m<.015||h<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||h>.03)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},Xk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function Qie(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(u[c]=0,p))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function Kk(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:v})},this.reset=function(){i=[]};let A=function(b,v){if(!(b===o&&v===l)){if(c.width=b,o=b,c.height=v,l=v,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,v){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let R=f.createTexture();return f.bindTexture(f.TEXTURE_2D,R),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,R,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:R}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var R,$;let v=null,N=null,T=!1;t===0?v=n:v=(R=g(r))==null?void 0:R.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,T=t%2==0):(r=(r+1)%2,N=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(d.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let N=i[v];N.func.apply(this,N.args||[])}return c};let w=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new Qie(f,v.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,T,2*N),h[b]=d,d};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let N=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,T=w(N);f.uniform1fv(T.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,N=(v-1)*-.5;p.colorMatrix([v,N,N,0,0,N,v,N,0,0,N,N,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,N=-128*(v-1);p.colorMatrix([v,0,0,0,N,0,v,0,0,N,0,0,v,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),N=Math.sin(b),T=.213,R=.715,$=.072;p.colorMatrix([T+v*(1-T)+N*-T,R+v*-R+N*-R,$+v*-$+N*(1-$),0,0,T+v*-T+N*.143,R+v*(1-R)+N*.14,$+v*-$+N*-.283,0,0,T+v*-T+N*-(1-T),R+v*-R+N*R,$+v*(1-$)+N*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),N=1/o,T=1/l,R=w(p.convolution.SHADER);f.uniform1fv(R.uniform.m,v),f.uniform2f(R.uniform.px,N,T),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,N=b/7/l,T=w(p.blur.SHADER);f.uniform2f(T.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let v=b/o,N=b/l,T=w(p.pixelate.SHADER);f.uniform2f(T.uniform.size,v,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var F0=2048,Ce,yt,Ft;function Ng(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Oa(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=r,o=s;if(i>F0&&(i=F0,o=i*s/r),o>F0&&(o=F0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let l=Ce.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Ft||!yt||Ce.width!==yt.width||(Ce==null?void 0:Ce.height)!==(yt==null?void 0:yt.height))&&(yt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(yt==null?void 0:yt.width)!==(Ce==null?void 0:Ce.width)&&(yt.width=Ce==null?void 0:Ce.width),(yt==null?void 0:yt.height)!==(Ce==null?void 0:Ce.height)&&(yt.height=Ce==null?void 0:Ce.height),Ft=ma.flags.IS_BROWSER?new Kk({canvas:yt}):null),!Ft)return{tensor:null,canvas:Ce};Ft.reset(),Ft.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ft.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ft.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ft.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ft.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ft.addFilter("hue",t.filter.hue),t.filter.negative&&Ft.addFilter("negative"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.vintage&&Ft.addFilter("brownie"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.kodachrome&&Ft.addFilter("kodachrome"),t.filter.technicolor&&Ft.addFilter("technicolor"),t.filter.polaroid&&Ft.addFilter("polaroid"),t.filter.pixelate!==0&&Ft.addFilter("pixelate",t.filter.pixelate),Ft.apply(Ce)}else yt=Ce,Ft&&(Ft=null);let u;if(yt.data){let p=[yt.height,yt.width,3];u=Ac(yt.data,p,"int32")}else if(yt instanceof ImageData)u=li.fromPixels(yt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0),u=li.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);u=li.fromPixels(h)}let d=u.toFloat();n=d.expandDims(0),u.dispose(),d.dispose()}let a=t.filter.return?yt:null;return{tensor:n,canvas:a}}var Eg={};Fa(Eg,{all:()=>toe,body:()=>Jk,canvas:()=>eoe,face:()=>Yk,gesture:()=>Zk,hand:()=>Qk,object:()=>e9,options:()=>_i});var _i={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function $0(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Pi(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Tg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t)e.strokeStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.lineTo(a[0],parseInt(a[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function ep(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Tg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function Zk(e,t,n){let a=Gn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function Yk(e,t,n){let a=Gn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let s of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&(a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),r.fillStyle=a.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),u=o*a.lineHeight+s.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i[o],l+5,u+16)),r.fillStyle=a.labelColor,r.fillText(i[o],l+4,u+15)}if(r.lineWidth=1,s.mesh&&s.mesh.length>0){if(a.drawPoints)for(let o of s.mesh)$0(r,o[0],o[1],o[2],a);if(a.drawPolygons){r.lineWidth=1;for(let o=0;o<zi.length/3;o++){let l=[zi[o*3+0],zi[o*3+1],zi[o*3+2]].map(u=>s.mesh[u]);Tg(r,l,a)}if(s.annotations&&s.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;r.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(s.annotations&&s.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;r.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}}}}}var ts=[];async function Jk(e,t,n){let a=Gn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let s=0;s<t.length;s++){if(!ts[s]&&a.bufferedOutput&&(ts[s]={...t[s]}),r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&(Pi(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2]))),a.drawPoints)for(let i=0;i<t[s].keypoints.length;i++)r.fillStyle=a.useDepth&&t[s].keypoints[i].position.z?`rgba(${127.5+2*t[s].keypoints[i].position.z}, ${127.5-2*t[s].keypoints[i].position.z}, 255, 0.5)`:a.color,a.bufferedOutput?(ts[s].keypoints[i][0]=(ts[s].keypoints[i][0]+t[s].keypoints[i].position.x)/2,ts[s].keypoints[i][1]=(ts[s].keypoints[i][1]+t[s].keypoints[i].position.y)/2,$0(r,ts[s].keypoints[i][0],ts[s].keypoints[i][1],0,a)):$0(r,t[s].keypoints[i].position.x,t[s].keypoints[i].position.y,0,a);if(a.drawLabels&&(r.font=a.font,t[s].keypoints))for(let i of t[s].keypoints)r.fillStyle=a.useDepth&&i.position.z?`rgba(${127.5+2*i.position.z}, ${127.5-2*i.position.z}, 255, 0.5)`:a.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position.x+4,i.position.y+4);if(a.drawPolygons&&t[s].keypoints){let i,o=[];o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),ep(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),o.length===4&&Tg(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&o.push([i.position.x,i.position.y]),ep(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&o.push([i.position.x,i.position.y]),ep(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&o.push([i.position.x,i.position.y]),ep(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&o.push([i.position.x,i.position.y]),ep(r,o,a)}}}}async function Qk(e,t,n){let a=Gn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes){r.strokeStyle=a.color,r.fillStyle=a.color;let i;if(!a.calculateHandBox)i=a.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]<i[0]&&(i[0]=o[0]),o[1]<i[1]&&(i[1]=o[1]),o[0]>i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}a.useRawBoxes?Pi(r,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],a):Pi(r,i[0],i[1],i[2],i[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",i[0]+3,1+i[1]+a.lineHeight,i[2])),r.fillStyle=a.labelColor,r.fillText("hand",i[0]+2,0+i[1]+a.lineHeight,i[2])),r.stroke()}if(a.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,$0(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function e9(e,t,n){let a=Gn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function eoe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function toe(e,t,n){let a=Gn(_i,n);!t||!e||e instanceof HTMLCanvasElement&&(Yk(e,t.face,a),Jk(e,t.body,a),Qk(e,t.hand,a),Zk(e,t.gesture,a),e9(e,t.object,a))}var D0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,O0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var t9="1.9.0";var nu,tp,np,Li,Wi,z0,ap,_0,P0,L0,W0,n9=class{constructor(t={}){aa(this,nu,void 0);aa(this,tp,void 0);aa(this,np,void 0);aa(this,Li,void 0);aa(this,Wi,void 0);this.analyze=(...t)=>{if(!vn(this,tp))return;let n=this.tf.engine().state.numTensors,a=vn(this,nu);er(this,nu,n);let r=n-a;r!==0&&he(...t,r)};aa(this,z0,t=>{if(!vn(this,np))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});aa(this,ap,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=nt();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&he("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&he("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&he("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&he(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&he("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&ok();try{await this.tf.setBackend(this.config.backend)}catch(r){he("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&(he("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&he(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(nt()-a)}});aa(this,_0,async t=>{if(this.config.cacheSensitivity===0)return!0;let n=50,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=this.tf.sum(a);a.dispose();let s=r.dataSync()[0];r.dispose();let i=Math.max(s,vn(this,Wi))/Math.min(s,vn(this,Wi))-1;return er(this,Wi,s),i<this.config.cacheSensitivity});aa(this,P0,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(D0);break;case"full":n=await t(O0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});aa(this,L0,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+D0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+O0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));aa(this,W0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(D0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(O0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&he("Warmup tfjs-node not loaded");return a});this.tf=Xd,this.draw=Eg,this.version=t9,this.config=Gn(Vg,t),this.state="idle",er(this,nu,0),er(this,tp,!1),er(this,np,!1),er(this,Li,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>Ng(n,this.config),this.classes={facemesh:G2,emotion:Z2,faceres:tg,body:this.config.body.modelPath.includes("posenet")?dg:bg,hand:yg,nanodet:Sg},this.faceTriangulation=xk,this.faceUVMap=bk,this.sysinfo=jg(),er(this,Wi,1)}similarity(t,n){return Q2(t,n)}enhance(t){return eg(t)}match(t,n,a=0){return kk(t,n,a)}async load(t={}){this.state="load";let n=nt();t&&(this.config=Gn(this.config,t)),vn(this,Li)&&(this.config.debug&&he(`version: ${this.version}`),this.config.debug&&he(`tfjs version: ${this.tf.version_core}`),this.config.debug&&he("platform:",this.sysinfo.platform),this.config.debug&&he("agent:",this.sysinfo.agent),await vn(this,ap).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&he("configuration:",this.config),this.config.debug&&he("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?H2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?K2(this.config):null),this.models.handpose||(this.config.hand.enabled?Ag(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?ug(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?gg(this.config):null),this.models.nanodet||(this.config.object.enabled?kg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?J2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await H2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await K2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Ag(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await ug(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await gg(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await kg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await J2(this.config))),vn(this,Li)&&(this.config.debug&&he("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),er(this,Li,!1));let a=Math.trunc(nt()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async detect(t,n={}){return new Promise(async a=>{this.state="config";let r;this.config=Gn(this.config,n),this.state="check";let s=vn(this,z0).call(this,t);s&&(he(s,t),a({error:s}));let i=nt();await vn(this,ap).call(this),await this.load(),r=nt();let o=Ng(t,this.config);if(!o||!o.tensor){he("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(nt()-r),this.analyze("Get Image:"),r=nt(),this.config.skipFrame=await vn(this,_0).call(this,o.tensor),this.perf.frames||(this.perf.frames=0),this.perf.cached||(this.perf.cached=0),this.perf.frames++,this.config.skipFrame&&this.perf.cached++,this.perf.changed=Math.trunc(nt()-r),this.analyze("Check Changed:");let l,u,d,p,c;this.config.async?(d=this.config.face.enabled?ng(this,o.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",r=nt(),d=this.config.face.enabled?await ng(this,o.tensor):[],c=Math.trunc(nt()-r),c>0&&(this.perf.face=c)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?lg(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(l=this.config.body.enabled?xg(o.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",r=nt(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await lg(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(l=this.config.body.enabled?await xg(o.tensor,this.config):[]),c=Math.trunc(nt()-r),c>0&&(this.perf.body=c)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?mg(o.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",r=nt(),u=this.config.hand.enabled?await mg(o.tensor,this.config):[],c=Math.trunc(nt()-r),c>0&&(this.perf.hand=c)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(p=this.config.object.enabled?Ig(o.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",r=nt(),p=this.config.object.enabled?await Ig(o.tensor,this.config):[],c=Math.trunc(nt()-r),c>0&&(this.perf.object=c)),this.analyze("End Object:"),this.config.async&&([d,l,u,p]=await Promise.all([d,l,u,p])),Ee(o.tensor);let h=[];this.config.gesture.enabled&&(r=nt(),h=[...Gk(d),...Hk(l),...Xk(u),...qk(d)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(nt()-r)),this.perf.total=Math.trunc(nt()-i),this.state="idle";let m={face:d,body:l,hand:u,gesture:h,object:p,performance:this.perf,canvas:o.canvas};a(m)})}async warmup(t={}){let n=nt();if(t&&(this.config=Gn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await vn(this,P0).call(this):typeof Image!="undefined"?a=await vn(this,L0).call(this):a=await vn(this,W0).call(this);let r=nt();return this.config.debug&&he("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};nu=new WeakMap,tp=new WeakMap,np=new WeakMap,Li=new WeakMap,Wi=new WeakMap,z0=new WeakMap,ap=new WeakMap,_0=new WeakMap,P0=new WeakMap,L0=new WeakMap,W0=new WeakMap;return aoe;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|